Repository logo
 

Mechanisms of Vascular Dysfunction in COPD and Effects of a Novel Soluble Epoxide Hydrolase Inhibitor in Smokers.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Yang, Lucy 
Gutterman, David D 
Mayer, Ruth J 
Ament, Zsuzsanna 

Abstract

BACKGROUND: Smoking and COPD are risk factors for cardiovascular disease, and the pathogenesis may involve endothelial dysfunction. We tested the hypothesis that endothelium-derived epoxyeicosatrienoic acid (EET)-mediated endothelial function is impaired in patients with COPD and that a novel soluble epoxide hydrolase inhibitor, GSK2256294, attenuates EET-mediated endothelial dysfunction in human resistance vessels both in vitro and in vivo. METHODS: Endogenous and stimulated endothelial release of EETs was assessed in 12 patients with COPD, 11 overweight smokers, and two matched control groups, using forearm plethysmography with intraarterial infusions of fluconazole, bradykinin, and the combination. The effects of GSK2256294 on EET-mediated vasodilation in human resistance arteries were assessed in vitro and in vivo in a phase I clinical trial in healthy overweight smokers. RESULTS: Compared with control groups, there was reduced vasodilation with bradykinin (P = .005), a blunted effect of fluconazole on bradykinin-induced vasodilation (P = .03), and a trend toward reduced basal EET/dihydroxyepoxyeicosatrienoic acid ratio in patients with COPD (P = .08). A similar pattern was observed in overweight smokers. In vitro, 10 μM GSK2256294 increased 11,12-EET-mediated vasodilation compared with vehicle (90% ± 4.2% vs 72.6% ± 6.2% maximal dilatation) and shifted the bradykinin half-maximal effective concentration (EC50) (-8.33 ± 0.172 logM vs -8.10 ± 0.118 logM; P = .001 for EC50). In vivo, 18 mg GSK2256294 improved the maximum bradykinin response from 338% ± 46% before a dose to 566% ± 110% after a single dose (P = .02) and to 503% ± 123% after a chronic dose (P = .003). CONCLUSIONS: GSK2256294 attenuates smoking-related EET-mediated endothelial dysfunction, suggesting potential therapeutic benefits in patients with COPD. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01762774; URL: www.clinicaltrials.gov.

Description

Keywords

COPD, EETs, clinical trial, endothelial function, smokers, soluble epoxide hydrolase inhibitor, 8,11,14-Eicosatrienoic Acid, Adult, Aged, Blood Vessels, Bradykinin, Case-Control Studies, Cyclohexylamines, Endothelium, Vascular, Epoxide Hydrolases, Fluconazole, Forearm, Humans, In Vitro Techniques, Male, Middle Aged, Overweight, Plethysmography, Pulmonary Disease, Chronic Obstructive, Smoking, Triazines, Vasodilation, Vasodilator Agents

Journal Title

Chest

Conference Name

Journal ISSN

0012-3692
1931-3543

Volume Title

151

Publisher

Elsevier BV
Sponsorship
Medical Research Council (MR/P011705/1)
Technology Strategy Board (101024 TP 9157-61188)
Medical Research Council (MR/P01836X/1)
Medical Research Council (MC_PC_13030)
British Heart Foundation (None)
This work was supported by GSK [SEH114068] and Innovate UK (ERICA Consortium 10037625), the Wellcome Trust grant numbers 100780/Z/12/Z, and WT103782AIA awarded to LY, and DEN respectively; the Raymond and Beverley Sackler fellowship awarded to LY; National Institute for Health Research funding awarded to IBW, and JC in the Cambridge Comprehensive Biomedical Research, and the British Heart Foundation grant numbers CH/0 9/002, and RG66885 RCZA/008 awarded to DEN, and IBW. JLG and ZA are funded by the Medical Research Council (Medical Research Council Lipid Profiling and Signalling, MC UP A90 1006 & Lipid Dynamics and Regulation, MC PC 130 30).