Repository logo
 

THE OPTICAL-UV EMISSIVITY OF QUASARS: DEPENDENCE ON BLACK HOLE MASS AND RADIO LOUDNESS

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Shankar, Francesco 
Calderone, Giorgio 
Knigge, Christian 
Buckland, Rachel 

Abstract

We analyzed a large sample of radio-loud and radio-quiet quasar spectra at redshift 1.0 < z < 1.2 to compare the inferred underlying quasar continuum slopes (after removal of the host galaxy contribution) with accretion disk models. The latter predict redder (decreasing) alpha_3000 continuum slopes (L_\nu~\nu^alpha at 3000Ang) with increasing black hole mass, bluer alpha_3000 with increasing luminosity at 3000Ang, and bluer alpha_3000 with increasing spin of the black hole, when all other parameters are held fixed. We find no clear evidence for any of these predictions in the data. In particular we find that: (i) alpha_3000 shows no significant dependence on black hole mass or luminosity. Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial masses can effectively erase any intrinsic dependence of alpha_3000 on black hole mass, in line with some previous studies. (ii) The mean slope alpha_3000 of radio-loud sources, thought to be produced by rapidly spinning black holes, is comparable to, or even redder than, that of radio-quiet quasars. Indeed, although quasars appear to become more radio loud with decreasing luminosity, we still do not detect any significant dependence of alpha_3000 on radio loudness. The predicted mean alpha_3000 slopes tend to be bluer than in the data. Disk models with high inclinations and dust extinction tend to produce redder slopes closer to empirical estimates. Our mean alpha_3000 values are close to the ones independently inferred at z<0.5 suggesting weak evolution with redshift, at least for moderately luminous quasars.

Description

Keywords

galaxies: active, galaxies: jets, quasars: general

Journal Title

ASTROPHYSICAL JOURNAL LETTERS

Conference Name

Journal ISSN

2041-8205
2041-8213

Volume Title

818

Publisher

American Astronomical Society