Repository logo
 

Al/Ga-Doped Li7La3Zr2O12 Garnets as Li-Ion Solid-State Battery Electrolytes: Atomistic Insights into Local Coordination Environments and Their Influence on 17O, 27Al, and 71Ga NMR Spectra.

Accepted version
Peer-reviewed

Change log

Abstract

Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for next-generation all-solid-state Li-ion battery applications due to their high stabilities and ionic conductivities. To help determine the influence of different supervalent dopants on the crystal structure and site preferences, we combine solid-state 17O, 27Al, and 71Ga magic angle spinning (MAS) NMR spectroscopy and density-functional theory (DFT) calculations. DFT-based defect configuration analysis for the undoped and Al and/or Ga-doped LLZO variants uncovers an interplay between the local network of atoms and the observed NMR signals. Specifically, the two characteristic features observed in both 27Al and 71Ga NMR spectra result from both the deviations in the polyhedral coordination/site-symmetry within the 4-fold coordinated Li1/24d sites (rather than the doping of the other Li2/96h or La sites) and with the number of occupied adjacent Li2 sites that share oxygen atoms with these dopant sites. The sharp 27Al and 71Ga resonances arise from dopants located at a highly symmetric tetrahedral 24d site with four corner-sharing LiO4 neighbors, whereas the broader features originate from highly distorted dopant sites with fewer or no immediate LiO4 neighbors. A correlation between the size of the 27Al/71Ga quadrupolar coupling and the distortion of the doping sites (viz. XO4/XO5/XO6 with X = {Al/Ga}) is established. 17O MAS NMR spectra for these systems provide insights into the oxygen connectivity network: 17O signals originating from the dopant-coordinating oxygens are resolved and used for further characterization of the microenvironments at the dopant and other sites.

Description

Keywords

3402 Inorganic Chemistry, 34 Chemical Sciences, 3406 Physical Chemistry

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

142

Publisher

American Chemical Society (ACS)

Rights

All rights reserved
Sponsorship
Engineering and Physical Sciences Research Council (EP/P003532/1)
Engineering and Physical Sciences Research Council (1834544)
Engineering and Physical Sciences Research Council (EP/P020259/1)
-EPSRC,Grant No: EP/P003532/1 -DFG, Research Fellowship GR 5342/1-1 -EPSRC iCASE (Award No:1834544) -Royal Society Professorship(RP\R1\180147) -Resources by the "Cambridge Service for Data Driven Discovery" (CSD3, http://csd3.cam.ac.uk) system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital grant EP/P020259/1. -Resources from the ARCHER UK National Computing Service, funded by the EPSRC (EP/P003532/1).