Repository logo
 

Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Thirkell, Tom J 
Grimmer, Mike 
James, Lucy 
Pastok, Daria 
Allary, Théa 

Abstract

All cereal crops engage in arbuscular mycorrhizal symbioses which can have profound, but sometimes deleterious, effects on plant nutrient acquisition and growth. The mechanisms underlying variable mycorrhizal responsiveness in cereals are not well characterised or understood. Adapting crops to realise mycorrhizal benefits could reduce fertiliser requirements and improve crop nutrition where fertiliser is unavailable. We conducted a phenotype screen in wheat (Triticum aestivum L.), using 99 lines of an Avalon × Cadenza doubled-haploid mapping population. Plants were grown with or without a mixed inoculum containing 5 species of arbuscular mycorrhizal fungi. Plant growth, nutrition and mycorrhizal colonisation were quantified. Plant growth response to inoculation was remarkably varied among lines, ranging from more than 30% decrease to 80% increase in shoot biomass. Mycorrhizal plants did not suffer decreasing shoot phosphorus concentration with increasing biomass as observed in their non-mycorrhizal counterparts. The extent to which mycorrhizal inoculation was beneficial for individual lines was negatively correlated with shoot biomass in the non-mycorrhizal state but was not correlated with the extent of mycorrhizal colonisation of roots. Highly variable mycorrhizal responsiveness among closely related wheat lines and the identification of several QTL for these traits suggests the potential to breed for improved crop-mycorrhizal symbiosis.

Description

Funder: N8 Agrifood Scheme

Keywords

Triticum aestivum (wheat), arbuscular mycorrhiza, fungi, mycorrhizal growth response, phosphorus, sustainable agriculture

Journal Title

Food Energy Secur

Conference Name

Journal ISSN

2048-3694
2048-3694

Volume Title

Publisher

Wiley
Sponsorship
BBSRC (BB/M026825/1)