Repository logo
 

Autonomous and non-autonomous regulation of chromatin structure during cellular senescence


Type

Thesis

Change log

Authors

Abstract

Senescent cells interact with the surrounding microenvironment achieving both pro- oncogenic and tumour-suppressive outcomes. In addition to autocrine and paracrine signalling mediated by factors of the senescence-associated secretory phenotype (SASP), we have recently identified that NOTCH1 can drive a unique form of senescence in adjacent cells via juxtacrine signalling.

Here, we show that NOTCH1 signalling confers a dramatic impact on chromatin structure during senescence. RAS-induced senescent (RIS) fibroblasts often develop chromatin structures called senescence-associated heterochromatic foci (SAHF). We find that NOTCH1 inhibits SAHF formation at least partially through transcriptional repression of a critical structural component, high-mobility group A (HMGA). Using ATAC-sequencing (assay for transposase accessible chromatin) we demonstrate that nucleosome positioning is substantially altered in RIS and that this re-distribution is also antagonised by NOTCH1, resulting in a distinct chromatin landscape. Importantly, normal or cancer cells that express the NOTCH ligand jagged-1 can drive similar chromatin structural changes in adjacent cells in a cell-cell contact dependent manner.

In addition, using a highly optimised chromatin immunoprecipitation (ChIP-seq) protocol and the proximity ligation assay ‘Hi-C’, we demonstrate that HMGA proteins are directly involved in the formation of long-range interactions in RIS cells that may underpin SAHF formation. These ChIP-seq data have also allowed us to identify a unique HMGA1 binding profile, potentially suggesting a novel role for HMGA1 in gene regulation. Together, our data indicate that NOTCH signalling, both cell-autonomously and non-cell-autonomously, can repress HMGA1, a multi-faceted protein that regulates nucleosome positioning (1D structure), SAHF formation (3D structure) and potentially mRNA abundance.

Description

Date

2017-09-29

Advisors

Narita, Masashi

Keywords

Chromatin, Senescence, Cell Biology, Genetics, Epigenetics, Epigenome, Cancer, Hi-C, Interactome, ChIP, HMGA, SAHF, NOTCH, NOTCH1, JAGGED1

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Cancer Research UK