Repository logo
 

Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions.

Accepted version
Peer-reviewed

Change log

Authors

Bao, Xiaoping 
Lian, Xiaojun 
Hacker, Timothy A 
Schmuck, Eric G 
Qian, Tongcheng 

Abstract

The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies.

Description

Keywords

0601 Biochemistry and Cell Biology, Biomedical, Basic Science, Stem Cell Research - Induced Pluripotent Stem Cell - Human, Cardiovascular, Stem Cell Research, Heart Disease, Stem Cell Research - Embryonic - Human, Stem Cell Research - Induced Pluripotent Stem Cell, Regenerative Medicine, Cardiovascular, 1.1 Normal biological development and functioning

Journal Title

Nat Biomed Eng

Conference Name

Journal ISSN

2157-846X
2157-846X

Volume Title

1

Publisher

Springer Science and Business Media LLC