Repository logo
 

Transforming the Accuracy and Numerical Stability of ReaxFF Reactive Force Fields.

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

Molecular dynamics (MD) simulations provide an important link between theories and experiments. While ab initio methods can be prohibitively costly, the ReaxFF force field has facilitated in silico studies of chemical reactivity in complex, condensed-phase systems. However, the relatively poor energy conservation in ReaxFF MD has either limited the applicability to short time scales, in cases where energy propagation is important, or has required a continuous coupling of the system to a heat bath. In this study, we reveal the root cause of the unsatisfactory energy conservation, and offer a straightforward solution. The new scheme results in orders of magnitude improvement in energy conservation, numerical stability, and accuracy of ReaxFF force fields, compared to the previous state-of-the-art, at no additional cost. We anticipate that these improvements will open new avenues of research for more accurate reactive simulations in complex systems on long time scales.

Description

Keywords

34 Chemical Sciences, 3407 Theoretical and Computational Chemistry, 7 Affordable and Clean Energy

Journal Title

J Phys Chem Lett

Conference Name

Journal ISSN

1948-7185
1948-7185

Volume Title

10

Publisher

American Chemical Society (ACS)

Rights

All rights reserved
Sponsorship
Engineering and Physical Sciences Research Council (EP/N035003/1)
epsrc