Repository logo
 

Ab initio calculations of NMR chemical shifts for structure determination in biology


No Thumbnail Available

Type

Thesis

Change log

Authors

De Gortari, Itzam 

Abstract

In this thesis we present an application of a computational method for calculating nuclear Magnetic Resonance chemical shifts to structure determination in Biology. We investigate and summarise the most important structural contributions to the chemical shift. Even though the NMR chemical shift has direct relation to the global structure it is shown that there are two main dominant contributions: I3C-a depends mainly on the secondary structure and 15-N NMR chemical shift depends mainly on hydrogen bonds. The importance of other relevant contributions to the chemical shifts, such as solvent and dynamical effects, is demonstrated by testing our computational method on proteins and by comparing theory and experiment. The thermal effects on the chemical shift in the solid are studied by combinig ab initio molecular dynamics simulations and NMR chemical shift calculations. Other factors affecting the chemical shift are investigated by constructing ideal models from which we can extract information about the nature of the hydrogen bonds in helical structures. By doing these calculations we suggest specific experimental measurements of chemical shift which could differentiate structures that have minor structural variations between them, eg. the three different types of helices in proteins. The last topic studied in this thesis, namely amyloid fibrils, is presented as a starting point for future work.

Description

This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.


Cambridge University Library can make a copy of this work available only for the purposes of private study and non-commercial research. Copies should not be shared or saved in any shared facilities. Copyright over the content of these works is with their authors. Theses from the Library collection are considered unpublished works and according to UK legislation quoting from them is not allowed without permission from their author.

If you can commit to these terms, please complete the request form which you can find through this link: https://imagingservices.lib.cam.ac.uk/


Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives

Date

Advisors

Keywords

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge