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Abstract

In Berger’s classification of Riemannian holonomy groups there are several infinite fam-

ilies and two exceptional cases: the groups Spin(7) and G2. This thesis is mainly concerned

with 7-dimensional manifolds with holonomy G2. A metric with holonomy contained in G2

can be defined in terms of a torsion-free G2-structure, and a G2-manifold is a 7-dimensional

manifold equipped with such a structure.

There are two known constructions of compact manifolds with holonomy exactly G2.

Joyce found examples by resolving singularities of quotients of flat tori. Later Kovalev

found different examples by gluing pairs of exponentially asymptotically cylindrical (EAC)

G2-manifolds (not necessarily with holonomy exactlyG2) whose cylinders match. The result

of this gluing construction can be regarded as a generalised connected sum of the EAC

components, and has a long approximately cylindrical neck region.

We consider the deformation theory of EAC G2-manifolds and show, generalising from

the compact case, that there is a smooth moduli space of torsion-free EACG2-structures. As

an application we study the deformations of the gluing construction for compact G2-mani-

folds, and find that the glued torsion-free G2-structures form an open subset of the moduli

space on the compact connected sum. For a fixed pair of matching EAC G2-manifolds the

gluing construction provides a path of torsion-free G2-structures on the connected sum

with increasing neck length. Intuitively this defines a boundary point for the moduli space

on the connected sum, representing a way to ‘pull apart’ the compact G2-manifold into a

pair of EAC components. We use the deformation theory to make this more precise.

We then consider the problem whether compact G2-manifolds constructed by Joyce’s

method can be deformed to the result of a gluing construction. By proving a result for

resolving singularities of EAC G2-manifolds we show that some of Joyce’s examples can be

pulled apart in the above sense. Some of the EAC G2-manifolds that arise this way satisfy

a necessary and sufficient topological condition for having holonomy exactly G2.

We prove also deformation results for EAC Spin(7)-manifolds, i.e. dimension 8 man-

ifolds with holonomy contained in Spin(7). On such manifolds there is a smooth moduli

space of torsion-free EAC Spin(7)-structures. Generalising a result of Wang for compact

manifolds we show that for EAC G2-manifolds and Spin(7)-manifolds the special holonomy

metrics form an open subset of the set of Ricci-flat metrics.
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Chapter 1

Introduction

The holonomy group of a Riemannian manifold is the group of isometries of a tangent

space generated by parallel transport around closed paths based at a point using the Levi-

Civita connection. In the classification of Riemannian holonomy groups due to Berger [4]

there are two exceptional cases: G2 and Spin(7). This thesis is concerned with manifolds

of exceptional holonomy. They can be described as Riemannian manifolds with different

versions of parallel ‘octonionic structures’ on the tangent spaces. We will study in particular

the deformation theory of manifolds with exceptional holonomy which are asymptotically

cylindrical.

The main focus of the thesis is on the G2 case. We apply the deformation results to

study the properties of a gluing construction that uses asymptotically cylindrical G2-man-

ifolds. This leads to the idea that one can attempt to reverse the gluing construction, and

‘pull apart’ a compact manifold with holonomy G2 into a pair of asymptotically cylindri-

cal connected summands. We apply this idea to some of the compact G2-manifolds that

Joyce constructed by a Kummer-type method. In particular we find some examples of

asymptotically cylindrical manifolds with holonomy exactly G2.

G2 is a compact simple simply-connected Lie group of dimension 14. It is one of the

exceptional simple Lie groups. It can be defined as the automorphism group of the normed

algebra of octonions O, or equivalently as the group of linear transformations of R7 that

preserve the Euclidean metric and a vector cross product. A G2-structure on a manifold

M7 is a smoothly varying identification of the tangent space at each point of M with

R7 equipped with a metric and vector cross product. A G2-structure can be defined by

a differential 3-form ϕ, and is said to be torsion-free if ∇ϕ = 0. A metric on M7 has

holonomy contained in G2 if and only if it can be defined by a torsion-free G2-structure.
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G2-manifolds, i.e. dimension 7 manifolds equipped with a torsion-free G2-structure, are

Ricci-flat.

Similarly, Spin(7) is a compact simple simply-connected Lie group of dimension 21. It

is the double cover of SO(7). Its spinor representation is faithful and real of rank 8, so

it can be considered as a subgroup of SO(8). This action of Spin(7) on R8 preserves a

certain triple cross product, which can be defined in terms of the algebraic structure of

the octonions. A Spin(7)-structure on a manifold M8 is an identification of the tangent

space of M at each point with R8 equipped with a metric and triple cross product. A

Spin(7)-structure can be defined by a differential 4-form ψ, and is said to be torsion-free

if ∇ψ = 0. A metric on M8 has holonomy contained in Spin(7) if and only if it can be

defined by a torsion-free Spin(7)-structure. Spin(7)-manifolds too are Ricci-flat.

G2 is the stabiliser in Spin(7) of a vector in R8. Similarly the stabiliser in G2 of a

vector in R7 is isomorphic to SU(3). We will therefore also be interested in 6-dimensional

manifolds with holonomy SU(3). These are Calabi-Yau 3-folds. They have an integrable

complex structure and a Ricci-flat Kähler metric. They also have a holomorphic volume

form (i.e. a nowhere vanishing (3, 0)-form) so the first Chern class vanishes.

Constructing manifolds with holonomy group exactly G2 or Spin(7) is complicated.

The first local examples were found by Bryant [8], and the first complete examples by

Bryant and Salamon [10]. The first compact examples were constructed by Joyce in [26],

by desingularising quotients of flat tori.

By contrast it is easy to find compact Calabi-Yau manifolds. A large supply of compact

Kähler manifolds with vanishing first Chern class can be found using complex algebraic

geometry, and such manifolds have Ricci-flat Kähler metrics by Yau’s solution of the Calabi

conjecture [56]. Taking the product of a Calabi-Yau 3-fold with a circle gives a G2-manifold,

but a reducible one. Generally any G2-manifold whose holonomy is a proper subgroup of

G2 is locally reducible, in the sense that any point has a neighbourhood that is a product

of two Riemannian manifolds of non-zero dimension, while a 7-dimensional manifold with

holonomy exactly G2 is irreducible.

Another way to obtain irreducible compact G2-manifolds is by gluing a pair of non-

compact G2-manifolds which are asymptotically cylindrical. A manifold is said to have

cylindrical ends if it is homeomorphic to a cylinder outside a compact piece. An asymp-

totically cylindrical manifold is a Riemannian manifold with cylindrical ends for which the

metric is asymptotic to a product metric on the cylindrical ends. Asymptotically cylindrical

manifolds are easier to work with than arbitrary non-compact manifolds, e.g. many analysis
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results for elliptic operators on compact manifolds can be generalised to statements about

asymptotically translation-invariant elliptic operators acting on suitable spaces of sections

on an asymptotically cylindrical manifold. Such results are proved in e.g. [39] and [40]. In

some arguments it is helpful to impose a stronger condition, requiring the manifold to be

exponentially asymptotically cylindrical (EAC).

Given a pair of EAC G2-manifolds whose cylinders match one can form a generalised

connected sum by truncating the cylinders after some large but finite length and gluing

them together. If the ‘neck length’ is sufficiently large then the EAC G2-structures can be

glued to form a torsion-freeG2-structure on the connected sum. This is a gluing construction

for compact G2-manifolds. Kovalev [34] proves an EAC version of the Calabi conjecture to

produce EAC Calabi-Yau 3-folds. By multiplying with circles reducible EAC G2-manifolds

are obtained, which can be glued to form irreducible compact G2-manifolds of different

topological types from those constructed by Joyce.

In chapter 2 we review the basic properties of the exceptional holonomy groups, and of

EAC manifolds. Chapter 3 discusses the local deformation problem for compact manifolds

with exceptional holonomy, which was solved previously by Joyce [26]. The group of dif-

feomorphisms isotopic to the identity on a compact G2-manifold M7 acts on the space of

torsion-free G2-structures by pull-backs, and the quotient is the moduli space of torsion-free

G2-structures. We prove that the moduli space is a smooth manifold. Since the torsion-free

G2-structures are induced by closed 3-forms there is a natural projection map to the de

Rham cohomology H3(M), and this is a local diffeomorphism. The argument used here is

a modification of that used by Hitchin [24], and we adapt it to deal also with deformations

of compact Spin(7)-manifolds and Calabi-Yau 3-folds (in these cases the projection to de

Rham cohomology is an immersion rather than a local diffeomorphism). The deformation

problem for Calabi-Yau manifolds (in any dimension ≥ 3) was solved independently by

Tian [52] and Todorov [53], using the Kodaira-Spencer theory for deformations of complex

manifolds. Goto [17] has also studied the deformations of compact G-manifolds when G is

any of the Ricci-flat holonomy groups SU(n), Sp(n), Spin(7) or G2.

In chapter 4 we discuss the properties of EAC G-manifolds, where G is one of the

exceptional holonomy groups G2 and Spin(7). The main result here is that the moduli

spaces of EAC torsion-free G-structures are smooth manifolds. The proofs are generalisa-

tions from the compact case. The extra difficulties are largely to do with the analysis and

understanding the boundary conditions.

For an EAC G2-manifold M7 with cross-section X6 let M+ be the moduli space of
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torsion-free EAC G2-structures on M . This is the quotient of the space of EAC torsion-free

G2-structures (with any exponential rate of decay) by the group of EAC diffeomorphisms

isotopic to the identity. The cross-section X of M is a compact Calabi-Yau 3-fold. By

the results in chapter 3 the moduli space N of Calabi-Yau structures on X is a smooth

manifold. There is a natural boundary map

B : M+ → N . (1.1)

In order to obtain an immersion of M+ it is not enough to project the EAC torsion-free

G2-structures to the de Rham cohomology H3(M), but we must also use the image in

H2(X) of the Kähler class of the induced Calabi-Yau structure on X. Theorem 4.2.2 states

that M+ is a smooth manifold, and that the map

M+ → H3(M) ×H2(X)

is an immersion. The dimension of the moduli space is given by the formula

dimM+ = b4(M) + 1
2
b3(X) − b1(M) − 1.

Moreover the boundary map B is a submersion onto its image, which is a submanifold of

N defined locally by a topological condition.

Theorem 4.3.2 is the corresponding result for Spin(7)-manifolds. The moduli space

M+ of EAC torsion-free Spin(7)-structures on an EAC Spin(7)-manifold M8 is a smooth

manifold, and the projection to de Rham cohomology

M+ → H4(M)

is an immersion. In this case the cross-section X is a compact G2-manifold, and we rely

on the result that the moduli space N of torsion-free G2-structures on X is a smooth

manifold. Again there is a natural boundary map B : M+ → N , and it is a submersion

onto a submanifold. The dimension is given by

dimM+ = b4(M) − b4+(M) + b1(X) − b1(M) − 1,

where b4+(M) denotes the dimension of the positive part of the compactly supported sub-

space of H4(M).
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We also prove theorems 4.1.11 and 4.1.19, which give necessary and sufficient topological

conditions for an asymptotically cylindrical G2-manifold or Spin(7)-manifold M to have a

holonomy exactlyG2 or Spin(7), respectively, and not a proper subgroup. In theG2 case the

condition for full holonomy is that the fundamental group π1(M) is finite and that neither

M nor any double cover of M is homeomorphic to a cylinder. This is a generalisation of a

known result for compact G2-manifolds. In the Spin(7) case one must additionally assume

that the cross-section X̃ of the universal cover has b1(X̃) = 0 to ensure that the holonomy

is exactly Spin(7).

It is usually most effective to study manifolds with exceptional holonomy G = Spin(7)

or G2 in terms of the G-structures, but in chapter 5 we consider the deformations of the

metrics themselves. A result due to Wang [55] states that small Ricci-flat deformations of

G-metrics still have holonomy contained in G. We give a careful account of this result,

and explain how it can be extended to the EAC case by using the deformation theory of

EAC G-manifolds from chapter 4. We also show that the moduli space WG of G-metrics is

smooth, and that the moduli space of G-structures is a locally trivial fibre bundle over WG

(for manifolds with holonomy exactly G the two moduli spaces are diffeomorphic).

In chapter 6 we discuss how the gluing of EAC G2-manifolds behaves under deforma-

tions. If M7 is a compact G2-manifold produced by the gluing construction then the glued

G2-structures form an open subset of the moduli space M of torsion-free G2-structures

on M . To set up the proof of this claim we first note that the data required for the gluing

construction is a pair of torsion-free EAC G2-structures with matching asymptotic limits

together with a ‘neck length’ parameter. The parameter specifies how far along the infinite

ends the EAC G2-manifolds are truncated before gluing, so it controls the diameter of the

glued G2-structure. We use the results about the boundary map (1.1) to show that there is

a smooth moduli space G of data for the gluing construction. Then the construction gives

a smooth gluing map

Y : G → M. (1.2)

Theorem 6.1.9 states that this is a local diffeomorphism, so in particular its image is open.

Intuitively, a path given by gluing a matching pair of EAC G2-structures with an

increasing neck length defines a boundary point of M, corresponding to ‘pulling apart’

M into a pair of EAC connected-summands. We can use the gluing map (1.2) to make

this precise. Theorem 6.1.10 states that M can be partially compactified by inclusion in a

manifold M with boundary, so that paths of increasing neck length converge to boundary

points of M.
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In chapter 7 we study how some of the examples of compact G2-manifolds constructed

by Joyce’s method can be pulled apart in the above sense. We explain how Joyce’s method

of resolving singularities of G2-orbifolds can be extended to the EAC setting. We can

then pull apart some of the simpler of Joyce’s examples, by first performing a resolution of

singularities to construct their EAC components. Some of the EAC G2-manifolds that arise

this way are simply-connected, and have holonomy exactly G2 by the topological condition

stated above.

Joyce’s examples come with a path of torsion-free G2-structures degenerating to the

orbifold metric the construction started from. When it can be pulled apart we therefore

find that a connected component of the moduli space of torsion-free G2-structures has

boundary points of both orbifold and connected-sum type.
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Chapter 2

Background material

In this chapter we review some background material. We define the holonomy group of

a Riemannian manifold, describe the exceptional holonomy groups G2 and Spin(7), and

explain how a metric with holonomy G = Spin(7), G2 or SU(3) can be defined in terms of a

torsion-free G-structure. We explain what exponentially asymptotically cylindrical (EAC)

manifolds are, and give some results about elliptic differential operators and Hodge theory

on such manifolds.

2.1 Preliminaries

To begin with we introduce the notion of the holonomy of a Riemannian manifold, and

explain how a holonomy reduction gives rise to decompositions of spaces of harmonic forms

similar to the Hodge decomposition on a Kähler manifold. We also summarise the elements

of spin geometry.

2.1.1 Riemannian holonomy

For a fuller discussion of holonomy see e.g. Joyce [27, §2] or Besse [5, §10].

Definition 2.1.1. Let Mn be a manifold with a Riemannian metric g. If x ∈ M and

γ is a closed piecewise C1 loop in M based at x then the parallel transport around γ

(with respect to the Levi-Civita connection of the metric) defines an orthogonal linear

map Pγ : TxM → TxM . The holonomy group Hol(g, x) ⊆ O(TxM) at x is the group

{Pγ : γ is a closed loop based at x}. The restricted holonomy group Hol0(g, x) is the sub-

group of Hol(g, x) consisting of parallel transport maps around null-homotopic loops.

7



If x, y ∈ Mn and τ is a path from x to y then we can define a group isomorphism

Hol(g, x) → Hol(g, y) by Pγ 7→ Pτ ◦ Pγ ◦ P−1
τ . Provided that M is connected we can

therefore identify Hol(g, x) with a subgroup of O(n), independently of x up to conjugacy,

and talk simply of the holonomy group of g. Another way to express this is that the

holonomy is well-defined up to isomorphism as an orthogonal group representation. The

restricted holonomy group is the identity component of the holonomy group, and it is a

compact Lie subgroup of SO(n) (see [5, §10.E]).

There is a correspondence between tensors fixed by the holonomy group and parallel

tensor fields on the manifold.

Proposition 2.1.2 ([27, Proposition 2.5.2]). Let Mn be a Riemannian manifold, x ∈ M

and E a vector bundle on M associated to TM . If s is a parallel section of E then s(x)

is fixed by Hol(g, x). Conversely if s0 ∈ Ex is fixed by Hol(g, x) then there is a parallel

section s of E such that s(x) = s0.

If M is a simply-connected Riemannian manifold then the holonomy group must be

connected, so Hol(M) ⊆ SO(n). One can ask which subgroups of SO(n) can occur as the

holonomy group of a simply-connected Riemannian manifold. The problem simplifies in

two cases. If M is a symmetric space it is a homogeneous space G/H, and the holonomy

is the adjoint action of H. If M is a Riemannian product then the holonomy group is the

product of the holonomy groups of the factors. The list of possible holonomy groups of

non-symmetric irreducible Riemannian manifolds is known as Berger’s list.

Theorem 2.1.3. Let (M, g) be a simply-connected non-symmetric irreducible Riemannian

manifold. Then one of the following 7 cases holds:

• Hol(M) = SO(n) and dimM = n,

• Hol(M) = U(n) and dimM = 2n,

• Hol(M) = SU(n) and dimM = 2n,

• Hol(M) = Sp(n) and dimM = 4n,

• Hol(M) = Sp(n)Sp(1) and dimM = 4n,

• Hol(M) = G2 and dimM = 7,

• Hol(M) = Spin(7) and dimM = 8.
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In particular we may note that the Riemannian holonomy groups occur in enumerated

infinite families, except for G2 and Spin(7). For a non-symmetric irreducible manifold

M that is not simply-connected we can consider its universal cover and deduce that the

restricted holonomy Hol0(M) must be one of the groups on the list.

If a simply-connected neighbourhood U of x ∈ M is isometric to a product manifold

then Hol(U, x) ⊆ Hol0(M,x) acts reducibly on TxM . A converse also holds.

Proposition 2.1.4 (cf. [5, Theorem 10.38]). Let M be a Riemannian manifold. If TxM

splits as a sum of irreducible representations V1, . . . , Vk under the action of Hol0(M,x)

then there are submanifolds Ni ⊆M with TxNi = Vi such that a neighbourhood of x in M

is isometric to N1 × · · · ×Nk.

If M is complete and simply-connected and Hol(M) acts reducibly then there is in fact a

corresponding global isometry M ∼= N1 × · · · ×Nk.

The holonomy of M imposes algebraic constraints on the Riemannian curvature. In

particular

Theorem 2.1.5. If M is a Riemannian manifold and Hol(M) is contained in SU(n),

Sp(n), G2 or Spin(7), then M is Ricci-flat.

2.1.2 Laplacians

For a Riemannian manifold with holonomy H one can define a Lichnerowicz Laplacian on

vector bundles associated to the tangent bundle. On differential forms this agrees with the

usual Hodge Laplacian, as is explained in [5, §1I]. It was originally noted by Chern [13]

that this may be used to study how the Hodge Laplacian interacts with the decomposition

of ΛmT ∗M into H-invariant subbundles.

Suppose that M is a Riemannian manifold with holonomy group Hol(M) ⊆ H. Then

the frame bundle of M can be reduced to a principal H-bundle, i.e. M has an H-structure.

Let ρ : H → GL(E) be a representation of H, and Eρ the corresponding associated vector

bundle. Let had be the vector bundle induced by the adjoint representation of H. had can

be identified with a subbundle of Λ2T ∗M , and because Hol(M) ⊆ H the Riemannian

curvature tensor R is a symmetric section of had⊗had. We use the Lie algebra representation

Dρ : h → End(E) to define

(Dρ)2 : h ⊗ h → End(E), a⊗ b 7→ Dρ(a) ◦Dρ(b).
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This induces a bundle map had ⊗ had → End(Eρ). Symmetry of R implies that (Dρ)2(R)

is self-adjoint.

Definition 2.1.6. Let M be a Riemannian manifold with Hol(M) ⊆ H and ρ a represen-

tation of H. The Lichnerowicz Laplacian on Eρ is the formally self-adjoint operator

△ρ = ∇∗∇− 2(Dρ)2(R) : Γ(Eρ) → Γ(Eρ),

where ∇ is the connection on Eρ induced by the Levi-Civita connection on M .

Lemma 2.1.7. Let Mn be a Riemannian manifold. The Lichnerowicz Laplacian corre-

sponding to the standard representation of O(n) on Λm(Rn)∗ is the usual Hodge Laplacian.

Proof. See [5, §1I].

The expression of the Hodge Laplacian in terms of the Lichnerowicz Laplacian of the

standard representation of O(n) is often called the Weitzenböck formula. The formula is

particularly simple on 1-forms.

Proposition 2.1.8. If M is a Riemannian manifold and φ is a 1-form then

△φ = ∇∗∇φ+Ric(φ),

where the metric is used to interpret the Ricci curvature as a section of End(TM).

Proof. See [5, (1.155)].

Corollary 2.1.9. Let M a Ricci-flat manifold and φ a 1-form. If φ is parallel then φ is

harmonic. If M is compact then the converse also holds.

Lemma 2.1.10 (cf. [27, Theorem 3.5.3]). Let M be a Riemannian manifold and suppose

that Hol(M) ⊆ H. Let φ : E → F be an equivariant map of H-representations (E, ρ),

(F, σ). Then φ induces a bundle map Eρ → Fσ, and the diagram below commutes.

Γ(Eρ)
φ - Γ(Fσ)

Γ(Eρ)

△ρ

? φ - Γ(Fσ)

△σ

?
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In particular, if ρ1 and ρ2 are H-representations then △ρ1⊕ρ2 = △ρ1 ⊕△ρ2.

Proof. This is obvious from the fact that the Lichnerowicz Laplacian is defined naturally

by the representations.

When ΛmRn decomposes as a direct sum of subrepresentations ΛmRn =
⊕

Λm
d Rn under

the action of H ⊆ O(n) there is a corresponding H-invariant decomposition of the exterior

product bundle

ΛmT ∗M =
⊕

Λm
d T

∗M. (2.1)

We write Ωm
d (M) for the space of sections of Λm

d T
∗M , the ‘forms of type d’. We can

define bundle projections πd : ΛmT ∗M → Λm
d T

∗M . These extend to maps of sections

πd : Ωm(M) → Ωm
d (M), and allow us to decompose forms into type components.

We can combine lemmas 2.1.7 and 2.1.10 to see that the Hodge Laplacian respects the

type decompositions.

Corollary 2.1.11. Let Mn be a Riemannian manifold with Hol(M) ⊆ H. If φ : Λm
d Rn →

Λk
eR

n is an H-equivariant map of H-subrepresentations of ΛmRn,ΛkRn then

Ωm
d (M)

φ- Ωk
e(M)

Ωm
d (M)

△

? φ- Ωk
e(M)

△

?

commutes. In particular, if Λm
d T

∗M is an H-invariant subbundle of ΛmT ∗M then △ com-

mutes with πd on Ωm(M), and maps Ωm
d (M) to itself.

It follows that given an H-invariant decomposition (2.1) of ΛmT ∗M into subbundles there

is a corresponding decomposition of the harmonic forms

Hm =
⊕

Hm
d .

If M is compact then by Hodge theory the natural map Hm → Hm(M) is an isomorphism.

If we let Hm
d (M) be the image of Hm

d then we obtain a decomposition of the de Rham

cohomology

Hm(M) =
⊕

Hm
d (M). (2.2)
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2.1.3 Spinors

We collect here some facts about spin representations, spinors and the Dirac operator. For

background see e.g. Lawson and Michelsohn [37], or Roe [49] for the analysis side.

One reason why this is relevant for the study of the Ricci-flat holonomy groups is that,

as we will see, harmonic spinors on a compact scalar-flat manifold are parallel, while the

existence of parallel spinors implies a holonomy reduction by proposition 2.1.2. Indeed

Wang [54] gives an explicit characterisation of torsion-free Ricci-flat holonomy structures

in terms of parallel spinors on a Riemannian manifold. Determining the dimension of the

space of harmonic spinors on a manifold in terms of topological invariants is therefore of

interest.

Another reason for us to review spinors is that Spin(7) acting on its spin representation

is one of the exceptional holonomy representations. We will also use the ellipticity of the

Dirac operator in some of the technical slice arguments when constructing moduli spaces.

For n ≥ 3 the fundamental group of SO(n) is Z2. Its universal cover is a Lie group,

called the spin group Spin(n). We call the action of Spin(n) on Rn that factors through

SO(n) the vector representation. Spin(n) also has a natural complex representation σn

called the spin representation. Without going into the details of how these are constructed

we summarise some of their properties.

• If n = 2k + 1 then σn is irreducible of rank 2k.

• If n = 2k then σn is reducible of rank 2k. It has two distinct irreducible components σ±
n

of rank 2k−1 each.

σn = σ+
n ⊕ σ−

n (2.3)

σn has a natural Hermitian metric, so that it is a unitary representation of Spin(n). There

is a Spin(n)-equivariant map

R
n ⊗ σn → σn.

called Clifford multiplication. For v ∈ Rn the multiplication map rv ∈ End(σn) is skew-

Hermitian. If n is even then rv maps σ±
n → σ∓

n (so σn is irreducible considered as an

Rn-module). Moreover the Clifford relations hold.

• rvrw + rwrv = −2 <v,w> idσn for any v, w ∈ Rn.

There is an obvious inclusion Spin(n) →֒ Spin(n+ 1) by splitting Rn+1 = Rn⊕R, and

σn+1 can be restricted to a representation of Spin(n).
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• If n is even then σn+1
∼= σn as Spin(n)-representations.

• If n is odd then σ±
n+1

∼= σn as Spin(n)-representations.

If n ≡ m mod 8 then the spin representations of Spin(n) and Spin(m) have similar

properties, a phenomenon sometimes referred to as Bott periodicity. For example

• If n ≡ 0 mod 8 then σn+1, σ
±
n and σn−1 are real representations.

Let Mn be an oriented Riemannian manifold. M is said to be spin if it has a spin

structure, i.e. a lift of the principal SO(n)-bundle defined by the metric to a principal

Spin(n)-bundle. This condition is independent of the metric; it is equivalent to the van-

ishing of the second Stiefel-Whitney class w2(M) ∈ H2(M,Z2). If M is spin then the spin

structures are in bijection with H1(M,Z2).

Given a spin structure on Mn one may for each representation of Spin(n) define an

associated vector bundle on M . In particular one can define the spinor bundle S associated

to the spin representation σn. The Levi-Civita connection of M induces a connection on S

∇ : Γ(S) → Γ(T ∗M ⊗ S).

Composing this with the bundle map T ∗M ⊗ S → S given by fibre-wise Clifford multipli-

cation defines the Dirac operator

ð : Γ(S) → Γ(S).

This is a first-order partial differential operator, which is elliptic and formally self-adjoint.

When n is even the spinor bundle splits as S = S+ ⊕ S− modelled on (2.3), and ð maps

Γ(S±) → Γ(S∓). In other words it can be written as a sum of two formally adjoint operators

ð± : Γ(S±) → Γ(S∓). If n ≡ 2 mod 4 then ind ð± = 0 because S+ ∼= (S−)∗. When n ≡ 0

mod 4 the Atiyah-Singer index theorem (see [2]) gives that indð+ = Â(M), where Â(M) is

a characteristic class called the A-hat genus of M . In particular it is a topological invariant

of M .

The second-order elliptic formally self-adjoint operator ð2 : Γ(S) → Γ(S) is called the

Dirac Laplacian. Note that if M is closed then ð2ψ = 0 ⇔ ðψ = 0. There is an expression

for the Dirac Laplacian similar to those discussed in §2.1.2, called the Lichnerowicz formula.

ð
2 = ∇∗∇ + 1

4
s, (2.4)
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where s is the scalar curvature of M . If M is closed and scalar-flat then an integration by

parts argument like in proposition 2.1.8 implies that any solution of the Dirac equation

ðψ = 0 is parallel.

Remark 2.1.12. In the notation of §2.1.2

s idS = 16(Dσn)
2(R)

(cf. [5, 1.142]). Therefore when M is scalar-flat the Dirac Laplacian equals ∇∗∇, just like

the Lichnerowicz Laplacian (proposition 2.1.8).

2.2 The exceptional holonomy groups

We discuss the groups G2 and Spin(7) which occur as exceptional cases in the classification

Riemannian holonomy groups, and how manifolds with such holonomy can be defined in

terms of certain closed differential forms. We also consider manifolds with holonomy SU(3),

which are Calabi-Yau 3-folds. SU(3) is not an exceptional holonomy group since it belongs

to the infinite family SU(n), but the fact that SU(3) is the stabiliser in G2 of a vector

means that it still has a place in the exceptional holonomy story.

For more detail see e.g. Harvey [22], Joyce [27] or Salamon [50].

2.2.1 The group G2

In this section we recall some elementary properties of the Lie group G2, and explain some

related linear algebra (taken from Hitchin [24, §7.1]).

One way to define G2 is as the automorphism group of O, the normed algebra of

octonions. The automorphisms preserve the splitting O = R⊕ im O and act trivially on R,

so can therefore be identified with a subgroup of GL(R7). Since the inner product on im O

is defined in terms of the normed algebra structure it is preserved by the automorphisms.

It is also the case that the automorphisms preserve the orientation, so G2 ⊆ SO(7).

G2 is a compact Lie subgroup of SO(7). It is 14-dimensional, simple, connected and

simply-connected.

If we identify im O with R7 we can define a vector product on R7 by

a× b = im ab.
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The algebra structure on R ⊕ im O can be recovered from the vector product × and the

standard inner product g0 by

(x, a)(y, b) = (xy − <a, b>, xb+ ya+ a× b).

An equivalent definition of G2 is therefore that it is the subgroup of GL(R7) that preserves

both g0 and ×. From g0 and × we can define the trilinear form

ϕ0(a, b, c) =<a× b, c> . (2.5)

In fact this is alternating, so ϕ0 ∈ Λ3(R7)∗. Explicitly in standard coordinates

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356. (2.6)

If V is a dimension 7 real vector space let Λ3
+V

∗ ⊆ Λ3V ∗ denote the set of 3-forms ϕ

that are equivalent to ϕ0 under some isomorphism V ∼= R7. We will see below that the

diffeomorphism orbit Λ3
+V

∗ is open in Λ3V ∗, and we call such forms stable.

For ϕ ∈ Λ3
+V

∗ we can define an inner product gϕ and a volume form volϕ on V in the

following way: For v, w ∈ V let

Bϕ(v, w) =
1

6
(vyϕ) ∧ (wyϕ) ∧ ϕ.

Bϕ is a symmetric bilinear form on V with values in Λ7V ∗. Bϕ induces a linear map

Kϕ : V → V ∗ ⊗ Λ7V ∗, which has a determinant detKϕ ∈ (Λ7V ∗)9. Since ϕ is stable Bϕ is

non-degenerate, and we can define volϕ and gϕ by

(volϕ)
9 = detKϕ,

gϕ ⊗ volϕ = Bϕ.

For ϕ0 we can compute that gϕ0
= g0, so the metric can be recovered from ϕ0, and

hence so can the vector product ×. Thus the stabiliser of ϕ0 in GL(R7) preserves g0 and ×,

and must equal G2. This gives yet another possible definition of G2. Since it is in terms

of an alternating 3-form it is – as noted by Bryant [8] – a useful one for the purposes of

differential geometry.

Since the action of GL(V ) (dim 49) on Λ3V ∗ (dim 35) has stabiliser G2 (dim 14) at a

stable form ϕ it follows by dimension-counting that Λ3
+V

∗ is open in Λ3V ∗. Λ3
+V

∗ splits
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into two orbits under the action of GL+(V ). When V is oriented we can label as positive

those stable 3-forms whose associated volume form agrees with the orientation.

Definition 2.2.1. If V is oriented we let ΛG2
V ∗ ⊆ Λ3V ∗ be the 3-forms equivalent to ϕ0

under some oriented linear isomorphism V ∼= R7, and call its elements positive 3-forms.

Remark 2.2.2. This definition of ‘positive’ agrees with that in [27], while in [24] ‘positive’

refers to the elements of Λ3
+V

∗.

The natural representation of G2 on R7 is irreducible. The splitting of the action of G2

on ΛmR7 into irreducible representations is as follows:

Λ2
R

7 = Λ2
7R

7 ⊕ Λ2
14R

7,

Λ3
R

7 = Λ3
1R

7 ⊕ Λ3
7R

7 ⊕ Λ3
27R

7,

Λ4
R

7 = Λ4
1R

7 ⊕ Λ4
7R

7 ⊕ Λ4
27R

7,

Λ5
R

7 = Λ5
7R

7 ⊕ Λ5
14R

7.

(2.7)

Λm
d R7 is an irreducible subrepresentation of ΛmR7 of rank d. Like in §2.1.2 we denote

the projection ΛmR7 → Λm
d R7 by πd. Note that Λ2

7(R
7)∗ = R7

yϕ0 and Λ3
7(R

7)∗ = R7
y(∗ϕ0),

where y denotes the contraction of a vector with an alternating form. Λ2
14(R

7)∗ is isomorphic

to the adjoint representation g2 of G2.

Because G2 is a simply-connected subgroup of SO(7) it can also be considered as a

subgroup of Spin(7), so the spin representation σ7 can be restricted to a representation

of G2. As G2-representations

σ7
∼= R ⊕ R

7. (2.8)

It would be possible to define a G2-structure in terms of the dual 4-form ∗ϕϕ. Because

the Hodge star depends on ϕ the relation between ϕ and ∗ϕϕ is non-linear. At times we

will want to use a notation that does less to disguise the non-linearity.

Definition 2.2.3. For ϕ ∈ ΛG2
V ∗ let Θ(ϕ) = ∗ϕϕ.

Proposition 2.2.4. The derivative of Θ : ΛG2
V ∗ → Λ4V ∗ at ϕ ∈ ΛG2

V ∗ is

DΘϕ : Λ3V ∗ → Λ4V ∗, χ 7→ ∗4
3
π1χ+ ∗π7χ− ∗π27χ, (2.9)

where the Hodge star and type decomposition are defined by ϕ.

Proof. See [26, Lemma 3.1.1] or [24, Lemma 20].
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2.2.2 G2-manifolds

An effective approach to G2-structures, due to Bryant, is to define them in terms of positive

3-forms.

Definition 2.2.5. A G2-structure on an oriented manifold M7 is a section ϕ of ΛG2
T ∗M .

If ϕ ∈ Γ(ΛG2
T ∗M) we can define a subbundle Q of the frame bundle of M consisting

of all frames TpM → R7 (p ∈ M) which identify ϕp with ϕ0. Q is a principal G2-bundle,

so any positive 3-form defines a G2-structure on M in the usual sense. Conversely for

any principal G2-bundle Q which induces the correct orientation on M we can find a

corresponding positive 3-form.

A G2-structure ϕ induces a Riemannian metric gϕ on M , and hence also a Levi-Civita

connection ∇ϕ, a Hodge star ∗ϕ and a codifferential d∗ϕ. We may drop the subscripts if the

G2-structure is clear from the context.

Definition 2.2.6. A G2-structure defined by a positive 3-form ϕ is torsion-free if ∇ϕϕ = 0.

Remark 2.2.7. There is a notion of the intrinsic torsion of a G-structure on M for a general

structure group G (see e.g. [27, §2.6]). A G2-structure has zero intrinsic torsion in this sense

if and only if it is torsion-free according to definition 2.2.6.

As an immediate application of proposition 2.1.2 we have that metrics with holonomy

contained in G2 are equivalent to torsion-free G2-structures.

Corollary 2.2.8. Let (M7, g) be a Riemannian manifold. Then Hol(g) is a subgroup of

G2 if and only if there is a torsion-free G2-structure ϕ on M such that g = gϕ.

Definition 2.2.9. A G2-manifold is a manifold M7 equipped with a torsion-free G2-struc-

ture ϕ and the associated Riemannian metric gϕ.

A G2-structure on M induces decompositions of ΛmT ∗M into subbundles modelled

on (2.7). Considering how dϕ and d∗ϕϕ are obtained algebraically from ∇ϕϕ shows that

Theorem 2.2.10 ([50, Lemma 11.5]). For ϕ ∈ ΛG2
T ∗M

(i) ∇ϕϕ = 0 if and only if dϕ = 0 and d∗ϕϕ = 0,

(ii) π7dϕ = 0 if and only if π7d
∗
ϕϕ = 0.
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Because G2 ⊆ Spin(7) a G2-structure on a manifold M7 induces a natural spin struc-

ture. The point-wise isomorphism (2.8) implies that the spinor bundle splits as

S ∼= R ⊕ T ∗M, (2.10)

where R is the trivial line bundle. Conversely, Gray [18] observed that any 7-dimensional

spin manifold admits a G2-structure. For if M7 is an oriented Riemannian manifold with

a spin structure then, because the rank of the spinor bundle S on M is greater than the

dimension of M , there is a global unit norm section of S. Since the stabiliser in Spin(7) of

any non-zero element of the spin representation σ7 is conjugate to G2 (see (2.13) below),

this defines a G2-structure on M .

If M7 has a torsion-free G2-structure then (2.10) identifies parallel spinors with parallel

elements of Ω0(M)⊕Ω1(M). In particular any G2-manifold has a non-zero parallel spinor.

Conversely, proposition 2.1.2 implies

Theorem 2.2.11. An oriented Riemannian manifold M7 has a spin structure with a non-

zero parallel spinor if and only if Hol(M) ⊆ G2.

Wang [54] gives an explicit way to construct a parallel positive 3-form from a parallel

spinor.

For compact G2-manifolds there is a known necessary and sufficient condition for the

holonomy group to be exactly G2.

Theorem 2.2.12 ([27, Proposition 10.2.2]). Let M7 be a compact G2-manifold. Then the

holonomy Hol(M) = G2 if and only if the fundamental group π1(M) is finite.

2.2.3 The group Spin(7)

Spin(7) is the double cover of SO(7). It is a compact simple simply-connected Lie group

of dimension 21. Its spin representation σ7 is a real irreducible representation of rank 8. It

is faithful, so Spin(7) can be regarded as a subgroup of SO(8). Spin(7) is conjugate to the

stabiliser in GL(R8) of

ψ0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678 ∈ Λ4(R8)∗. (2.11)
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To see that Spin(7) leaves ψ0 invariant consider first Spin(8) and its three real rank

8 representations. As in §2.1.3 we use R8 to denote the vector representation, i.e. the

representation that factors through the natural action of SO(8), and let σ±
8 be the two

irreducible spin representations. Spin(8) has an exceptional triality property – its outer

automorphism group is isomorphic to S3, permuting R8, σ+
8 and σ−

8 (cf. [22, §14]). Another

manifestation of the triality is that the Clifford multiplication

R
8 × σ±

8 → σ∓
8

is non-degenerate. This implies that each of R8, σ+
8 and σ−

8 can be identified (but not equi-

variantly) with a division algebra – necessarily the octonions O – in such a way that the

Clifford multiplication R8×σ+
8 → σ−

8 is identified with the multiplication map O×O → O,

(x, y) 7→ xy (in order to satisfy the Clifford relations R8×σ−
8 → σ+

8 must then be identified

with O × O → O, (x, y) 7→ −x̄y).

Since Spin(7) is a connected simply-connected subgroup of SO(8) it can be regarded

as a subgroup of Spin(8). R8 ∼= σ7 as representations of Spin(7) by our choice of inclusion

Spin(7) →֒ Spin(8). We choose the orientation on R8 so that as Spin(7)-representations

σ+
8
∼= R ⊕ R

7, (2.12a)

σ−
8
∼= R

8. (2.12b)

The double Clifford multiplication R8 × R8 × σ−
8 → σ−

8 then gives a Spin(7)-equivariant

trilinear map (R8)⊗3 → R8. We call its alternation the triple cross product. Identifying R8

with the octonions as above, the triple cross product is given by (see Harvey [23, p. 145])

O × O × O → O, (x, y, z) 7→ x× y × z = 1
2
(x(ȳz) − z(ȳx)).

The 4-form ψ0 can be written in terms of the triple cross product and the inner product as

ψ0(x, y, z, w) = <x× y × z, w> .

Hence ψ0 is invariant under the action of Spin(7). To show that its stabiliser is exactly

Spin(7), note that the stabiliser in Spin(7) of a non-zero vector in R8 contains G2 because

of the decomposition (2.8). On the other hand, if we let t be the first R-coordinate in
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R8 = R⊕R7 then comparing the expressions (2.6) and (2.11) shows that up to equivalence

ψ0
∼= ∗ϕ0

ϕ0 + dt ∧ ϕ0. (2.13)

Therefore the stabiliser of ψ0 together with a non-zero vector is contained in (a conjugate

of) G2. Hence the stabiliser of ψ0 is exactly Spin(7), and the stabiliser in Spin(7) of a

non-zero vector in R8 is conjugate to exactly G2.

For an oriented vector space V of dimension 8 let ΛSpin(7)V
∗ ⊆ Λ4V ∗ be the subset of

forms equivalent to ψ0 under some oriented linear isomorphism V ∼= R8. Since the stabiliser

of ψ0 is Spin(7) we can think of ψ ∈ ΛSpin(7)V
∗ as defining a Spin(7)-structure, including

an inner product. Note that the 4-form ψ is self-dual with respect to the inner product it

defines.

The action of Spin(7) on R8 is irreducible. We make a note of the decomposition of

Λ∗R8 into irreducible components. We let Λm
d R8 denote an irreducible component of rank d,

and note first that Λ4R8 splits into the self-dual and anti-self-dual parts Λ4
±R8. Further

(cf. [27, Proposition 10.5.4])

Λ4
+R

8 = Λ4
1R

8 ⊕ Λ4
7R

8 ⊕ Λ4
27R

8,

Λ4
−R

8 = Λ4
35R

8,

Λ3
R

8 = Λ3
8R

8 ⊕ Λ3
48R

8,

Λ2
R

8 = Λ2
7R

8 ⊕ Λ3
21R

8.

(2.14)

Each of the rank 8 representations is isomorphic to R8, while each of the rank 7 represen-

tations is isomorphic to the vector representation R7.

ΛSpin(7)V
∗ is not an open subset of Λ4V ∗. It is easy to see that

TψΛSpin(7)V
∗ = Λ4

1⊕7⊕35V
∗.

2.2.4 Spin(7)-manifolds

Definition 2.2.13. A Spin(7)-structure on an oriented manifold M8 is a section of the

subbundle ΛSpin(7)T
∗M ⊆ Λ4T ∗M .

Since Spin(7) ⊂ SO(8) a Spin(7)-structure ψ naturally defines a Riemannian metric gψ

on M , and hence also a Levi-Civita connection ∇ψ, a Hodge star ∗ψ and a codifferential d∗ψ.

Definition 2.2.14. A Spin(7)-structure ψ is torsion-free if ∇ψψ = 0.
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Corollary 2.2.15. Let (M8, g) be a Riemannian manifold. Then Hol(g) is a subgroup of

Spin(7) if and only if there is a torsion-free Spin(7)-structure ψ on M such that g = gψ.

Definition 2.2.16. A Spin(7)-manifold is a manifold M8 equipped with a torsion-free

Spin(7)-structure ψ and the associated Riemannian metric gψ.

Theorem 2.2.17 ([50, Lemma 12.4]). ψ ∈ ΛSpin(7)T
∗M is torsion-free iff dψ = 0.

Since Spin(7) →֒ Spin(8) any manifold M8 with a Spin(7)-structure has a natural spin

structure, which defines spinor bundles S±. The equivalence of representations (2.12b)

implies that

S− ∼= T ∗M. (2.15)

Therefore, if M is compact then the dimension of the space of harmonic negative spinors

on M is b1(M). Also, recall that the difference between the dimensions of harmonic positive

and negative spinors is given by the topological invariant Â(M). Since M is scalar-flat any

harmonic spinor is parallel. The dimension of the space of parallel positive spinors on a

compact Spin(7)-manifold M can therefore be written in terms of topological invariants

as

dimHS+

= b1(M) + Â(M). (2.16)

One use for this expression is to give a topological criterion for when a compact Spin(7)-

manifold has holonomy exactly Spin(7); this is because Spin(7) fixes a unique line in its

action on the positive spin representation σ+
8 , while any proper subgroup of Spin(7) that

can occur as the holonomy of a simply-connected Riemannian manifold fixes a subspace of

dimension at least 2. We will discuss this in §4.1.5.

Theorem 2.2.18 (cf. [27, Theorem 10.6.1]). A compact Spin(7)-manifold M8 has holon-

omy exactly Spin(7) if and only if M is simply-connected and Â(M) = 1.

2.2.5 The group SU(3)

In the context of the exceptional holonomy groups SU(3) appears as the stabiliser in G2

of a vector. We explain how SU(3)-structures can be defined in terms of forms in a similar

way to G2-structures and Spin(7)-structures.
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Identify R6 with C3 by using complex coordinates z1 = x1 + ix2, z2 = x3 + ix4,

z3 = x5 + ix6. Then SU(3) can be considered as the stabiliser in GL+(R6) of the pair

Ω0 = re(dz1 ∧ dz2 ∧ dz3), (2.17a)

ω0 = − i
2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3). (2.17b)

These forms are obviously invariant under SU(3). To see that the stabiliser is exactly

SU(3) consider first the stabiliser of just Ω0. The standard complex structure on C3 can

be recovered from Ω0 and the standard orientation in a similar way to how the standard

Euclidean metric was recovered from ϕ0 in §2.2.1 (see Hitchin [24, §2.2] for details). The

stabiliser of Ω0 inGL+(R6) must therefore be contained in SL(C3). In particular it preserves

also the unique form

Ω̂0 = im (dz1 ∧ dz2 ∧ dz3)

such that Ω0 + iΩ̂0 has type (3, 0) with respect to the standard complex structure. In turn,

SU(3) is the stabiliser of ω0 in SL(C3).

For V an oriented real vector space of dimension 6 let Λ3
+V

∗ be the set of Ω ∈ Λ3V ∗ such

that Ω is equivalent to Ω0 under some linear isomorphism V ∼= R6. By dimension-counting

Λ3
+V

∗ is open in Λ3V ∗, and following [24] we call its elements Ω stable. From the above it

follows that any Ω ∈ Λ3
+V

∗ naturally defines a complex structure on V , and a three-form

Ω̂ such that Ω + iΩ̂ has type (3, 0). (Reversing the orientation of V changes the sign of

both J and Ω̂.)

Furthermore, let ΛSU(3)V
∗ ⊂ Λ3V ∗ ⊕ Λ2V ∗ be the set of pairs (Ω, ω) equivalent to

(Ω0, ω0) under some oriented linear isomorphism V ∼= R6. Such a pair (Ω, ω) naturally

defines a complex structure on V together with a Hermitian inner product. With respect

to this inner product Ω̂ = ∗Ω.

Any (Ω, ω) ∈ ΛSU(3)V
∗ must satisfy the algebraic relations Ω∧ω = 0 and 1

4
Ω∧Ω̂ = 1

6
ω3.

Any tangent (σ, τ) to ΛSU(3)V
∗ at (Ω, ω) must therefore satisfy the linearisation of these

conditions. We can use Schur’s lemma (and the decomposition (2.21) below) to check

that the derivative of the homogenous map Ω 7→ Ω ∧ Ω̂ is · ∧ 2Ω̂ (cf. [24, p. 10]), so the

linearisations are

L1(σ, τ) = σ ∧ Ω̂ − τ ∧ ω2 = 0, (2.18a)

L2(σ, τ) = σ ∧ ω + Ω ∧ τ = 0. (2.18b)
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Indeed the tangent space is precisely

T(Ω,ω)ΛSU(3)V
∗ = {(σ, τ) ∈ Λ3⊕2V ∗ : L1(σ, τ) = L2(σ, τ) = 0}. (2.19)

Comparing the expressions (2.6) and (2.17) we observe that if we let t denote the first

coordinate in R7 = R ⊕ R6 then ϕ0 is equivalent to

ϕ0 = Ω0 + dt ∧ ω0. (2.20)

It follows that the stabiliser in G2 of a non-zero vector in R7 is conjugate to SU(3).

Let us also make a note of how the exterior powers of R6 split into irreducible SU(3)-

representations.

Λ2
R

6 = Λ2
1R

6 ⊕ Λ2
6R

6 ⊕ Λ2
8R

6,

Λ3
R

6 = Λ3
1⊕1R

6 ⊕ Λ3
6R

6 ⊕ Λ3
12R

6,

Λ4
R

6 = Λ4
1R

6 ⊕ Λ4
6R

6 ⊕ Λ4
8R

6.

(2.21)

Each of the subrepresentations Λm
d R6 is irreducible, but Λ3

1⊕1R
6 is trivial of rank 2. These

decompositions are related to the decompositions of the exterior powers of C3 by type, e.g.

Λ2
1⊕8(R

6)∗ ⊗ C = Λ1,1(C3)∗, while Λ2
6(R

6)∗ ⊗ C = (Λ2,0 ⊕ Λ0,2)(C3)∗.

2.2.6 Calabi-Yau manifolds

There are many commonly used definitions of what it means for a manifold X of real

dimension 2n to be Calabi-Yau. The following alternative definitions are all non-equivalent:

• X is a Riemannian manifold with Hol(X) ⊆ SU(n).

• X is a Riemannian manifold with Hol(X) = SU(n).

• X is a Ricci-flat Kähler manifold.

• X is a Kähler manifold with c1(X) = 0.

To see how they are related first recall that Hol(X) ⊆ U(n) if and only if X is Kähler,

i.e. when the metric is Hermitian with respect to a parallel complex structure. Equivalently

the Kähler form ω = g(J ·, ·) is closed. If Hol(X) ⊆ SU(n) then there is additionally a

parallel (n, 0)-form φ. It is elementary to show that there is a linear relation between the

Ricci curvature and the curvature of the canonical bundle Λn,0T ∗X on a Kähler manifoldX.
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Therefore if there is a parallel section of Λn,0T ∗X then X is Ricci-flat. The linear relation

implies also that if X is Ricci-flat Kähler then the restricted holonomy Hol0(X) ⊆ SU(n),

but there need not be a global (n, 0)-form.

A parallel (n, 0)-form on a Kähler manifold X is holomorphic, so if there is one then the

canonical bundle Λn,0T ∗X is trivial, and the first Chern class c1(X) ∈ H2(X,Z) vanishes.

By Chern-Weil theory c1(X) ∈ H2(X,R) is represented by a multiple of the curvature of

the canonical bundle, so for c1(X) to vanish in the de Rham cohomology it suffices that X

is Ricci-flat Kähler. Yau [56] proved the Calabi conjecture, which provides a converse.

Theorem 2.2.19. Let X be a compact Kähler manifold. If c1(X) ∈ H2(X,R) vanishes

then for any Kähler form ω on X there is a unique Kähler form ω′ in the cohomology class

of ω such that ω′ defines a Ricci-flat metric.

A special feature of the case n = 3 – which is the case of interest for us – is that

the almost complex structure J on a Calabi-Yau manifold can be recovered from the real

part Ω of the holomorphic 3-form together with the orientation. This is a consequence of

the point-wise linear algebra discussed in §2.2.5. We therefore find it convenient to define

a Calabi-Yau structure on a manifold X of real dimension 6 in terms of a pair of forms

(Ω, ω) ∈ Ω3(X) ⊕ Ω2(X).

Definition 2.2.20. An SU(3)-structure on a manifold X6 is a section (Ω, ω) of ΛSU(3)T
∗X.

(Ω, ω) is said to be a Calabi-Yau structure if ∇Ω = 0,∇ω = 0 with respect to the metric

induced by (Ω, ω). X equipped with the structure (Ω, ω) and the associated Riemannian

metric is called a Calabi-Yau 3-fold.

Lemma 2.2.21. Let (Ω, ω) be an SU(3)-structure on a manifold X6. Then (Ω, ω) is a

Calabi-Yau structure if and only if dΩ = dΩ̂ = 0, dω = 0.

Sketch proof. d(Ω + iΩ̂) = 0 ensures that the almost complex structure defined by Ω is

integrable. ω defines a Kähler metric, so J and ω are parallel. Ω + iΩ̂ is a holomorphic

section of a Hermitian line bundle and has constant norm, so must be parallel with respect

to the Chern connection.

One can also consider the structure defined by the 3-form Ω on its own.

Definition 2.2.22. An SL(C3)-structure on an oriented manifold X6 is a section Ω

of Λ3
+T

∗X. Ω is torsion-free if dΩ = dΩ̂ = 0.
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If Ω is torsion-free then so is the almost complex structure J it defines, and Ω + iΩ̂ is a

global holomorphic (3, 0)-form. A torsion-free SL(C3)-structure is therefore equivalent to

a complex structure with trivial canonical bundle, together with a choice of trivialisation.

2.2.7 Cylindrical G-structures

Let X6 be a compact manifold, and denote by t the R-coordinate on the cylinder X × R.

Definition 2.2.23. A G2-structure ϕ on X × R is cylindrical if it is translation-invariant

and the associated metric is a product metric gϕ = gX + dt2.

We find that torsion-free cylindrical G2-structures on X × R correspond to Calabi-

Yau structures on X. Looking at the point-wise model (2.20) we see that (Ω, ω) is an

SU(3)-structure on X with metric gX if and only if the translation-invariant G2-structure

ϕ = Ω + dt ∧ ω on X × R defines the product metric gX + dt2. Hol(gX + dt2) ⊆ G2 if and

only if Hol(gX) ⊆ SU(3), so (Ω, ω) is torsion-free if and only if Ω + dt ∧ ω is. Hence

Proposition 2.2.24. Let X be a manifold of dimension 6. (Ω, ω) is a Calabi-Yau structure

on X if and only if Ω + dt ∧ ω is a torsion-free cylindrical G2-structure on X × R.

Remark 2.2.25. If ϕ = Ω + dt ∧ ω is a cylindrical G2-structure then

∗ϕϕ = 1
2
ω2 − dt ∧ Ω̂.

Similarly contemplation of the expression (2.13) leads to

Proposition 2.2.26. Let X be a manifold of dimension 7. ϕ is a torsion-free G2-structure

on X if and only if ∗ϕϕ+ dt ∧ ϕ is a torsion-free cylindrical Spin(7)-structure on X × R.

2.3 Asymptotically cylindrical manifolds

In this section we define what an asymptotically cylindrical manifold is and collect some

results about analysis and Hodge theory on such manifolds.

2.3.1 Manifolds with cylindrical ends

We define manifolds with cylindrical ends and exponentially asymptotically cylindrical

(EAC) metrics.
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Definition 2.3.1. A manifoldM is said to have cylindrical ends if it is a union of two pieces

M0 and M∞ with common boundary X, where M0 is compact, and M∞ is identified with

X×R+ by a diffeomorphism (identifying ∂M∞ with X×{0}). X is called the cross-section

of M .

A cylindrical coordinate on M is a smooth function t : M → R which is equal to the

R+-coordinate on M∞ and is negative in the interior of M0.

If M has cylindrical ends it can be compactified by inclusion in M = M0∪ (X× [0,∞]),

i.e. by ‘adding a copy ofX at infinity’. Conversely the interior of any compact manifold with

boundary can be considered as a manifold with cylindrical ends by the collar neighbourhood

theorem. The choice of diffeomorphism M∞ → X × R+ can be regarded to determine a

cylindrical-end structure on M .

Cylindrical ends allow us to define a notion of asymptotic translation-invariance.

Definition 2.3.2. A tensor field or differential operator on X × R is called translation-

invariant if it is invariant under the obvious R-action on X × R.

Definition 2.3.3. Let M be a manifold with cylindrical ends. Call a smooth function

ρ : M → R a cut-off function for the cylinder if it is 0 on the compact piece M0 and 1

outside a compact subset of M .

If s∞ is a section of a vector bundle associated to the tangent bundle on the cylinder

X × R and ρ is a cut-off function for the cylinder of M then ρs∞ can be considered to be

a section of the corresponding vector bundle over M .

Definition 2.3.4. Let M be a manifold with cylindrical ends and cross-section X. Pick

an arbitrary product metric gX +dt2 on X×R, and a cut-off function ρ for the cylinder. A

section s of a vector bundle associated to TM is said to be decaying if ‖∇ks‖ → 0 uniformly

on X as t → ∞ for all k ≥ 0. s is said to be asymptotic to a translation-invariant section

s∞ of the corresponding bundle on X × R if s− ρs∞ decays.

Similarly s is said to be exponentially decaying with rate δ > 0 if eδt‖∇ks‖ is bounded

on M∞ for all k ≥ 0, and exponentially asymptotic to a translation-invariant section s∞ if

s − ρs∞ decays exponentially. Denote by C∞
δ (E) the space of sections of E which decay

exponentially with rate δ.

To develop the analysis for elliptic operators on a manifold M with cylindrical ends

in subsection 2.3.2 it will suffice to equip M with an asymptotically translation-invariant

metric, but for the Hodge theory developed in subsection 2.3.4 we will need to assume that

M is EAC (exponentially asymptotically cylindrical).
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Definition 2.3.5. A metric g on a manifold M with cylindrical ends is said to be EAC if

it is exponentially asymptotic to a product metric gX + dt2 on X ×R+. An EAC manifold

is a manifold with cylindrical ends equipped with an EAC metric.

Definition 2.3.6. Let M be a manifold with cylindrical ends and cross-section X. A

diffeomorphism Ψ∞ of the cylinder X × R is said to be cylindrical if it is of the form

Ψ∞(x, t) = (Ξ(x), t+ h),

where Ξ is a diffeomorphism of X and h ∈ R. A diffeomorphism Ψ of M is said to be EAC

with rate δ > 0 if there is a cylindrical diffeomorphism Ψ∞ of X × R, a real T > 0 and an

exponentially decaying vector field V on M such that on X × (T,∞)

Ψ = (expV ) ◦ Ψ∞.

We can think of two different choices of diffeomorphism M∞ → X × R+ in definition

2.3.1 as defining ‘δ-equivalent’ cylindrical-end structures if they differ by a rate δ EAC

diffeomorphism – then they define equivalent notions of exponential translation-invariance.

Nevertheless it is convenient to fix the identification M∞ → X × R+.

Theorem 3.1.5 states that any isometry of smooth Riemannian manifolds is smooth. In

a sense this means that the smooth structure can be recovered from the metric (cf. Palais

[48]). We wish to generalise this, and show that isometries of EAC metrics are EAC.

Proposition 2.3.7. Any isometry of EAC (rate δ > 0) manifolds is C∞ and EAC with

rate δ.

Sketch proof. By [46, Theorem 8] the isometries are C∞, so we just need to prove that they

are also EAC.

Let M be a manifold with a Riemannian metric g. We need to show that if for i = 1, 2,

Mi,∞ ⊆ M have compact complements, and Ψi : Mi,∞ → Xi × R+ are diffeomorphisms

defining cylindrical-end structures with respect to which g is EAC, then Ψ1 ◦Ψ−1
2 is EAC.

Consider the space R of half-lines in M , i.e. equivalence classes of unit speed globally

distance-minimising geodesic rays γ : [0,∞) → M , where two rays are equivalent if one is

a subset of the other. We can define a distance function on R by

d([γ], [σ]) = lim
u→∞

inf
v
d(γ(u), σ(v)). (2.22)
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g is pushed forward to an EAC metric on Xi × R+ by Ψi. It is straight-forward to solve

the geodesic equation in local coordinates to show that for each x ∈ Xi there is a unique

half-line [γ] such that the X-component of γ(u) approaches x as u → ∞. Ψi therefore

induce isometries Ξi : R → Xi. Then Ξ1 ◦ Ξ−1
2 is smooth by [46, Theorem 8]. If ti is the

R+-coordinate on Xi × R+ then grad(ti) −
dγ
du

decays exponentially as u → ∞ for each

half-line [γ], so Ψ1 ◦ Ψ−1
2 is exponentially asymptotic to (x, t) 7→ (Ξ1 ◦ Ξ−1

2 (x), t + h) for

some h ∈ R.

It is a classical result that the isometry group of a compact Riemannian manifold is

compact (cf. Myers and Steenrod [46]). While we will not use it in the main arguments, it

is worth noting the following generalisation.

Lemma 2.3.8 (see e.g. [35, Lemma 3.6]). The isometry group of an EAC manifold with a

single end is compact.

2.3.2 Analysis on manifolds with cylindrical ends

Here we collect some results that we will need about analysis on manifolds M with cylin-

drical ends. The results are mainly taken from Lockhart and McOwen [39] and Maz’ya and

Plamenevskĭı [40].

Definition 2.3.9. Let Mn be a manifold with cylindrical ends. If g is an asymptotically

translation-invariant metric g on M , E is a vector bundle associated to TM , δ is a real

number and s is a section of E, we define the Hölder norm with weight δ (or Ck,α
δ -norm)

of s in terms of the Hölder norm by

‖s‖Ck,α
δ

(g) = ‖eδts‖Ck,α(g), (2.23)

where t is the cylindrical coordinate on M . Denote the space of sections of E with finite

Ck,α
δ -norm by Ck,α

δ (E).

Up to Lipschitz equivalence the weighted norms are independent of the choice of asymp-

totically translation-invariant metric g, and of the choice of t on the compact piece M0. In

particular, the topological vector spaces Ck,α
δ (E) are independent of these choices.

⋂

k>0

Ck,α
δ (E) = C∞

δ (E),

and the natural choice of topology on C∞
δ (E) is the inverse limit topology.
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Remark 2.3.10. There is a similar definition of weighted Sobolev norms L2
k,δ. Aubin [3,

Theorem 2.21] shows that Sobolev embedding holds on any complete manifold which has

bounded curvature and injectivity radius bounded away from 0, conditions that are clearly

satisfied for a manifold with cylindrical ends and an asymptotically translation-invariant

metric. From that can deduce that on a manifold Mn with cylindrical ends L2
l,δ embeds

continuously in Ck,α
δ for any l > k + α + n

2
. Because of this Sobolev embedding result one

could use weighted Hölder norms and weighted Sobolev norms interchangeably in many

arguments. However
⋂

k C
k,α = C∞, while the same is not true for Sobolev spaces on

non-compact manifolds. We choose to use Hölder spaces for convenience in the regularity

arguments of §4.2.6.

Definition 2.3.11. Let M be a manifold with cylindrical ends, E and F vector bundles

associated to TM , A a smooth linear differential operator Γ(E) → Γ(F ) of order m, and

A∞ a translation-invariant operator on the corresponding bundles over X × R.

The restriction of A to the cylindrical endM∞ can be written in terms of the Levi-Civita

connection of an arbitrary product metric on X × R as A =
∑m

i=0 ai∇
i, with coefficients

ai ∈ C∞((TM)i ⊗ E∗ ⊗ F ). A is said to be {exponentially} asymptotic to A∞ if the

coefficients in the expression for A are {exponentially} asymptotic to those of A∞.

One of the main results of [39] is Theorem 6.2, which states

Theorem 2.3.12. Let M be Riemannian manifold with cylindrical ends and asymptotically

translation-invariant metric. Let A : Γ(E) → Γ(F ) be a smooth linear elliptic differential

operator of order r asymptotic to a translation-invariant operator A∞.

For λ ∈ C let SA(λ) be the space of solutions s to A∞s = 0 on the cylinder X × R of

the form s = eiλtp(x, t), where p is a section of E over X × R that is smooth in x and

polynomial in t. Let dA(λ) = dimC SA(λ), and

BA = {imλ : λ ∈ C, dA(λ) 6= 0}. (2.24)

Then A extends to a bounded map Ck+r,α
δ (E) → Ck,α

δ (F ) for all k and δ, which is

Fredholm if δ 6∈ BA. In the latter case let iδ(A) = ind
(

A : Ck+r,α
δ (E) → Ck,α

δ (F )
)

. If

δ1, δ2 6∈ BA and δ1 ≤ δ2 then

iδ1(A) − iδ2(A) =
∑

δ1<imλ<δ2

dA(λ).

29



Remark 2.3.13. Strictly speaking, the results in [39] use weighted Sobolev spaces rather

than weighted Hölder spaces, but the arguments are the same in both cases. See also [40,

Theorem 6.4].

Proposition 2.3.14 ([39, Lemma 7.1]). If the interval [δ1, δ2] contains no elements of BA

then the kernels of A in Ck,α
δ1

(E) and Ck,α
δ2

(E) are equal.

We can use integration by parts arguments, provided that the rates of decay are fast

enough to ensure the integrals converge.

Lemma 2.3.15. Let M be a Riemannian manifold with cylindrical ends and asymptotically

translation-invariant metric. Let A : Γ(E) → Γ(F ) be a smooth linear asymptotically

translation-invariant differential operator of order r with formal adjoint A∗ : Γ(F ) → Γ(E).

Suppose that α ∈ Cr,α
δ1

(E), β ∈ Cr,α
δ2

(F ) with δ1 + δ2 > 0. Then

<Aα, β>L2 =<α,A∗β>L2 .

Proof. This holds for compactly supported α, β by definition. The condition δ1 + δ2 > 0

ensures that

Cr,α
δ1

(E) × Cr,α
δ2

(F ), (α, β) 7→ <Aα, β>L2 − <α,A∗β>L2

is continuous. As the compactly supported forms are dense in the Hölder spaces the result

follows.

Once we know that the maps A : Ck+r,α
δ (E) → Ck,α

δ (F ) are Fredholm we can phrase

the ‘Fredholm alternative’ in the following way.

Proposition 2.3.16. Let M be a manifold with cylindrical ends and an asymptotically

translation-invariant metric. Let A : Γ(E) → Γ(F ) be a smooth linear elliptic asymptot-

ically translation-invariant differential operator of order r, and A∗ : Γ(F ) → Γ(E) its

formal adjoint.

If δ is a real number not in BA then the image of A : Ck+r,α
δ (E) → Ck,α

δ (F ) is precisely

the L2-orthogonal complement to the kernel of A∗ : Ck+r,α
−δ (F ) → Ck+r,α

−δ (E) in Ck,α
δ (F ) .

Proof. Let I be the image of A in Ck+r,α
δ (E), and K the kernel of A∗ in Ck+r,α

−δ (F ). Then K

is contained in Ck+r,α
−δ′ (F ) for some δ′ > δ. Integration by parts shows that K contains the

L2-orthogonal complement to I in Ck+r,α
−δ′ (F ), and that I is contained in the L2-orthogonal

complement to K in Ck+r,α
δ (E). Since I is closed the result follows.
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[39, Theorem 7.4] gives a method for computing the index of a formally self-adjoint el-

liptic asymptotically translation-invariant differential operator acting on a weighted Hölder

space with small weight.

Theorem 2.3.17. Let M be a manifold with cylindrical ends and with an asymptotically

translation-invariant metric. Let A : Γ(E) → Γ(E) be a smooth linear elliptic formally

self-adjoint asymptotically translation-invariant differential operator of order r.

Let ǫ > 0 be the smallest positive element of BA. Then for 0 < δ < ǫ the index of

A : Ck+r,α
±δ (E) → Ck,α

±δ (E) (2.25)

(which is Fredholm by theorem 2.3.12) is

∓1
2

∑

λ∈R

d(λ).

Proof. It follows from self-adjointness and proposition 2.3.16 that iδ(A) = −i−δ(A), so

using theorem 2.3.12 we obtain

−2iδ(A) = i−δ(A) − iδ(A) =
∑

−δ<imλ<δ

dA(λ) =
∑

λ∈R

dA(λ).

2.3.3 The Laplacian on EAC manifolds

In this subsection we use results from the previous subsection to study the Hodge Lapla-

cian and its kernel on an EAC (exponentially asymptotically cylindrical) manifold. The

condition that the metric is EAC (rather than just asymptotically translation-invariant

as in §2.3.2) allows us to prove a Hodge decomposition result for exponentially decaying

forms, and is needed to develop the Hodge theory in the next subsection.

Theorem 2.3.12 about elliptic operators being Fredholm on the weighted Hölder spaces

for all but a discrete set of weights applies in particular to the Hodge Laplacian △ of an

asymptotically translation-invariant metric, and we can define

Definition 2.3.18. Given an asymptotically cylindrical manifold Mn let ǫ1 > 0 be the

smallest positive element of B△ (where B△ is defined as in (2.24), and △ is considered to

act on sections of
⊕n

m=0 Λm).

Throughout this subsection we will use weights δ such that 0 < δ < ǫ1, so that the

Laplacian is Fredholm on weighted spaces for all positive weights less than or equal to δ. It
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is obvious from the definition of B△ that ǫ1 depends only on the asymptotic model gX +dt2

for the metric on M .

Lemma 2.3.19. ǫ1 is a lower semi-continuous function of gX with respect to the C1-norm.

Proof. ǫ21 is in fact the smallest positive eigenvalue λ1 of the Hodge Laplacian △X defined

by gX on Ω∗(X) (cf. (2.27)). To prove the proposition it therefore suffices to show that λ1

is lower semi-continuous in gX .

Let g, g′ be smooth Riemannian metrics on X, △,△′ their Laplacians and λ1, λ
′
1 the

smallest positive eigenvalues of the Laplacians. Let T be the L2(g)-orthogonal complement

to ker△ in C2,α(Λ∗T ∗X). Then for any β ∈ T with unit L2(g)-norm

λ1 ≤ <△β, β>L2(g) = ‖dβ‖2
L2(g) + ‖d∗β‖2

L2(g).

Since d+ d∗ is an elliptic operator it gives a Fredholm map L2
1(Λ

∗T ∗X) → L2(Λ∗T ∗X), so

it is bounded below transverse to its kernel. In other words, there is a constant C1 such

that ‖β‖2
L2

1
(g)

≤ C1

(

‖dβ‖2
L2(g) + ‖d∗β‖2

L2(g)

)

for any β ∈ T ∩ L2
1(Λ

∗T ∗X).

Let e1 be an eigenvector of △′ with eigenvalue λ′1. By Hodge theory for compact man-

ifolds ker△ and ker△′ have the same dimension, so (ker△′ ⊕ Re1) ∩ T is non-trivial.

Hence

λ′1 ≥
<△′β, β>L2(g′)

<β, β>L2(g′)

=
‖dβ‖2

L2(g′) + ‖d∗
′

β‖2
L2(g′)

‖β‖2
L2(g′)

for some β ∈ T with unit L2(g)-norm. The RHS depends differentiably on g′ (with respect

to the C1(g)-norm) and the derivative at g′ = g can be estimated in terms of ‖β‖2
L2

1
(g)

.

Therefore there is a constant C2 (independent of β) such that for any g′ close to g

λ′1 ≥
‖dβ‖2

L2(g′) + ‖d∗
′

β‖2
L2(g′)

‖β‖2
L2(g′)

≥ ‖dβ‖2
L2(g) + ‖d∗β‖2

L2(g) − C2‖g
′ − g‖C1(g)‖β‖

2
L2

1
(g) ≥

(

1 − ‖g′ − g‖C1(g)C1C2

)

λ1.

Now let M be an EAC manifold with rate δ0 and cross-section X, and assume that

0 < δ < min{ǫ1, δ0}. We fix some notation for various spaces of harmonic forms.

Definition 2.3.20. Denote by

(i) Hm
± the space of harmonic m-forms in Ck,α

±δ (ΛmT ∗M),

(ii) Hm
0 the space of bounded harmonic m-forms on M ,
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(iii) Hm
∞ the space of translation-invariant harmonic m-forms on X × R,

(iv) Hm
X the space of harmonic m-forms on X.

By elliptic regularity Hm
± consists of smooth forms, and is independent of k for k ≥ 2.

We can use theorem 2.3.17 to compute the index of the Laplacian. The result can also

be found in [38, §3] and [42, §6.4].

Proposition 2.3.21. Let M be an asymptotically cylindrical manifold. For 0 < δ < ǫ1

ind
(

△ : Ck+2,α
±δ (Λm) → Ck,α

±δ (Λm)
)

= ∓(bm−1(X) + bm(X)).

Proof. △ is asymptotic to △∞, the Laplacian of the product metric g∞ = gX + dt2 on the

cylinder X × R. According to theorem 2.3.17 we can find the desired index by computing

the dimensions d△(λ) of the spaces of solutions S△(λ) for λ ∈ R.

Any section of ΛmT ∗(X × R) on X × R can be written uniquely as ψ + dt ∧ τ , where

ψ and τ are sections of ΛmT ∗X and Λm−1T ∗X respectively. We can express △∞ in terms

of the Laplacian △X on X by

△∞(ψ + dt ∧ τ) = −
∂2ψ

∂t2
+ △Xψ +

(

−
∂2τ

∂t2
+ △Xτ

)

∧ dt. (2.26)

Now suppose that △∞

(

eiλt(ψ + dt ∧ τ)
)

= 0, where ψ+τ∧dt is a nontrivial polynomial

of degree r in t, and λ ∈ R. Denote the degree s coefficients by ψs and τs (these are

independent of t, so can be considered as forms on X). Using (2.26) the condition that the

degree r component of △∞

(

eiλt(ψ + dt ∧ τ)
)

vanishes becomes

λ2ψr + △Xψr = 0, λ2τr + △Xτr = 0. (2.27)

Since △X is semi-positive-definite it follows that λ = 0 (in particular d△(λ) = 0 for

λ ∈ R \ {0}). It follows from (2.27) that ψr ∈ Hm
X , τr ∈ Hm−1

X .

Suppose that the degree r ≥ 2. Then, since λ = 0, the condition that the degree r − 2

component of △∞(eiλt(ψ + dt ∧ τ)) vanishes becomes

−r(r − 1)ψr + △Xψr−2 = 0, −r(r − 1)τr + △Xτr−2 = 0.

This is impossible since ψr and τr are harmonic (not both zero) forms on X, and the image

of △X is L2-orthogonal to the kernel. Hence any solution of △∞(ψ + dt ∧ τ) = 0 that is
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polynomial in t is actually linear. The space of such solutions is precisely

S△(0) = {t(ψ1 + τ1 ∧ dt) + (ψ0 + τ0 ∧ dt) : ψs ∈ Hm
X , τs ∈ Hm−1

X }, (2.28)

and its dimension is

d△(0) = 2bm(X) + 2bm−1(X).

The result now follows from theorem 2.3.17.

Remark 2.3.22. It follows from (2.26) that

Hm
∞ = {ψ + dt ∧ τ : ψ ∈ Hm

X , τ ∈ Hm−1
X }.

In particular the dimension of Hm
∞ is −ind

(

△ : Ck+2,α
δ (Λm) → Ck,α

δ (Λm)
)

for small δ > 0.

Now that we have computed the index of the Laplacian on weighted Hölder spaces we

use an index-counting argument to deduce results about the kernel and a Hodge decompo-

sition theorem. Let M be an EAC manifold with rate δ0, k ≥ 0 and 0 < δ < min{ǫ1, δ0}.

Let i = bm(X) + bm−1(X). Hm
∞ has dimension i and the index of

△ : Ck+2,α
δ (Λm) → Ck,α

δ (Λm)

is −i. △(ρHm
∞) and △(ρtHm

∞) consist of exponentially decaying forms. Therefore

△ : Ck+2,α
δ (Λm) ⊕ ρHm

∞ ⊕ ρtHm
∞ → Ck,α

δ (Λm) (2.29)

is well-defined, and its index is +i. The map

△ : Ck+2,α
−δ (Λm) → Ck,α

−δ (Λm) (2.30)

also has index +i, and its kernel Hm
− contains that of (2.29). By proposition 2.3.16 the

image of (2.30) is exactly the orthogonal complement of Hm
+ in Ck,α

−δ (Λm). The image of

(2.29) is a subset, so it is contained in the orthogonal complement of Hm
+ in Ck,α

δ (Λm).

Thus the cokernel of (2.29) is at least a large as the cokernel of (2.30).

It follows by dimension-counting that the kernels of (2.29) and (2.30) are equal and

that the cokernels have the same dimension. In particular
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Proposition 2.3.23. Let M be EAC with rate δ0, k ≥ 0 and 0 < δ < min{ǫ1, δ0}. Then

any harmonic form in C2,α
−δ (Λm) lies in

Ck,α
δ (Λm) ⊕ ρHm

∞ ⊕ ρtHm
∞.

Since Hm
− contains both the L2 harmonic forms and the bounded harmonic forms Hm

0 it

follows that

Proposition 2.3.24. Let M be EAC with rate δ0, k ≥ 0 and 0 < δ < min{ǫ1, δ0}. Then

the space of L2-integrable harmonic m-forms on M is exactly Hm
+ , and

Hm
0 ⊂ Ck,α

δ (Λm) ⊕ ρHm
∞.

Remark 2.3.25. Results like propositions 2.3.23 and 2.3.24 about the asymptotic behaviour

of solutions of elliptic equations are less a consequence of theorem 2.3.12 than a part of its

proof. The ordering here is for presentational convenience.

We can also use the index-counting argument to prove a Hodge decomposition result. We

need to distinguish dCk,α
δ (Λm−1), the space of exterior derivatives of decaying (m−1)-forms,

from the space of decaying exact m-forms.

Definition 2.3.26. For 0 < δ < ǫ1 let

Ck,α
δ [dΛm−1] = dΩm−1(M) ∩ Ck,α

δ (Λm),

Ck,α
δ [d∗Λm+1] = d∗Ωm+1(M) ∩ Ck,α

δ (Λm).

Theorem 2.3.27. Let Mn be EAC with rate δ0, k ≥ 0, and 0 < δ < min{ǫ1, δ0}. Then

there is an L2-orthogonal direct sum decomposition

Ck,α
δ (Λm) = Hm

+ ⊕ Ck,α
δ [dΛm−1] ⊕ Ck,α

δ [d∗Λm+1], (2.31)

and the projections onto these summands are bounded. Furthermore, if ρ is a cut-off func-

tion for the cylindrical ends of M then any element of Ck,α
δ [dΛm−1] can be written as dφ for

some coexact φ ∈ Ck+1,α
δ (Λm−1)⊕ ρHm−1

∞ , and any element of Ck,α
δ [d∗Λm−1] can be written

as d∗φ for some exact φ ∈ Ck+1,α
δ (Λm+1) ⊕ ρHm+1

∞ .

Proof. Theorem 2.3.33 below implies that Hm
+ ∩Ck,α

δ [dΛm−1] = 0. Applying the Hodge star

gives Hm
+ ∩ Ck,α

δ [d∗Λm+1] = 0. Since Ck,α
δ [dΛm−1] ∩ Ck,α

δ [d∗Λm+1] ⊆ Hm
+ it follows that the

sum is direct.
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Since the cokernels of (2.29) and (2.30) have equal dimension the image of (2.29) is

precisely the orthogonal complement of Hm
+ in Ck,α

δ (Λm), i.e.

Ck,α
δ (Λm) = Hm

+ ⊕△
(

Ck+2,α
δ (Λm) ⊕ ρHm

∞ ⊕ ρtHm
∞

)

.

Since Hm
+ is finite-dimensional the projections are bounded.

Now let G be a Fredholm inverse for (2.29) and for β ∈ Ck,α
δ (Λm) define

PEβ = dd∗Gβ,

PE∗β = d∗dGβ.

PE and PE∗ map into Ck,α
δ [dΛm−1] and Ck,α

δ [d∗Λm+1] respectively, and β = PE(β)+PE∗(β)

for any β ∈ △
(

Ck,α
δ (Λm) ⊕ ρHm

∞ ⊕ ρtHm
∞

)

. Therefore

△
(

Ck+2,α
δ (Λm) ⊕ ρHm

∞ ⊕ ρtHm
∞

)

= Ck,α
δ [dΛm−1] ⊕ Ck,α

δ [d∗Λm+1]

with projections PE and PE∗ . The result follows.

2.3.4 Hodge theory on EAC manifolds

In this subsection we study the correspondence between harmonic forms and the de Rham

cohomology on an EAC Riemannian manifold Mn with cross-section Xn−1.

We first describe what form the long exact sequence for relative cohomology takes for

an EAC manifold. Following Melrose [42, §6.4] we then define subspaces Hm
abs,H

m
rel of the

bounded harmonic forms Hm
0 and describe their relation to the long exact sequence. Hodge

theory on classes of non-compact manifolds, including asymptotically cylindrical ones, is

also discussed in Lockhart [38].

Remark 2.3.28. While we will usually apply the Hodge theory results to orientable EAC

manifolds M , we can still prove them in the non-orientable case. Some arguments rely on

using the Hodge star on M . These results we prove first for M orientable. In the case when

M is not orientable let M̃ be the orientable double cover of M . M̃ is EAC, and M is a

quotient of M̃ by an orientation-reversing involution a. The harmonic forms of M can be

identified with the +1 eigenspace of a on the harmonic forms of M̃ , and the result for M

can be deduced from that for M̃ .
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Definition 2.3.29. Let H∗
cpt(M) be the compactly supported cohomology of M , i.e. the

cohomology of the cochain complex

Ω0
cpt(M)

d
−→ Ω1

cpt(M)
d

−→ Ω2
cpt(M)

d
−→ · · ·

of compactly supported smooth forms on M .

Recall that when M has cylindrical ends then we can compactify M by ‘adding a copy

of X at infinity’, i.e. by including it in M = M0 ∪ (X × [0,∞]). The cohomology (with

coefficients R) of M relative to its boundary can be identified with H∗
cpt(M). The long

exact sequence for relative cohomology of M can be written as

· · · −→ Hm−1(X)
∂

−→ Hm
cpt(M)

e
−→ Hm(M)

j∗

−→ Hm(X) −→ · · · (2.32)

e : Hm
cpt(M) → Hm(M) is induced by the inclusion Ω∗

cpt(M) →֒ Ω∗(M). The image of e is

the subspace of de Rham cohomology classes with compact representatives.

Definition 2.3.30. Let Hm
0 (M) = im

(

e : Hm
cpt(M) → Hm(M)

)

.

In the asymptotically cylindrical setting the map j∗ : Hm(M) → Hm(X) can be de-

scribed as follows: For s ∈ R+ let js : X →֒ M be the inclusion x 7→ (x, s) ∈ M∞. The

maps js are homotopic, so they all give the same map j∗ : Hm(M) → Hm(X).

If α is an asymptotically translation-invariant m-form let B(α) denote its asymptotic

limit, which is a translation-invariant form on the cylinder X ×R. B(α) can be written as

Ba(α)+dt∧Be(α), where Ba(α), Be(α) are forms on X of degree m and m−1 respectively.

If α is a closed asymptotically translation-invariant m-form then for any m-cycle C

in X
∫

C

j∗s ([α]) →

∫

C

[Ba(α)]

as s→ ∞, so

j∗([α]) = [Ba(α)]. (2.33)

By proposition 2.3.24 any α ∈ Hm
0 is exponentially asymptotically translation-invariant,

and B(α) ∈ Hm
∞. By remark 2.3.22

Hm
∞

∼= Hm
X ⊕ dt ∧Hm−1

X ,

so we get maps Ba : Hm
0 → Hm

X , Be : Hm
0 → Hm−1

X .
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Definition 2.3.31. Let

Hm
abs = kerBe ⊆ Hm

0 ,

Hm
rel = kerBa ⊆ Hm

0 .

Further let Hm
E ,H

m
E∗ ⊆ Hm

0 denote the spaces of bounded exact and coexact harmonic

forms respectively.

It follows immediately from (2.33) that Hm
E ⊆ Hm

rel. It follows by applying the Hodge

star that Hm
E∗ ⊆ Hm

abs (using remark 2.3.28 if M is not orientable).

Let Ω∗
−δ(M) be the cochain complex of forms β such that e−δtβ is uniformly bounded

with all derivatives, and let H∗
−δ(M) be its cohomology.

Lemma 2.3.32. For δ > 0 the natural map H∗
−δ(M) → H∗(M) is an isomorphism.

Proof. The inclusion i : Ω∗
−δ(M) →֒ Ω∗(M) is a chain map, so induces a well-defined map

i : H∗
−δ(M) → H∗(M).

Let ρ : R → [0, 1] be a smooth function with ρ(t) = 0 for t ≤ 0 and ρ(t) = 1 for

t ≥ 1. Define a map c : M → M which is the identity on the compact piece M0 and

(x, t) 7→ (x, (1 − ρ(t))t + ρ(t) arctan t) on the cylindrical part. c is smooth, and c∗ maps

Ω∗(M) to Ω∗
−δ(M). It is a chain map, so induces a map c∗ : H∗(M) → H∗

−δ(M). We deduce

that i and c∗ are inverses from the fact that c is homotopic to the identity.

The next theorem is part of [42, Theorem 6.18].

Theorem 2.3.33. Let M be an EAC manifold. The natural map Hm
abs → Hm(M) is an

isomorphism.

Proof. Note that by integration by parts the elements of Hm
0 are closed, so represent

cohomology classes. Pick some 0 < δ < ǫ1. By the previous lemma it suffices to check that

Hm
abs → Hm

−δ(M) is an isomorphism.

We first prove injectivity. If α ∈ Hm
abs and α = dβ for some β ∈ Ωm

−δ(M) then α ∈ Hm
+ ,

since Hm
E ⊆ Hm

rel and Hm
abs ∩Hm

rel = Hm
+ . As α is exponentially decaying with rate δ we can

integrate by parts to deduce α = 0. Thus Hm
abs → Hm

−δ(M) is an injection.

It remains to show that if γ ∈ Ωm
−δ(M) is closed then γ is cohomologous to an element

of Hm
abs. C

0,α
−δ (Λm) = Hm

+ ⊕△C2,α
−δ (Λm) by proposition 2.3.16. Thus γ can be written as

γ = φ+ △ψ
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with φ ∈ Hm
+ and ψ ∈ C2,α

−δ (Λm). Let χ = dψ. Then

dγ = 0 ⇒ dd∗χ = 0 ⇒ △χ = 0.

By proposition 2.3.23, χ ∈ C2,α
δ (Λm+1)⊕ρHm+1

∞ ⊕ρtHm+1
∞ so d∗χ ∈ Hm

E∗ ⊆ Hm
abs. Therefore

γ − dd∗ψ = φ+ d∗χ ∈ Hm
abs (2.34)

represents the same cohomology class as γ. Hence Hm
abs → Hm

−δ(M) is surjective.

Proposition 2.3.34. Hm
abs = Hm

+ ⊕Hm
E∗, Hm

rel = Hm
+ ⊕Hm

E .

Furthermore Hm
E = dHm−1

− , Hm
E∗ = d∗Hm+1

− .

Proof. Theorem 2.3.33 implies that Hm
E ∩ Hm

+ = 0. Similarly Hm
E∗ ∩ Hm

+ = 0, so the sums

are direct. If γ ∈ Hm
0 then, since γ is closed, (2.34) gives

γ = φ+ d∗χ+ dd∗ψ,

where φ ∈ Hm
+ , d∗χ ∈ d∗Hm+1

− . Analogously, since γ is also coclosed, dd∗ψ ∈ dHm−1
− . Hence

Hm
0 = Hm

+ ⊕ d∗Hm+1
− ⊕ dHm−1

− .

Since dHm−1
− ⊆ Hm

E ⊆ Hm
rel and d∗Hm+1

− ⊆ Hm
E∗ ⊆ Hm

abs the result follows.

As a corollary of theorem 2.3.33 we can determine that the image of the space Hm
+ of

L2 harmonic forms in the de Rham cohomology Hm(M) is precisely the subspace Hm
0 (M)

of compactly supported classes. Similar results (with more general hypotheses) appears in

e.g. [1, Proposition 4.9] and [38, Theorems 7.6 and 7.9].

Theorem 2.3.35. Let M be an EAC manifold. The natural map Hm
+ → Hm(M) is an

isomorphism onto Hm
0 (M).

Proof. Hm
+ is kerBa in Hm

abs, and it follows from theorem 2.3.33 it is mapped isomorphically

to Hm
0 (M) = ker j∗ ⊆ Hm(M).

The fact that the image of Hm
+ is contained in Hm

0 (M) could be seen more explicitly

by applying the following lemma, which is useful for other purposes.

If α is a closed exponentially asymptotically translation-invariant m-form on M we can

write it as α∞ + βt + dt ∧ γt on the cylindrical part X × R+, where α∞ is translation-

invariant, and βt, γt are sections of ΛmT ∗X, Λm−1T ∗X respectively, and are exponentially
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decaying in t. Let

η(α) = ρ

∫ ∞

t

γsds, (2.35)

where ρ is a smooth cut-off function for the cylindrical end of M , equal to 1 for t > t0.

η(α) is a well-defined exponentially decaying (m− 1)-form on M .

Lemma 2.3.36. Let M be a manifold with cylindrical ends, and α a closed exponentially

asymptotically translation-invariant m-form on M . Then α+dη(α) is translation-invariant

on {y ∈M : t > t0}.

Proof. Closure of α means that ∂
∂t
βt + d

X
γt = 0 where d

X
is the exterior derivative on X.

Thus βt = −
∫∞

t
d
X
γsds. Since X is compact the dominated convergence theorem ensures

that for t > t0

dη = d
X
η + dt ∧ ∂

∂t
η = −βt − dt ∧ γt.

Definition 2.3.37. Let Am = Ba(H
m
0 ) ⊆ Hm

X , E
m = Be(H

m+1
0 ) ⊆ Hm

X , and let Am, Em be

the subspaces of Hm(X) that they represent (Am is of course just j∗(Hm(M)) ⊆ Hm(X)).

When Mn is oriented the Hodge star on M identifies Hm
abs and Hm−n

rel . If β ∈ Hm
0 then

Be(∗β) = ∗Ba(β), so the Hodge star on X identifies Am with En−m−1 (and hence Am with

En−m−1).

By proposition 2.3.23 any ψ ∈ Hm
− can be written as χ+ α+ tβ + dt∧ γ + tdt∧ δ with

χ exponentially decaying, α, β ∈ Hm
X and γ, δ ∈ Hm−1

X . Thus we can define a ‘boundary

data’ map

BD : Hm
− → (Hm

X)2 ⊕ (Hm−1
X )2, ψ 7→

(

β δ

α γ

)

.

Let BDa, BDe be the composition of BD with the projection to (Hm
X)2 and (Hm−1

X )2

respectively. Let Ãm = BDa(H
m
− ) and Ẽm−1 = BDe(H

m
− ). The following proposition is a

refinement of [42, Lemma 6.15].

Proposition 2.3.38. Let M be an EAC manifold.

(i) If ψ1, ψ2 ∈ Hm
− with BD(ψi) =

(

βi δi

αi γi

)

then in the L2 inner product on X

<α1, β2>L2 = <α2, β1>L2 , (2.36a)

<γ1, δ2>L2 = <γ2, δ1>L2 . (2.36b)
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(ii) BD(Hm
− ) = Ãm ⊕ Ẽm, and Ãm ⊂ (Hm

X)2 and Ẽm−1 ⊂ (Hm−1
X )2 are Lagrangian

subspaces.

Proof. First assume that M is oriented. Then ∂ : Hm(X) → Hm+1
cpt (M) is the Poincaré

dual of j∗ : Hn−m+1(M) → Hn−m(X), so

<αi, βj>L2 = ([αi], [∗βj])X = ([αi], j
∗[∗dψj])X = (∂[αi], [∗dψj])M .

Note that ∂[αi] = [d(ψi + η(dψi) − ρtβi)] ∈ Hm+1
cpt (M). Hence

<α1, β2>L2 − <α2, β1>L2 =

∫

M

(dψ1 − d(ρtβ1)) ∧ ∗dψ2 − (dψ2 − d(ρtβ2)) ∧ ∗dψ1

=

∫

M

d(ρt(β2 ∧ ∗dψ1 − β1 ∧ ∗dψ2)). (2.37)

Since

β2 ∧B(∗dψ1) − β1 ∧B(∗dψ2) = β2 ∧ ∗β1 − β1 ∧ ∗β2 = 0

the integrand in the RHS of (2.37) is the exterior derivative of an exponentially decaying

form. The vanishing of the integral proves (2.36a), and (2.36b) follows by applying ∗.

This proves (i) in the oriented case. When M is not orientable we use remark 2.3.28.

(i) implies that Ãm ⊂ (Hm
X)2 and Ẽm−1 ⊂ (Hm−1

X )2 are null spaces. In particular

dim Ãm ≤ bm(X), dim Ẽm−1 ≤ bm−1(X).

Since BD(Hm
− ) ⊆ Ãm⊕ Ẽm−1 and has dimension bm−1(X) + bm(X) equality must hold, so

Ãm and Ẽm−1 are Lagrangian.

Proposition 2.3.39. If Mn is an EAC manifold with cross-section X then

Hm
X = Am ⊕ Em

is an orthogonal direct sum.

Proof. If ψ ∈ Hm
− with BDa(ψ) =

(

β1

α1

)

∈ Ãm then β1 = Be(dψ) ∈ Em. Thus the second

projection Ãm → Hm
X has image Em, and kernel Am, so

dimAm + dim Em = dim Ãm = dimHm
X

41



Furthermore if α2 ∈ Am then

(

0

α2

)

∈ Ãm, and (2.36b) implies that <β1, α2> = 0, so

Am and Em are orthogonal.

It follows from proposition 2.3.39 that we can define an isomorphism

Hm
rel → Hm

cpt(M), α 7→

{

[α+ dη(α)] for α ∈ Hm
+

∂([Be(α)]) for α ∈ Hm
E

.

Corollary 2.3.40. Let Mn be an asymptotically cylindrical manifold which has a single

end (i.e. the cross-section X is connected). Then e : H1
cpt(M) → H1(M) is injective.

In particular H1
E = 0, and H1

0 → H1(M) is an isomorphism.

Proof. Consider the start of the long exact sequence for relative cohomology

H0
cpt(M) → H0(M) → H0(X)

∂
→ H1

cpt(M)
e
→ H1(M).

The dimensions of the first three terms are 0, 1, and 1, so ∂ = 0, and thus e is injective.

H1
rel ↔ H1

cpt(M) identifies H1
E with ker e, so the result follows.

Finally we make two simple observations for the case when M is Ricci-flat, as it is when

the holonomy is G2 or Spin(7).

Proposition 2.3.41. If M is a Ricci-flat EAC manifold then H1
0 is the space of parallel

1-forms on M . In particular H1
+ = 0, and j∗ : H1(M) → H1(X) is injective.

Proof. This is proved by the same standard ‘Bochner argument’ as corollary 2.1.9, adapted

to the EAC setting. If φ is a 1-form then by proposition 2.1.8

△φ = ∇∗∇φ. (2.38)

It follows that any parallel 1-form φ is harmonic, and parallel forms are of course bounded.

To show that any bounded harmonic form is parallel we use (2.38) together with an

integration by parts argument, justified by lemma 2.3.15.

H1
+ = 0 since it consists of parallel decaying forms. By theorem 2.3.35, the kernel

H1
0 (M) of j∗ : H1(M) → H1(X) is represented by H1

+.

Corollary 2.3.42. If M is a Ricci-flat EAC manifold with a single end then H1
cpt(M) = 0.

Proof. Follows from proposition 2.3.41 and corollary 2.3.40.

42



2.3.5 The Dirac operator on EAC manifolds

We apply the ideas of §2.3.3 to study the Dirac operator on an EAC manifold. This will

later be used in slice constructions on EAC G2-manifolds and Spin(7)-manifolds.

Let Mn be an EAC spin manifold with cross-section X, and (complex) spinor bundle S.

Let HS
0 and HS

+ denote the spaces of bounded and decaying harmonic spinors on M with

respect to the Dirac Laplacian ð2, and let HS
∞ be the translation-invariant spinors on the

cylinder X×R. Let SX be the bundle of spinors on the cross-section, and HS
X the harmonic

spinors on X.

The Dirac operator on Mn is asymptotically translation-invariant. If n is even then

each of the positive and negative spinor bundles on the cylinder X × R are isomorphic to

the pull-back of SX from X, and the asymptotic limit can be written as

ð∞ =

(

0 ∂
∂t

+ ðX

− ∂
∂t

+ ðX 0

)

: Γ(SX ⊕ SX) → Γ(SX ⊕ SX).

Similarly, if n is odd then the spinor bundle on the cylinder is isomorphic to SX , and the

asymptotic limit is

ð∞ =

(

i ∂
∂t

0

0 −i ∂
∂t

)

+ ðX : Γ(S+
X ⊕ S−

X) → Γ(S+
X ⊕ S−

X).

Since the Dirac operator ð is formally self-adjoint the index of

ð : Ck+1,α
±δ (S) → Ck,α

±δ (S)

is ∓1
2
dimHS

∞ by theorem 2.3.17.

Integration by parts shows that harmonic asymptotically translation-invariant spinors

are solutions of the Dirac equation ðψ = 0. If ρ is a cut-off function for the cylindrical

end on M then ρHS
∞ can be identified with a space of asymptotically translation-invariant

spinors on M . It is easy to use index-counting arguments as in §2.3.3 to show that

ð : Ck+1,α
δ (S) ⊕ ρHS

∞ → Ck,α
δ (S) (2.39)

has kernel precisely HS
0 and that the image is the L2-orthogonal complement to HS

+. In
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particular, spinors in HS
0 are asymptotic to elements of HS

∞, which gives a boundary map

B : HS
0 → HS

∞

By the above the image has dimension 1
2
dimHS

∞.

Remark 2.3.43. We can check case by case that dimHS
∞ is even a priori. If n is even then

HS
∞

∼= 2HS
X . If n is odd then HS

∞
∼= HS

X splits as HS+

X ⊕ HS−

X . If n − 1 ≡ 2 mod 4 then

HS+

X
∼= HS−

X for any spin manifold X of dimension n−1. If n−1 ≡ 0 mod 4 then the index

Â(X) of the Dirac operator ð+ on X must be 0 because it is a spin cobordism invariant

(see [37, (7.9) and Theorem 7.10]), so dimHS+

X = HS−

X .

If the dimension of M is even then HS
0 and HS

∞ split by chirality and HS±

∞
∼= HS

X

because S±|X ∼= SX . Therefore the boundary maps on HS±

0 can be considered as mapping

B : HS±

0 → HS
X .

Proposition 2.3.44. Let M2n be an EAC spin manifold with cross-section X2n−1. Then

HS
X can be written as an L2-orthogonal sum

HS
X = B(HS+

0 ) ⊕B(HS−

0 ).

Proof. We saw above that dimB(HS
0 ) = 1

2
dimHS

∞ = dimHS
X , so we just need to check

L2-orthogonality. Define a map

S+ × S− → TM, (ψ+, ψ−) 7→ 〈ψ+, ψ−〉

by taking 〈ψ+, ψ−〉 to be the metric dual of the 1-form v 7→ <vψ+, ψ−>, where vψ+ denotes

the Clifford product. Then

<〈ψ+, ψ−〉, v> = <vψ+, ψ−> = − <ψ+, vψ−>

for all v ∈ TM , ψ± ∈ S±. When we identify both of S± with SX on the cylinder, Clifford
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multiplication by ∂
∂t

is identified with ±idSX . Hence for ψ± ∈ HS±

0

<B(ψ+), B(ψ−)>L2 =

∫

X

dt(〈ψ+, ψ−〉)volX =

∫

M

div〈ψ+, ψ−〉volM

=

∫

M

<ðψ+, ψ−> − <ψ+,ðψ−> volM = 0.

Remark 2.3.45. When dimM = 8 the map 〈, 〉 is non-degenerate by the triality discussed

in §2.2.3.
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Chapter 3

Deformations of compact G-manifolds

In this chapter we will consider the deformation theory of compact G-manifolds, where

G = Spin(7), G2 or SU(3). We will prove in each case that the moduli space of torsion-

free G-structures is a smooth manifold. These results were known previously, due to Joyce

in the cases Spin(7) and G2 and Tian and Todorov for SU(3) (and more generally SU(n)).

Goto [17] also proved smoothness of the moduli space on compact G-manifolds for any of

the Ricci-flat holonomy groups G = SU(n), Sp(n), Spin(7) and G2 in a fairly uniform way.

The arguments used here are geared to make it easier to generalise to the asymptotically

cylindrical case in chapter 4.

