Repository logo
 

Assessing BRCA1 activity in DNA damage repair using human induced pluripotent stem cells as an approach to assist classification of BRCA1 variants of uncertain significance.

Published version
Peer-reviewed

Change log

Authors

Ozgencil, Meryem 
Barwell, Julian 
Izatt, Louise 
Kesterton, Ian 

Abstract

Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.

Description

Funder: The European Union Scholarship Programme


Funder: King’s College London

Keywords

Research Article, Biology and life sciences, Medicine and health sciences, Research and analysis methods

Journal Title

PLoS One

Conference Name

Journal ISSN

1932-6203
1932-6203

Volume Title

16

Publisher

Public Library of Science (PLoS)
Sponsorship
Breast Cancer Now (2015NovPR609)
Blood Cancer UK (13043)