Repository logo
 

Integrating Pore-Scale Flow MRI and X-ray μCT for Validation of Numerical Flow Simulations in Porous Sedimentary Rocks

Published version
Peer-reviewed

Change log

Authors

Karlsons, K 
de Kort, DW 
Alpak, FO 
Dietderich, J 
Freeman, JJ 

Abstract

jats:titleAbstract</jats:title>jats:pSingle-phase fluid flow velocity maps in Ketton and Estaillades carbonate rock core plugs are computed at a pore scale, using the lattice Boltzmann method (LBM) simulations performed directly on three-dimensional (3D) X-ray micro-computed tomography (µCT) images (≤ 7 µm spatial resolution) of the core plugs. The simulations are then benchmarked on a voxel-by-voxel and pore-by-pore basis to quantitative, 3D spatially resolved magnetic resonance imaging (MRI) flow velocity maps, acquired at 35 µm isotropic spatial resolution for flow of water through the same rock samples. Co-registration of the 3D experimental and simulated velocity maps and coarse-graining of the simulation to the same resolution as the experimental data allowed the data to be directly compared. First, the results are demonstrated for Ketton limestone rock, for which good qualitative and quantitative agreement was found between the simulated and experimental velocity maps. The flow-carrying microstructural features in Ketton rock are mostly larger than the spatial resolution of the µCT images, so that the segmented images are an adequate representation of the pore space. Second, the flow data are presented for Estaillades limestone, which presents a more heterogeneous case with microstructural features below the spatial resolution of the µCT images. Still, many of the complex flow patterns were qualitatively reproduced by the LBM simulation in this rock, although in some pores, noticeable differences between the LBM and MRI velocity maps were observed. It was shown that 80% of the flow (fractional summed jats:italicz</jats:italic>-velocities within pores) in the Estaillades rock sample is carried by just 10% of the number of macropores, which is an indication of the high structural heterogeneity of the rock; in the more homogeneous Ketton rock, 50% of the flow is carried by 10% of the macropores. By analysing the 3D MRI velocity map, it was found that approximately one-third of the total flow rate through the Estaillades rock is carried by microporosity—a porosity that is not captured at the spatial resolution of the µCT image.</jats:p>

Description

Keywords

Flow MRI, Lattice Boltzmann method, Porous media, Sedimentary rocks, Digital rock

Journal Title

Transport in Porous Media

Conference Name

Journal ISSN

0169-3913
1573-1634

Volume Title

143

Publisher

Springer Science and Business Media LLC