Repository logo
 

Insight into the microphysics of antigorite deformation from spherical nanoindentation.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Hansen, Lars N 
David, Emmanuel C 
Brantut, Nicolas 

Abstract

The mechanical behaviour of antigorite strongly influences the strength and deformation of the subduction interface. Although there is microstructural evidence elucidating the nature of brittle deformation at low pressures, there is often conflicting evidence regarding the potential for plastic deformation in the ductile regime at higher pressures. Here, we present a series of spherical nanoindentation experiments on aggregates of natural antigorite. These experiments effectively investigate the single-crystal mechanical behaviour because the volume of deformed material is significantly smaller than the grain size. Individual indents reveal elastic loading followed by yield and strain hardening. The magnitude of the yield stress is a function of crystal orientation, with lower values associated with indents parallel to the basal plane. Unloading paths reveal more strain recovery than expected for purely elastic unloading. The magnitude of inelastic strain recovery is highest for indents parallel to the basal plane. We also imposed indents with cyclical loading paths, and observed strain energy dissipation during unloading-loading cycles conducted up to a fixed maximum indentation load and depth. The magnitude of this dissipated strain energy was highest for indents parallel to the basal plane. Subsequent scanning electron microscopy revealed surface impressions accommodated by shear cracks and a general lack of dislocation-induced lattice misorientation. Based on these observations, we suggest that antigorite deformation at high pressures is dominated by sliding on shear cracks. We develop a microphysical model that is able to quantitatively explain Young's modulus and dissipated strain energy data during cyclic loading experiments, based on either frictional or cohesive sliding of an array of cracks contained in the basal plane. This article is part of a discussion meeting issue 'Serpentinite in the earth system'.

Description

Keywords

antigorite, cyclic loading, nanoindentation, shear cracks

Journal Title

Philos Trans A Math Phys Eng Sci

Conference Name

Journal ISSN

1364-503X
1471-2962

Volume Title

378

Publisher

The Royal Society

Rights

All rights reserved
Sponsorship
This work was supported by the Natural Environment Research Councilthrough grant no. NE/M016471/1 to L.N.H. and N.B., and by the European Research Councilunder the European Union’s Horizon 2020 research and innovation programme (project RockDEaF, grant agreement no. 804685).