One of the key ingredients for the proofs is to describe a neighbourhood in the moduli

space by using a local ‘slice’ in the space of torsion-free G-structures, containing repre-

sentatives for all the diffeomorphism classes in the neighbourhood. Before going into the

details of the deformation problems we will discuss an elementary slice argument.

§3.2 is a detailed account of an elementary construction of the moduli space of torsion-

free G2-structures on a compact 7-manifold based on an outline by Hitchin [24]. In §3.3

and §3.4 these arguments are adapted to construct moduli spaces of torsion-free Spin(7)-

structures and SU(3)-structures.

3.1 Moduli space constructions

A standard technique in constructing moduli spaces is to use slice arguments. A model

example where slice arguments are explained very carefully is Ebin [15], which studies the

moduli space of Riemannian metrics on a compact manifold. In the deformation problems

considered in this thesis the moduli spaces are – unlike the moduli space of Riemannian
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metrics – finite-dimensional. There is therefore some scope for simplifying Ebin’s argu-

ments. We prove a slice theorem whose hypotheses are less general than Ebin’s, but easier

to verify in the problems to which we want to apply it. This will also make it easier to

generalise the slice arguments to the asymptotically cylindrical case.

3.1.1 Functional analysis

In the technical arguments we will use spaces of Hölder sections rather than smooth sec-

tions. One reason is that this allows application of Fredholm results for elliptic operators,

as used in §2.3.

The space of Ck,α Hölder sections of a vector bundle is a complete normed vector space,

i.e. a Banach space. The inverse function theorem holds for Banach spaces and we will make

use of two of its corollaries: the implicit function theorem and the submersion theorem.

Theorem 3.1.1 (see e.g. [36, Theorem XIV 2.1]). Let X, Y and Z be Banach spaces, and

U , V open neighbourhoods of 0 in X and Y . Suppose that F : U × V → Z is a smooth

function, F (0, 0) = 0, and that DF(0,0)|Y : Y → Z is an isomorphism of Y , Z as Banach

spaces. Then there exist connected open neighbourhoods U ′ ⊆ U of 0 in X and V ′ ⊆ V of

0 in Y such that

• there is a smooth map G : U ′ → V ′ such that the set of zeros of F in U ′ × V ′ is

precisely the graph {(x,G(x)) : x ∈ U ′},

• F is an open map on a neighbourhood of 0 in X × Y .

To ensure that the functions to which we wish to apply the implicit function theorem are

really smooth we use a chain rule result: composing Ck,α-sections with a smooth fibre-wise

map gives a smooth mapping of Hölder spaces, with the obvious derivative.

Proposition 3.1.2. Let E, F be normed vector bundles over a compact manifold Mn,

U an open subbundle of E, and Ψ : U → F a smooth map that preserves fibres. Let

Ck,α(U) ⊆ Ck,α(E) denote the set of sections of E which are bounded in Ck,α Hölder norm

and take values in U . Then for k ≥ 0, Ψ defines a map Ψk : Ck,α(U) → Ck,α(F ) by

composition: if s ∈ Ck,α(U) and p ∈M then (Ψk(s))(p) = Ψ(s(p)).

Moreover, Ψk is smooth and its derivative at r ∈ Ck,α(U) is obtained by applying the

‘vertical differential’ of Ψ at r. In symbols

(DΨk)rs(p) = (DΨp)r(p)(s(p)), (3.1)
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where r ∈ Uk, s ∈ Ek and Ψp : Up → Fp is the restriction of Ψ to the fibre of at p.

We can define a Banach manifold to be a space with coordinate charts (mapping to

neighbourhoods in a Banach space) which have smooth transition functions. Since the

inverse function theorem, implicit function theorem and submersion theorem are local

results they have versions for smooth maps between Banach manifolds. The space of Hölder

sections of a smooth fibre bundle E is a Banach manifold and the tangent space at a section

is the space of Hölder sections of the bundle of fibre-wise tangents at the section.

We will also need to work with the is the Ck+1,α completion Dk+1 of the group of

diffeomorphisms on a compact manifold. Dk+1 is generated by exponentiated Ck+1,α vector

fields. It is a Banach manifold, with TidDk+1
∼= Ck+1,α(TM). The product on Dk+1 is

continuous, but not differentiable.

If E is a smooth fibre bundle on a compact manifold, then the action of Dk+1 on Ck,α(E)

is C0 but not C1. The linearisation of the map

Dk+1 × Ck,α(E) → Ck,α(E), (φ, s) 7→ φ∗s

depends on the first derivatives of s; the map is therefore C1 considered as a map into

Ck−1,α(E), but not into Ck,α(E). However

Theorem 3.1.3 (cf. [15, p. 17]). Let E be a smooth fibre bundle on a compact manifold.

If s is a smooth section of E then

Dk+1 → Ck,α(E), φ 7→ φ∗s

is smooth.

3.1.2 Slices

The basic setup in this section will be as follows. Mn is a smooth compact manifold. D is

the identity component of the group of diffeomorphisms, i.e. the diffeomorphisms isotopic

to the identity. For concreteness we take C to be a space of G-structures on M , which we

consider to be smooth sections of a smooth subbundle ΛGT
∗M ⊆ T ∗M , and let X ⊆ C be

the closed subspace of torsion-free G-structures. C and X are invariant under the action of

D by pull-backs. We wish to describe the moduli space M = X /D.

Let x ∈ X . The tangent space TxC is a space of smooth sections of the vector bundle

of point-wise tangents to ΛGT
∗M at the section x. In principle we try to describe a neigh-
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bourhood of xD in M in the following way: Identify the tangent space T of the D-orbit at

x, and find a direct complement K for T in TxC. We consider a small manifold S ⊆ C with

TxS = K to be a slice for the D-action at x. The pre-moduli space near x is R = X ∩ S.

We then try to show that R contains a unique representative for each D-orbit near x, and

that the natural map R → M is a homeomorphism onto a neighbourhood of xD. If so,

the problem of describing M is reduced to describing R.

In practice it is hard to implement the argument outlined above working with just

spaces of smooth sections. The space of C∞ sections of a vector bundle over a compact

manifold is a Fréchet space with respect to the sequence of norms Ck. C can therefore be

regarded as a Fréchet manifold. The Nash-Moser theorem (see Hamilton [21]) is a form of

the inverse function theorem in the Fréchet setting, but the hypotheses are too restrictive

for it to be useful to us. Moreover, it would be unwieldy to carry out the technical work of

finding the slice working only in the smooth setting.

We work instead with spaces of Ck,α Hölder sections (for some k ≥ 1, α ∈ (0, 1)). In the

cases we consider the Riemannian metric used to define the Ck,α-norm is defined naturally

by the G-structure x ∈ X , but it could involve some arbitrary choice.

So given x ∈ X let Ck, Xk and Tk be the Ck,α completions of C, X and T , respectively.

Ck is a Banach manifold. Note that Tk is the tangent space to the Dk+1 orbit at x, where

Dk+1 is the Ck+1,α completion of D. Usually we take Kk to be the L2-orthogonal subspace

to Tk with respect to a metric and prove that TxCk = Tk ⊕Kk with projections bounded

in the Ck,α-norm.

If we let Sk be a neighbourhood of x in the affine space x+Kk, then the linearisation

of

Dk+1 × Sk → Ck, (φ, s) 7→ φ∗s

at (id, x) is surjective. It would be therefore be convenient to claim that the submersion

theorem ensures that the image of Sk in Ck/Dk+1 is open. The map is, however, continuous

but not differentiable near (id, x). Ebin [15] shows carefully, in the case when Ck is the

space of Riemannian metrics, that the conclusion that Sk → Ck/Dk+1 is open does hold

if one replaces Sk by another submanifold of Ck with TxSk = Kk, defined as a natural

exponentiation of Kk. Ebin then deduces that S, the smooth elements of this Sk, has open

image in C/D. The argument carries over to any situation where the elements of C define

Riemannian metrics.

Since the stabiliser Ix ⊂ D of x is compact it is easy to arrange for the slice Sk at x

to be invariant under Ix. One key property of the slice is that if φ∗(Sk) ∩ Sk 6= ∅ for any
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φ ∈ Dk+1 then φ ∈ Ix (see [15, Theorem 7.1]). Therefore Sk/Ix is in fact homeomorphic to

an open set in Ck/Dk+1, and S/Ix to an open set in C/D.

Given x ∈ X let R = S∩X . This is the pre-moduli space near x. It follows immediately

that the image of R in M is open, and that R/Ix is homeomorphic to a neighbourhood

of xD in M. If one can show that R is a manifold and that the action of Ix on R factors

through a suitable finite group then one may be able to use R/Ix as a coordinate chart

for M, and deduce that M is an orbifold.

3.1.3 Simplifications

For the deformation problems considered in this text there are some simplifying circum-

stances.

Firstly, the moduli spaces are in a sense ‘unobstructed’. In many deformation problems

the pre-moduli space Rk at some x ∈ X is defined as the zero-set in the slice Sk of some

smooth function F . One can then try to apply the implicit function theorem to show

that Rk is a manifold, with tangent space kerDFx at x. kerDFx can be interpreted as

‘infinitesimal deformations’ of x. The implicit function theorem requires the derivative

DFx to be surjective but in general there may be a cokernel. If there is a cokernel then

there could be elements of kerDFx which are not tangent to any path in Rk. The cokernel

of DFx can therefore be interpreted as obstructions to the integrability of the infinitesimal

deformations.

For the main deformation problems considered in this thesis we are able to pick the

defining function F in such a way that DFx is surjective, and thus show by direct applica-

tion of the implicit function theorem that Rk, as well as a neighbourhood of x in Xk, is a

manifold (a problem where this does not happen is the deformations of Ricci-flat metrics

considered briefly in §5.2.2). Finding such F can involve some technical work but provides

an essentially elementary way of showing that the moduli space is unobstructed.

Another simplification is that we will be able to choose the slice S so that the pre-

moduli space Rk consists of smooth elements. In view of theorem 3.1.3 this allows us to

prove a core slice result by a naive application of the submersion theorem, without the

extra details in Ebin’s setup.

Theorem 3.1.4. Let x ∈ X . Choose a Riemannian metric on M and k ≥ 1.

Suppose that TxCk = Tk ⊕ Kk with Tk and Kk both closed and that Sk ⊆ Ck is a

submanifold with TxSk = Kk. Suppose that x has a neighbourhood Uk in Xk that is a
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submanifold of Ck, and that Rk = Uk ∩ Sk consists of smooth elements. If Sk is chosen

small enough then

Dk+1 ×Rk → Xk, (φ, s) 7→ φ∗s (3.2)

is a submersion onto a neighbourhood of x in Uk.

Proof. Note that TxUk must obviously contain Tk. Therefore Uk and Sk intersect trans-

versely, so Rk is a manifold, and TxUk = TxRk ⊕ Tk. Because the elements of Rk are

smooth, theorem 3.1.3 ensures that (3.2) is a smooth map. The derivative of (3.2) at

(x, id) is

Ck+1,α(TM) × TxRk,→ TxCk, (V, y) 7→ y + LV x

which is surjective. The result follows from the submersion theorem for Banach spaces.

We now add the hypothesis that isomorphisms of elements of X are smooth, i.e. that

if x ∈ X and φ∗x ∈ X for a C1 diffeomorphism φ of M then φ is C∞. This implies

in particular that the stabiliser Ix of x ∈ X in Dk+1 consists of smooth maps, i.e. that

Ix ⊆ D. The assumption is true if elements of X naturally define a smooth Riemannian

metric.

Theorem 3.1.5 ([46, Theorem 8]). Any isometry of smooth Riemannian manifolds is

smooth.

The regularity assumption also holds if elements of X define an almost complex structure,

since the Cauchy-Riemann equations are over-determined elliptic.

Corollary 3.1.6. Let x ∈ X . If isomorphisms of elements of X are smooth then the natural

map Rk → M is open.

Proof. If U ⊆ Rk is open then it follows from theorem 3.1.4 that UDk+1 ⊆ Xk is open. The

assumption that isomorphisms of elements of X are smooth implies that UDk+1∩X = UD.

Hence UD is open in X , i.e. the image of U in M is open.

Like in the previous subsection, if the pre-moduli space Rk is Ix-invariant then Rk/Ix

is homeomorphic to a neighbourhood of x in M.

Theorem 3.1.7. Assume the hypotheses of theorem 3.1.4, and that each element of Xk

naturally defines a Riemannian metric. If Rk is Ix-invariant and sufficiently small then

for any φ ∈ Dk+1

φ∗(Rk) ∩Rk 6= ∅ ⇒ φ ∈ Ix.
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Sketch proof. See Theorem 7.1(2) in Ebin [15] for details. The key point is to show that

the orbit of x under Dk, which is an immersed submanifold of Ck by theorem 3.1.3, is in

fact embedded. This follows from a sequential compactness property: if g is a Riemannian

metric on a compact manifold and φi is a sequence of diffeomorphisms such that φ∗
i g → g

then there is a subsequence which converges to an isometry of g.

Remark 3.1.8. If the orbit of x is not embedded then the moduli space M is not Hausdorff.

If the action of Ix on Rk factors through a finite group then one can deduce that M

is an orbifold (smooth local right inverses of (3.2) can be used to define the transition

functions).

Another simplification in the problems considered is that X consists of closed forms.

There is therefore a natural projection map πH : X → H to de Rham cohomology, which is

invariant under the action of D. In the problems considered it turns out that the restrictions

πH : Rk → H are embeddings, so the elements of Rk represent distinct points in the moduli

space. We will therefore not need to worry about ensuring that the slice at x is invariant

under the stabiliser Ix, or about how Ix acts on Rk (indeed, if the slice is Ix-invariant then

Ix acts trivially on Rk).

Theorem 3.1.9. Suppose that πH : X → H is a smooth D-invariant map to a finite-

dimensional vector space H. Suppose also for each x ∈ X that the hypotheses of theorem

3.1.4 hold, that Rk is a manifold consisting of smooth elements and that πH : Rk → H is

an embedding if Rk is small enough.

Then M has a unique smooth structure such that πH : M → H is an immersion.

Proof. Take x ∈ X . By corollary 3.1.6 the continuous natural map i : Rk → M is open.

Since πH : Rk → H is injective so is i. Therefore i is in fact a homeomorphism onto a

neighbourhood U of xD in M, and πH : U → H is a homeomorphism onto an embedded

submanifold.

Since the pre-moduli spaces Rk are manifolds the maps i can be taken as coordinate

charts for M, provided that they agree on overlaps. But on an overlap U1 ∩U2 both charts

define the unique smooth structure that makes πH : U1 ∩ U2 → H into an embedding, so

they agree.

Hence the maps Rk → M can be used to give M the structure of a smooth manifold,

and it is immediate that πH : M → H is an immersion.

Finally, it will be convenient to state the following result about the stabilisers of points

in a Ix-invariant slice at x.
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Proposition 3.1.10. Assume the hypotheses of theorem 3.1.9 and that each element of X

naturally defines a Riemannian metric. Let x ∈ X . If R is Ix-invariant and small enough

then Ix acts trivially on R and Iy = Ix for all y ∈ R.

Proof. Since πH is injective on R it is fixed by Ix. The reverse inclusion Iy ⊆ Ix follows

from theorem 3.1.7.

3.2 Deformations of compact G2-manifolds

In this section we show that the moduli space of torsion-free G2-structures on a compact

manifold M7 is smooth. The result was first published by Joyce [26]. The argument given

here is based on Hitchin [24], although we provide some more details. The argument is

adjusted to make it easier to generalise to the case when M is asymptotically cylindrical,

which will be done in §4.2.

Throughout this section M7 will denote a compact G2-manifold. Let X be the set of

torsion-free G2-structures on M and D the group of diffeomorphisms of M isotopic to the

identity. D acts on X by pull-backs, and the moduli space of torsion-free G2-structures on

M is the quotient M = X /D. The main theorem of this section is

Theorem 3.2.1 ([27, Theorem 10.4.4]). Let M be a compact G2-manifold. Then M is a

smooth manifold of dimension b3(M), and the natural projection

πH : M → H3(M,R), ϕD 7→ [ϕ] (3.3)

is a local diffeomorphism.

Remark 3.2.2. By the theorem the tangent space of M at ϕD is identified with H3(M).

The torsion-free G2-structure ϕ determines a decomposition (cf. (2.2))

H3(M) = H3
1 (M) ⊕H3

7 (M) ⊕H3
27(M).

This decomposition is independent of the choice of representative ϕ for the point ϕD ∈ M

and thus gives a splitting of the tangent space of M at ϕD. The H3
1 (M) summand (which

has dimension 1 when M is connected) corresponds to rescaling the G2-structure. The

H3
7 (M) summand is the tangent space to deformations of the G2-structure that leave the

metric unchanged. The relationship between the moduli space of G2-structures and the

metrics they define is elaborated on in §5.3.
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By Poincaré duality H3(M) ∼= (H4(M))∗ so H3(M) ⊕ H4(M) is a symplectic vector

space in a natural way.

Proposition 3.2.3 ([27, Proposition 10.4.5]).

M → H3(M) ⊕H4(M), ϕD 7→ ([ϕ], [∗ϕϕ]) (3.4)

is a Lagrangian immersion.

This is easy to prove once the deformation theory has been set up. In §4.2 we will give a

proof for an asymptotically cylindrical analogue.

3.2.1 Plan and notation

Here we outline the plan of the proof of theorem 3.2.1 and establish some notation. We

use the slice methods explained in §3.1.

Let Z3 be the space of smooth closed 3-forms and C3 ⊆ Z3 the subset of closed positive

3-forms (which is open in the uniform topology). The torsion-free G2-structures X form

a closed subset of C. Let Z3
k , C

3
k ,Xk be the corresponding spaces of Ck,α-sections, where

k ≥ 1.

We fix a torsion-free G2-structure ϕ on M . We show that TϕZ
3
k splits as a direct sum

of the tangent space Tk of the Dk+1-orbit at ϕ and the L2-orthogonal complement Kk.

We take a small neighbourhood Sk of ϕ in the affine space ϕ + Kk as our slice for the

Dk+1-action at ϕ.

We apply the implicit function theorem to an appropriate function to deduce that

Rk = Sk ∩ Xk is a manifold. Regularity arguments show that the elements of Rk, which

a priori merely have finite Ck,α-norm, are smooth. Therefore Rk is the pre-moduli space

R near ϕ described in §3.1.

The tangent space of R at ϕ is the space H3 of harmonic forms. By Hodge theory for

compact manifolds the natural projection map to de Rham cohomology

πH : Hm → Hm(M), α 7→ [α] (3.5)

is an isomorphism. Therefore, if R is taken sufficiently small then R → H3(M) is a

diffeomorphism onto its image. Theorem 3.2.1 then follows by application of theorem 3.1.9.
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Abbreviate ΛmT ∗M to Λm and recall that this splits into subbundles corresponding to

irreducible representations of G2.

Λ2 = Λ2
7 ⊕ Λ2

14,

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

(3.6)

where Λm
d is a subbundle of the exterior cotangent bundle Λm of rank d. Its sections Ωm

d (M)

are the ‘type d m-forms’. These type decomposition, as well as covariant derivatives and

Hodge stars, are defined with respect to the G2-structure defined by ϕ, unless otherwise

indicated by a subscript (e.g. Λ2
7,ψ denotes the rank 7 subrepresentation of Λ2 defined by

the G2-structure ψ).

3.2.2 The Dirac operator

We will use Fredholm properties of the Dirac operator associated to a G2-structure ϕ to

obtain a direct sum decomposition for the tangent space to the space of G2-structures

(proposition 3.2.6).

Recall that because G2 ⊂ Spin(7) a G2-structure on a manifold M7 induces a spin

structure, a spinor bundle S, and the Dirac operator

ð : Γ(S) → Γ(S).

The point-wise equivalence (2.8) implies that

S ∼= Λ0 ⊕ Λ1. (3.7)

Moreover, we can identify the spin representation σ7 with the octonions and the natural

representation R7 of G2 with the imaginary octonions in such a way that Clifford mul-

tiplication is identified with the octonion multiplication. Since ϕ is the ‘multiplication

table’ for the imaginary octonions (2.5) we find that, under the isomorphism (3.7), Clifford

multiplication by some α ∈ Ω1(M) corresponds to

Ω0(M) ⊕ Ω1(M) → Ω0(M) ⊕ Ω1(M), (f, β) 7→ (− <α, β>, fα+ ∗(α ∧ β ∧ ∗ϕ)).
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Thus the Dirac operator is identified with

Ω0(M) ⊕ Ω1(M) → Ω0(M) ⊕ Ω1(M), (f, β) 7→ (d∗β, df + ∗(dβ ∧ ∗ϕ)). (3.8)

We can see directly from (3.8) that the Dirac Laplacian ð2 is identified with the Hodge

Laplacian on Ω0(M) ⊕ Ω1(M). This follows also from remark 2.1.12.

3.2.3 The slice

Dk+1 acts on Z3
k by pull-backs. We want to identify the tangent space to the orbits of Dk+1

and find an appropriate slice for the action at ϕ.

Proposition 3.2.4. Let ϕ be a G2-structure on a compact manifold M7 such that dϕ = 0.

Then the tangent space to the Dk+1-orbit at ϕ is dCk+1,α(Λ2
7).

Proof. The tangent space to the Dk+1-orbit at ϕ consists of the Lie derivatives of ϕ with

respect to Ck+1,α vector fields V . Since ϕ is closed, LV ϕ = d(V yϕ). The forms V yϕ are

precisely the sections of Λ2
7.

We find that we can take Kk = H3 ⊕W as the complement in Z3
k of the tangent space

to the orbit, where W consists of the exact 3-forms of type 27.

Definition 3.2.5. Let W = dCk+1,α(Λ2) ∩ Ω3
27(M) .

Proposition 3.2.6. Let M7 be a compact G2-manifold with G2-structure ϕ, and k ≥ 0.

Then dCk+1,α(Λ2) can be written as an L2-orthogonal direct sum

dCk+1,α(Λ2) = dCk+1,α(Λ2
7) ⊕W (3.9)

and the projections are bounded in Hölder norm.

Proof. We can identify the spinor bundle S both with Λ0 ⊕ Λ2
7 and with Λ3

1⊕7 (shorthand

for Λ3
1 ⊕ Λ3

7) so that the Dirac operator ð : Γ(S) → Γ(S) is identified with

Ω0(M) ⊕ Ω2
7(M) → Ω3

1⊕7(M), (f, η) 7→ π1⊕7dη + ∗(df ∧ ϕ).

The Dirac operator is elliptic and therefore Fredholm on Hölder spaces of sections, and its

kernel and cokernel consists of harmonic forms. If β ∈ dCk+1,α(Λ2) then π1⊕7β is L2-or-

thogonal to H3, so lies in the image of the Dirac operator map, i.e.

π1⊕7β = π1⊕7dη + ∗(df ∧ ϕ)
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for some η ∈ Ck+1,α(Λ2
7), f ∈ Ck+1,α(Λ0). Integrating by parts

49‖df‖2
L2 = ‖∗d(fϕ)‖2

L2 = <∗d(fϕ), β − dη>L2 = <∗fϕ, d(β − dη)>L2 = 0, (3.10)

so df = 0. Hence the exact form β − dη has type 27, i.e. β − dη ∈ W .

So we can indeed take Kk = H3 ⊕W as a direct complement to the tangent space to

the diffeomorphism orbit and use a neighbourhood Sk of ϕ in the affine space ϕ+Kk as a

slice.

Remark 3.2.7. For β ∈ Ω3
27(M) there is a linear relation between π7dβ and π7d

∗β (see

[9, Proposition 3]). Therefore H3 ⊕W is precisely the Ck,α kernel of the formal adjoint

π7d
∗ : Ω3(M) → Ω2

7(M) of d : Ω2
7(M) → Ω3(M).

Definition 3.2.8. Let PW be the L2-orthogonal projection Ck,α(Λ3) → W .

The orthogonal projection PE : Ck,α(Λ3) → dCk+1,α(Λ2) is bounded by Hodge decom-

position so it follows from proposition 3.2.6 that PW is bounded in Hölder norm.

3.2.4 The pre-moduli space

We want to define a function on C3
k whose zeros near ϕ are precisely the 3-forms giving

torsion-free G2-structures, and define it in such a way that we can apply the implicit

function theorem to it.

Definition 3.2.9. For k ≥ 1 define F : C3
k → W by

F (ψ) = PW (∗Θ(ψ)). (3.11)

It follows from proposition 3.1.2 and the fact that PW is a bounded linear map that F

is a smooth function between (open subsets of) Banach spaces.

We wish to show that near ϕ the zeros of F are precisely the torsion-free G2-structures.

Recall that, according to theorem 2.2.10(i), ψ ∈ C3 defines a torsion-free G2-structure if

and only if dΘ(ψ) = 0. Closure of Θ(ψ) is in turn equivalent to PE(∗Θ(ψ)) = 0, where

PE : Ck,α(Λ3) → dCk+1,α(Λ2) is the orthogonal projection to the exact part in the Hodge

decomposition

Ck,α(Λ3) = H3 ⊕ dCk+1,α(Λ2) ⊕ d∗Ck+1,α(Λ4).
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W ⊆ dCk+1,α(Λ2), so certainly PE(∗Θ(ψ)) = 0 implies that PW (∗Θ(ψ)) = 0. It remains

to show the converse, so that we do not ‘lose any information’ by considering zeros of F

instead of ψ 7→ dΘ(ψ).

Proposition 3.2.10. For k ≥ 1 and ψ ∈ C3
k sufficiently close to ϕ

dΘ(ψ) = 0 ⇐⇒ F (ψ) = 0.

Proof. If F (ψ) = 0 then PE(∗Θ(ψ)) is L2-orthogonal to W . At the same time, theorem

2.2.10(ii) implies that for any G2-structure ψ with dψ = 0

dψ = 0 ⇒ π7,ψd
∗ψψ = 0.

It follows that d∗(∗Θ(ψ)) is point-wise orthogonal to Λ2
7,ψ, so that, integrating by parts,

PE(∗Θ(ψ)) is L2-orthogonal to the tangent space Tψ = dC1,α(Λ2
7,ψ) to the D1-orbit at ψ.

Now the linear map

W ⊕ C1,α(TM) → dC1,α(Λ2), (w, V ) 7→ w + d(V yψ)

is surjective at ψ = ϕ by proposition 3.2.6. Since it depends continuously on ψ,

dC1,α(Λ2
7) = W + Tψ

for any ψ sufficiently close to ϕ. Now the fact that PE(∗Θ(ψ)) L2-orthogonal to both W

and Tψ implies PE(∗Θ(ψ)) = 0.

Remark 3.2.11. The argument above is a somewhat drier version of Hitchin [24]. Hitchin

interprets PE(∗Θ(ψ)) as the derivative of the volume functional (i.e. the total volume of M

with respect to the volume form defined by ψ) restricted to the cohomology class of ψ. The

fact that the volume functional is Dk+1-invariant implies that PE(∗Θ(ψ)) is L2-orthogonal

to dCk,α(Λ2
7,ψ)

In the case when M is asymptotically cylindrical rather than compact the total volume

of a G2-structure and L2-inner product of asymptotically translation-invariant forms do

not converge, but the proof of proposition 3.2.10 works with only notational changes.

Now we compute the derivate of F : C3
k → W . C3

k is an open subset of Z3
k , so the tangent

space at ϕ is Z3
k = H3 ⊕ dCk+1,α(Λ2

7) ⊕W .
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Proposition 3.2.12. For k ≥ 1 the derivative DFϕ : H3 ⊕ dCk+1,α(Λ2
7)⊕W → W is 0 on

H3 ⊕ dCk+1,α(Λ2
7) and −id on W .

Proof. Since all the forms in the Dk+1-orbit of ϕ define torsion-free G2-structures F is

always 0 on the orbit. Therefore DFϕ must be 0 on the tangent space to the orbit, which

is dCk+1,α(Λ2
7) by 3.2.4.

Using the expression (2.9) and the chain rule (3.1) to obtain the derivative of the

non-linear map Θ : C3
k → Ck,α(Λ4) we find

DFϕ = PW ◦ (4
3
π1 + π7 − π27).

This is 0 on H3 since type components of harmonic forms are harmonic and therefore have

no exact part. On W

DFϕ = PW ◦ (4
3
π1 + π7 − π27) = PW ◦ (−id) = −id.

We can now apply the implicit function theorem to F to deduce that its zero set

near ϕ in Sk is a manifold with tangent space H3 at ϕ. Hence if Rk is a sufficiently

small neighbourhood of ϕ in Sk ∩ Xk then Rk is a manifold and πH : Rk → H3(M) is

a diffeomorphism onto its image. The implicit function theorem shows also that ϕ has a

neighbourhood in Xk that is a submanifold of Ck. In order to deduce theorem 3.2.1 from

theorem 3.1.9 it remains only to show that Rk consists of smooth forms.

3.2.5 Regularity

We prove that elements of Rk are smooth by a boot-strapping method for non-linear PDEs

(for a similar solution to a similar problem see [27, p. 303]).

Proposition 3.2.13. Let k ≥ 1. If Rk is taken sufficiently small then its elements are

smooth.

Proof. If ψ = ϕ+ β with β ∈ Kk then we can write d∗dΘ(ψ) as

d∗dΘ(ψ) = −dd∗(4
3
π1β + π7β − π27β) + P (β,∇β,∇2β) +R(β,∇β),

where −dd∗(4
3
π1 +π7−π27) is the linearisation at ϕ, P consists of the quadratic terms that

involve the second derivative ∇2β and R consists of the remaining quadratic terms. P and

R depend only point-wise on their arguments, and furthermore P is linear in ∇2β.
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Now note that −dd∗ ◦ (4
3
π1 + π7 − π27) = △ on H3 ⊕W : on H3 both vanish, while

W consists of closed sections of Λ3
27. If ψ is a zero of F near ϕ in (H3 ⊕W ) ∩ C3

k then

dΘ(ψ) = 0, so

△β + P (β,∇β,∇2β) = −R(β,∇β). (3.12)

Considering β and ∇β to be fixed we can define a second-order linear differential operator

A : ζ 7→ P (β,∇β,∇2ζ). Then (3.12) can be rephrased as saying that ζ = β is a solution

of the linear second-order PDE

(△ + A)ζ = −R. (3.13)

If ψ = ϕ then △ + A = △, which is elliptic. Ellipticity is open condition so if we take

Rk sufficiently small then △ + A is elliptic for all ψ ∈ Rk.

Now suppose that β is in the Hölder space C l+1,α for some integer l ≥ 1. The coefficients

of △ + A depend algebraically on β and ∇β, so have regularity C l,α. The same goes for

the RHS of (3.13). Therefore by standard regularity results about linear elliptic operators

on compact manifolds (e.g. Theorem 40 in the appendix of [5]) β is C l+2,α.

By induction the elements of Rk are C l,α for all l, so they are smooth.

This concludes the proof of theorem 3.2.1.

3.3 Deformations of compact Spin(7)-manifolds

In this section we show that the moduli space of torsion-free Spin(7)-structures on a com-

pact Spin(7)-manifold M8 is smooth. This was first proved by Joyce [25] and the proof here

is essentially the same. We use the same slice arguments as for the deformations of com-

pact G2-manifolds, which will carry over without too much trouble to the asymptotically

cylindrical case in §4. We will describe in detail only how to set up the slice construction.

Throughout this section M8 will denote a compact Spin(7)-manifold. Let X be the

set of torsion-free Spin(7)-structures on M and D the group of diffeomorphisms of M

isotopic to the identity. D acts on X by pull-backs, and the moduli space of torsion-free

Spin(7)-structures on M is the quotient M = X /D. The main theorem of this section is

Theorem 3.3.1. Let M8 be a compact Spin(7)-manifold. Then M is a smooth manifold

of dimension

dimM = b4−(M) + b1(M) + Â(M), (3.14)
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and the natural projection

πH : M → H4(M,R), ψD 7→ [ψ] (3.15)

is an immersion.

Remark 3.3.2. As explained in (2.16), the term b1(M) + Â(M) is just a way of writing

the dimension of the space of positive harmonic spinors on the Spin(7)-manifold in terms

of topological invariants. In §5.3 we will see that this corresponds to deformations of the

Spin(7)-structure that rescale the metric or leave it unchanged.

3.3.1 The Dirac operator on Spin(7)-manifolds

Let ψ be a fixed torsion-free Spin(7)-structure. Recall from §2.2.3 that we consider Spin(7)

to act irreducibly on R8 and that (considered a subgroup of Spin(8)) its spin representations

are σ−
8
∼= R8 and σ+

8
∼= R⊕R7 (where R7 is the irreducible vector representation of Spin(7),

factoring through SO(7)). Thus the negative spinor bundle S− ∼= TM .

We abbreviate ΛmT ∗M to Λm. As explained in §2.1.2 the exterior forms decompose

into subbundles corresponding to irreducible representations of Spin(7).

Λ4
+ = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27,

Λ4
− = Λ4

35,

Λ3 = Λ3
8 ⊕ Λ3

48,

Λ2 = Λ2
7 ⊕ Λ3

21.

(3.16)

We can identify subbundles isomorphic to the spinor bundles

S+
∼= Λ4

1⊕7, S−
∼= Λ3

8. (3.17)

It is therefore natural to compare the Dirac operator ð− : Γ(S−) → Γ(S+) with

π1⊕7d : Ω3
8(M) → Ω4

1⊕7(M), (3.18)

and if the isomorphisms (3.17) are chosen appropriately then they are in fact equal (cf. [27,

p. 260]). The easiest way to check this is to note that the values of both ð− and π1⊕7d on

V ∈ Γ(TM) ∼= Γ(S−) ∼= Ω3
8(M) depend algebraically on ∇V ∈ Γ(End(TM)) and that as
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a Spin(7)-representation End(R8) contains a unique irreducible component of rank 1 and

7 respectively.

3.3.2 The pre-moduli space

Let M8 be a compact Spin(7)-manifold and fix a torsion-free Spin(7)-structure ψ on M .

We explain how to choose a slice for the diffeomorphism action at ψ and identify a sub-

manifold that we use as the pre-moduli space of torsion-free Spin(7)-structure near ψ.

Type decompositions of forms, covariant derivatives etc. will be defined with respect to the

Spin(7)-structure ψ.

Let C4 be the space of smooth Spin(7)-structures on M . Let C4
k be its Ck,α completion

for some k ≥ 1, α ∈ (0, 1), and let Dk+1 be the Ck+1,α completion of the group of diffeo-

morphisms isotopic to the identity. The tangent space to the Dk+1-orbit at ψ is given by

the Lie derivatives of ψ. Since ψ is closed, LV ψ = d(V yψ) for any vector field V , and the

forms V yψ are precisely the sections of Λ3
8. Thus

Tψ(ψDk+1) = dCk+1,α(Λ3
8).

Recall from §2.2.3 that the tangent space to the space of Spin(7)-structures consists of

4-forms of type 1, 7 and 35, i.e.

TψC
4
k = Ck,α(Λ4

1⊕7⊕35).

We use the interpretation of the Dirac operator above to identify the L2-orthogonal com-

plement of the tangent space to the orbit. Let H4
1⊕7⊕35 denote the harmonic forms of type

1, 7 and 35, and let W be the L2-orthogonal complement of H4
35 in Ck,α(Λ4

35).

Proposition 3.3.3. Let M be a compact Spin(7)-manifold with Spin(7)-structure ψ. Then

Ck,α(Λ4
1⊕7⊕35) = H4

1⊕7⊕35 ⊕ dCk+1,α(Λ3
8) ⊕W. (3.19)

Proof. Suppose β ∈ Ck,α(Λ4
1⊕7⊕35) is L2-orthogonal to H4

1⊕7⊕35. Then π1⊕7β is L2-orthog-

onal to H4
1⊕7, so it lies in the image of the Dirac operator map (3.18), i.e. β = π1⊕7dη for

some η ∈ Ck+1,α(Λ4
8). Then β − dη ∈ W .

This means that we may use a small neighbourhood S of ψ in H4
1⊕7⊕35 ⊕W as a slice

for the diffeomorphism action at ψ. Let Xk ⊂ C4
k be the set of torsion-free Ck,α Spin(7)-
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structures, and Rk = Xk∩S. This is the pre-moduli space of torsion-free Spin(7)-structures

near ψ.

Proposition 3.3.4 (cf. [27, Proposition 10.7.3]). ψ has a neighbourhood in Xk that is a

submanifold of C4
k. If S is taken small enough then Rk ⊆ S is a submanifold, with

TψRk = H4
1⊕7⊕35.

Proof. By theorem 2.2.17, Rk is the zero set of

d : S → dCk+1,α(Λ4). (3.20)

The RHS is the space of exact Hölder 5-forms, which is a closed subspace of Ck,α(Λ5)

by Hodge decomposition. Any element can be written as dη for some unique coexact

η ∈ Ck+1,α(Λ4). Then η − ∗η is anti-self-dual and L2-orthogonal to the harmonic forms,

i.e. η − ∗η ∈ W . Since W ⊆ TψS it follows that (3.20) has surjective derivative at ψ. If S

is taken to be small then Rk is a submanifold by the implicit function theorem.

On the other hand any closed anti-self-dual form is harmonic, so the space of closed

forms in TψS is exactly H4
1⊕7⊕35.

Applying the implicit function theorem to d : C4
k → dCk+1,α(Λ4) shows that a small

neighbourhood of ψ in Xk is a manifold too.

In particular the projection to de Rham cohomology πH : Rk → H4(M) is an embed-

ding. Analogously to §3.2.5 we can show that Rk consists of smooth elements, and then

apply theorem 3.1.9 to deduce that the pre-moduli spaces can be used as coordinate charts

to give the moduli space M a smooth structure.

It remains only to compute the dimension of the moduli space. This is just the dimension

of the tangent space H4
1⊕7⊕35 to the pre-moduli space. dimH4

35 = b4−(M), while the discus-

sion in §3.3.1 identifies H4
1⊕7 with the kernel of the Dirac operator ð+ : Γ(S+) → Γ(S−).

Therefore (2.16) yields

dimH4
1⊕7 = Â(M) + b1(M).

This completes the proof of theorem 3.3.1.
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3.4 Deformations of compact Calabi-Yau 3-folds

In this section we develop some deformation theory for compact Calabi-Yau 3-folds, which

we need because the cross-sections of asymptotically cylindrical G2-manifolds are Calabi-

Yau 3-folds. It is a well-known result, independently due to Tian [52] and Todorov [53],

that the moduli space of Calabi-Yau structures on a compact irreducible Calabi-Yau n-fold

is smooth for n ≥ 3. Tian and Todorov’s arguments are based on Kodaira’s deformation

theory for complex structures, but in the case n = 3 it is straight-forward to give a simple

proof based on the method of Hitchin [24], which we also employed in §3.2 to deal with

deformations of compact G2-manifolds. This approach is in terms of differential forms and

exhibits pre-moduli spaces that provide useful coordinate charts. Such pre-moduli spaces

have also been obtained by Goto [17].

Let X6 be a compact manifold, and Y the set of Calabi-Yau structures (Ω, ω) on X in

the sense of definition 2.2.20. Let D be the group of smooth diffeomorphisms isotopic to

the identity. The moduli space of Calabi-Yau structures on X is N = Y/D, and there is a

natural projection to the de Rham cohomology

πN : N → H3(X) ×H2(X), (Ω, ω)D 7→ ([Ω], [ω]). (3.21)

Theorem 3.4.1. Let X6 be a compact connected Calabi-Yau 3-fold. The moduli space N

of Calabi-Yau structures on X is a manifold of dimension

dimN = b3(X) + b2(X) − b1(X) − 1, (3.22)

and πN : N → H3(X) ×H2(X) is an immersion.

Remark 3.4.2. The definition of a Calabi-Yau 3-fold X6 used here allows Hol(X) to be a

proper subgroup of SU(3). If Hol(X) is exactly SU(3) (so X is irreducible as a Riemannian

manifold) then b1(X) = 0, and the formula for the dimension simplifies to b3(X)+b2(X)−1.

If X is an irreducible Calabi-Yau manifold then for any Calabi-Yau structure (Ω, ω)

on X and λ ∈ R+ we can define a torsion-free product G2-structure ϕ = Ω + λdθ ∧ ω on

X × S1. The metric defined by ϕ is the product of the Calabi-Yau metric on X and the

metric on S1 with radius λ (cf. proposition 2.2.24). The moduli space of such torsion-free

product G2-structures has dimension

dimN + 1 = b3(X) + b2(X) = b3(X × S1),
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which equals the dimension of the moduli space of torsion-free G2-structures on X×S1 by

theorem 3.2.1.

3.4.1 Comparison with known results

Theorem 3.4.1 agrees with the results of Tian [52] and Todorov [53]. The deformation

theory for complex manifolds of Kodaira-Spencer shows that the moduli space of complex

structures on X is a manifold provided that a certain ‘obstruction space’ vanishes. In that

case the moduli space is locally diffeomorphic to H1(T ), the first cohomology of the sheaf

of holomorphic sections of the tangent bundle.

Tian and Todorov show that when X is a closed connected Calabi-Yau manifold of com-

plex dimension n ≥ 3 (with holonomy exactly SU(n)) then the deformations of the complex

structures are unobstructed. For a compact Calabi-Yau manifold H1(T ) ∼= (Hn−1(Ω1))∗

by Serre duality, where Ω1 is the sheaf of holomorphic 1-forms. Hn−1(Ω1) ∼= H1,n−1(X) by

the Dolbeault theorem, so dimC H
1(T ) = h1,n−1(X).

On the other hand, Yau’s solution to the Calabi conjecture shows that for a fixed

complex structure there is a unique Calabi-Yau metric ω in each Kähler class, and the

Kähler classes form an open subset of H1,1
R

(X). Our definition of a Calabi-Yau structure

also involves a choice of normalised holomorphic (n, 0)-form. This is determined up to

phase by the complex structure and the metric. Hence the dimension of the moduli space

of Calabi-Yau structures for a fixed complex structure is h1,1(X) + 1.

A result of Kodaira [32, Theorem 15] shows that given a family of deformations of the

complex structure on a Kähler manifold there is a corresponding family of deformations of

the metric which are Kähler with respect to the deformed complex structures. This can be

used together with the above to deduce that the moduli space of Calabi-Yau structures on

a complex n-fold is a manifold of dimension

2h1,n−1(X) + h1,1(X) + 1 (3.23)

(cf. [27, §6.8]). On a compact Calabi-Yau 3-fold X Serre duality gives h0,2(X) = h0,1(X),

and the Hodge decomposition of H∗(X) that

b3(X) = 2h1,2(X) + 2,

b2(X) = h1,1(X) + 2h0,2(X) = h1,1(X) + b1(X).
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Hence for n = 3 the formula (3.23) for the dimension of the moduli space agrees with that

stated in theorem 3.4.1.

More recently, Goto [17] gave a proof of the smoothness of the moduli space of Calabi-

Yau structures that does not rely on Kodaira-Spencer theory. Theorem 3.4.1 is a special

case of [17, Theorems 4.2.5 and 4.2.6] for complex dimension n = 3. Goto studies the

problem in terms of differential forms and finds pre-moduli spaces of the form that we will

need later. By specialising to the case n = 3 and employing the slice methods from §3.1

we obtain a simpler proof.

Remark 3.4.3. Hitchin [24] uses elementary methods to construct the moduli space of

torsion-free SL(C3)-structures on a compact manifold X6. In [47, §4] this is extended

to another alternative proof of theorem 3.4.1. Hitchin’s result implies that the Hölder

completion of the space Y1 of torsion-free SL(C3)-structures is a manifold. If we let Z2 be

the space of closed Hölder 2-forms then an implicit function theorem argument can be set

up to prove essentially that the set of (Ω, ω) ∈ Y1 ×Z2 satisfying the point-wise algebraic

conditions 1
4
Ω∧ Ω̂ = 1

6
ω3, Ω∧ω = 0 is a manifold. Together with the open condition that ω

defines a positive-definite metric this ensures that (Ω, ω) is an SU(3)-structure. Theorem

3.4.1 then follows by slice arguments like those described in section 3.1.

3.4.2 The slice

Let X6 be a compact Calabi-Yau 3-fold, and Y the space of Calabi-Yau structures on X.

To prove theorem 3.4.1 we first identify a slice for the action of the diffeomorphism group

at each (Ω, ω) ∈ Y .

Recall from §2.2.6 that we define an SU(3)-structure on X in terms of a pair of differ-

ential forms (Ω, ω), which is a section of a subbundle ΛSU(3)T
∗X ⊂ Λ3T ∗X ⊕ Λ2T ∗X. An

SU(3)-structure (Ω, ω) defines a metric, and it is a Calabi-Yau structure if and only if it

is parallel with respect to the Levi-Civita connection.

We fix a Calabi-Yau structure (Ω, ω) on X and study a neighbourhood of (Ω, ω) in

the moduli space. Abbreviate ΛmT ∗X to Λm. The Calabi-Yau structure determines a type

decomposition of Λm modelled on (2.21).

Λ2 = Λ2
1 ⊕ Λ2

6 ⊕ Λ2
8,

Λ3 = Λ3
1⊕1 ⊕ Λ3

6 ⊕ Λ3
12.

(3.24)

If (σ, τ) ∈ Λ3 ⊕ Λ2 is tangent at (Ω, ω) to the space of SU(3)-structures on X then (2.18)
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yields a relation between the type 1 and 6 components of σ and τ .

L1(σ, τ) = σ ∧ Ω̂ − τ ∧ ω2 = 0, (3.25a)

L2(σ, τ) = σ ∧ ω + Ω ∧ τ = 0. (3.25b)

Pick k ≥ 1 and α ∈ (0, 1), and let

Ck = {(Ω, ω) ∈ Ck,α(ΛSU(3)) : dω = 0}.

Then Ck is a Banach manifold, and Y embeds continuously in Ck. The tangent space at

(Ω, ω) is

T(Ω,ω)Ck = {(σ, τ) ∈ Ck,α(Λ3⊕2) : L1(σ, τ) = L2(σ, τ) = 0, dτ = 0}.

Let Dk+1 be the group of Ck+1,α diffeomorphisms of X isotopic to the identity. The tangent

space to the Dk+1-orbit at (Ω, ω) is given by Lie derivatives

Tk = {(d(V yΩ), d(V yω)) : V ∈ Ck+1,α(TM)}.

To find a direct complement for Tk in T(Ω,ω)Ck we make use of the Dirac operator

ð : S− → S+. Considered as real vector bundles S± are both isomorphic to R2 ⊕ TX. We

can choose isomorphisms S+ ∼= Λ3
1⊕1⊕6 and S− ∼= Λ2

6 ⊕ Λ0 ⊕ Λ0 such that ð is identified

with

Ω2
6(X) ⊕ Ω0(X) ⊕ Ω0(X) → Ω3

1⊕1⊕6(X), (β, f, g) 7→ π1⊕1⊕6dβ + d(fω) + ∗d(gω). (3.26)

To see that this is possible, observe that ð and (3.26) are both obtained algebraically

from a covariant derivative taking values in T ∗X ⊗ (T ∗X ⊕R2). The vector bundle T ∗X is

associated to the SU(3)-structure by the standard representation C3 of SU(3). Considering

C3 as a real representation, C3 ⊗ C3 contains a unique irreducible component isomorphic

to C3. We can therefore make the identifications so that the Ω2
6(X) → Ω3

6(X) parts of ð

and (3.26) agree. It is then easy to ensure that the remaining components agree too.

Definition 3.4.4. Let W ⊆ Ck,α(Λ3
12) be the L2-orthogonal subspace to the harmonic

forms. Let W2 ⊂ W be the subspace of exact forms, and W1 ⊂ W its L2-orthogonal

complement.
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Lemma 3.4.5.

Ck,α(Λ3) = H3 ⊕ dCk+1,α(Λ2
6) ⊕ dCk+1,α(Λ2

1) ⊕ ∗dCk+1,α(Λ2
1) ⊕W, (3.27a)

dCk+1,α(Λ2) = dCk+1,α(Λ2
6) ⊕ dCk+1,α(Λ2

1) ⊕W2. (3.27b)

Proof. The Dirac operator is elliptic, so the image of ð : Ck+1,α(S−) → Ck,α(S+) is the

L2-orthogonal complement to the kernel in Ck,α(S+). The isomorphism S+ ∼= Λ3
1⊕1⊕6 iden-

tifies the kernel of the Dirac operator with the harmonic forms in Ω3
1⊕1⊕6 (cf. remark 2.1.12).

Therefore, if γ ∈ Ck,α(Λ3) is L2-orthogonal to H3 then π1⊕1⊕6γ is in the image of (3.26),

i.e.

π1⊕1⊕6γ = π1⊕1⊕6dβ + d(fω) + ∗d(gω)

for some β ∈ Ck+1,α(Λ2
6), f, g ∈ Ck+1,α(Λ0). Then γ − dβ − d(fω) − ∗d(gω) ∈ W . If γ is

exact then integrating by parts shows that dg = 0.

The tangent space to the pre-moduli space of Calabi-Yau structures will turn out to be

the space of harmonic tangents to the space of SU(3)-structures.

Definition 3.4.6. Let

HSU = {(σ, τ) ∈ H3 ×H2 : L1(σ, τ) = L2(σ, τ) = 0}.

The map H3 ×H2 → H6 ×H5, (σ, τ) 7→ (L1, L2) is surjective, so

dimHSU = b3(X) + b2(X) − b1(X) − b0(X). (3.28)

Proposition 3.4.7.

T(Ω,ω)Ck = HSU ⊕ Tk ⊕ (W × {0}).

Proof. Suppose (σ, τ) ∈ T(Ω,ω)Ck. We wish to show that (σ, τ) lies in the RHS. By subtract-

ing an element of HSU we may assume that τ is exact and that σ is L2-orthogonal to H3.

Using (3.27a) and the fact that dCk+1,α(Λ2
6) is the space of Lie derivatives of Ω, we can

also subtract an element of W from σ to ensure that

σ = d(fω) + ∗d(gω)

for some f, g ∈ Ck+1,α(Λ0). The conditions (3.25) determine the Λ2
1 and Λ2

6 components of
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τ from σ, giving

τ = d∗(fΩ + gΩ̂) + β,

with β ∈ Ck,α(Λ2
8). Integrating by parts shows that df = dg = 0. Thus β is exact. But

d∗β = −d(ω ∧ β) = 0, so β = 0.

Hence K = HSU ⊕ (W ×{0}) is a direct complement in T(Ω,ω)Ck to the tangent space to

the diffeomorphism orbit at (Ω, ω). On a neighbourhood U of the zero section in T(Ω,ω)Ck

we may define a bundle map exp : U → Ck such that D exp(Ω,ω) = id. Then S = expK

is a smooth submanifold of Ck with T(Ω,ω)S = K and can be used as a slice for the

diffeomorphism action at (Ω, ω).

3.4.3 The pre-moduli space

Let (Ω, ω) ∈ Y , and let Q ⊂ S be the subset of Calabi-Yau structures in the slice at (Ω, ω).

This is the pre-moduli space of Calabi-Yau structures near (Ω, ω). We will show that Q

is a smooth manifold with T(Ω,ω)Q = HSU and then claim that Q is homeomorphic to a

neighbourhood in the moduli space N ,

Let (Ω′, ω′) ∈ Ck. Then dω′ = 0 a priori, so lemma 2.2.21 implies that (Ω′, ω′) is a

Calabi-Yau structure if and only if

dΩ′ = dΩ̂′ = 0.

By lemma 3.4.5 there are unique β1 ∈ ∗dCk+1,α(Λ2
1) ⊕ W1 and β2 ∈ dCk+1,α(Λ2) =

dCk+1,α(Λ2
6) ⊕ dCk+1,α(Λ2

1) ⊕W2 such that

dΩ′ = dβ1, dΩ̂
′ = d∗β2.

Let Fi(Ω
′) be the projection of βi to Wi. We prove that Q is a smooth manifold by applying

the implicit function theorem to

F : S → W1 ⊕W2, (Ω′, ω′) 7→ (F1(Ω
′), F2(Ω

′)).

Proposition 3.4.8. If (Ω′, ω′) ∈ Ck is sufficiently close to (Ω, ω) then (Ω′, ω′) is a Calabi-

Yau structure if and only if F (Ω′) = 0.
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Proof. Clearly dΩ′ = 0 ⇒ F1(Ω
′) = 0 and dΩ̂′ = 0 ⇒ F2(Ω

′) = 0. Conversely, if F1(Ω
′) = 0

then dΩ′ = dβ1 with β1 = ∗d(fω′) for some f ∈ Ck+1,α(Λ0). But

<β1, ∗d(fω
′)>L2 =

∫

X

β1 ∧ d(fω
′) =

∫

X

dΩ′ ∧ fω′ =

∫

X

fd(Ω′ ∧ ω′) = 0. (3.29)

If ω′ is sufficiently close to ω then it follows that β1 = 0, so dΩ′ = 0.

Similarly, dΩ̂′ = d∗β2 for some β2 ∈ dCk+1,α(Λ2), and F2(Ω
′) = 0 implies that β2 is

L2-orthogonal to W2. A calculation analogous to (3.29) shows that β2 is also L2-orthogonal

to d(fω′) for any f ∈ Ck+1,α(Λ0).

By definition, Ω′ + iΩ̂′ has type (3, 0) with respect to the almost complex structure

defined by Ω′, so dΩ′ + idΩ̂′ has no (1, 3)-component. As dΩ′ = 0 it follows that dΩ̂′ has

type (2, 2). Thus for any V ∈ Ck+1,α(TX)

<β1,LV Ω′>L2 =

∫

X

β1 ∧ d(V yΩ′) =

∫

X

dΩ̂′ ∧ (V yΩ′) = 0.

If (Ω′, ω′) is sufficiently close to (Ω, ω) then (cf. 3.27b)

dCk+1,α(Λ2) = {LV Ω′ : V ∈ Ck+1,α(TX)} ⊕ {d(fω′) : f ∈ Ck+1,α(Λ0)} ⊕W2.

Hence β1 is L2-orthogonal to all of dCk+1,α(Λ2) and therefore vanishes, so dΩ̂′ = 0.

Proposition 3.4.9. The derivative DF(Ω,ω) : T(Ω,ω)Ck → W1 ⊕W2 is 0 on HSU ⊕ Tk and

bijective on W × {0}.

Proof. The derivative is obviously 0 on HSU and on the tangent space to the diffeomorphism

orbit of (Ω, ω). It is the identity on W1 × {0}, so the only non-trivial part is to check that

the derivative is scalar on W2 × {0}. To see this it suffices to verify that if β ∈ Λ3
12 then

the derivative at Ω of Ω′ 7→ Ω̂′ maps β to −∗β. This is a point-wise statement, and can be

deduced from proposition 2.2.4 and remark 2.2.25.

Now we can apply the implicit function theorem to F to show

Proposition 3.4.10. If the slice S is taken sufficiently small then Q ⊂ S is a submanifold.

Its tangent space at (Ω, ω) is HSU .

The implicit function theorem shows also that a small neighbourhood of (Ω, ω) in Xk

is a submanifold of Ck. Regularity arguments analogous to those in §3.2.5 show that the

elements of Q are smooth. Theorem 3.4.1 then follows from the slice theorem 3.1.9.
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Chapter 4

EAC G-manifolds

In this chapter we discuss some elementary properties of EAC manifolds with exceptional

holonomy, and their deformation theory. For the G2 case the material is largely covered

in [47].

4.1 EAC G-structures

Definition 4.1.1. Let M7 be a connected oriented manifold with cylindrical ends and

cross-section X6. A G2-structure ϕ on M is said to be exponentially asymptotically cylin-

drical (EAC) if it is exponentially asymptotic (see definition 2.3.4) to a cylindricalG2-struc-

ture on X × R (see definition 2.2.23). M equipped with a torsion-free EAC G2-structure

and the associated metric is called an EAC G2-manifold.

Recall that by proposition 2.2.24 a torsion-free cylindrical G2-structure on X6 × R

corresponds to a Calabi-Yau structure on X. Similarly

Definition 4.1.2. Let M8 be a connected oriented manifold with cylindrical ends and

cross-section X7. A Spin(7)-structure ψ on M is said to be EAC if it is exponentially

asymptotic to a cylindrical Spin(7)-structure on X × R. M equipped with a torsion-free

EAC Spin(7)-structure and the associated metric is called an EAC Spin(7)-manifold.

The next theorem implies that an EAC G2-manifold or Spin(7)-manifold is not inter-

esting unless it has a single end. The result can be proved using the Cheeger-Gromoll line

splitting theorem [12], or by more elementary methods (cf. Salur [51]).
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Theorem 4.1.3. Let M be an orientable connected asymptotically cylindrical Ricci-flat

manifold. Then either M has a single end, i.e. its cross-section X is connected, or M is a

cylinder X × R with a product metric.

4.1.1 Summary of EAC Hodge theory

For convenience we summarise the notation and key properties of Hodge theory on an EAC

manifold Mn with cross-section Xn−1 that we developed in §2.3.3–2.3.4.

Harmonic forms. The following denote spaces of harmonic m-forms on M .

Hm
+ L2-integrable

Hm
0 bounded

Hm
− not exponentially growing

Hm
E bounded and exact

Hm
E∗ bounded and coexact

Hm
abs Hm

+ ⊕Hm
E∗

Hm
rel Hm

+ ⊕Hm
E

In addition Hm
X is the space of harmonicm-forms onX and Hm

∞ the translation-invariant

harmonic m-forms on X × R.

Hm
∞ = Hm

X ⊕ dt ∧Hm−1
X .

By elliptic regularity any harmonic form on M that is Ck,α
δ (for some k ≥ 1, α ∈ (0, 1)

and δ ∈ R) is smooth. If 0 < δ < ǫ1 then the harmonic forms in Ck,α
±δ (Λm) lie in Hm

± . In Hm
−

Hm
− = ker d+ ker d∗ Hm

0 = Hm
abs + Hm

rel

Hm
0 = ker d ∩ ker d∗ Hm

+ = Hm
abs ∩Hm

rel.

Boundary maps. Any bounded harmonic form onM is asymptotic to a translation-invariant

form on the cylinder X. This gives a map

B : Hm
0 → Hm

∞.

We may write B = Ba + dt ∧Be, where

Ba : Hm
0 → Hm

X , Be : Hm
0 → Hm−1

X .
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Ba is injective on Hm
E∗ and 0 on Hm

rel, while Be is injective on Hm
E and 0 on Hm

abs. Let

Am = imBa, Em−1 = imBe.

Then

Hm
X = Am ⊕ Em (4.1)

is an orthogonal direct sum.

Any ψ ∈ Hm
− can be written as χ + α + tβ + dt ∧ γ + tdt ∧ δ with χ exponentially

decaying, α, β ∈ Hm
X and γ, δ ∈ Hm−1

X . Thus we can define a ‘boundary data’ map

BD : Hm
− → (Hm

X)2 ⊕ (Hm−1
X )2, ψ 7→

(

β δ

α γ

)

.

The top row of the 2 × 2 array for BD(ψ) represents the linearly growing part of ψ while

the bottom row is the translation-invariant part. Let

BDa : Hm
− → (Hm

X)2, ψ 7→

(

β

α

)

, BDe : Hm
− → (Hm−1

X )2, ψ 7→

(

δ

γ

)

,

be the projections of BD to (Hm
X)2 and (Hm−1

X )2 respectively. Let Ãm = imBDa and

Ẽm−1 = imBDe. Then

imBD = Ãm ⊕ Ẽm−1,

and Ãm ⊆ (Hm
X)2 and Ẽm−1 ⊆ (Hm−1

X )2 are Lagrangian subspaces.

Hodge theory. The natural map

πH : Hm
abs → Hm(M)

is an isomorphism. The subset Hm
+ ⊆ Hm

abs is mapped to the compactly supported subspace

Hm
0 (M) ⊆ Hm(M). There is also an isomorphism

Hm
rel → Hm

cpt(M), α 7→

{

[α+ dη(α)] for α ∈ Hm
+

∂([Be(α)]) for α ∈ Hm
E

.

Let

Am, Em ⊆ Hm(X)
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be the images of Am, Em respectively inHm(X). Am is the image of j∗ : Hm(M) → Hm(X),

and Em is the orthogonal complement of Am.

4.1.2 Hodge theory on EAC G2-manifolds

Let M7 be an EAC G2-manifold with G2-structure ϕ asymptotic to Ω + dt ∧ ω. (Ω, ω) is a

Calabi-Yau structure on the cross-section X6 and induces decompositions of the harmonic

forms on X as described in §2.1.2. Maps such as Ω2(X) → Ω4(X), σ 7→ σ ∧ ω are SU(3)-

equivariant, so by corollary 2.1.11 they induce maps between type components of the spaces

of harmonic forms. We now consider the relation between the type decompositions and the

decomposition (4.1).

By remark 2.2.25, ∗ϕ is asymptotic to 1
2
ω2−dt∧ Ω̂, where Ω̂ is the unique 3-form on X

(with the boundary orientation) such that Ω + iΩ̂ has type (3, 0) as discussed in §2.2.6.

Lemma 4.1.4. If τ ∈ Em then τ ∧ Ω ∈ Em+3 and τ ∧ 1
2
ω2 ∈ Em+4.

If σ ∈ Am then σ ∧ Ω ∈ Am+3, σ ∧ 1
2
ω2 ∈ Am+4, σ ∧ ω ∈ Em+2 and σ ∧ Ω̂ ∈ Em+3.

Proof. If χ ∈ Hm+1
E with Beχ = τ then

χ ∧ ϕ ∈ Hm+4
0 ⇒ dt ∧ τ ∧ Ω = B(χ ∧ ϕ) ∈ dt ∧ Em+3,

χ ∧ ∗ϕ ∈ Hm+5
0 ⇒ dt ∧ τ ∧ 1

2
ω2 = B(χ ∧ ∗ϕ) ∈ dt ∧ Em+4.

If χ ∈ Hm
0 with Baχ = σ then

χ ∧ ϕ ∈ Hm+3
0 ⇒ σ ∧ Ω + dt ∧ σ ∧ ω = B(χ ∧ ϕ) ∈ Am+3 ⊕ dt ∧ Em+2,

χ ∧ ∗ϕ ∈ Hm+4
0 ⇒ σ ∧ 1

2
ω2 + dt ∧ σ ∧ Ω̂ = B(χ ∧ ∗ϕ) ∈ Am+4 ⊕ dt ∧ Em+3.

Hodge theory for compact manifolds allows us to identify the de Rham cohomology of

X with the harmonic m-forms on X. The L2-inner product on Hm
X therefore gives an inner

product on Hm(X), and the Hodge star ∗ : Hm
X → H6−m

X gives isomorphisms

∗ : Hm(X) → H6−m(X).

This map is the composition of the metric isomorphism Hm(X) ∼= (Hm(X))∗ with Poincaré

duality (Hm(X))∗ ∼= H6−m(X). Proposition 2.3.39 implies that there is an orthogonal direct

sum

Hm(X) = Am ⊕ Em,
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where Am = j∗(Hm(M)) and Em = ∗A6−m. Set Akd = Ak ∩Hk
d (X) and Ek

d = Ek ∩Hk
d (X).

Proposition 4.1.5. Let M7 an EAC G2-manifold with cross-section X. Then

H2
6 (X) = A2

6 ⊕ E2
6 , H4

6 (X) = A4
6 ⊕ E4

6 ,

and the sums are orthogonal. Furthermore

(i) H2
6 (X) → H4

6 (X), [α] 7→ ∗[α] maps A2
6 to E4

6 and E2
6 to A4

6,

(ii) H1(X) → H4
6 (X), [α] 7→ [α] ∪ [Ω] maps A1 to A4

6 and E1 to E4
6 ,

(iii) H1(X) → H5(X), [α] 7→ [α] ∪ [1
2
ω2] maps A1 to A5 and E1 to E5.

Proof. (i) is obvious, since ∗ maps Am ↔ E6−m.

[α] 7→ [α] ∪ [Ω] is a bijection H1(X) → H4
6 (X). It maps A1 into A4 and E1 into E4 by

lemma 4.1.4, which implies (ii). It follows that A1 → A4
6 and E1 → E4

6 are both surjective

and that H4
6 (X) splits as A4

6 ⊕ E4
6 . H

2
6 (X) splits too by (i).

(iii) follows from lemma 4.1.4 in the same way.

When X is Kähler, the complex structure J is parallel and the Hodge Laplacian on

forms commutes with the action of J . Thus H1
X inherits a complex structure from X in

the Kähler case and the inner product on H1
X is Hermitian. We identify H1(X) ↔ H1

X as

usual to make H1(X) a Hermitian vector space.

Proposition 4.1.6. Let M7 be an EAC G2-manifold with cross-section X. Then

j∗ : H1(M) →֒ H1(X)

embeds H1(M) as a Lagrangian subspace of H1(X) with the symplectic form < ·, J · >. In

particular b1(M) = 1
2
b1(X).

Proof. By proposition 2.3.41, j∗ maps H1(M) isomorphically to its image A1. The complex

structure on H1(X) can be expressed as

J [α] = ∗([α] ∪ [1
2
ω2]).

It follows from proposition 4.1.5 that J restricts to an isomorphism A1 → E1. Thus

H1(X) = A1 ⊕ JA1.
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4.1.3 Spinors on EAC Spin(7)-manifolds

For compact Spin(7)-manifolds the dimension of the space of positive harmonic spinors

appears as a term in the dimension of the moduli space of torsion-free Spin(7)-structures

and also determines whether a simply-connected compact Spin(7)-manifold has holonomy

exactly Spin(7). For EAC Spin(7)-manifolds the dimension of the space of bounded har-

monic positive spinors plays a similar role.

Let M8 be an EAC Spin(7)-manifold with cross-section X7, and S± the real spinor

bundles onM . As in §2.3.5 we let HS±

0 denote the spaces of bounded and decaying harmonic

spinors on M with respect to the Dirac Laplacian ð2, and let HS
∞ be the translation-

invariant spinors on the cylinder X × R. Let SX be the bundle of spinors on the cross-

section, and HS
X the harmonic spinors on X. Recall that the negative spinor bundle S− is

isomorphic to T ∗M and that, because M is scalar-flat, the elements of HS±

0 and HS
X are

parallel by the Lichnerowicz formula.

Proposition 4.1.7. On an EAC Spin(7)-manifold M8

dimHS+

0 = 1 + b1(X) − b1(M).

Proof. Because harmonic spinors are parallel, the boundary maps B : HS±

0 → HS
∞ are

injective and it follows from proposition 2.3.44 that

dimHS+

0 = dimHS
∞ − dimHS−

0 .

