Computational modelling in chemical engineering

From science to technology

Dr Markus Kraft Computational Modelling Group Cambridge, 16 July 2008

Research in the Department

Modelling

Dr Silvana Cardoso

Fluid dynamics, transport processes, environment

Dr John Dennis Combustion

Prof Lynn Gladden Catalysis and Magnetic Resonance

Dr Michael Johns Catalysis and Magnetic Resonance

Dr Clemens Kaminski Laser analytics

Dr Markus Kraft Computational modelling

Prof Malcolm Mackley Polymer fluids

Dr Bill Paterson Powder and paste processing

Dr Alex Routh Callaid science

Dr David Scott Powder and paste processing

Dr Andy Sederman Catalysis and Magnetic Resonance

Dr Vassilios Vassiliadis Multiscale Hierarchical Systems Engineering

Dr Ian Wilson Powder and paste processing

Flow in a oscillatory flow reactor. Pom-Operationadora for DNS of a flame kernel high presence ponyogeniser

Engine optimisation

soot,NOx, unburnt hydrocarbons

Hierarchy of scales

- Modelling takes place across a hierarchy of scales
- Micro- and meso-scale modelling directly feeds into macro-scale models of industrial processes
- All models validated
 against experimental data

Chemistry can be complex

Automated pipedream:

Solution: machine-readable data

- XML: Extensible Markup Language
 - General purpose
 - Human-readable
 - Machine-readable
 - Standardised
 - Libraries and functions exist in most programming languages

🤌 C:\Documents and Settings\Administrator\Local Settings\Temp\x00000000.xml - Windows Internet Ex 🖃 🗖 🔀	
C:\Documents and Settings\Administrator\Local Settings\Temp\x 🖌 🖌 Live Search	
Eile Edit View Favorites Tools Help	Concreted
🙀 🏟 🏈 C:\Documents and Settings\Administrator\Local Settin 👘 🔹 🗟 🔹 🖶 😨 Page 🔹 🍈 Tools 🔹 🎽	Generaleu
<pre><?xml version="1.0" encoding="utf-8" ?> - <experiment primeid="x00000000" xmlns="http://purl.org/NET/prime/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemalocation="http://purl.org/NET/prime/ http://warehouse.primekinetics.org/schema/experiment.xsd"></experiment></pre>	by GUI
<pre> - <commonproperties> - <property description="Pressure" label="P" name="pressure" units="bar"></property></commonproperties></pre>	
<pre> - <property name="initial composition"> - <property <property="<pre" ==""></property></property></property></property></property></property></property></property></property></pre>	
UNITS="K" />	

Reaction mechanism generation

 Iteratively add reactions/species until all reactions leading to new species are negligible

Quantum calculations

- Electronic energy
- Geometry optimisation
- Rotational constants
- Vibrational frequencies
- Find temperature variation of C_p, H, S through Statistical Mechanics

