Repository logo
 

Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO 3 films

Published version
Peer-reviewed

Change log

Authors

Kursumovic, Ahmed 
Bi, Zenxhing 

Abstract

Abstract: Orthorhombic RMnO3 (R = rare-earth cation) compounds are type-II multiferroics induced by inversion-symmetry-breaking of spin order. They hold promise for magneto-electric devices. However, no spontaneous room-temperature ferroic property has been observed to date in orthorhombic RMnO3. Here, using 3D straining in nanocomposite films of (SmMnO3)0.5((Bi,Sm)2O3)0.5, we demonstrate room temperature ferroelectricity and ferromagnetism with TC,FM ~ 90 K, matching exactly with theoretical predictions for the induced strain levels. Large in-plane compressive and out-of-plane tensile strains (−3.6% and +4.9%, respectively) were induced by the stiff (Bi,Sm)2O3 nanopillars embedded. The room temperature electric polarization is comparable to other spin-driven ferroelectric RMnO3 films. Also, while bulk SmMnO3 is antiferromagnetic, ferromagnetism was induced in the composite films. The Mn-O bond angles and lengths determined from density functional theory explain the origin of the ferroelectricity, i.e. modification of the exchange coupling. Our structural tuning method gives a route to designing multiferroics.

Description

Keywords

Article, /639/301, /639/301/119, /639/301/119/996, /128, /132, /145, /147/3, /147/143, /147/137, /120, article

Journal Title

Nature Communications

Conference Name

Journal ISSN

2041-1723

Volume Title

11

Publisher

Nature Publishing Group UK
Sponsorship
RCUK | Engineering and Physical Sciences Research Council (EPSRC) (EP/L011700/1 and EP/N004272/1)