Repository logo
 

Data for: Relaxed current matching requirements in highly luminescent perovskite tandem solar cells and their fundamental efficiency limits


Change log

Authors

Lang, Felix 
Chiang, Yu-Hsien 
Jiménez-Solano, Alberto 
Frohna, Kyle 

Description

Figure 1 contains data for the limiting efficiency of a Shockley-Queisser tandem solar cell, with and without luminescence coupling included in simulations.

Figure 2 contains decay data from transient absorption spectroscopy and photoluminescence quantum efficiency measurements for the halide perovskite thin film FA0.7Cs0.3Pb(I0.7Br0.3)3. It also contains absorption coefficient and (real) refractive index for both FA0.7Cs0.3Pb(I0.7Br0.3)3 and FAPb0.5Sn0.5I3 thin films, as measured by a combination of ellipsometry, photothermal deflection spectroscopy and Ubach tail fitting.

Figure 3 contans the absorbance of FAPb0.5Sn0.5I3 in an idealised tandem stack with FA0.7Cs0.3Pb(I0.7Br0.3)3, the limiting efficiency of this stack as a function of thickness without and with luminescence coupling included in simulations, and the difference in power generated throughout the year without and with luminescence coupling for a typical spectral year on the Canada/USA border from these modelled solar cells.

Figure 4 contains the limiting efficiency of the all-perovskite tandem as a function of charge trapping rate (for optimised thicknesses) with luminescence coupling, and a ratio of this result to a second simulation including luminescnece coupling.

Figure 5 explores an experimental all-perovskite tandem solar cell. It contains the photoluminescence emission (relative to that at open-circuit voltage) of the high-bandgap sub-cell as a function of applied voltage when illuminated by a 405nm laser, the microscopic photoluminescence from a cross section of the tandem when excited by a 636nm laser, the photolumiescence from a cross section of this region when only the high-bandgap sub-cell is excited, and the time resolve photoluminescence of this emission.

Version

Software / Usage instructions

For software please contact Samuel D. Stranks (available free of charge).

Keywords

Optoelectronics, Spectroscopy, Solar cells

Publisher

Sponsorship
EPSRC (1950589)
ARB acknowledges funding from a Winton Studentship, Oppenheimer Studentship the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Centre in Photovoltaics (CDT-PV). ARB thanks Luis Pazos-Outón for supplying data for MAPbI3 solar cells. FL acknowledges financial support from the Alexander Von Humboldt Foundation via the Feodor Lynen program and thanks Prof. Sir R. Friend for supporting his Fellowship at the Cavendish Laboratory. Y-HC acknowledges the funding from Taiwan Cambridge Scholarship. AJ-S gratefully acknowledges a postdoctoral scholarship from the Max Planck Society. KF acknowledges a George and Lilian Schiff Studentship, Winton Studentship, the Engineering and Physical Sciences Research Council (EPSRC) studentship, Cambridge Trust Scholarship, and Robert Gardiner Scholarship. GE was funded by NREL’s LDRD program. ER acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, Grant Agreement Number 756962) and the EPSRC for a DTP Part Studentship. MA-J acknowledges funding support from EPSRC through the program grant: EP/M005143/1. MA-J thanks Cambridge Materials Limited for their funding and technical support. MA acknowledges funding from the European Research Council (ERC) (grant agreement No. 756962 [HYPERION]) and the Marie Skłodowska-Curie actions (grant agreement No. 841386) under the European Union’s Horizon 2020 research and innovation programme. BVL acknowledges funding from the Max Planck Society, the Cluster of Excellence e-conversion and the Center for Nanoscience (CeNS). SDS acknowledges the Royal Society and Tata Group (UF150033) and the EPSRC (EP/R023980/1, EP/T02030X/1, EP/S030638/1).
Relationships
Supplements:
Is derived from: