Repository logo
 

Circular Dichroism in Higher-Order Diffraction Beams from Chiral Quasiplanar Nanostructures

Published version
Peer-reviewed

Type

Article

Change log

Authors

Williams, C 
You, J 
Collins, JT 
Gordeev, SN 

Abstract

jats:titleAbstract</jats:title>jats:pMiniaturization down to the nanoscale has enabled a new paradigm of ultrathin optical devices, capable of manipulating the direction, polarization, and frequency of light. Great interest is drawn by the promising prospects of deep‐subwavelength material dimensions. However, interesting properties and opportunities offered by structures with sizes comparable to the wavelength of light appear to have been overlooked. Here, quasiplanar chiral arrays made of gold are considered and show that higher‐order diffracted beams can yield extremely large chiroptical responses for optical frequencies. The chosen sample geometry demonstrates spectrally tunable polarization conversion and extremely large circular dichroism. Experimental and numerical data are in good agreement, for both sample chiral forms, and for the complementary geometries under Babinet's principle. Specifically, the experimental results show that the fractional circular dichroism (CD) can be as high as 20%, in the third‐order diffraction beam. Based on the numerical results, a great potential for improvement is anticipated, which makes higher‐order diffraction CD a very promising candidate for ultrathin optical applications.</jats:p>

Description

Keywords

Babinet's principle, chirality, circular dichroism, diffraction, nanophotonics

Journal Title

Advanced Optical Materials

Conference Name

Journal ISSN

2195-1071
2195-1071

Volume Title

6

Publisher

Wiley
Sponsorship
Engineering and Physical Sciences Research Council (EP/G037256/1)
EPSRC (1241027)
Engineering and Physical Sciences Research Council (EP/L015455/1)