Now HS−

0
∼= H1

0, while HS
∞

∼= H0
X ⊕H1

X . If X is connected (i.e. M has a single end) then

dimH0
X = 1. Corollary 2.3.40 implies that dimH1

0 = b1(M), so the formula holds. If X is

not connected then M is a product cylinder, and the result is easy.

We can also deduce a splitting result similar to proposition 4.1.5. Fix a torsion-free

EAC Spin(7)-structure ψ on M . Denote bounded harmonic m-forms of type d on M by

Hm
0,d. The asymptotic limit of ψ is ∗ϕϕ+ dt ∧ ϕ, where ϕ is a torsion-free G2-structure on

the cross-section X7 and ∗ϕ is the induced Hodge star (see proposition 2.2.26). ϕ induces

type decompositions of Ω∗(M). Let A4
d = A4 ∩ Ω4

d(X) and E4
d = E4 ∩ Ω4

d(X). Clearly

A4
1
∼= R(∗ϕϕ), and E4

1 = 0 unless M is a product cylinder. In any case H4
X,1 = A4

1 ⊕ E4
1 ,

but it is not clear a priori that H4
X,7 and H4

X,27 split in a similar way.
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Proposition 4.1.8. Let M be an EAC Spin(7)-manifold. The boundary maps give iso-

morphisms

Ba : H4
0,7

∼
−→ A4

7,

Be : H5
0,8

∼
−→ E4

1 ⊕ E4
7 ,

and H4
X splits as

H4
X = A4

1 ⊕A4
7 ⊕A4

27 ⊕ E4
1 ⊕ E4

7 ⊕ E4
27.

Proof. The boundary maps are injective since both H4
0,7 and H5

0,8 consist of parallel forms.

The dimensions of the images Be(H
5
0,8) ⊆ E4

1⊕7 and Ba(H
4
0,1⊕7) ⊆ A4

1⊕7 are therefore the

same as B(HS+

) and B(HS−

), respectively. Dimension-counting using proposition 2.3.44

tells us that equality holds and that H4
X,1⊕7 = A4

1⊕7 ⊕ E4
1⊕7.

Since H4
X,1 splits so does H4

X,7 and hence also H4
X,27.

4.1.4 A topological criterion for Hol = G2

In this section we obtain a topological criterion for when the holonomy group of an EAC

G2-manifold M7 is precisely G2 and not a proper subgroup. As stated in corollary 2.2.8

the holonomy group of a metric defined by a torsion-free G2-structure is always a subgroup

of G2. For compact G2-manifolds theorem 2.2.12 states that a necessary and sufficient

condition for full holonomy G2 is that the manifold has finite fundamental group. We

review the proof from Joyce [27, p. 245] and then generalise the result to the EAC case.

We first state two lemmas. The first one is due to Cheeger and Gromoll, and is a

corollary of their line splitting theorem [12]. Note that all covering spaces will be presumed

to be equipped with the Riemannian metric pulled back by the covering map. In particular

all covering maps will be local isometries, and all covering transformations are isometries.

Lemma 4.1.9 ([5, Corollary 6.67]). Let M be a compact Ricci-flat Riemannian manifold.

Then M has a finite cover isometric to a Riemannian product T k ×N , where T k is a flat

torus (of dimension k possibly 0) and N is compact and simply-connected.

Lemma 4.1.10. Let G be a closed connected subgroup of SO(n) and let Mn be a connected

Riemannian manifold with Hol(M) ⊆ G. Then Hol(M) = G if and only if Hol(M̃) = G

for any cover M̃ of M .
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Proof. Let M be the universal cover of M . For any cover M̃ of M

Hol(M) ⊆ Hol(M̃) ⊆ Hol(M).

To prove the lemma it therefore suffices to show that if Hol(M) = G then Hol(M) = G. It

is easy to see that Hol(M) is in fact the restricted holonomy group Hol0(M) of M , and by

[5, Corollary 10.48] this is the identity component of Hol(M). Since G connected it follows

that if Hol(M) = G then Hol0(M) = G.

Now we prove the previously stated result that a compact G2-manifold has holonomy

exactly G2 if and only if it has finite fundamental group.

Proof of theorem 2.2.12. If π1(M) is infinite then let M̃ = T k×N be a finite cover of M as

given by lemma 4.1.9. Clearly π1(M) infinite implies k > 0, so Hol(M̃) = Hol(N) 6= G2.

Hence Hol(M) is a proper subgroup of G2.

If π1(M) is finite consider the universal cover M of M . From theorem 2.1.3 we find

that up to conjugacy the only proper subgroups of G2 that can be the holonomy group of

a simply-connected Riemannian manifold are 1, SU(2) and SU(3). Thus if Hol(M) is not

G2 then it fixes at least one vector in its action on R7. By proposition 2.1.2, there must

exist a non-zero parallel 1-form on M which, by corollary 2.1.9, is harmonic. But since

M is compact there is an isomorphism H1 → H1(M) between harmonic forms and de

Rham cohomology. M is simply-connected, so b1(M) = 0 and there can be no non-trivial

harmonic 1-forms on M . Hence Hol(M) = Hol(M) = G2.

When stating an EAC analogue of theorem 2.2.12 we need to take into account that

M7 could be a product cylinder X6 × R. If X is an irreducible Calabi-Yau manifold then

the fundamental group is finite, but Hol(M) is of course contained in SU(3). The correct

statement in the EAC setting is:

Theorem 4.1.11. Let M7 be an EAC G2-manifold. Then Hol(M) = G2 if and only

if the fundamental group π1(M) is finite and neither M nor any double cover of M is

homeomorphic to a cylinder.

To prove the theorem we use that by proposition 2.3.41 the space of parallel 1-forms on

M is exactly H1
0 and that, by corollary 2.3.40, the natural map H1

0 → H1(M) from bounded

harmonic forms to de Rham cohomology is an isomorphism when M has a single end. In

order to obtain the information we need about the structure of the fundamental group of
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M in the asymptotically cylindrical case, we quote a result about groups of polynomial

growth.

Definition 4.1.12. Let G be a finitely generated group and S a finite set of generators

of G. Let N(k) be the number of elements of G that can be written as a product of less

than k elements of S. If N(k) is bounded by a polynomial in k then G is said to have

polynomial growth.

This definition is independent of the choice of finite generating set S. The next result

is the main theorem in Gromov [20] (see also Kleiner [31] for a shortened proof).

Theorem 4.1.13. If G is finitely generated and has polynomial growth then G has a

nilpotent subgroup of finite index.

Corollary 4.1.14. Let M be an asymptotically cylindrical manifold with non-negative Ricci

curvature. Then the fundamental group π1(M) has a nilpotent subgroup of finite index.

Sketch proof. M is homotopy equivalent to a compact manifold with boundary so π1(M)

is finitely generated. Volume comparison arguments show that the volume of balls in the

universal cover of M grows polynomially and this can be used to deduce that π1(M) has

polynomial growth (see Milnor [43] for details). Hence theorem 4.1.13 applies.

Lemma 4.1.15. Let M be a Ricci-flat EAC manifold.

(i) If M has a finite normal cover homeomorphic to a cylinder then M or a double cover

of M is homeomorphic to a cylinder.

(ii) If π1(M) is infinite then M has a finite cover M̃ with b1(M̃) > 0.

Proof. (i) If M̃ is a finite normal cover of M homeomorphic to a cylinder then it is

isometric to a product cylinder Y × R. M is a quotient of Y × R by a finite group

A of isometries. The isometries are products of isometries of Y and of R (since they

preserve the set of globally distance minimising geodesics {{y} × R : y ∈ Y }). The

elements of A have finite order, so they must act on the R factor as either the identity

or as reflections. Therefore the subgroup B ⊆ A which acts as the identity on R is

either all of A, in which case M is the cylinder (Y/B) × R, or a normal subgroup of

index 2, in which case (Y/B) × R is a cylindrical double cover of M .
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(ii) Let G0 ⊆ π1(M) be a nilpotent subgroup of finite index. G0 is soluble, so the derived

series Gi+1 = [Gi, Gi] reaches 1. Therefore there is a largest i such that Gi ⊆ π1(M)

has finite index. Let M̃ be the cover of M corresponding to Gi ⊆ π1(M). Gi/Gi+1 is

an infinite Abelian group, so has non-zero rank. Hence

b1(M̃) = rk
(

π1(M̃)/[π1(M̃), π1(M̃)]
)

= rk(Gi/Gi+1) > 0.

The lemma implies that if M is an EAC G2-manifold then one of 4 possible cases holds:

(i) π1(M) is finite and M is homeomorphic to a cylinder. Then M is isometric to Y ×R

for some compact Calabi-Yau manifold Y 6. The same arguments as in the proof of

theorem 2.2.12 show that the holonomy of Y cannot be a proper subgroup of SU(3).

Thus Hol(M) = SU(3).

(ii) π1(M) is finite, M has a single end and has a double cover homeomorphic to a

cylinder. This double cover has holonomy SU(3) so Hol(M) 6= G2.

(iii) π1(M) is infinite. Then M has a finite cover M̃ with b1(M) > 0. By theorem 2.3.33

together with proposition 2.3.41 there is a parallel 1-form on M̃ , so Hol(M̃) ⊆ SU(3)

and Hol(M) 6= G2.

(iv) π1(M) is finite and neither M nor any double cover of M is homeomorphic to a

cylinder. Then the universal cover M̃ of M is an EAC G2-manifold with a single

end. The only proper subgroups of G2 that can be the holonomy group of a complete

simply-connected manifold are 1, SU(2) and SU(3), so if Hol(M̃) is not G2 then

there is a parallel vector field on M̃ . But b1(M̃) = 0, so by corollary 2.3.40 and

proposition 2.3.41 there are no parallel 1-forms on M̃ . Hence Hol(M) = G2.

Hol(M) is exactly G2 only in case (iv), so we have proved theorem 4.1.11. We will

find examples of EAC manifolds with holonomy exactly G2 in chapter 7 and examples of

the cases (ii) and (iii) are provided below. We can also show that an EAC G2-manifold

has holonomy exactly G2 if its cross-section (which is a Calabi-Yau 3-fold) has holonomy

exactly SU(3).

Corollary 4.1.16. Let M7 be an EAC G2-manifold with cross-section X and suppose that

M is not finitely covered by a cylinder. If Hol(X) = SU(3) then Hol(M) = G2.
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Proof. Suppose that Hol(M) is a proper subgroup of G2. Then π1(M) is infinite, so M has

a finite cover M̃ with b1(M̃) > 0. Let X̃ be the cross-section of M̃ . By proposition 4.1.6

b1(X̃) = 2b1(M̃) > 0, so Hol(X̃) is a proper subgroup of SU(3). X̃ is a finite cover of X,

so it follows that Hol(X) is a proper subgroup of SU(3).

Proposition 4.1.6 also implies that if b1(X) > 0 then b1(M) > 0, so M is reducible. It

is, however, not true in general that M is reducible if X is reducible. In §7.3.3(ii) we will

see an example of an EAC G2-manifold with holonomy exactly G2, whose cross-section is

a quotient of T 2 ×K3 with b1 = 0.

Example 4.1.17. There exist EAC manifolds W 6 with holonomy precisely SU(3) (see Ko-

valev [34, Theorem 2.7]). Then we can define a torsion-free G2-structure on the product

W × S1 as in proposition 2.2.24. Of course Hol(W × S1) is not all of G2, but just SU(3).

Furthermore b1(W × S1) > 0, so by theorem 4.1.11 no EAC G2-structure on W × S1 can

have holonomy exactly G2.

Example 4.1.18. Let Y ⊂ CP 5 be the complex projective variety defined by the equations
∑

X2
i = 0,

∑

X4
i = 0. Y is a complete intersection of hypersurfaces, so is a smooth

complex 3-fold. As described in [27, p. 40] the adjunction formula can be used to show

that the first Chern class c1(Y ) vanishes, and the Lefschetz hyperplane theorem, stated in

the form [7, Theorem I], can be applied to show that π1(Y ) = 1.

Since the polynomials defining Y are real, the complex conjugation map on CP 5 restricts

to an involution a : Y → Y . a is anti-holomorphic, and since the defining polynomials have

no roots over R the involution has no fixed points.

Let ωFS be the restriction of the Fubini-Study Kähler form to Y . The involution is anti-

symplectic, i.e. a∗ωFS = −ωFS. Since c1(Y ) = 0, Yau’s solution to the Calabi conjecture [56]

implies that there is a unique Kähler form ω in the cohomology class of ωFS such that the

corresponding metric is Ricci-flat, making Y into a Calabi-Yau manifold. The cohomology

class of ωFS is preserved by −a∗ and −a∗ω is a Kähler form defining a Ricci-flat metric, so

the uniqueness part of Yau’s theorem implies that −a∗ω = ω (cf. [27, Proposition 15.2.2]).

Pick a global holomorphic non-vanishing 3-form φ on Y . a∗φ is also holomorphic and

therefore equal to λ2φ for some λ ∈ C. Replacing φ with λφ we can assume without loss of

generality that λ = 1. Then Ω = re φ is preserved by a∗. We can rescale Ω to ensure that

(Ω, ω) is a Calabi-Yau structure in the sense of definition 2.2.20.

Now define a G2-structure on Y × R by ϕ = Ω + dt ∧ ω. By proposition 2.2.24, ϕ is

torsion-free. Let M be the quotient of Y × R by a× (−1). M has a single end and π1(M)
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has order 2. (a× (−1))∗ϕ = a∗Ω+(−dt)∧a∗ω = ϕ, so ϕ induces a well-defined torsion-free

G2-structure on M .

4.1.5 A topological criterion for Hol = Spin(7)

As stated in corollary 2.2.15 the holonomy group of a metric defined by a torsion-free

Spin(7)-structure is always a subgroup of Spin(7). In this section we obtain a topological

criterion for when the holonomy group of an asymptotically cylindrical Spin(7)-manifold

M8 is precisely Spin(7) and not a proper subgroup. For a compact Spin(7)-manifold the-

orem 2.2.18 states that Hol(M) = Spin(7) if and only if π1(M) = 1 and Â(M) = 1. We

sketch the proof from Joyce [27, §10] since the argument for the EAC case is similar, even

though the criterion obtained looks different.

Proof of theorem 2.2.18. Recall that any harmonic spinor on a compact Spin(7)-manifold

is parallel and that the negative spinor bundle is isomorphic to T ∗M . As in the G2 case, any

compact manifold M8 with holonomy exactly Spin(7) must have finite fundamental group.

Then b1(M) = 0, so there are no non-zero harmonic negative spinors. Because Spin(7) fixes

a unique line in the positive spin representation σ+
8 the dimension of the space of harmonic

positive spinors is 1. Hence the index Â(M) of the Dirac operator is 1. The same is true

for any finite cover of M . Since Â(M) is a characteristic class it follows that M can have

no non-trivial finite cover, so M is simply-connected.

Conversely, if M8 is a simply-connected Spin(7)-manifold then Berger’s list (theorem

2.1.3) implies that the only possible holonomy groups of M other than Spin(7) are SU(4),

Sp(2) and SU(2)×SU(2). These fix a 2-, 3- and 4-dimensional subspace of σ+
8 , respectively.

For a compact simply-connected Spin(7)-manifold we can therefore use the dimension

Â(M) of the space of parallel positive spinors to distinguish between the four possible

holonomy groups.

In the EAC case it is still true that bounded harmonic spinors are parallel, and the

dimension of the space of parallel spinors is given in terms of Betti numbers by proposition

4.1.7. Unlike the compact case this is not a characteristic class, so it is not immediately

clear that EAC manifolds with holonomy Spin(7) need to be simply-connected. It would

be interesting to decide if that is the case, but there are currently no known examples at

all of EAC manifolds with holonomy Spin(7).
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Theorem 4.1.19. Let M8 be an EAC Spin(7)-manifold. Then Hol(M) = Spin(7) if and

only if π1(M) is finite, neither M nor any double cover of M is homeomorphic to a cylinder,

and the cross-section X̃ of the universal cover has b1(X̃) = 0.

Proof. If these conditions are satisfied then the universal cover M̃ is a simply-connected

manifold with cylindrical ends – a single end, in fact, by lemma 4.1.15(i). As in the G2

case we can deduce from corollary 2.3.40 and proposition 2.3.41 that there are no parallel

1-forms on M̃ . As in the compact case the only possibile holonomy groups of M̃ other than

Spin(7) are SU(4), Sp(2) and SU(2)× SU(2), and we can use the dimension of the space

of parallel positive spinors to distinguish between them. The condition b1(X̃) = 0 implies

that this is 1 by proposition 4.1.7. Therefore M̃ , and hence also M , has holonomy exactly

Spin(7).

Conversely, if π1(M) is infinite then M has a finite cover M̃ with b1(M̃) > 0 by lemma

4.1.15(ii). If M has a cylindrical double cover then that must have a product metric. If

π1(M) is finite and the universal cover M̃ has cross-section X̃ with b1(X̃) > 0 then the

dimension of the space of parallel spinors on M̃ is at least 2 by proposition 4.1.7. In each

of the three cases M has a finite cover with holonomy a proper subgroup of Spin(7), so M

cannot have holonomy exactly Spin(7).

4.2 Deformations of EAC G2-manifolds

In this section we construct the moduli space of exponentially asymptotically cylindrical

(EAC) torsion-free G2-structures on a manifold with a cylindrical end. We prove that the

moduli space is smooth and find its dimension. We also study the boundary map to the

moduli space of Calabi-Yau structures on the cross-section.

4.2.1 Results

Let M7 be a connected oriented manifold with cylindrical ends and cross-section X6. For

δ > 0 let Xδ be the space of torsion-free EAC G2-structures with rate δ on M (see defi-

nition 4.1.1). Xδ is topologised as a subspace of the space of exponentially asymptotically

translation-invariant 3-forms.

Let X+ =
⋃

δ>0 Xδ. If δ1 > δ2 > 0 then the inclusion Xδ1 →֒ Xδ2 is continuous, so we can

give X+ the direct limit topology, i.e. U ⊆ X+ is open if and only if U ∩Xδ is open in Xδ for

all δ > 0. Similarly let D+ be the group of EAC diffeomorphisms of M with any positive
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rate (in the sense of definition 2.3.6) that are isotopic to the identity. D+ acts on X+ by

pull-backs, and the moduli space of torsion-free EAC G2-structures on M is the quotient

M+ = X+/D+.

Remark 4.2.1. The definition of an EAC G2-structure ϕ that is used involves a normali-

sation: if t is the cylindrical coordinate on M then ‖ ∂
∂t
‖ → 1 uniformly on X as t → ∞

(in the metric defined by ϕ) so a scalar multiple λϕ is not an EAC G2-structure. This

normalisation is the most convenient to work with, but a different choice of normalisation

(e.g. that V ol(X) = 1 in the induced metric on the boundary) would of course give the

same results. Another interpretation is that R+ acts on the moduli space of unnormalised

EAC G2-structures by rescaling and that M+ is the resulting quotient.

In the compact case theorem 3.2.1 gives a description of the moduli space of torsion-free

G2-structures using the natural projection map to the de Rham cohomology. In the EAC

case, however, it is not enough to consider

M+ → H3(M), ϕD+ 7→ [ϕ].

We also need to consider the boundary values of ϕ to get an adequate description. Any

ϕ ∈ X+ is asymptotic to some Ω + dt ∧ ω with (Ω, ω) ∈ Ω3(X) × Ω2(X). Let

πM : M+ → H3(M) ×H2(X), ϕD+ 7→ ([ϕ], [ω]). (4.2)

The main result of this section is

Theorem 4.2.2. M+ is a smooth manifold, and πM : M+ → H3(M) × H2(X) is an

immersion.

In order to prove theorem 4.2.2 we make use of our understanding of the deformations

of the ‘boundary’ of an EAC G2-manifold. By proposition 2.2.24, the cross-section X is a

compact Calabi-Yau 3-fold, and the moduli space N of Calabi-Yau structures on X is a

smooth manifold by theorem 3.4.1.

In subsection 4.2.8 we look at some local properties of M+. Its dimension is given by

Proposition 4.2.3. dimM+ = b4(M) + 1
2
b3(X) − b1(M) − 1.

We also study the properties of the boundary map on M+. This is the natural map

B : M+ → N which sends a G2-structure on M to the Calabi-Yau structure on X defined

by its asymptotic limit. As before we denote by Am ⊆ Hm(X) the image of the pull-back
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map j∗ : Hm(M) → Hm(X) in the long exact sequence for relative cohomology (2.32). If

ϕ is asymptotic to Ω + dt ∧ ω then

[Ω] = j∗([ϕ]) ∈ A3,

1
2
[ω2] = j∗([∗ϕϕ]) ∈ A4,

so the image of B : M+ → N is contained in

NA = {(Ω, ω)DX ∈ N : [Ω] ∈ A3, [ω2] ∈ A4}. (4.3)

It turns out that, locally at least, these necessary conditions for a point to be in the image

are also sufficient.

Theorem 4.2.4. The image of

B : M+ → NA (4.4)

is open in NA and a submanifold of N . The map is a submersion onto its image.

Since the methods used are entirely local they do not tell us anything about the global

properties of M+ or the image of (4.4).

We will show that the fibres of the submersion (4.4) are locally diffeomorphic to the

compactly supported subspace H3
0 (M) ⊆ H3(M). The fibre over (Ω, ω) corresponds to the

moduli space of torsion-free G2-structures asymptotic to Ω + dt ∧ ω. Thus

Corollary 4.2.5. The moduli space of torsion-free G2-structures on M7 exponentially

asymptotic to a fixed cylindrical G2-structure on X6 ×R is a manifold. It is mapped locally

diffeomorphically to an affine translate of H3
0 (M) by πH : M+ → H3(M).

In the proof of proposition 4.2.3 we find that dimH3
0 (M) = b3(M) − 1

2
b3(X), so

dimNA = b4(M) − b3(M) + b3(X) − b1(M) − 1.

It follows from theorem 4.2.2 that

M+ → H3(M) ⊕H4(M), ϕD+ → ([ϕ], [∗ϕϕ]) (4.5)

is an immersion. The image in H3(M) ⊕ H4(M) of a fibre of B : M+ → N lies in

an affine translate of H3
0 (M) ⊕ H4

0 (M), which has a natural symplectic structure since

H3
0 (M) ∼= (H4

0 (M))∗.
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Proposition 4.2.6. The restriction of (4.5) to the moduli space of torsion-free G2-struc-

tures on M7 exponentially asymptotic to a fixed cylindrical G2-structure on X6 × R is a

Lagrangian immersion to an affine translate of H3
0 (M) ⊕H4

0 (M).

Theorem 4.1.3 implies that if M is a G2-manifold then either M is a cylinder X × R

(with a product metric) or M has a single end. If M is a cylinder X × R then the only

possible torsion-free G2-structure asymptotic to a given cylindrical G2-structure ϕ∞ is ϕ∞

itself, so the moduli space of asymptotically cylindrical torsion-free G2-structures on M

is equivalent to the moduli space of Calabi-Yau structures on X (we can compute that

Hm
0 (X × R) = 0 for all m, so this agrees with corollary 4.2.5). The moduli space will

therefore only be interesting when M has a single end, though we will not need to assume

this in the proof of theorem 4.2.2.

4.2.2 Proof outline

We wish to prove that M+ has the structure of a smooth manifold. In order to do this

we construct, as an intermediate step, moduli spaces of torsion-free EAC G2-structures

with some fixed rate δ > 0. The arguments are similar to the proof of the compact version

(theorem 3.2.1), but each step needs to be adapted to the EAC setting.

Each ϕ ∈ Xδ defines an EAC metric and hence a parameter ǫ1(ϕ) such that the as-

sociated Hodge Laplacian is Fredholm on Hölder spaces with weights smaller than ǫ1(ϕ)

(see proposition 2.3.21). When we study a neighbourhood of ϕ we need to assume that

δ < ǫ1(ϕ), so we let

X ′
δ = {ϕ ∈ Xδ : ǫ1(ϕ) > δ}.

By lemma 2.3.19, ǫ1 depends lower semi-continuously on the asymptotic model so X ′
δ is an

open subset of Xδ. Let Dδ be the group of exponentially cylindrical diffeomorphisms of M

with rate δ and Mδ = X ′
δ/Dδ.

In generalising the proof from the compact case we make use of the Hodge theory for

EAC manifolds developed in §2.3.4. In order to apply the implicit function theorem to

show that the pre-moduli space is a smooth manifold we need an EAC version of the chain

rule proposition 3.1.2.

Proposition 4.2.7. Let M be an EAC manifold with rate δ, E and F vector bundles

associated to TM and Ψ : E → F a smooth fibre-preserving map that is exponentially

asymptotically translation-invariant with rate δ. Then Ψ induces a smooth map of sections

Ck,α
δ (E) → Ck,α

δ (F ).
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We now consider how to adapt the steps of §3.2 in order to construct pre-moduli spaces

of torsion-free EAC G2-structures near ϕ ∈ X ′
δ.

Given ϕ ∈ X ′
δ, let Ω + dt ∧ ω = B(ϕ) denote the asymptotic limit of ϕ. If we identify

Ω+dt∧ω with the pair (Ω, ω) then, by proposition 2.2.24, Ω+dt∧ω defines a Calabi-Yau

structure on X. In order to simplify the problem of finding a slice for the D-action at ϕ we

use the deformation theory for compact Calabi-Yau 3-folds developed in §3.4. In particular,

proposition 3.4.10 ensures that there is a pre-moduli space Q of Calabi-Yau structures near

Ω + dt ∧ ω. Let

XQ = {ψ ∈ X ′
δ : B(ψ) ∈ Q}

and let DQ ⊆ Dδ be the subgroup of diffeomorphisms asymptotic to automorphisms of the

cylindrical Calabi-Yau structure Ω+ dt∧ω. By proposition 3.1.10, DQ acts on XQ, and we

will see that XQ/DQ maps homeomorphically to an open subset of Mδ.

We use slice arguments to study a neighbourhood of ϕDQ in XQ/DQ. In order to be

able to apply analysis results we need to use Banach spaces of forms, so we work with

weighted Hölder Ck,α
δ spaces for some fixed k ≥ 1 and α ∈ (0, 1). Note that the boundary

values of elements of XQ must lie in

QA = {Ω′ + dt ∧ ω′ ∈ Q : [Ω′] ∈ A3, [ω′2] ∈ A4}, (4.6)

where Am is the image of j∗ : Hm(M) → Hm(X) (cf. discussion before theorem 4.2.4). We

use a cut-off function ρ for the cylinder on M to consider ρQA as a subspace of smooth

asymptotically translation-invariant 3-forms supported on the cylinder of M and set

Z3
Q ⊆ Ck,α

δ (Λ3) + ρQA

to be the subspace of closed forms. Then XQ embeds continuously into Z3
Q.

The main technical steps in the construction of the pre-moduli space near ϕ are

(i) to show that QA is a submanifold of Q (proposition 4.2.9), so that Z3
Q is a manifold,

(ii) to find a complement K in TϕZ
3
Q for the tangent space to the DQ-orbit at ϕ (propo-

sition 4.2.15) and to pick a submanifold S ⊆ Z3
Q with TϕS = K,

(iii) to show that the space of torsion-free G2-structures Rδ ⊆ S is a submanifold (propo-

sition 4.2.19),

(iv) to show that the elements of Rδ are smooth and EAC with rate δ (proposition 4.2.24).
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To complete the proof of theorem 4.2.2 it then only remains to explain how to adapt

the slice arguments from §3.1 to the EAC case. This is done in §4.2.7. Repeated use is

made of the regularity result for isometries of EAC manifolds proposition 2.3.7. We show

that Rδ is homeomorphic to a neighbourhood in XQ/DQ (and therefore in Mδ). Hence Mδ

is a manifold for any δ > 0. We then show that Mδ is homeomorphic to an open subset of

M+ for any δ > 0 and deduce that M+ is a manifold.

Remark 4.2.8. The last step means that if ϕ ∈ X+ is EAC with rate δ0(ϕ) then for any

0 < δ < min{δ0(ϕ), ǫ1(ϕ)} the pre-moduli space Rδ gives a chart near ϕ not only in Mδ, but

also in Mδ′ for any δ′ > δ and hence in M+. In other words, Rδ is essentially independent

of δ if δ is chosen sufficiently small.

4.2.3 The boundary values

As explained above we are restricting our attention to determining the space of torsion-

free G2-structures in Z3
Q whose boundary values lie in a certain space QA. To make this

approach work we first of all need to show that QA is a manifold.

Let X6 be the cross-section of an EAC G2-manifold M7, and (Ω, ω) a Calabi-Yau

structure on X defined by the limit of a torsion-free EAC G2-structure on M . Let Q be

the pre-moduli space of Calabi-Yau structures near (Ω, ω) and equivalently to (4.6) define

QA = {(Ω′, ω′) ∈ Q : [Ω′] ∈ A3, [ω′2] ∈ A4}.

Since Q is diffeomorphic to a neighbourhood in the moduli space N of Calabi-Yau struc-

tures on X, QA is homeomorphic to a neighbourhood in the subspace NA ⊆ N defined

by (4.3).

Recall that by proposition 3.4.10 the tangent space at (Ω, ω) to the pre-moduli space

Q is the space HSU of harmonic tangents to the space of SU(3)-structures. As before let

Em ⊆ Hm(X) be the orthogonal complement of Am and let Am, Em ⊆ Hm
X denote the

respective spaces of harmonic representatives. By lemma 4.1.4, τ 7→ ω ∧ τ maps A2 → E4

and E2 → A4. Hence the linearisation of the condition [ω′2] ∈ A4 is [τ ] ∈ E2, and we would

expect the tangent space to QA at (Ω, ω) to be

HSU,A = {(σ, τ) ∈ HSU : σ ∈ A3, τ ∈ E2}.

This is indeed the case.
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Proposition 4.2.9. Let (Ω, ω) be the Calabi-Yau structure induced on the cross-section

X6 of an EAC G2-manifold M7 and Q the pre-moduli space of Calabi-Yau structures near

(Ω, ω). Then QA ⊆ Q is a submanifold and

T(Ω,ω)QA = HSU,A.

Proof. The map Q → H3(X) is a submersion, so

Q′ = {(Ω′, ω′) ∈ Q : [Ω′] ∈ A3}

is a submanifold of Q. By proposition 4.1.5

H4(X) = A4
1 ⊕ A4

6 ⊕ A4
8 ⊕ E4

6 ⊕ E4
8 ,

where as before A4
d = H4

d(X) ∩ A4 and E4
d = H4

d(X) ∩ E4. Let

PE,8 : H4(X) → E4
8

be the orthogonal projection. For (Ω′, ω′) ∈ Q′, let Em′ be the orthogonal complement

of Am with respect to the metric defined by (Ω′, ω′), and let PA′ : Hm(X) → Am and

PE′ : Hm(X) → Em′ be the respective projections. Let

F : Q′ → E4
8 , (Ω′, ω′) 7→ PE,8PE′ [ω′ ∧ ω′].

We prove that QA is a submanifold of Q′ by showing that it is the zero set of F and that

F has surjective derivative at (Ω, ω).

Suppose F (Ω′, ω′) = 0 and let a = PE′ [ω′ ∧ ω′]. Write a = b + c, with b ∈ A4, c ∈ E4.

PE,8a = 0 ⇒ π8c = 0, so c ∈ E4
6 . Since E1 → E4

6 , v 7→ [Ω]∪v is an isomorphism c = [Ω]∪v

for some v ∈ E1. In the inner product <,>′ on H∗(X) defined by (Ω′, ω′),

<a, a>′ = <a, [Ω] ∪ v>′ = <a, [Ω] ∪ v − [Ω′] ∪ PE′v>′ ≤ ‖a‖′(‖[Ω − Ω′]‖′‖v‖′ + ‖PA′v‖′).

The RHS can be estimated by ‖[Ω−Ω′]‖(‖a‖′)2 for (Ω′, ω′) close to (Ω, ω). Hence for (Ω′, ω′)

sufficiently close to (Ω, ω)

F (Ω′, ω′) = 0 ⇒ PE′ [ω′2] = 0 ⇒ [ω′2] ∈ A4.
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So QA ⊆ Q′ is the zero set of F . It remains to show that F has surjective derivative. If

(σ, τ) ∈ (A3 ×H2
X) ∩HSU = T(Ω,ω)Q

′ then, since [ω2] ∈ A4,

DF(Ω,ω)(σ, τ) = PE,8PE(2[ω ∧ τ ]) = 2PE,8[ω ∧ τ ].

Since A2
8 → E4

8 , τ 7→ ω ∧ τ is a bijection, the derivative maps the space 0 ×A2
8 onto E4

8 .

By the implicit function theorem QA is a manifold and the tangent space at (Ω, ω) is

kerDF(Ω,ω) = HSU,A.

Corollary 4.2.10. The map HSU,A → A3, (σ, τ) 7→ σ is surjective with kernel 0 × E2
8 .

Proof. The last part of the proof of the proposition actually shows that QA → A3 is a

submersion, so HSU,A → A3 is surjective. This could also be deduced from lemma 4.1.4.

By definition of HSU , the kernel consists of those (0, τ) ∈ 0 × E2 satisfying the conditions

(2.18), which reduce to π1τ = π6τ = 0.

Proposition 4.2.9 implies directly that a neighbourhood of the image of B : M+ → NA

is a manifold. The rest of theorem 4.2.4 follows too, once we have proved the main result

that M+ is a manifold. We will return to this in §4.2.8.

