Repository logo
 

Computing conditional entropies for quantum correlations.

Published version
Peer-reviewed

Change log

Authors

Fawzi, Hamza 
Fawzi, Omar 

Abstract

The rates of quantum cryptographic protocols are usually expressed in terms of a conditional entropy minimized over a certain set of quantum states. In particular, in the device-independent setting, the minimization is over all the quantum states jointly held by the adversary and the parties that are consistent with the statistics that are seen by the parties. Here, we introduce a method to approximate such entropic quantities. Applied to the setting of device-independent randomness generation and quantum key distribution, we obtain improvements on protocol rates in various settings. In particular, we find new upper bounds on the minimal global detection efficiency required to perform device-independent quantum key distribution without additional preprocessing. Furthermore, we show that our construction can be readily combined with the entropy accumulation theorem in order to establish full finite-key security proofs for these protocols.

Description

Keywords

quant-ph, quant-ph

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

12

Publisher

Springer Science and Business Media LLC
Sponsorship
Agence Nationale de la Recherche (French National Research Agency) (ANR-18-CE47-0011)