Repository logo
 

Selfish drive can trump function when animal mitochondrial genomes compete.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

O'Farrell, Patrick H 

Abstract

Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

Description

Keywords

Animals, DNA Replication, DNA, Mitochondrial, Drosophila melanogaster, Evolution, Molecular, Genes, Mitochondrial, Genome, Mitochondrial, Mutation, Selection, Genetic

Journal Title

Nat Genet

Conference Name

Journal ISSN

1061-4036
1546-1718

Volume Title

48

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved