Repository logo
 

Parallel iterative solution of the incompressible Navier-Stokes equations with application to rotating wings


Change log

Authors

Šístek, J 

Abstract

We discuss aspects of implementation and performance of parallel iterative solution techniques applied to low Reynolds number flows around fixed and moving rigid bodies. The incompressible Navier-Stokes equations are discretised with Taylor-Hood finite elements in combination with a semi-implicit pressure-correction method. The resulting sequence of convection-diffusion and Poisson equations are solved with preconditioned Krylov subspace methods. To achieve overall scalability we consider new auxiliary algorithms for mesh handling and assembly of the system matrices. We compute the flow around a translating plate and a rotating insect wing to establish the scaling properties of the developed solver. The largest meshes have up to 132 × 10^6 hexahedral finite elements leading to around 3.3 × 10^9 unknowns. For the scalability runs the maximum core count is around 65.5 × 10^3. We find that almost perfect scaling can be achieved with a suitable Krylov subspace iterative method, like conjugate gradients or GMRES, and a block Jacobi preconditioner with incomplete LU factorisation as a subdomain solver. In addition to parallel performance data, we provide new highly-resolved computations of flow around a rotating insect wing and examine its vortex structure and aerodynamic loading.

Description

Keywords

Navier-Stokes, Incompressible flow, Krylov subspace methods, Preconditioning, PETSc, Rotating insect wing

Journal Title

Computers and Fluids

Conference Name

Journal ISSN

0045-7930
1879-0747

Volume Title

122

Publisher

Elsevier BV
Sponsorship
Engineering and Physical Sciences Research Council (EP/G008531/1)
This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) through grant # EP/G008531/1. Additional support was provided by the Czech Science Foundation through grant 14-02067S, and by the Czech Academy of Sciences through RVO:67985840. The presented computations were performed on HECToR at the Edinburgh Parallel Computing Centre through PRACE-2IP (FP7 RI-283493).