Remark 4.2.11. If b1(X) = 0 then the proof of proposition 4.2.9 simplifies and it is possible

to show that NA is itself a submanifold of N . However, we do not want to exclude the case

b1(X) 6= 0, since many of the interesting examples for the gluing construction discussed in

§6 have reducible cross-section.

4.2.4 The slice

Fix k ≥ 1, δ > 0, α ∈ (0, 1) and ϕ ∈ X ′
δ. We will find a direct complement K in TϕZ

3
Q to

the DQ-orbit. Then we will define a submanifold S ⊆ Z3
Q whose tangent space at ϕ is K.

S will be used as a slice in Z3
Q for the DQ-action at ϕ.

The fixed G2-structure ϕ is used to define an EAC metric and a Hodge star. It also

defines type decompositions of the exterior bundles (3.6) and spaces of harmonic forms, as

described in §2.1.2. Recall that the map TM → Λ2
7, v 7→ vyϕ is a bundle isomorphism and

that Lie derivatives LV ϕ = d(V yϕ) are precisely exterior derivatives of 2-forms of type 7.

Restricting our attention to G2-structures in Z3
Q is convenient because the asymptotic

values of elements of TϕZ
3
Q are harmonic. Recall the notation for harmonic forms from the
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summary in §2.3.4, in particular that Hm
0 and Hm

∞ denote the spaces of bounded harmonic

forms on M and harmonic translation-invariant forms on X × R respectively.

For convenience we identify translation-invariant 3-forms on X×R with pairs of 3- and

2-forms on X by σ + dt ∧ τ ↔ (σ, τ). This identifies the tangent spaces HSU and HSU,A of

Q and QA with subspaces H3
SU and H3

SU,A ⊆ H3
∞. Let

Z3
cyl ⊆ Ck,α

δ (Λ3) ⊕ ρH3
SU,A

be the subspace of closed forms. Clearly TϕZ
3
Q ⊆ Z3

cyl; we show below that equality holds.

The tangent space to the pre-moduli space of torsion-free G2-structures at ϕ will turn out

to be the subspace

H3
cyl ⊆ Z3

cyl

of harmonic forms. This is exactly the subspace of elements of H3
0 which are tangent to

cylindrical deformations of the G2-structure, i.e. whose boundary values lie in H3
SU . The

boundary map B : H3
0 → H3

∞ maps H3
cyl precisely onto H3

SU,A. Together with the Hodge

decomposition theorem 2.3.27 it follows that

Z3
cyl = H3

cyl ⊕ Ck,α
δ [dΛ2]. (4.7)

Remark 4.2.12. dCk+1,α
δ (Λm−1) is the space of exterior derivatives of decaying forms, while

we use Ck,α
δ [dΛm] to denote the space of exact decaying forms. dCk+1,α

δ (Λm−1) ⊆ Ck,α
δ [dΛm]

is a closed subspace of finite codimension.

Lemma 4.2.13. Z3
Q is a manifold and TϕZ

3
Q = Z3

cyl.

Proof. If ψ is a 3-form asymptotic to an element (Ω′, ω′) ∈ QA then the condition [Ω′] ∈ A3

implies that dψ ∈ dCk,α
δ (Λ3). Therefore

d : Ck,α
δ (Λ3) + ρQA → dCk,α

δ (Λ3)

is a submersion and the result follows from the implicit function theorem.

Let Dk+1
Q be the group of diffeomorphisms of M which are isotopic to the identity and

Ck+1,α
δ -asymptotic to a cylindrical automorphism of the cylindrical G2-structure Ω+dt∧ω.

The elements of a neighbourhood of the identity in Dk+1
Q can be written as exp(V + ρV∞),

where V is a Ck+1,α
δ vector field on M and V∞ is a translation-invariant vector field on
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X × R with LV∞(Ω + dt ∧ ω) = 0, i.e. V∞ ∈ (H1
∞)♯. Therefore if we let

D = ρ(H1
∞)♯yϕ ⊆ Ω2

7(M)

then the tangent space to the Dk+1
Q -orbit at ϕ is

{LV+ρV∞ϕ : V ∈ Ck+1,α
δ (TM), V∞ ∈ (H1

∞)♯} = d(Ck+1,α
δ (Λ2

7) ⊕D).

As a direct complement in Z3
cyl we can take K = H3

cyl ⊕ W , where W is the space of

decaying exact forms of type 27. Like in the compact case this is the kernel of the formal

adjoint of d : Ω2
7(M) → Ω3(M) (see remark 3.2.7).

Definition 4.2.14. Let W = Ck,α
δ [dΛ2] ∩ Ω27(M).

Proposition 4.2.15.

Z3
cyl = d(Ck+1,α

δ (Λ2
7) ⊕D) ⊕H3

cyl ⊕W.

Proof. By (4.7) it suffices to show

Ck,α
δ [dΛ2] = d(Ck+1,α

δ (Λ2
7) ⊕D) ⊕W. (4.8)

As in the proof of proposition 3.2.6 we can identify the spinor bundle on the G2-manifold M

both with Λ0⊕Λ2
7 and with Λ3

1⊕7 so that the Dirac operator on exponentially asymptotically

translation-invariant spinors (2.39) is identified with

Ck+1,α
δ (Λ0 ⊕ Λ2

7) → Ck,α
δ (Λ3

1⊕7), (f, η) 7→ π1⊕7dη + ∗(df ∧ ϕ).

As explained in §2.3.5, the image of this map is the L2-orthogonal complement of the de-

caying harmonic spinors. On a scalar-flat manifold there are no harmonic decaying spinors,

so the map is surjective. Thus, if β ∈ Ck,α
δ [dΛ2] then

π1⊕7β = π1⊕7dη + ∗(df ∧ ϕ)

for some η ∈ Ck+1,α
δ (Λ2

7) ⊕ D, f ∈ Ck+1,α
δ (Λ0) ⊕ ρH0

∞. Integrating by parts like in (3.10)

shows df = 0. Hence the decaying exact form β − dη has type 27, i.e. β − dη ∈ W .

We want to take as our slice for the Dδ-action at ϕ a submanifold S ⊆ Z3
Q with
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TϕS = K. To this end we pick a map

exp : U → Z3
Q (4.9)

on a neighbourhood U of 0 in Z3
cyl = TϕZ

3
Q, such that D exp0 = id. We also insist that exp

is a translation on the decaying forms and that it maps smooth forms to smooth forms.

We can do this since by (4.7) the decaying forms have a finite-dimensional complement of

smooth forms in Z3
cyl. We then choose

S = exp(K ∩ U). (4.10)

4.2.5 Smoothness of the pre-moduli space

Let Rδ ⊆ S be the subset of Ck,α
δ torsion-free G2-structures. Rδ is the pre-moduli space

of torsion-free G2-structures near ϕ. In order to show that Rδ is a submanifold we will

exhibit it as the zero set of a function F with surjective derivative and apply the implicit

function theorem.

Recall that by theorem 2.2.10(i), a closed G2-structure ψ is torsion-free if and only if

dΘ(ψ) = 0, where Θ is the non-linear map ψ 7→ ∗ψψ. Thus

Rδ = {ψ ∈ S : dΘ(ψ) = 0}.

If ψ ∈ Z3
Q then ψ is asymptotic to a torsion-free cylindrical G2-structure Ω′ + dt ∧ ω′,

so dΘ(ψ) decays. Moreover, elements of Z3
Q are asymptotic to elements of QA ⊆ Q by

definition. Therefore Θ(ψ) is asymptotic to 1
2
ω′2 − dt ∧ Ω̂′, with [ω′2] ∈ A4 (cf. (4.6) and

remark 2.2.25). This implies that dΘ(ψ) ∈ dCk+1,α
δ (Λ4).

Θ : Λ3
+T

∗M → Λ4T ∗M is point-wise smooth, so by the chain rule

Z3
Q → dCk+1,α

δ (Λ4), ψ → dΘ(ψ)

is a smooth function. We need to adjust this map to obtain a function with surjective

derivative. If β is a 3-form such that d∗β ∈ d∗Ck+1,α
δ (Λ3) then by the Hodge decomposition

theorem 2.3.27 there is a unique PE(β) ∈ Ck+1,α
δ [dΛ2] such that d∗β = d∗PE(β). We can

think of PE(β) as the exact part of β. We then let PW (β) be the image of PE(β) under the

projection Ck+1,α
δ [dΛ2] → W in the direct sum decomposition (4.8).
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Definition 4.2.16. For ψ close to ϕ in Z3
Q let

F (ψ) = PW (∗Θ(ψ)). (4.11)

Clearly dΘ(ψ) = 0 ⇒ F (ψ) = 0. We need to show that that the converse also holds, so

that we do not ‘lose any information’ by considering zeros of F instead of ψ 7→ dΘ(ψ).

Proposition 4.2.17. For ψ ∈ Z3
Q sufficiently close to ϕ, ψ is torsion-free if and only if

F (ψ) = 0.

Proof. We adapt the proof of proposition 3.2.10. For ψ ∈ Z3
Q the tangent space to the

D1
Q-orbit at ψ can be written as

Tψ = d(C1,α
δ (Λ2

7,ψ) ⊕ ρ(H1
∞)♯yψ),

where Λ2
7,ψ is the bundle of type 7 2-forms defined by the G2-structure ψ. The linear map

W ⊕ C1,α
δ (TM) ⊕H1

∞ → C0,α
δ [dΛ2], (w, V, β) 7→ w + d((V + ρβ♯)yψ)

is surjective at ψ = ϕ by (4.8). Since it depends continuously on ψ,

C0,α
δ [dΛ2] = W + Tψ

for any ψ sufficiently close to ϕ.

We deduce from theorem 2.2.10(ii) that ∗dΘ(ψ) = d∗PE(∗Θ(ψ)) is point-wise orthog-

onal to Λ2
7,ψ when dψ = 0. Therefore PE(∗Θ(ψ)) is L2-orthogonal to Tψ (integrating by

parts). F (ψ) = 0 means that PE(∗Θ(ψ)) is L2-orthogonal to W too, so PE(∗Θ(ψ)) = 0.

By proposition 4.2.7, F : Z3
Q → W is a smooth function. Next we show that it satisfies

the hypotheses of the implicit function theorem.

Proposition 4.2.18. DFϕ : Z3
cyl → W is 0 on d(Ck+1,α

δ (Λ2
7) ⊕D) ⊕H3

cyl and −id on W .

Proof. Same as the compact version 3.2.12.

We have taken the pre-moduli space Rδ near ϕ to consist of the torsion-free EAC

G2-structures in the slice S. However, we can only prove that it has the properties we want

close to ϕ. We will therefore repeatedly replace S by a neighbourhood of ϕ in S in order

to ensure that Rδ ⊆ S has the desired properties. The first step is to ensure that Rδ is a
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manifold. Proposition 4.2.17 shows that if S is sufficiently small then Rδ is the zero set of

F in S. Applying the implicit function theorem to F : S → W we deduce

Proposition 4.2.19. If the slice S near ϕ is shrunk sufficiently then the space Rδ of

torsion-free EAC G2-structures in S is a manifold. Its tangent space at ϕ is H3
cyl.

The implicit function theorem implies also that a small neighbourhood of ϕ in Xk,Q,

the space of torsion-free G2-structures in Z3
Q, is a manifold.

4.2.6 Regularity

To finish the proof of theorem 4.2.2 we need to show that if the slice S is taken sufficiently

small then the torsion-free G2-structures in S are smooth and asymptotically cylindrical.

We first prove a regularity result about solutions of elliptic operators which are ‘C l,α
δ -

asymptotically cylindrical’, and then generalise the regularity argument for the compact

case from §3.2.5. We start by quoting an interior estimate.

Theorem 4.2.20. Let BR, B2R ⊂ Rq be the balls centred on the origin of radius R and

2R respectively. Let A be an elliptic order r operator with C l,α coefficients acting on the

Rp-valued functions on B2R.

If u ∈ Cr,α(B2R,R
p) and Au ∈ C l,α(B2R,R

p) then u|BR ∈ C l+r,α(BR,R
p). Furthermore

‖u|BR‖Cl+r,α ≤ K (‖Au‖Cl,α + ‖u‖C0) , (4.12)

where the constant K depends on q, k, α, the C l,α-norm of the coefficients of A and a lower

bound for the operator norm of the symbol of A evaluated at unit vectors.

Proof. This is essentially a paraphrase of Theorems 6.2.5 and 6.2.6 in [45].

Definition 4.2.21. Say that the differential operator A on M is C l,α
δ -asymptotic to the

translation-invariant operator A∞ on the cylinder X × R if the difference between the

coefficients (as in definition 2.3.11) of A and A∞ is C l,α
δ .

It is well-known how to go from an interior estimate like theorem 4.2.20 to global

estimates for appropriate norms on an asymptotically cylindrical manifold. We wish to use

C l,α
δ -norms. The theorem below is similar to for example [40, Theorem 6.3].

Theorem 4.2.22. Let Mn be an asymptotically cylindrical manifold, E a vector bundle

on M associated to TM and A a linear elliptic order r differential operator on the sections

of E that is C l,α
δ -asymptotic to a translation-invariant operator with C l,α coefficients.
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If s ∈ Cr,α
δ (E) and As ∈ C l,α

δ (E) then s ∈ C l+r,α
δ (E). Furthermore

‖s‖Cl+r,α
δ

< K
(

‖As‖Cl,α
δ

+ ‖s‖C0
δ

)

(4.13)

for some K > 0 independent of s.

Proof. Working just on the compact part M0 of M this is easy. We can take coordinate

charts that identify neighbourhoods U ⊂ M0 with B2R ⊂ Rn and apply theorem 4.2.20 to

deduce that on the inverse image U ′ of BR

‖s|U ′‖Cl+r,α < K (‖As|U‖Cl,α + ‖s|U‖C0) (4.14)

for some K > 0 independent of s. K is allowed to depend on U , but since we can cover M0

by finitely many U we can take K large enough to ensure that

‖s|M0
‖Cl+r,α < K (‖As|M0

‖Cl,α + ‖s|M0
‖C0) . (4.15)

Now we consider the non-compact part M∞ = X × R+. Let V be a neighbourhood in X,

f : V → B2R ⊂ Rn−1 a diffeomorphism and V ′ the inverse image of BR under f . For t ∈ R+

let It and I ′t be the intervals (t− 2R, t+2R), (t−R, t+R) respectively. By theorem 4.2.20

‖s|V ′×I′t
‖Cl+r,α < K (‖As|V×It‖Cl,α + ‖s|V×It‖C0) . (4.16)

Here the constant K depends on q, k, α, a bound on V × It for the C l,α-norm of the

coefficients of A, a lower bound on V × It for the operator norm of the symbol of A at unit

vectors and finally also on the diffeomorphism f (e.g. on how f distorts the metric). Since

A is C l,α
δ -asymptotically translation-invariant we can find global bounds for the C l,α-norms

of the coefficients of A and for the operator norm of the symbol. Thus we can take K in

(4.16) independent of t. Furthermore we can scale (4.16) by eδt in order to replace the

norms by weighted norms. Hence we deduce

‖s|V ′×R+‖Cl+r,α
δ

< K
(

‖As|V×R+‖Cl,α
δ

+ ‖s|V×R+‖C0
δ

)

.

Since we can cover M∞ by finitely many strips V ′×R+ it follows that we can take K large

enough that

‖s|M∞
‖Cl+r,α

δ
< K

(

‖As|M∞
‖Cl,α

δ
+ ‖s|M∞

‖C0
δ

)

.
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Together with (4.15) this proves the theorem.

Remark 4.2.23. With some additional algebra theorem 4.2.22 can be a generalised to show

regularity of ‘Cr,α
δ -asymptotically translation-invariant’ solutions.

Now consider again a G2-manifold M with a torsion-free G2-structure ϕ, and the pre-

moduli space Rδ of torsion-free G2-structures in the slice S = exp(K ∩ U) ⊆ Z3
Q for

the DQ-action at ϕ. We use theorem 4.2.22 in a boot-strapping argument to show that

the elements of Rδ are EAC. A priori they are Ck,α
δ -asymptotic to elements of QA. As in

proposition 4.2.19 we can only work close to ϕ, and must replace S by a neighbourhood of

ϕ in S.

Proposition 4.2.24. If the slice S near ϕ is shrunk sufficiently then the pre-moduli space

Rδ ⊆ S consists of smooth exponentially asymptotically translation-invariant forms.

Proof. We want to show that if ψ ∈ S is sufficiently close to ϕ and dΘ(ψ) = 0 then ψ is

smooth and exponentially asymptotically translation-invariant. Set ψ = ϕ+ β. Then

D(d∗dΘ)ϕ = −dd∗ ◦ (4
3
π1 + π7 − π27),

so we can write

d∗dΘ(ϕ+ β) = −dd∗(4
3
π1β + π7β − π27β) + P (β,∇β,∇2β) +R(β,∇β),

where P consists of the quadratic terms of d∗dΘ(ϕ+ β) that involve ∇2β, and R consists

of the remaining quadratic terms. P and R depend only point-wise on their arguments and

P is linear in ∇2β.

By the definition of the map exp (4.9) we can write β = κ + γ, with κ ∈ W and γ

smooth and exponentially asymptotic to some element of QA. As κ is closed of type 27

−dd∗(4
3
π1κ+ π7κ− π27κ) = △κ.

Considering β and ∇β as fixed we can define a second-order linear differential operator

A : ζ 7→ P (β,∇β,∇2ζ). Then the condition d∗dΘ(ψ) = 0 is equivalent to

(△ + A)κ = −R + dd∗(4
3
π1γ + π7γ − π27γ) − Aγ. (4.17)

If β = 0 then A = 0, so △ + A is elliptic. Ellipticity is an open condition, so △ + A is

in fact elliptic for any β sufficiently small in the uniform norm.
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Now suppose κ is C l+1,α
δ and is a solution of (4.17). R and the coefficients of A depend

smoothly on κ and ∇κ. Therefore △ + A and the RHS of (4.17) are C l,α
δ -asymptotically

translation-invariant. Since the RHS of (4.17) is decaying a priori it is C l,α
δ . If β is suffi-

ciently small that △+A is elliptic then by theorem 4.2.22 κ is C l+2,α
δ . Since κ is C1,α

δ it is

C l,α
δ for all l by induction.

Hence ψ = ϕ+κ+ γ is smooth and exponentially asymptotically translation-invariant.

4.2.7 Constructing the moduli space

For each ϕ ∈ X ′
δ we have constructed a pre-moduli space Rδ. Rδ is a manifold, its elements

are smooth and EAC and its tangent space at ϕ is H3
cyl. To complete the proof of the main

theorem 4.2.2 we now provide slice arguments to show that we can take the pre-moduli

spaces Rδ as coordinate charts to define a smooth structure on Mδ. We use the same ideas

as in the compact case and study the charts for M+ in terms of the projection to the de

Rham cohomology which appears in the statement of the main theorem 4.2.2.

πM : X+ → H3(M) ×H2(X), ϕ 7→ ([ϕ], [Be(ϕ)]).

We first check that πM is an embedding on Rδ. If we allow ourselves to shrink Rδ this

amounts to showing that the derivative of πM at ϕ is injective. The derivative is

(πH , πH,e) : H3
cyl → H3(M) ×H2(X), β 7→ ([β], [Be(β)])

and the kernel consists of harmonic, exact, decaying forms, so it is trivial.

Recall from subsection 4.2.2 that we chose a pre-moduli space Q near the Calabi-Yau

structure (Ω, ω) on X defined by the asymptotic limit of ϕ, and that XQ ⊆ X ′
δ is the subset

of torsion-free G2-structures whose asymptotic limits lie in Q. DQ ⊆ Dδ is the subgroup

of smooth EAC diffeomorphisms of M whose asymptotic limits lie in the automorphism

group of (Ω, ω). DQ acts on XQ by proposition 3.1.10 and as an intermediate step for our

slice result we prove that Rδ is a coordinate chart for XQ/DQ.

Proposition 4.2.25. The natural map Rδ → XQ/DQ is a homeomorphism onto a neigh-

bourhood of ϕDQ.

Proof. Recall that a small neighbourhood of ϕ in Xk,Q, the space of torsion-free G2-struc-

tures in Z3
Q, is a manifold. Its tangent space at ϕ is d(Ck+1,α

δ (Λ2
7)⊕D)⊕H3

cyl by proposition
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4.2.18. The first term is the tangent space to the Dk+1
Q -orbit of ϕ, so the derivative at (ϕ, id)

of

Rδ ×Dk+1
Q → Z3

Q, (β, φ) 7→ φ∗β

is surjective. By the submersion theorem it is an open map on a neighbourhood of (ϕ, id).

Using the regularity of isometries of EAC manifolds from proposition 2.3.7 it follows (as

in corollary 3.1.6) that Rδ → XQ/DQ is an open map. It is also injective, since πM is

Dδ-invariant and injective on Rδ.

For our argument to work we may need to shrink Q by replacing it with a neighbourhood

of (Ω, ω) in Q.

Lemma 4.2.26. If the pre-moduli Q of Calabi-Yau structures is shrunk sufficiently then

XQ/DQ is homeomorphic to a neighbourhood of ϕDδ in X ′
δ/Dδ.

Proof. The natural map f : XQ/DQ → X ′
δ/Dδ is injective by proposition 3.1.10.

Let Y be the space of Calabi-Yau structures on X. One of the properties of the pre-

moduli space Q is that there is a neighbourhood U of (Ω, ω) in Y and a continuous map

P : U → C∞(TX) ×Q, (β, γ) 7→ (V,Ω′, ω′)

such that (β, γ) = (expV )∗(Ω′, ω′) for any (β, γ) ∈ U (the map is given by restricting a

local right inverse of the submersion (3.2) to a small U).

Let XU = {ψ ∈ X ′
δ : B(ψ) ∈ U}. If ψ ∈ XU let V = P (B(ψ)), φ = exp ρV ∈ Dδ

and g(ψ) = φ∗ψ. Then B(g(ψ)) ∈ Q, so ψ ∈ XQ. Obviously f(g(ψ)DQ)) = ψDδ. Since

f is injective g induces a well-defined map XUDδ → XQ/DQ. g is an inverse for f on a

neighbourhood of ϕDδ in X ′
δ/Dδ, so the result follows.

Theorem 4.2.27. Mδ has a unique smooth structure such that

πM : Mδ → H3(M) ×H2(X)

is an immersion.

Proof. Same as theorem 3.1.9.

If δ1 > δ2 > 0 then Mδ1 → Mδ2 is injective by proposition 2.3.7, and Mδ1 must be an

open submanifold of Mδ2 since πM is an immersion on both spaces. Similarly Mδ → M+
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is injective for any δ > 0, so

M+ =
⋃

δ>0

Mδ.

To finish the proof of the main theorem 4.2.2 it remains only to observe

Lemma 4.2.28. For any δ > 0 the natural map Mδ → M+ is a homeomorphism to an

open subset.

Proof. We need to show that Mδ → M+ is open, i.e. that if U ⊆ X ′
δ with UDδ open in Xδ

then UD+ is open in X+. By the definition of the topology on X+ this means that UD+∩Xδ′

is open in Xδ′ for any δ′ > δ. But proposition 2.3.7 implies that UD+ ∩ Xδ′ = UDδ′ , which

is open in Xδ′ since Mδ → Mδ′ is a local diffeomorphism.

This concludes the proof of theorem 4.2.2.

4.2.8 Properties of the moduli space

We look at some local properties of the moduli space M+ on an EAC G2-manifold M ,

which follow from the existence of a pre-moduli space R with tangent space H3
cyl.

First, the boundary map B maps H3
cyl onto H3

SU,A, so proposition 4.2.9 implies that

B : R → QA is a submersion. As QA is homeomorphic to an open set in NA it follows that

B : M+ → NA is a submersion onto its image and we have proved theorem 4.2.4.

We can now deduce corollary 4.2.5. It suffices to show that the fibres of B : M+ → NA

are locally diffeomorphic to the compactly supported subspace H3
0 (M) ⊆ H3(M).

Lemma 4.2.29. Let ϕ be an EAC torsion-free G2-structure on M7, R the pre-moduli

space of EAC torsion-free G2-structures near ϕ and Q the pre-moduli space of Calabi-Yau

structures near B(ϕ).

πH : R → H3(M)

maps a neighbourhood of the fibre of B : R → QA containing ϕ diffeomorphically to an

open subset of the affine space [ϕ] +H3
0 (M).

Proof. If ψ is in the same fibre as ϕ then ψ−ϕ is exponentially decaying, so lemma 2.3.36

implies that [ψ − ϕ] ∈ H3
0 (M). The tangent space to the fibre at ϕ is the kernel of the

derivative of the submersion B, i.e. the subspace H3
+ of decaying forms in H3

cyl = TϕR. By

theorem 2.3.35 H3
+
∼= H3

0 (M), and the result follows.
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We can also use the pre-moduli space charts to check that M+ → H3(M) ⊕ H4(M)

restricts to Lagrangian immersions of the fibres of the boundary map. To prove proposition

4.2.6 it suffices to prove that for each ϕ the derivative is a Lagrangian embedding on the

tangent space to the pre-moduli space.

Lemma 4.2.30. Let ϕ be an EAC torsion-free G2-structure on M7 and R the pre-moduli

space near ϕ. Then the derivative of R → H3(M) ⊕ H4(M) embeds the tangent space at

ϕ to the fibre of B : R → QA as a Lagrangian subspace of H3
0 (M) ⊕H4

0 (M).

Proof. As above the tangent space to the fibre of ϕ is TϕR = H3
+. Since harmonic 3-forms

of type 1 or 7 are parallel the elements of H3
+ have type 27. By proposition 2.2.4, the

derivative on the fibre is

H3
+ → H3

0 (M) ⊕H4
0 (M), χ 7→ ([χ],−[∗χ]).

If χ1, χ2 ∈ H3
+ then the symplectic pairing of their images in H3

0 (M) ⊕H4
0 (M) is just

<χ1,−χ2>L2 − <−χ1, χ2>L2= 0.

Hence the derivative on the fibre is a Lagrangian inclusion.

Finally, to confirm the formula for the dimension in proposition 4.2.3 we just have

to compute the dimension of H3
cyl. Recall from subsection 2.3.4 that Am is the image of

j∗ : Hm(M) → Hm(X), that Hm(X) = Am ⊕ Em is an orthogonal direct sum and that

the harmonic representatives of the summands are denoted by Am and Em respectively.

Lemma 4.2.31. Let M4k+3 be an oriented EAC manifold with cross-section X. Then

A2k+1 ⊆ H2k+1(X) has dimension 1
2
b2k+1(X).

Proof. H2k+1(X) is a symplectic vector space under the Poincaré pairing. In particular

b2k+1(X) is even. ∗ : H2k+1(X) → H2k+1(X) maps A2k+1 isomorphically to its orthogonal

complement E2k+1. The Poincaré pairing on H2k+1(X) can be expressed as < ·, ∗· >, so

A2k+1 ⊆ H2k+1(X) is a Lagrangian subspace.

In particular for any EAC G-manifold M with cross-section X the long exact sequence

(2.32) for relative cohomology gives

dimH3
0 (M) = b3(M) − 1

2
b3(X). (4.18)
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Lemma 4.2.32. dimH3
cyl = b4(M) + 1

2
b3(X) − b1(M) − 1.

Proof. As before we let E2
d = E2∩H2

d(X). As a consequence of corollary 4.2.10 and theorem

2.3.33 we find that πH : H3
cyl → H3(M) is surjective and the kernel is mapped bijectively

to E2
8 by πH,e : H3

cyl → H2(X). Hence dimH3
cyl = b3(M) + dimE2

8 .

The dimension of E2 can be computed from the long exact sequence (2.32) for relative

cohomology together with (4.18).

dimE2 = dim ker(e : H3
cpt(M) → H3(M))

= b4(M) − dimH3
0 (M) = b4(M) − b3(M) + 1

2
b3(X).

By propositions 4.1.5 and 2.3.41

dimE2
6 = dimA1 = b1(M), dimE2

1 = dimA0 = 1.

Hence

dimE2
8 = b4(M) − b3(M) + 1

2
b3(X) − b1(M) − 1.

4.3 Deformations of EAC Spin(7)-manifolds

In this section we prove that the moduli space of torsion-free exponentially asymptotically

cylindrical Spin(7)-structures on a manifold with cylindrical ends is smooth and study

some of its local properties. The method is very similar to that for the G2 case.

4.3.1 Results

Let M8 be a connected oriented manifold with cylindrical ends and cross-section X7.

For δ > 0 let Xδ be the space of torsion-free EAC Spin(7)-structures with rate δ on M

(see definition 4.1.2). Xδ has the topology of a subspace of the space of exponentially

asymptotically translation-invariant 4-forms.

Let X+ =
⋃

δ>0 Xδ. If δ1 > δ2 > 0 then the inclusion Xδ1 →֒ Xδ2 is continuous, so we can

give X+ the direct limit topology. Let D+ be the group of EAC diffeomorphisms of M with

any positive rate (in the sense of definition 2.3.6) that are isotopic to the identity. D+ acts

on X+ by pull-backs, and the moduli space of torsion-free EAC Spin(7)-structures on M

is the quotient M+ = X+/D+.

102



Remark 4.3.1. The definition of an EAC Spin(7)-structure involves a normalisation of the

asymptotic limit (cf. remark 4.2.1).

The main result of this section is

Theorem 4.3.2. M+ is a smooth manifold and πH : M+ → H4(M) is an immersion.

Since M is non-compact, the notion of self-duality does not make sense for arbitrary

classes in H4(M), but only for compactly supported ones. Let H4
+(M) ⊆ H4

0 (M) be the

self-dual subspace and denote its dimension by b4+(M). The dimension of the moduli space

is given by

Proposition 4.3.3. dimM+ = b4(M) − b4+(M) − b1(M) + 1 + b1(X).

Remark 4.3.4. The term b4(M)−b4+(M) is the dimension of the space of bounded anti-self-

dual forms, while −b1(M) + 1 + b1(X) is the dimension of the space of bounded parallel

positive spinors on the Spin(7)-manifoldM . This is analogous to the terms in the dimension

formula for the moduli space on a compact Spin(7)-manifold (see remark 3.3.2).

The asymptotic limit of a torsion-free EAC Spin(7)-structure is of the form ∗ϕϕ+dt∧ϕ,

where ϕ is a torsion-free G2-structure on the cross-section X7 and ∗ϕ the induced Hodge

star on X (see proposition 2.2.26). This gives a natural boundary map B : M+ → N where

N is the moduli space of torsion-free G2-structures on X. As before, let Am ⊆ Hm(X)

denote the image of the pull-back map j∗ : Hm(M) → Hm(X). If a torsion-free Spin(7)-

structure ψ is asymptotic to ∗ϕϕ+ dt ∧ ϕ then

[∗ϕϕ] = j∗([ψ]) ∈ A4,

so the image of B : M+ → N is contained in a subset determined by the topology of the

pair (M,X)

NA = {ϕDX ∈ N : [∗ϕ] ∈ A4}. (4.19)

N → H4(X) is a local diffeomorphism by theorem 3.2.1, so NA is a submanifold of N .

Theorem 4.3.5.

B : M+ → NA (4.20)

is a submersion.

Since the methods used are entirely local they do not tell us anything about the global

properties of M+ or the image of (4.20).
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We will show that the fibres of the submersion (4.20) are locally diffeomorphic to

the compactly supported anti-self-dual cohomology H4
−(M) ⊆ H4

0 (M). The fibre over ϕ

corresponds to the moduli space of torsion-free Spin(7)-structures asymptotic to ∗ϕ+dt∧ϕ.

Thus

Corollary 4.3.6. The moduli space of torsion-free Spin(7)-structures on M exponentially

asymptotic to a fixed cylindrical Spin(7)-structure on X × R is a manifold locally diffeo-

morphic to H4
−(M).

4.3.2 Proof outline

We use a set-up entirely analogous to the G2 case. Each ψ ∈ Xδ defines an EAC metric,

and hence a parameter ǫ1(ψ) (cf. proposition 2.3.21). Let

X ′
δ = {ψ ∈ Xδ : ǫ1(ψ) > δ}.

ǫ1 depends lower semi-continuously on the asymptotic model by lemma 2.3.19, so X ′
δ is an

open subset of Xδ. Let Dδ be the group of exponentially cylindrical diffeomorphisms of M

with rate δ, and Mδ = X ′
δ/Dδ.

We now consider how to adapt the steps of section 3.2 to construct pre-moduli spaces

of torsion-free EAC Spin(7)-structures near ψ ∈ X ′
δ.

Given ψ ∈ X ′
δ, the asymptotic limit has the form B(ψ) = ∗ϕ + dt ∧ ϕ where ϕ is a

torsion-free G2-structure on X. In §3.2 we saw that there is a pre-moduli space of torsion-

free G2-structures near ϕ which we now denote by Q. We can identify Q with a space of

torsion-free cylindrical Spin(7)-structures on X × R, and let

XQ = {ψ ∈ X ′
δ : B(ψ) ∈ Q}.

Note that the boundary values of elements of XQ must lie in

QA = {∗ϕ′ + dt ∧ ϕ′ ∈ Q : [∗ϕ′] ∈ A4} (4.21)

where Am is the image of j∗ : Hm(M) → Hm(X) (cf. discussion before theorem 4.3.5). Let

ρ be a cut-off function for the cylinder on M . ρQA can be identified with a subspace of

smooth asymptotically translation-invariant 4-forms supported on the cylinder of M . Let

C4
Q ⊆ Ck,α

δ (Λ4) + ρQA
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be the subspace of forms which take values in ΛSpin(7)T
∗M , in other words the space of

Spin(7)-structures which are Ck,α
δ -asymptotic to elements of QA. Then XQ →֒ C4

Q contin-

uously.

