Repository logo
 

Disturbance Attenuation in Mass Chains with Passive Interconnection


No Thumbnail Available

Type

Thesis

Change log

Authors

Abstract

This thesis is concerned with disturbance amplification in interconnected systems which may consist of a large number of elements. The main focus is on passive control of a chain of interconnected masses where a single point is subject to an external disturbance. The problem arises in the design of multi-storey buildings subjected to earthquake disturbances, but applies in other situations such as bidirectional control of vehicle platoons. It is shown that the scalar transfer functions from the disturbance to a given intermass displacement can be represented as a complex iterative map. This description is used to establish uniform boundedness of the H-norm of these transfer functions for certain choices of interconnection impedance. A graphical method for selecting an impedance such that the H-norm is no greater than a prescribed value for an arbitrary length of the mass chain is given. A design methodology for a fixed length of the mass chain is also provided. A case study for a 10-storey building model demonstrates the validity of this method.

Description

Date

2015-08-11

Advisors

Smith, Malcolm C.

Keywords

Interconnected dynamical systems, Mechanical networks, Disturbance rejcetion, Vibration control, Complex iterative maps, Passivity

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Funai Foundation for Information Technology