Repository logo
 

Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Dahmke, Indra N 
Verch, Andreas 
Hermannsdörfer, Justus 
Peckys, Diana B 
Weatherup, Robert S  ORCID logo  https://orcid.org/0000-0002-3993-9045

Abstract

Membrane proteins govern many important functions in cells via dynamic oligomerization into active complexes. However, analytical methods to study their distribution and functional state in relation to the cellular structure are currently limited. Here, we introduce a technique for studying single-membrane proteins within their native context of the intact plasma membrane. SKBR3 breast cancer cells were grown on silicon microchips with thin silicon nitride windows. The cells were fixed, and the epidermal growth factor receptor ErbB2 was specifically labeled with quantum dot (QD) nanoparticles. For correlative fluorescence- and liquid-phase electron microscopy, we enclosed the liquid samples by chemical vapor deposited (CVD) graphene films. Depending on the local cell thickness, QD labels were imaged with a spatial resolution of 2 nm at a low electron dose. The distribution and stoichiometric assembly of ErbB2 receptors were determined at several different cellular locations, including tunneling nanotubes, where we found higher levels of homodimerization at the connecting sites. This experimental approach is applicable to a wide range of cell lines and membrane proteins and particularly suitable for studies involving both inter- and intracellular heterogeneity in protein distribution and expression.

Description

Keywords

STEM, breast cancer cell, epidermal growth factor receptor, graphene, liquid-phase electron microscopy, single-molecule analysis, tunneling nanotube, Cell Line, Tumor, Graphite, Humans, Lab-On-A-Chip Devices, Membrane Proteins, Microscopy, Electron, Neoplasm Proteins, Quantum Dots, Receptor, ErbB-2, Silicon Compounds, Single Molecule Imaging

Journal Title

ACS Nano

Conference Name

Journal ISSN

1936-0851
1936-086X

Volume Title

11

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/K016636/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (656870)