Repository logo
 

Native point defects of semiconducting layered Bi2O2Se.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Li, Huanglong 
Xu, Xintong 
Zhang, Yi 
Shi, Luping 

Abstract

Bi2O2Se is an emerging semiconducting, air-stable layered material (Nat. Nanotechnol. 2017, 12, 530; Nano Lett. 2017, 17, 3021), potentially exceeding MoS2 and phosphorene in electron mobility and rivalling typical Van der Waals stacked layered materials in the next-generation high-speed and low-power electronics. Holding the promise of functional versatility, it is arousing rapidly growing interest from various disciplines, including optoelectronics, thermoelectronics and piezoelectronics. In this work, we comprehensively study the electrical properties of the native point defects in Bi2O2Se, as an essential step toward understanding the fundamentals of this material. The defect landscapes dependent on both Fermi energy and the chemical potentials of atomic constituents are investigated. Along with the bulk defect analysis, a complementary inspection of the surface properties, within the simple context of charge neutrality level model, elucidates the observed n-type characteristics of Bi2O2Se based FETs. This work provides important guide to engineer the defects of Bi2O2Se for desired properties, which is key to the successful application of this emerging layered material27.

Description

Keywords

40 Engineering, 4016 Materials Engineering, 51 Physical Sciences, 5104 Condensed Matter Physics

Journal Title

Sci Rep

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

8

Publisher

Springer Science and Business Media LLC
Sponsorship
Engineering and Physical Sciences Research Council (EP/P005152/1)