Repository logo
 

Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Cowley, Lauren A 
Afrad, Mokibul Hassan  ORCID logo  https://orcid.org/0000-0002-9627-7877
Rahman, Sadia Isfat Ara 
Mamun, Md Mahfuz Al  ORCID logo  https://orcid.org/0000-0001-7123-8057
Chin, Taylor 

Abstract

Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook 'Data for Good' and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel.

Description

Keywords

Bangladesh, Bayes Theorem, COVID-19, Cell Phone, Disease Outbreaks, Genome, Viral, Genomics, Health Policy, Humans, Phylogeny, Population Dynamics, SARS-CoV-2, Social Media, Travel

Journal Title

Nat Microbiol

Conference Name

Journal ISSN

2058-5276
2058-5276

Volume Title

6

Publisher

Springer Science and Business Media LLC