Repository logo
 

Multiple targets for flecainide action: implications for cardiac arrhythmogenesis

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Salvage, SC 
Chandrasekharan, KH 
Jeevaratnam, K 
Dulhunty, AF 
Thompson, AJ 

Abstract

Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca(2+) -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca(2+) channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca(2+) release could arise from its primary actions on Nav channels indirectly decreasing [Ca(2+) ]i through a reduced [Na(+) ]i and/or direct open-state RyR2-Ca(2+) channel antagonism. The consequent [Ca(2+) ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na(+) currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function.

Description

Keywords

Animals, Anti-Arrhythmia Agents, Arrhythmias, Cardiac, Calcium, Flecainide, Humans, Potassium Channel Blockers, Potassium Channels, Ryanodine Receptor Calcium Release Channel

Journal Title

British Journal of Pharmacology

Conference Name

Journal ISSN

0007-1188
1476-5381

Volume Title

Publisher

Wiley
Sponsorship
British Heart Foundation (None)
Medical Research Council (MR/M001288/1)
Wellcome Trust (105727/Z/14/Z)
British Heart Foundation (None)
S.C.S. and A.P.J. are funded by the British Heart Foundation (PG/14/79/31102). K.J. is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/ 02/1), Ministry of Education, Malaysia and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. A.F.D. is funded by the National Health and Medical Research Council (NHMRC) of Australia (APP1126201). A.J.T. is funded by the British Heart Foundation (PG/13/39/3029). C.L.H.H. is funded by the Medical Research Council (MR/M001288/1), Wellcome Trust (105727/Z/14/Z), British Heart Foundation (PG/14/79/ 31102), the McVeigh Benefaction and SADS UK.