Proposed Reactions

Table 3: Reaction mechanism equations

No	Reaction	ΔH°_{208K} "	A ^b	\boldsymbol{n}	$E_a{}^a$	Ref.		
Thermal Decomposition								
R 1	$TICl_4 + M \Longrightarrow TICl_3 + Cl + M$	387	5.40×10^{18}	0	336	[18]		
R2	$TiCl_3 + M \Longrightarrow TiCl_2 + Cl + M$	422	7.70×10^{18}	ō	387	[18]		
R3	$TiCl_{2} + M \Longrightarrow TiCl + Cl + M$	507	3.20×10^{17}	Ö	511	[19]		
R4	$T_{1} + C_{1} \Rightarrow T_{1}C_{1}$	-405	1.00×10^{13}	õ	0	()		
25	$TC_{1} + C_{1} \rightarrow TC_{1}$	-567	1.00×10^{13}	ŏ	õ			
R6	$TCI + CI_0 \implies TCI_0$	-687	1.00×10^{13}	ŏ	õ			
Abstraction and Diammentionation								
R7	$TCl_2 + Cl_2 \Rightarrow TCl_4 + Cl_4$	-144	1.00×10^{13}	0	0			
100	$\operatorname{TCl}_{2} : \operatorname{Cl}_{2} \to \operatorname{TCl}_{2} : \operatorname{Cl}_{3}$	190	1.00×10^{13}	ň	0			
120	$\Pi G_2 + G_2 = \Pi G_3 + G_1$ $\Pi G_1 + G_2 \rightarrow \Pi G_2 + G_1$	-765	1.00×10^{13}	ň	0			
D10	$\pi_1 \to \pi_2 \to \pi_1 \to \pi_2 \to \sigma_1$	-205	1.00×10	ň	0			
D11	$\pi - \pi -$	-102	1.00×10^{13}	ň	0			
R11 1217	$\Pi CI_4 + \Pi CI_7 = \Pi CI_3 + \Pi CI_2$	-121	1.00×10	- N	U 8			
R12 D13	$\pi c_4 + \pi c_1 \rightarrow \pi c_2 + \pi c_1$	-10	1.00×10	~	0			
RIJ D1/		-17	1.00×10	~	U 0			
R14	$HCl \neq HCl \neq HCl_2 \neq H$	-103	1.00×10-	0	0			
RIJ D16	$\mathbf{U} + \mathbf{I}\mathbf{U}_2\mathbf{U}_3 = \mathbf{U}_2 + \mathbf{I}\mathbf{U}_2\mathbf{U}_2$	-41	1.00×10 ⁻¹	0	0			
KI0	$Cl_2 + H_2O_2Cl_3 \rightleftharpoons Cl + H_2O_2Cl_4$	-132	1.00×10-**	0	0	ra en d		
K17	$2 \operatorname{HCl}_3 \rightleftharpoons \operatorname{HCl}_2 + \operatorname{HCl}_4$	33	9.00X10	0	33	[19] -		
RIS	$\operatorname{IICl}_3 + \operatorname{IICl} \rightleftharpoons 2 \operatorname{IICl}_2$	-85	1.00×10-**	0	0			
Oxida								
R19	$TiCl_3 + O_2 \rightleftharpoons TiO_2Cl_3$	-151	1.00×10^{13}	0	0			
R2 0	$TiOCl_3 + ClO \Rightarrow TiO_2Cl_3 + Cl$	-22	1.00×10^{13}	0	0			
R2 1	$TiO_2Cl_3 + TiCl_3 \rightleftharpoons 2 TiOCl_3$	-67	1.00×10^{13}	0	0			
R22	$TiOCl_2 + Cl \rightleftharpoons TiOCl_3$	-138	1.00×10^{13}	0	0			
R23	$TiOCl_3 + O \rightleftharpoons TiO_2Cl_3$	-291	1.00×10^{13}	0	0			
R24	$TiO_2Cl_2 + Cl \rightleftharpoons TiO_2Cl_3$	-221	1.00×10^{13}	0	0			
R25	$TiO_2Cl_2 + Cl \rightleftharpoons TiCl_3 + O_2$	-71	1.00×10^{13}	0	0			
R26	$TiOCl_3 + O \rightleftharpoons TiCl_3 + O_2$	-140	1.00×10^{13}	0	0			
R27	$TiCl_2 + O_2 \rightleftharpoons TiOCl_2 + O$	-144	1.00×10^{13}	0	0			
R28	$TiO_2Cl_2 + O \rightleftharpoons TiOCl_2 + O_2$	-291	1.00×10^{13}	0	0			
R29	$TiCl_3 + Cl0 \rightleftharpoons TiCl_4 + 0$	-118	1.00×10^{13}	0	0			
R30	$TiCl_2 + ClO \rightleftharpoons TiCl_3 + O$	-153	1.00×10^{13}	0	0			
R31	$TiCl + ClO \rightleftharpoons TiCl_2 + O$	-239	1.00×10^{13}	0	0			
R32	$T_i + ClO \Rightarrow T_iCl + O$	-136	1.00×10^{13}	0	0			
R33	$TiCl_3 + O \rightleftharpoons TiOCl_2 + Cl$	-220	1.00×10^{13}	0	0			
R34	$TiCl_3 + Cl_2O \rightleftharpoons TiCl_4 + ClO$	-243	1.00×10^{13}	0	0			
R35	$TiCl_3 + Cl0 \Rightarrow TiOCl_3 + Cl$	-89	1.00×10^{13}	Ö	Ō			
R36	$TiO_{2}Cl_{2} + Cl \Rightarrow TiOCl_{2} + ClO$	-62	1.00×10^{13}	Ö	Ō			
R37	$0 + O_2 + M \Rightarrow O_3 + M$	-107	1.84×10^{21} c	-2.8	Q	[20]		
Ras	$C[OO + M \rightarrow C] + O_2 + M$	24	1.69×10^{14}	0	15 19	[20]		
R30	$C = O_0 + M \rightarrow C = O_0 + M$	24	8 68×10 ²¹ c	20	0	[20]		
RAN	$C_1 + O_2 \rightarrow C_1O_2 + O_2$	-161	1.75×10^{13}	- 0	2 18	[21]		
DA1	$C_1 \cap J_2 = C_1 \circ f \circ J_2$	-101	373~1013	ň	_1.00	[21]		
R41 R42	$\Box_2 \cup \neg \Box = \Box_2 + \Box \cup$	-72	3.73×10 8.79×10 ¹⁴	0	730 5	[41] [22]		
R42 D43	$0 + C_1 \rightarrow C 0 + C$	443 74	1.12×10 1.12×10	Ň	430.J 12.79	[22] [23]		
R43		-40		0	13.13	[23] [23]		
R44	$2 \cup I + M \rightleftharpoons \cup Q + M$	-243	2.23×10	U	-7.53	[22]		
Dime		0.00	1.001013	~				
K45	$2 \operatorname{HOCl}_2 \rightleftharpoons \operatorname{H}_2 \operatorname{O}_2 \operatorname{Cl}_4$	-357	1.00×10**	U Q	U			
K46	$\mathrm{I1}\mathrm{U}_{2}\mathrm{Cl}_{2} + \mathrm{I1}\mathrm{Cl}_{3} \rightleftharpoons \mathrm{I1}_{2}\mathrm{U}_{2}\mathrm{Cl}_{4} + \mathrm{Cl}$	-370	$1.00 \times 10^{1.3}$	0	U			
R 47	$1iO_2Cl_2 + 1iOCl_2 \rightleftharpoons 1i_2O_3Cl_3 + C$	u -130	1.00×10^{13}	0	0			
R48	$TiOCl_2 + TiOCl_3 \rightleftharpoons Ti_2O_2Cl_4 + Cl_3$	-219	1.00×10^{13}	0	0			
R 49	$Ti_2O_3Cl_3 + TiOCl_2 \rightleftharpoons Ti_3O_4Cl_4 + 0$	Cl -184	1.00×10^{13}	0	0			
R5 0	$Ti_2O_3Cl_2 + Cl \rightleftharpoons Ti_2O_3Cl_3$	-196	1.00×10^{13}	0	0			
R5 1	$\underline{\text{Ti}_2\text{O}_2\text{Cl}_4 + \text{Ti}\text{Cl}_3} \rightleftharpoons \underline{\text{Ti}_2\text{O}_2\text{Cl}_3 + \text{Ti}_2}$	CL -12	$1.00 \times 10^{1.3}$	0	0			
* kL	und ^b em ³ und s	C cur	anal 2 v		d estimat	в		

