Repository logo
 

Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM)

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Mills, MJ 
Richter, JH 
Tilmes, S 
Kravitz, B 
Macmartin, DG 

Abstract

jats:titleAbstract</jats:title>jats:pWe present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SOjats:sub2</jats:sub>) to the stratosphere. We calculate that depletion of OH levels within the dense SOjats:sub2</jats:sub> cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial jats:italice</jats:italic>‐folding decay time for SOjats:sub2</jats:sub> oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SOjats:sub2</jats:sub> on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering.</jats:p>

Description

Keywords

stratospheric aerosols, volcanic eruptions, geoengineering, climate modeling, stratospheric ozone, climate change

Journal Title

Journal of Geophysical Research: Atmospheres

Conference Name

Journal ISSN

2169-897X
2169-8996

Volume Title

122

Publisher

American Geophysical Union (AGU)