Repository logo
 

Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential

Published version
Peer-reviewed

Type

Article

Change log

Authors

Maresca, F 
Dragoni, D 
Csányi, G 
Marzari, N 
Curtin, WA 

Abstract

jats:titleAbstract</jats:title>jats:pThe plastic flow behavior of bcc transition metals up to moderate temperatures is dominated by the thermally activated glide of screw dislocations, which in turn is determined by the atomic-scale screw dislocation core structure and the associated kink-pair nucleation mechanism for glide. Modeling complex plasticity phenomena requires the simulation of many atoms and interacting dislocations and defects. These sizes are beyond the scope of first-principles methods and thus require empirical interatomic potentials. Especially for the technological important case of bcc Fe, existing empirical interatomic potentials yield spurious behavior. Here, the structure and motion of the screw dislocations in Fe are studied using a new Gaussian Approximation Potential (GAP) for bcc Fe, which has been shown to reproduce the potential energy surface predicted by density-functional theory (DFT) and many associated properties. The Fe GAP predicts a compact, non-degenerate core structure, a single-hump Peierls potential, and glide on {110}, consistent with DFT results. The thermally activated motion at finite temperatures occurs by the expected kink-pair nucleation and propagation mechanism. The stress-dependent enthalpy barrier for screw motion, computed using the nudged-elastic-band method, follows closely a form predicted by standard theories with a zero-stress barrier of ~1 eV, close to the experimental value of 0.84 eV, and a Peierls stress of ~2 GPa consistent with DFT predictions of the Peierls potential.</jats:p>

Description

Keywords

40 Engineering, 3403 Macromolecular and Materials Chemistry, 4016 Materials Engineering, 34 Chemical Sciences

Journal Title

npj Computational Materials

Conference Name

Journal ISSN

2057-3960
2057-3960

Volume Title

4

Publisher

Springer Science and Business Media LLC
Sponsorship
Engineering and Physical Sciences Research Council (EP/L014742/1)
Engineering and Physical Sciences Research Council (EP/P022596/1)