Repository logo
 

Representational dynamics across multiple timescales in human cortical networks


Type

Thesis

Change log

Abstract

Human cognition occurs at multiple timescales, including immediate processing of the ongoing experiences and slowly drifting higher-level thoughts. To understand how the brain selects and represents these various types of information to guide behavior, this thesis examined representational content within sensory regions, multiple demand (MD) network, and default mode network (DMN). Chapter 1 provides a background review of the current literature. It begins by reviewing experimental investigations of component visual processes that unfold over time. Next, the MD network is introduced as a collection of frontal and parietal regions involved in implementing cognitive control by assembling the required operations for task-relevant behavior. Finally, the DMN is introduced in the context of temporal processing hierarchies, with focus on its representation of situation models summarizing interactions among entities and the environment. The first experiment, presented in Chapter 2, used EEG/MEG to track multiple component processes of selective attention. Five distinct processing operations with different time-courses were quantified, including representation of visual display properties, target location, target identity, behavioral significance, and finally, possible reactivation of the attentional template. Chapter 3 used fMRI to examine neural representations of task episodes, which are temporally organized sequences of steps that occur within a given context. It was found that MD and visual regions showed sensitivity to the fine structure of the contents within a task. DMN regions showed gradual change throughout the entire task, with increased activation at the offset of the entire episode. Chapter 4 analyzed activation profiles of DMN regions using six diverse tasks to examine their functional convergence during social, episodic, and self-referential thought. Results supported proposals of separate subsystems, yet also suggest integration within the DMN. The final chapter, Chapter 5, provides an extended discussion of theoretical concepts related to the three experiments and proposes possible avenues for further research.

Description

Date

2019-09-13

Advisors

Duncan, John
Mitchell, Daniel

Keywords

multiple demand network, default mode network, representational dynamics, processing timescales, fMRI, EEG/MEG

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge