Repository logo
 

Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Bhave, A 
Taylor, RHS 
Fennell, P 
Livingston, WR 
Shah, N 

Abstract

Biomass-based power generation combined with CO2 capture and storage (Biopower CCS) currently represents one of the few practical and economic means of removing large quantities of CO2 from the atmosphere, and the only approach that involves the generation of electricity at the same time. We present the results of the Techno-Economic Study of Biomass to Power with CO2 capture (TESBiC) project, that entailed desk-based review and analysis, process engineering, optimisation as well as primary data collection from some of the leading pilot demonstration plants. From the perspective of being able to deploy Biopower CCS by 2050, twenty-eight Biopower CCS technology combinations involving combustion or gasification of biomass (either dedicated or co-fired with coal) together with pre-, oxy- or post-combustion CO2 capture were identified and assessed. In addition to the capital and operating costs, techno-economic characteristics such as electrical efficiencies (LHV% basis), Levelised Cost of Electricity (LCOE), costs of CO2 captured and CO2 avoided were modelled over time assuming technology improvements from today to 2050. Many of the Biopower CCS technologies gave relatively similar techno-economic results when analysed at the same scale, with the plant scale (MWe) observed to be the principal driver of CAPEX (£/MWe) and the cofiring % (i.e. the weighted feedstock cost) a key driver of LCOE. The data collected during the TESBiC project also highlighted the lack of financial incentives for generation of electricity with negative CO2 emissions.

Description

Keywords

biomass, biopower, bioenergy, power generation, carbon capture and storage (CCS), scenarios and forecasting, techno-economics

Journal Title

Applied Energy

Conference Name

Journal ISSN

0306-2619
1872-9118

Volume Title

190

Publisher

Elsevier
Sponsorship
Engineering and Physical Sciences Research Council (EP/G063451/1)
Engineering and Physical Sciences Research Council (EP/K000446/1)
Engineering and Physical Sciences Research Council (EP/K000446/2)
The authors acknowledge the financial support provided by the Energy Technologies Institute (ETI), UK for the work performed during the course of the TESBiC project.