Repository logo
 

Gaze Estimation with Graphics


Type

Thesis

Change log

Authors

Wood, Erroll William 

Abstract

Gaze estimation systems determine where someone is looking. Gaze is used for a wide range of applications including market research, usability studies, and gaze-based interfaces. Traditional equipment uses special hardware. To bring gaze estimation mainstream, researchers are exploring approaches that use commodity hardware alone. My work addresses two outstanding problems in this field: 1) it is hard to collect good ground truth eye images for machine learning, and 2) gaze estimation systems do not generalize well -- once they are trained with images from one scenario, they do not work in another scenario.

In this dissertation I address these problems in two different ways: learning-by-synthesis and analysis-by-synthesis. Learning-by-synthesis is the process of training a machine learning system with synthetic data, i.e. data that has been rendered with graphics rather than collected by hand. Analysis-by-synthesis is a computer vision strategy that couples a generative model of image formation (synthesis) with a perceptive model of scene comparison (analysis). The goal is to synthesize an image that best matches an observed image.

In this dissertation I present three main contributions. First, I present a new method for training gaze estimation systems that use machine learning: learning-by-synthesis using 3D head scans and photorealistic rendering. Second, I present a new morphable model of the eye region. I show how this model can be used to generate large amounts of varied data for learning-by-synthesis. Third, I present a new method for gaze estimation: analysis-by-synthesis. I demonstrate how analysis-by-synthesis can generalize to different scenarios, estimating gaze in a device- and person- independent manner.

Description

Date

Advisors

Robinson, Peter

Keywords

Graphics, Computer Vision, Eye Tracking, Gaze Estimation

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
EPSRC Doctoral Training Grant studentship for Erroll Wood (RG71269)