Repository logo
 

In-situ study of athermal reversible photocrystallization in a chalcogenide glass

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

Benekou, V 
Strizik, L 
Wagner, T 
Yannopoulos, SN 

Abstract

jats:pThe time-resolved Raman measurements reveal a three-stage mechanism of the photostructural changes in Ge25.0Ga9.5Sb0.5S65.0 (containing 0.5 at. % of Er3+) glass under continuous-above-bandgap illumination. These changes are reversible and effectively athermal, in that the local temperature rises to about 60% of the glass-transition temperature and the phase transitions take place in the glass/crystal and not in an equilibrium liquid. In the early stages of illumination, the glassy-network dimensionality changes from a predominantly 3-D to a mixture of 2-D/1-D represented by an increase in the fraction of edge-sharing tetrahedra and the emergence of homonuclear (semi)metallic bonds. This incubation period of the structural rearrangements, weakly thermally activated with an energy of ∼0.16 eV, facilitates a reversible photocrystallization. The photocrystallization rate in the glass is comparable to that achieved by thermal crystallization from supercooled liquid at large supercooling. Almost complete re-amorphization can be achieved in about an hour by reducing the incident laser-power density by a factor of ten. Glass-ceramic composites—with varying glass-to-crystal fraction—can be obtained by ceasing the illumination during re-amorphization. Microstructural imaging reveals photoinduced mass transport and the formation of columnar-porous structures. This shows the potential for a bond-specific engineering of glassy structures for photonic applications with a spatial resolution unachievable by thermal annealing.</jats:p>

Description

Keywords

40 Engineering, 4016 Materials Engineering

Journal Title

Journal of Applied Physics

Conference Name

Journal ISSN

0021-8979
1089-7550

Volume Title

122

Publisher

AIP Publishing
Sponsorship
Tohoku University (unknown)