Repository logo
 

Bionic 3D printed corals.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Wangpraseurt, Daniel  ORCID logo  https://orcid.org/0000-0003-4834-8981
You, Shangting 
Azam, Farooq 

Abstract

Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL-1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design.

Description

Keywords

Journal Title

Nature communications

Conference Name

Journal ISSN

2041-1723

Volume Title

11

Publisher