Repository logo
 

ZMYM2 inhibits NANOG-mediated reprogramming.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Theunissen, Thorold W 
Lombard, Patrick 

Abstract

Background: NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process. Methods: Epiblast stem cells and somatic cells were reprogrammed to naïve pluripotency using MEK/ERK inhibitor PD0325901, GSK3β inhibitor CHIR99021 and Leukaemia Inhibitory Factor (together termed 2i Plus LIF). Zmym2 was knocked out using the CRISPR/Cas9 system or overexpressed using the PiggyBac system. Reprogramming was quantified after ZMYM2 deletion or overexpression, in diverse reprogramming systems. In addition, embryonic stem cell self renewal was quantified in differentiation assays after ZMYM2 removal or overexpression. Results: In this work, we identified ZMYM2/ZFP198, which physically associates with NANOG as a key negative regulator of NANOG-mediated reprogramming of both epiblast stem cells and somatic cells. In addition, ZMYM2 impairs the self renewal of embryonic stem cells and its overexpression promotes differentiation. Conclusions: We propose that ZMYM2 curtails NANOG's actions during the reprogramming of both somatic cells and epiblast stem cells and impedes embryonic stem cell self renewal, promoting differentiation.

Description

Keywords

Nanog, Zinc finger protein, differentiation, pluripotency, reprogramming

Journal Title

Wellcome Open Res

Conference Name

Journal ISSN

2398-502X
2398-502X

Volume Title

4

Publisher

F1000 Research Ltd
Sponsorship
Wellcome Trust (101861/Z/13/Z)
Wellcome Trust (079249/Z/06/H)
Medical Research Council (MR/R017735/1)
Medical Research Council (MC_PC_12009)
Biotechnology and Biological Sciences Research Council (BB/R018588/1)
This study was supported by the Wellcome Trust through a Wellcome Trust Fellowship to J.C.R.S. [101861], Wellcome Trust Studentship to M.L. [079249], and a core funding grant jointly with the Medical Research Council (MRC) to the Wellcome-MRC Cambridge Stem Cell Institute [079249].