Repository logo
 

A computational model predicts Xenopus meiotic spindle organization.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Loughlin, Rose 
Nédélec, François 

Abstract

The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5-like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.

Description

Keywords

Algorithms, Animals, Computer Simulation, Dyneins, Kinesins, Kinetics, Meiosis, Microtubules, Models, Biological, Nuclear Proteins, Ovum, Spindle Apparatus, Xenopus Proteins, Xenopus laevis

Journal Title

J Cell Biol

Conference Name

Journal ISSN

0021-9525
1540-8140

Volume Title

191

Publisher

Rockefeller University Press