Repository logo
 

Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Hele, Timothy JH 
Gu, Qinying 

Abstract

The doublet-spin nature of radical emitters is advantageous for applications in organic light-emitting diodes, as it avoids the formation of triplet excitons that limit the electroluminescence efficiency of non-radical emitters. However, radicals generally show low optical absorption and photoluminescence yields. Here we explain the poor optical properties of radicals based on alternant hydrocarbons, and establish design rules to increase the absorption and luminescence yields for donor-acceptor-type radicals. We show that non-alternant systems are necessary to lift the degeneracy of the lowest energy orbital excitations; moreover, intensity borrowing from an intense high-lying transition by the low-energy charge-transfer excitation enhances the oscillator strength of the emitter. We apply these rules to design tris(2,4,6-trichlorophenyl)methyl-pyridoindolyl derivatives with a high photoluminescence quantum yield (>90%). Organic light-emitting diodes based on these molecules showed a pure-red emission with an over 12% external quantum efficiency. These insights may be beneficial for the rational design and discovery of highly luminescent doublet emitters.

Description

Keywords

5108 Quantum Physics, 34 Chemical Sciences, 51 Physical Sciences

Journal Title

Nat Mater

Conference Name

Journal ISSN

1476-1122
1476-4660

Volume Title

19

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
Leverhulme Trust (ECF-2019-054)
Engineering and Physical Sciences Research Council (EP/M005143/1)
Engineering and Physical Sciences Research Council (EP/P007767/1)