Repository logo
 

Quantification of beat-to-beat variability of action potential durations in Langendorff-perfused mouse hearts

Published version
Peer-reviewed

Type

Article

Change log

Authors

Tse, Gary 
Du, Yi-mei 
Chan, Yin Wah Fiona 
Liu, Tong 
Li, Guangping 

Abstract

Beat-to-beat variability in action potential duration (APD) is an intrinsic property of cardiac tissue and is altered in pro-arrhythmic states. However, it has never been examined in mice. Methods: Left atrial or ventricular monophasic action potentials (MAPs) were recorded from Langendorff-perfused mouse hearts during regular 8 Hz pacing. Time-domain, frequency-domain and non-linear analyses were used to quantify APD variability. Results: Mean atrial APD (90% repolarization) was 26.6±3.8 ms and standard deviation (SD) was 1.4±0.8 ms (n=6 hearts). Coefficient of variation (CoV) was 5.9±3.2% and root mean square (RMS) of successive differences in APDs was 0.5±0.2 ms. The peaks for low- and high-frequency were 0.8±0.6 and 2.7±1.1 Hz, respectively, with percentage powers of 37.8±14.5 and 61.5±15.1%. Poincaré plots of APDn+1 against APDn revealed ellipsoid shapes. The ratio of the SD along the line-of-identity (SD2) to the SD perpendicular to the line-of-identity (SD1) was 5.96±1.44. Approximate and sample entropy were 0.45±0.05 and 0.54±0.11, respectively. Detrended fluctuation analysis revealed short- and long-term fluctuation slopes of 1.73±0.17 and 0.68±0.20, respectively. When compared to atrial APDs, ventricular APDs were longer (ANOVA, P<0.05) and showed lower mean SD, CoV and RMS of successive differences in APDs, lower LF power, high HF power and lower SD1 and SD2 (P<0.05) but no difference in the remaining parameters. Conclusion: Beat-to-beat variability in APD is observed in mouse hearts during regular pacing. Atrial MAPs showed greater degree of variability than ventricular MAPs. Non-linear techniques offer further insights on short-term and long-term variability and signal complexity.

Description

Keywords

entropy, frequency, non-linear, repolarization, time, variability

Journal Title

Frontiers in Physiology

Conference Name

Journal ISSN

1664-042X
1664-042X

Volume Title

9

Publisher

Frontiers Media