Oxidation processes in PAHs

Investigated reactions:

Oxidation process:

Decomposition process:

Pyrene oxidation pathway

Pyrene oxidation pathway

Reaction Progress

Oxidation rates of different site types

Zigzag next to zigzag (zz)

E_{act}=156 kJ/mole

Zigzag next to free edge (zf)

E_{act}=161 kJ/mole

Armchair next to free edge (af)

Units: k in cm³/(mole*s), T in K

PAH growth model

 Soot particle described by its PAH structure.

 PAH growth based on site types and various reaction steps.

 An algorithm developed to track the changing sites with reactions and resulting PAH structure.

A 2-D grid showing a pyrene molecule

Growth of a PAH molecule

Adding structural information

Aromatic site-counting model

Describe soot particles by 9+N dimensional type space (ARSC-PP model):

$$E = (C, H, S_{a}, N_{ed}, N_{zz}, N_{ac}, N_{bay}, N_{R5}, N_{PAH}, PP_{(1-N)})$$

PP = primary particle list

Particle growth

Single trajectory of a soot particle

Particle rotation

- Sub Particles: 3172
- No. Carbon atoms: 4.967x10⁶
- Surface Area: 2.345x10⁻¹⁰ cm²

- Shape Descriptor: 0.768
- Radius of Gyration: 44.384 nm
- Age: 0.0917 s

Particle composition

Soot in engines!

Sampled aggregates (I)

Simulation

49.4 CAD ATDC, 129 primaries, coll. diam. 64 nm

Sampled aggregates (II)

Experiment, sampled at ~46 CAD ATDC

CA = 309 Deg

SOI at -100 aTDC, spray cone angle: 100 deg.

Engine soot model

Soot formation in a partially stratified HCCI engine:

HCCI control problem

Engine load

Octane variation strategy

Example: Transient control

- Imposed equivalence
 ratio profile
- PID controller changes fuel composition (octane number) such that...
- ... ignition timing (CA50) is held at a given set point.

mk306@cam.ac.uk

Live simulation...

Thank you...

أرامكو السعودية Saudi Aramco

reSolutions

Thank you for your attention.

