Repository logo
 

Mixing time for random walk on supercritical dynamical percolation

Published version
Peer-reviewed

Change log

Authors

Peres, Yuval 
Sousi, Perla 

Abstract

Abstract: We consider dynamical percolation on the d-dimensional discrete torus Znd of side length n, where each edge refreshes its status at rate μ=μn≤1/2 to be open with probability p. We study random walk on the torus, where the walker moves at rate 1 / (2d) along each open edge. In earlier work of two of the authors with A. Stauffer, it was shown that in the subcritical case p<pc(Zd), the (annealed) mixing time of the walk is Θ(n2/μ), and it was conjectured that in the supercritical case p>pc(Zd), the mixing time is Θ(n2+1/μ); here the implied constants depend only on d and p. We prove a quenched (and hence annealed) version of this conjecture up to a poly-logarithmic factor under the assumption θ(p)>1/2. When θ(p)>0, we prove a version of this conjecture for an alternative notion of mixing time involving randomised stopping times. The latter implies sharp (up to poly-logarithmic factors) upper bounds on exit times of large balls throughout the supercritical regime. Our proofs are based on percolation results (e.g., the Grimmett–Marstrand Theorem) and an analysis of the volume-biased evolving set process; the key point is that typically, the evolving set has a substantial intersection with the giant percolation cluster at many times. This allows us to use precise isoperimetric properties of the cluster (due to G. Pete) to infer rapid growth of the evolving set, which in turn yields the upper bound on the mixing time.

Description

Keywords

Article, Dynamical percolation, Random walk, Mixing times, Stopping times, Primary 60K35, 60K37

Journal Title

Probability Theory and Related Fields

Conference Name

Journal ISSN

0178-8051
1432-2064

Volume Title

176

Publisher

Springer Berlin Heidelberg
Sponsorship
Vetenskapsrådet (2016-03835)
Knut och Alice Wallenbergs Stiftelse (SE) (2012.0067)