Repository logo
 

Xray Generation by Field Emission


Loading...
Thumbnail Image

Type

Thesis

Change log

Authors

Abstract

Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications at this time, there have been few fundamental technological advances. The emergence of new materials and manufacturing techniques has created an opportunity to replace the traditional thermionic devices with those that incorporate Field Emission electron sources.

One of the most important attributes of Field Emission X-ray sources is their controllability, and in particular the fast response time, which opens the door to applying techniques which have formerly been the preserve of optical systems. The work in this thesis attempts to bridge the gap between the fabrication and optimisation of the vacuum electronic devices and image processing aspects of a new approach to high speed radiographic imaging, particularly with a view to addressing practical real-world problems.

Off the back of a specific targeted application, the project has involved the design of a viable field emission X-ray source, together with the development of an understanding of the failure modes in such devices, both by analysis and by simulation. This thesis reviews the capabilities and the requirements of X-ray sources, the methods by which nano-materials may be applied to the design of those devices and the improvements and attributes that can be foreseen. I study the image processing methods that can exploit these attributes, and investigate the performance of X-ray sources based upon electron emitters using carbon nanotubes. Modelling of the field emission and electron trajectories of the cathode assemblies has led me to the design of equipment to evaluate and optimise the parameters of an X-ray tube, which I have used to understand the performance that is achievable. Finally, I draw conclusions from this work and outline the next steps to provide the basis for a commercial solution.

Description

Date

2018-04-18

Advisors

Milne, William

Keywords

Field emission, carbon nanotubes, x-ray, encoded aperture, electron source, cnt pillar arrays, x-ray generation

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge