Repository logo
 

Magnesium Nanoparticle Plasmonics.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

Biggins, John S 
Yazdi, Sadegh 

Abstract

Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.

Description

Keywords

Metal nanoparticles, electron-energy loss spectroscopy, localized surface plasmon resonance, magnesium, plasmonics

Journal Title

Nano Lett

Conference Name

Journal ISSN

1530-6984
1530-6992

Volume Title

18

Publisher

American Chemical Society (ACS)