Since Q → H4(X) is a local diffeomorphism it is, unlike in the G2 case, immediately

clear that QA ⊆ Q is a submanifold. Its tangent space can be considered as a subspace of

the translation-invariant harmonic 4-forms on the cylinder,

H4
G2,A

= TϕQA ⊂ H4
∞.

We will see that it is precisely the image under the boundary map B of the space H4
cyl of

harmonic tangents at ψ to the space of Ck,α
δ -asymptotically translation-invariant Spin(7)-

structures.

In the next subsections we describe how to set up a slice and find a smooth pre-moduli

space Rδ near ψ with TψRδ = H4
cyl, generalising from the compact case. The regularity

and slice arguments that complete the proof of theorem 4.3.2 are very similar to the G2

case and therefore omitted. Just as in the G2 case, one finds that the elements of Rδ are

smooth, that Rδ → Mδ can be used as a coordinate chart, and that M+ =
⋃

δ>0 Mδ is

therefore a smooth manifold.

Once the coordinate charts are set up it is easy to deduce proposition 4.3.3, theorem

4.3.5 and corollary 4.3.6. This is done in §4.3.5.

4.3.3 The slice

Fix k ≥ 1, δ > 0, α ∈ (0, 1) and ψ ∈ X ′
δ. We find a submanifold S ⊆ C4

Q whose tangent

space at ψ is a direct complement to the diffeomorphism orbit.

The fixed Spin(7)-structure ψ is used to define an EAC metric and a Hodge star. It also

defines type decompositions of the exterior bundles (3.16) and of the spaces of harmonic

forms, as described in subsection 2.1.2. Note that the map TM → Λ3
8, v 7→ vyψ is a bundle

isomorphism. Therefore Lie derivatives LV ψ = d(V yψ) are precisely exterior derivatives of

3-forms of type 8.

Recall the notation for harmonic forms from the summary in §4.1.1, in particular that

Hm
0 and Hm

∞ denote the spaces of bounded harmonic forms on M and harmonic translation-

invariant forms on X × R respectively. G2-structures on X are identified with cylindrical

Spin(7)-structures on X × R by ϕ′ ↔ ∗ϕ′ϕ′ + dt ∧ ϕ′.
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The torsion-free G2-structure ϕ on the cross-section X7 induced by ψ defines type

decompositions of Ω∗(X). In view of proposition 2.2.4, the tangent space to QA corresponds

to

H4
G2,A

= {χ+ dt ∧ ∗(3
4
π1 + π7 − π27)χ : χ ∈ A4} ⊆ H4

∞.

Recall that the tangent space to the space of Spin(7)-structures consists of sections of

Λ4
1⊕7⊕35. TψC

4
Q is therefore the space of 4-forms of type 1, 7 and 35 which are Ck,α

δ -

asymptotic to elements of H4
G2,A

. Let H4
cyl ⊂ TψC

4
Q be the subspace of harmonic forms.

Lemma 4.3.7. B : H4
cyl → H4

G2,A
is surjective.

Proof. Proposition 4.1.8 implies that A4 splits into type components, so H4
G2,A

splits as

H4
G2,A

= {χ+ dt ∧ ∗3
4
χ : χ ∈ A4

1} ⊕ {χ+ dt ∧ ∗χ : χ ∈ A4
7} ⊕ {χ− dt ∧ ∗χ : χ ∈ A4

27}.

It implies also that H4
0,7 ⊂ H4

cyl is mapped onto the middle term by the boundary map B.

For χ ∈ A4
27, the EAC Hodge decomposition theorem 2.3.33 implies that there is some

φ ∈ H4
abs such that B(φ) = χ. Then φ − ∗φ lies in the space H4

0,35 of bounded harmonic

anti-self-dual forms and B(φ−∗φ) = χ−dt∧∗χ, so φ−∗φ ∈ H4
cyl. Finally, ∗ϕ+dt∧ 3

4
ϕ can

be written as 7
8
B(ψ) + 1

8
(∗ϕ− dt ∧ ϕ), and the second term lies in the image of H4

0,35.

Let Dk+1
Q be the group of diffeomorphisms of M which are isotopic to the identity

and Ck+1,α
δ -asymptotic to a cylindrical automorphism of the cylindrical Spin(7)-structure

∗ϕϕ+ dt ∧ ϕ. Dk+1
Q acts on XQ by proposition 3.1.10. The elements of a neighbourhood of

the identity in Dk+1
Q can be written as exp(V + ρV∞), where V is a Ck+1,α

δ vector field on

M and V∞ is a translation-invariant vector field on X × R with LV∞(∗ϕϕ + dt ∧ ϕ) = 0,

i.e. V∞ ∈ (H1
∞)♯. Therefore if we set

D = ρ(H1
∞)♯yψ ⊆ Ω3

8(M)

then the tangent space to the Dk+1
Q -orbit at ψ is

{LV+ρV∞ψ : V ∈ Ck+1,α
δ (TM), V∞ ∈ (H1

∞)♯} = d(Ck+1,α
δ (Λ3

8) ⊕D).

Definition 4.3.8. Let W ⊆ Ck,α
δ (Λ4

35) be the L2-orthogonal subspace to the decaying

harmonic forms H4
+.

Proposition 4.3.9.

TψC
4
Q = d(Ck+1,α

δ (Λ3
8) ⊕D) ⊕H4

cyl ⊕W.
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Proof. The Hodge decomposition theorem 2.3.27 implies that a non-zero decaying exact

form cannot be anti-self-dual, so W ∩ d(Ck+1,α
δ (Λ3

8) ⊕ D) = 0 and the sum is direct. It

follows from lemma 4.3.7 that any element of TψC
4
Q can be written as φ+ β, with φ ∈ H4

cyl

and β ∈ Ck,α
δ (Λ4

1⊕7⊕35) L
2-orthogonal to the decaying harmonic forms. It therefore suffices

to show that π1⊕7β lies in the image of

π1⊕7d : Ck+1,α
δ (Λ3

8) ⊕D → Ck,α
δ (Λ4

1⊕7).

Just as in the compact case proposition 3.3.3 this is easily proved by interpreting the map

as the Dirac operator (cf. (2.39) is Fredholm).

We want to take as our slice for the Dδ-action at ψ a submanifold S ⊆ C4
Q with

TψS = H4
cyl ⊕W . To this end we pick a map

exp : U → C4
Q (4.22)

on a neighbourhood U of 0 in TψC
4
Q, such that D exp0 = id. We also insist that exp maps

decaying forms to decaying forms and smooth forms to smooth forms. We can do this since

the decaying forms have a finite-dimensional complement of smooth forms in TψC
4
Q. We

then choose

S = exp((H4
cyl ⊕W ) ∩ U). (4.23)

4.3.4 Smoothness of the pre-moduli space

Let Rδ ⊆ S be the subset of Ck,α
δ torsion-free Spin(7)-structures. Rδ is the pre-moduli

space of torsion-free Spin(7)-structures near ψ.

If ψ′ ∈ C4
Q then ψ′ is asymptotic to a torsion-free cylindrical Spin(7)-structure, so dψ′

decays. Moreover, elements of C4
Q are asymptotic to elements of QA ⊆ Q by definition.

Therefore ψ′ is asymptotic to ∗ϕ′ϕ′ + dt ∧ ϕ′ with [∗ϕ′ϕ′] ∈ A4, so that dψ′ ∈ dCk+1,α
δ (Λ4).

Recall that by theorem 2.2.17, a closed Spin(7)-structure ψ′ is torsion-free if and only

if dψ′ = 0. Thus Rδ is the zero set of

d : S → dCk+1,α
δ (Λ4).

To show that Rδ is a manifold we check that the derivative at ψ is surjective.

107



Proposition 4.3.10. The map d : TψC
4
Q → dCk+1,α

δ (Λ4) is 0 on d(Ck+1,α
δ (Λ2

7)⊕D)⊕H4
cyl

and bijective on W .

Proof. Any closed anti-self-dual form is harmonic, so W contains no closed forms. Con-

versely, any element of dCk+1,α
δ (Λ4) can be written as dβ with β coexact by the Hodge

decomposition theorem 2.3.27. Then β − ∗β ∈ W and d(β − ∗β) = dβ.

Thus we can apply the implicit function theorem to deduce that a small neighbourhood

of ϕ in Xk,Q, the space of torsion-free Spin(7)-structures in C4
Q, is a manifold. Also, Rδ is

a submanifold of S.

Proposition 4.3.11. If the slice S near ψ is shrunk sufficiently then the space Rδ of

torsion-free EAC Spin(7)-structures in S is a manifold. Its tangent space at ψ is H4
cyl.

The projection to de Rham cohomology πH : H4
cyl → H4(M) is injective. This is

because the boundary conditions on φ ∈ H4
cyl imply that if j∗[φ] = 0 then φ is decaying,

and therefore cannot be exact by integration by parts. Hence

πH : Rδ → H4(M)

is an embedding if Rδ is taken small enough. We can then use regularity and slice arguments

just like for the G2 case (§4.2.6–4.2.7) to show

Proposition 4.3.12. If the slice S is taken small enough then the elements of Rδ ⊂ S are

smooth and EAC.

Proposition 4.3.13. Rδ → Mδ is a homeomorphism onto an open subset.

Using pre-moduli spaces as charts we deduce

Theorem 4.3.14. Let M8 be an EAC Spin(7)-manifold. Then Mδ has a unique smooth

structure such that

πH : Mδ → H4(M)

is an immersion.

Finally Mδ → M+ is a homeomorphism onto an open subset for any δ > 0, so the

union M+ =
⋃

δ>0 Mδ is a smooth manifold. This completes the proof of the main theorem

4.3.2.
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4.3.5 Properties of the moduli space

Now that we have found pre-moduli spaces that can be used as charts for M+ we can

deduce some simple results about the local properties of the moduli space. For a start,

lemma 4.3.7 means that B : TψR → TϕQA is surjective, so B : R → QA is a submersion

and theorem 4.3.5 follows.

To find the dimension of the moduli space we just need to evaluate the dimension of

TψR = H4
cyl. From the proof of lemma 4.3.7 we see that

dimH4
cyl = dimH4

0,1⊕7 + dimH4
0,35.

The first term corresponds to the bounded harmonic positive spinors, with dimension

given by proposition 4.1.7. The second term corresponds to the bounded anti-self-dual

harmonic forms. This splits into two parts: the decaying anti-self-dual forms H4
+,35 and

{φ − ∗φ : φ ∈ H4
E}. Its image in H4(M) is therefore a direct complement of the self-dual

compactly supported cohomology H4
+(M), so

dimH4
0,35 = b4(M) − b4+(M).

This proves proposition 4.3.3.

Finally, H4
+,35 is the tangent space to the fibre of ψ in the submersion R → QA. The

decaying anti-self-dual forms represent precisely the compactly supported anti-self-dual

cohomologyH4
−(M), so the projection from R to the affine subspace [ψ]+H4

−(M) ⊂ H4(M)

is a local diffeomorphism. This proves corollary 4.3.6.
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Chapter 5

G-metrics and Ricci-flat deformations

Let G be one of the exceptional holonomy groups Spin(7) or G2. We have previously

discussed how a torsion-free G-structure on a manifold M (of dimension 8 or 7 respec-

tively) determines a G-metric, i.e. a Riemannian metric of holonomy ⊆ G, and studied

the deformation theory of EAC G-structures. We now consider instead the deformations

of G-metrics on compact and EAC manifolds.

G-metrics on a manifold M are Ricci-flat for G = SU(n), Sp(n), Spin(7) or G2. Wang

[55] proves a local converse for the case whenM is compact: any small Ricci-flat deformation

of a G-metric still has holonomy contained in G. In other words the moduli space WG of

G-metrics is an open subset of the moduli space W of Ricci-flat metrics. Wang proves the

result case by case, but asks if there is a general proof. We observe that the problem can

be reduced in a uniform way to showing unobstructedness for deformations of torsion-free

G-structures. This has in turn been given a uniform treatment by Goto [17].

We prove furthermore that WG is a smooth manifold. For G = Spin(7) or G2 we show

also that the moduli space M of torsion-free G-structures is a locally trivial fibre bundle

over WG and generalise the results to the case when M is an EAC G-manifold.

5.1 Results

Let G be one of the Ricci-flat holonomy groups SU(n), Sp(n), Spin(7) or G2. In the

cases Spin(7), G2 or SU(3) we explained in §2.2 how a G-metric on a manifold M of the

appropriate dimension can be defined in terms of a G-structure, i.e. a section of a subbundle

ΛGT
∗M ⊂ Λ∗T ∗M , which is torsion-free and in particular closed. The tangent space to

Γ(ΛGT
∗M) at a G-structure χ consists of the sections of the bundle of point-wise tangents
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to ΛGT
∗M at χ, which is a vector subbundle Eχ ⊆ Λ∗T ∗M associated to the G-structure.

Since Eχ is a bundle of forms the Hodge Laplacian acts on Γ(Eχ). When χ is torsion-free

this is the same as the Lichnerowicz Laplacian from §2.1.2. The same approach can be

taken for SU(n) and Sp(n). We do not need the details, but they can be found in [17].

The group D of diffeomorphisms of M isotopic to the identity acts on the space of

torsion-free G-structures by pull-backs and the quotient is the moduli space M of torsion-

free G-structures. Goto [17] proves that the deformations of torsion-free G-structures are

unobstructed in the following sense:

Proposition 5.1.1. Let G = SU(n), Sp(n), Spin(7) or G2, M a compact G-manifold,

and χ a torsion-free G-structure on M . Then there is a submanifold R of the space of C1

G-structures such that

(i) the elements of R are smooth torsion-free G-structures,

(ii) the tangent space to R at χ is the space of harmonic sections of Eχ,

(iii) the natural map R → M is a homeomorphism onto a neighbourhood of χD in M.

We proved this proposition for the cases Spin(7), G2 and SU(3) in §3. The spaces R

are pre-moduli spaces of torsion-free G-structures and can be used as coordinate charts

for M.

D also acts on the space of Riemannian metrics, and we let WG and W denote the

moduli spaces of G-metrics and Ricci-flat metrics respectively. In §5.2 we review the de-

formation theory of Ricci-flat metrics and prove

Theorem 5.1.2. Let G = SU(n), Sp(n), Spin(7) or G2, and let M be a compact G-man-

ifold. Then WG is open in W. Moreover, WG is a smooth manifold and the natural map

m : M → WG

that sends a torsion-free G-structure to the metric it defines is a submersion.

Remark 5.1.3. It is easy to see that WG is also closed in W , so it is a union of connected

components. It is an open problem whether there exist any compact Ricci-flat manifolds

without a holonomy reduction.

Remark 5.1.4. The quotient of the space of G-metrics by the group of all diffeomorphisms

of M (not just the ones isotopic to the identity) is a quotient of WG with discrete fibres

and in general an orbifold (cf. remark 5.2.8).
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The case G = G2 of theorem 5.1.2 was proved by M.Y. Wang [55, Theorem 3.1B]. For

G = Sp(n) or Spin(7), Wang showed that WG ⊆ W is open. The case G = SU(n) is a

special case of a more general result by Koiso on Einstein deformations of Kähler-Einstein

metrics.

Let X2n be a compact Kähler-Einstein manifold. Koiso [33, Theorem 0.7] shows that if

the Einstein constant e (equivalently the first Chern class c1(X)) is non-positive and the

complex deformations of X are unobstructed, then any small Einstein deformation of the

metric is Kähler with respect to some perturbed complex structure. In other words the map

from the moduli space of Kähler-Einstein structures to the moduli space of Einstein metrics

is open (see e.g. [5, §12J] for a discussion). The proof shows that near any Kähler-Einstein

metric there is a smooth pre-moduli space of Einstein metrics, so that the moduli space of

Kähler-Einstein metrics is an orbifold. As explained in §3.4.1, Tian [52] and Todorov [53]

show that on a compact Calabi-Yau manifold the obstructions to the complex deformations

vanish. Hence most of theorem 5.1.2 for G = SU(n) follows from Koiso’s theorem.

Remark 5.1.5. Dai, X. Wang and Wei [14] use the fact that WG is open in W to deduce

that any scalar-flat deformation of a Ricci-flat G-metric on a compact manifold remains a

G-metric.

The proof of theorem 5.1.2 given in §5.2 is a simplification of Wang’s argument for the

case G = G2. We observe that the point-wise surjectivity of the derivative of m follows

from the equivariance properties of the Laplacians on manifolds with reduced holonomy

discussed in subsection 2.1.2. This makes it easy to see that the proof applies also for the

other Ricci-flat holonomy groups, provided that the deformations of torsion-free G-struc-

tures are unobstructed.

The proof works also on non-compact manifolds if the deformation theory for the

G-structures is in place. For EAC G2-manifolds and Spin(7)-manifolds we proved in §4

that there is a smooth moduli space M+ of torsion-free EAC G-structures. Let W+ denote

the moduli space of EAC Ricci-flat metrics.

Theorem 5.1.6. Let G = Spin(7) or G2, and let M be an EAC G-manifold. Then WG is

open in W+. Moreover, WG is a smooth manifold and the natural map

m : M+ → WG

is open.
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In [35] Kovalev proves the analogous result for EAC Calabi-Yau manifolds, by an exten-

sion of Koiso’s arguments for the compact Kähler-Einstein case. The discussion in §5.2.4

of deformations of EAC Ricci-flat metrics is similar to that in [35].

For G = Spin(7) and G2 we also study the structure of the map m in greater detail.

As described in chapter 4 the topology of a compact G-manifold M determines whether

each G-metric on M has holonomy exactly G. In §5.3 we explain that the fibres of m are

determined up to diffeomorphism by the topology in a similar way, and show

Theorem 5.1.7. Let G = Spin(7), G2 or SU(3), and let M be a compact G-manifold.

Then

m : M → WG

is a locally trivial fibre bundle. The typical fibre is a disjoint union of real projective spaces.

When M has holonomy exactly G the typical fibre of m is a point if G = Spin(7) or G2,

and S1 if G = SU(3).

The proof uses the fact that point-wise the space of G-structures defining the same

inner product is SO(8)/Spin(7) ∼= SO(7)/G2
∼= SO(6)/SU(3) ∼= RP 7. To be precise, the

point-wise fibre can in each case be identified with the space of lines in a real rank 8 spin

representation. In principle, the result is an application of the observation of Wang [54]

that a torsion-free G-structure can be recovered explicitly from a parallel spinor (or an

appropriate set of spinors). In the case G = SU(n) for n ≥ 4 the fibres of m would be

identified in terms of the space of parallel pure spinors, which is less straight-forward to

determine topologically. Nevertheless theorem 5.1.7 is, like theorem 5.1.2, the analogue of a

result for Calabi-Yau manifolds: [5, Theorem 12.103] states that the moduli space of Calabi-

Yau structures on a compact manifold is a locally trivial fibration with compact fibres over

the moduli space of Calabi-Yau metrics (but does not describe the fibres further).

The fact that WG is smooth suggests that it may be as natural to consider in general

as the moduli space of G-structures M (of course it makes no difference for irreducible

G2-manifolds and Spin(7)-manifolds). For example Karigiannis and Leung [30] and Grigo-

rian and Yau [19] both study the geometry of the moduli space M of torsion-free G2-struc-

tures on a compact G2-manifold. They find that the curvature computations are more

involved for G2-manifolds M7 with b1(M) > 0. This is because curvature has different

expressions on the three components H3
1 (M), H3

7 (M) and H3
27(M) of the tangent space

to M (which is isomorphic to H3(M)). If b1(M) = 0 then the H3
7 (M) component vanishes,
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and the computations simplify. On the other hand the tangent space to WG2
is isomorphic

to H3
1⊕27(M), whether b1(M) = 0 or not.

The main requirement for proving theorem 5.1.7 is theorem 5.1.2, so it can be gener-

alised to non-compact manifolds under similar assumptions. In §5.3.3 we prove

Theorem 5.1.8. Let G = Spin(7) or G2, and let M be an EAC G-manifold. Then

m : M+ → WG

is a locally trivial fibre bundle. The typical fibre is a disjoint union of real projective spaces.

If M has holonomy exactly G then m is a diffeomorphism.

5.2 Ricci-flat deformations of G-metrics

5.2.1 Killing vector fields

Before we discuss the deformations of Ricci-flat metrics we make some remarks about

Killing vector fields. These are the infinitesimal isometries of a Riemannian manifold (M, g),

i.e. vector fields V such that the Lie derivative LV g vanishes.

Definition 5.2.1. Given a metric g on M let δ∗ : Ω1(M) → Γ(S2(T ∗M)) be the symmetric

part of the Levi-Civita connection ∇ : Ω1(M) → Γ(T ∗M ⊗ T ∗M).

The formal adjoint δ of δ∗ is the restriction of ∇∗ : Γ(T ∗M ⊗ T ∗M) → Ω1(M) to the

symmetric part Γ(S2(T ∗M)).

Proposition 5.2.2 ([5, Lemma 1.60]). Let g be a Riemannian metric on a manifold M

and V a vector field. Then LV g = 2δ∗V ♭, where V ♭ denotes the 1-form g(V, ·).

The second Bianchi identity implies that

(2δ + d tr)Ric = 0 (5.1)

for any Riemannian metric. The operator 2δ+dtr is sometimes called the Bianchi operator,

and it satisfies also the following useful identity.

Lemma 5.2.3 ([35, (14)]). If (M, g) is a Ricci-flat manifold then

(2δ + d tr)δ∗ = △.

114



Proof. The anti-symmetric part of ∇ on Ω1(M) is 1
2
d, so δ∗ = ∇ − 1

2
d. Also tr δ∗ = d∗

on Ω1(M). Using proposition 2.1.8 we obtain

(2δ + d tr)δ∗ = 2∇∗∇−∇∗d+ d tr δ∗ = 2∇∗∇− d∗d− dd∗ = △.

Proposition 5.2.4. Let (M, g) be a Ricci-flat manifold. If V is a Killing field then the

1-form V ♭ is harmonic. If M is compact then the converse also holds.

Proof. δ∗V ♭ = 0 ⇒ △V ♭ = 0 by lemma 5.2.3. Trivially ∇∗V ♭ = 0 ⇒ δ∗V ♭ = 0, and if M is

compact then △V ♭ = 0 ⇒ ∇∗V ♭ = 0 by corollary 2.1.9.

This implies that, for any of the Ricci-flat holonomy groups G, the space of infinitesimal

automorphisms of a compact G-manifold is (H1)♯.

5.2.2 Deformations of Ricci-flat metrics

We summarise some deformation theory for Ricci-flat metrics. This is mostly taken from

the deformation theory for Einstein metrics as explained in [5, §12C], specialised to the

Ricci-flat case. It turns out that in general we cannot prove that the moduli space of

Ricci-flat metrics is a manifold.

Let Mn be a compact manifold. The diffeomorphism group D acts on the space of Ricci-

flat metrics on M by pull-backs. We define the moduli space W of Ricci-flat metrics to be

the quotient of the space of Ricci-flat metrics by D. (We do not divide by the rescaling

action of R+ too, as is done in [5].)

Take k ≥ 2, and let g be a Ricci-flat Riemannian metric on M . In order to study a

neighbourhood of gD in W we use slice arguments explained in §3.1. We include the space

of smooth Riemannian metrics in the Hölder space Ck,α(S2T ∗M), and let Dk+1 be the

Ck+1,α completion of D (Dk+1 is generated by exp of Ck+1,α vector fields).

By proposition 5.2.2 the tangent space to the Dk+1-orbit at g is δ∗gC
k+1,α(Λ1). Let K

be the kernel of 2δg + d trg in Ck,α(S2T ∗M). Because g is Ricci-flat harmonic 1-forms are

parallel, and therefore L2-orthogonal to the image of 2δg+dtrg. It follows from lemma 5.2.3

and the Fredholm alternative for △g on Ω1(M) that there is a direct sum decomposition

Ck,α(S2T ∗M) = δ∗gC
k+1,α(Λ1) ⊕K.

We use a neighbourhood S of g in K as a slice for the D-action.
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Remark 5.2.5. This is not exactly the same choice of slice as in [5]. It has been used before

by Biquard [6] and Kovalev [35].

Let Q be the space of Ricci-flat (not a priori smooth) metrics in S – this is the pre-

moduli space of Ricci-flat metrics near g. The linearisation of the Ricci curvature functional

at a Ricci-flat metric is given by (cf. [5, (12.28’)])

(DRic)gh = △Lh+ δ∗g(2δg + d trg)h, (5.2)

where △L denotes the Lichnerowicz Laplacian on S2T ∗M in the sense of definition 2.1.6. In

particular, on the tangent space K to the slice the linearisation reduces to △L. It is elliptic

so its kernel has finite dimension. Moreover, the kernel is contained in K: differentiating

the Bianchi identity (5.1) at the Ricci-flat metric g gives

(2δg + d trg)(DRic)g = 0,

and hence

△Lh = 0 ⇒ △(2δg + d trg)h = 0 ⇒ (2δg + d trg)h = 0.

Definition 5.2.6. The space of infinitesimal Ricci-flat deformations of g is the kernel ε(g)

of △L in Γ(S2(T ∗M)).

If h ∈ Γ(S2T ∗M) is tangent to a curve of Ricci-flat metrics in the slice S then of course

h ∈ ε(g). The converse is not true; in general there may be elements in ε(g) which are not

tangent to any curve of Ricci-flat metrics. Thus Q need not be a manifold with tangent

space ε(g).

The image of DRicg is the L2-orthogonal complement K ′ to ε(g) in K. Let Pg be the

L2-orthogonal projection to K ′. The Ricci curvature functional is real analytic. We can

apply the implicit function theorem to the composition

F : S → K ′ : h 7→ PgRic(h) (5.3)

to deduce that there is a real analytic submanifold Z ⊆ S whose tangent space at g is

precisely ε(g) and which contains Q as a real analytic subset. The analyticity implies that

if every element of ε(g) is tangent to a curve of Ricci-flat metrics then in fact Q contains

a neighbourhood of g in Z. Thus the pre-moduli space Q is a manifold in this case (cf. [33,

Corollary 3.5]).
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The elements of Z are smooth by elliptic regularity, and when Q = Z one can deduce

from corollary 3.1.6 that Q → W is open. In general the argument needs to be modified a

bit. One needs to extend (5.3) to a function on a neighbourhood U of g in Ck,α(S2T ∗M)

such that F−1(0) is a manifold containing the Ricci-flat metrics and ZDk+1 ∩U ⊆ F−1(0).

One way to do this is to first define a smooth map f : U → gDk+1 with the property that

f(φ∗g′) = φ∗g when φ ∈ Dk+1 and g′ ∈ Z. If f(h) = φ∗g then Pf(h) is a projection to φ∗K ′,

and we can take

F : U → K ′, h 7→ PgPf(h)Ric(h). (5.4)

Then

Z ×Dk+1 → F−1(0)

is an open map near (g, id) by the submersion theorem, and we can proceed as in the proof

of theorem 3.1.4 and corollary 3.1.6 to deduce that Q → W is open. Theorem 3.1.7 implies

that in fact this is injective up to the action of the stabiliser Ig. Moreover, proposition

5.2.4 implies that all stabilisers of elements in Q have the same dimension, so at least their

identity components must be equal. As Ig is compact its action on Q factors through a

finite group (cf. [5, 12.25]). Hence

Theorem 5.2.7. Let M be a compact manifold and g a Ricci-flat metric on M . Let Q

be the pre-moduli space of Ricci-flat metrics near g and Ig the stabiliser of g in D. Then

Q/Ig is homeomorphic to a neighbourhood of gD in W. In particular, if every element of

ε(g) is integrable then W is an orbifold near gD.

Remark 5.2.8. Clearly the argument would give the same result even if we were to con-

sider the moduli space of Ricci-flat metrics given by dividing by the action of the full

diffeomorphism group of M .

5.2.3 Proof of theorem 5.1.2

Let M be a compact G-manifold, Γ(ΛGT
∗M) the space of G-structures on M and

m : Γ(ΛGT
∗M) → Γ(S2T ∗M), χ 7→ gχ (5.5)

the natural map that sends a G-structure to the metric it defines. In order to prove theorem

5.1.2 we show first that for any torsion-free G-structure χ the derivative of m maps the

tangent space to the pre-moduli space R at χ onto the space ε(gχ) of infinitesimal Ricci-flat

deformations.
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The tangent space to Γ(ΛGT
∗M) at χ is the space of differential forms Γ(Eχ), where

Eχ ⊆ Λ∗T ∗M is a vector subbundle associated to the G-structure defined by χ. Fibre-wise

ΛGT
∗M is a GL(Rn)-orbit and Eχ is the tangent space glnχ to the orbit. Because m is

GL(Rn)-equivariant its derivative takes aχ 7→ agχ for any a ∈ gln, which maps onto the

fibre of S2T ∗M . Hence the derivative

Dmχ : Γ(Eχ) → Γ(S2T ∗M) (5.6)

is surjective. Furthermore, the derivative is G-equivariant with respect to the G-structure

defined by χ. Since △L is the Lichnerowicz Laplacian on S2T ∗M , lemma 2.1.10 implies

that the diagram below commutes.

Γ(Eχ)
Dmχ- Γ(S2T ∗M)

Γ(Eχ)

△

? Dmχ- Γ(S2T ∗M)

△L

?

Hence

Lemma 5.2.9. If χ is a torsion-free G-structure then Dmχ maps the harmonic sections

of Eχ onto the space ε(gχ) of infinitesimal Ricci-flat deformations.

So let χ be any torsion-free G-structure on M and R the pre-moduli space of torsion-

free G-structures near χ. As described in subsection 5.2.2, there is a slice at gχ for the

D-action on the metrics and a local projection map P to the slice. The Ricci-flat metrics

in the slice are contained in a submanifold Z, and the tangent space to Z at χ is ε(gχ).

P ◦m : R → Z (5.7)

is a well-defined smooth map and lemma 5.2.9 means that its derivative at χ is surjective.

Therefore every element of ε(gχ) is tangent to a path of Ricci-flat metrics, so Q is a

manifold. By the submersion theorem, the image WG in W contains a neighbourhood

of gD.

The pre-images of gχ under m are defined by differential forms which are harmonic

with respect to gχ. By Hodge theory they represent distinct cohomology classes. Because
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elements of Igχ are isotopic to the identity they must therefore fix the fibre, so Igχ = Iχ.

Now, if g′ ∈ Q then g′ = φ∗m(χ′) for some χ′ ∈ R and φ ∈ Dk+1 because (5.7) is a

submersion. As Iχ acts trivially on R by proposition 3.1.10 it follows that the conjugate

Iφgχ fixes g′. But then Iφgχ ⊆ Ig′ ⊆ Igχ by theorem 3.1.7, so in fact Iφgχ = Igχ . Thus Igχ
fixes g′.

Now theorem 5.2.7 implies that Q is homeomorphic to a neighbourhood of W . Thus

WG is a manifold near gD and the proof of theorem 5.1.2 is complete.

5.2.4 The asymptotically cylindrical case

The proof of theorem 5.1.2 only used the compactness assumption to access certain defor-

mation results for G-structures and Ricci-flat metrics. For the cases G = G2 and Spin(7)

we found pre-moduli spaces of EAC G-structures in §4, with properties analogous to propo-

sition 5.1.1.

Proposition 5.2.10. Let G = Spin(7) or G2, M an EAC G-manifold and χ a torsion-free

EAC G-structure on M . Then there is a submanifold R of the space of C1 G-structures

such that

(i) the elements of R are smooth EAC torsion-free G-structures,

(ii) the tangent space to R at χ is the space of bounded harmonic sections of Eχ,

(iii) the natural map R → M+ is a homeomorphism onto a neighbourhood of χD+ in M+.

In order to prove the EAC version theorem 5.1.6 we only need to explain how to set up

the deformation theory for EAC Ricci-flat metrics. We define the slices with same equations

as in the compact case in §5.2.2 and use the same reasoning as for deformations of EAC

G2-manifolds in §4.2.7 to make the slice arguments work on EAC manifolds. The resulting

approach is similar to that of Kovalev [35], who considers Ricci-flat deformations of EAC

Calabi-Yau manifolds.

Let Mn be a manifold with cylindrical ends and cross-section Xn−1. Let W+ be the

quotient of the space of EAC Ricci-flat metrics (with any exponential rate) by the group

D+ of EAC diffeomorphisms of M isotopic to the identity. We pick an EAC Ricci-flat metric

g on M and study a neighbourhood of gD+ in W+. By definition, the asymptotic limit of

g is a cylindrical metric dt2 + gX on X × R, where gX is a Ricci-flat metric on X.

We work with weighted Hölder spaces of sections. Let k ≥ 2, α ∈ (0, 1), and δ > 0 be

less than the exponential rate of g. The metric g defines a Hodge Laplacian on 1-forms
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and a Lichnerowicz Laplacian on symmetric bilinear forms, which are both asymptotically

translation-invariant operators. We require that δ is small enough that the Laplacians are

Fredholm on Ck,α
δ spaces, as we may according to theorem 2.3.17.

We proved in §5.2.2 that there is a real analytic submanifold Z ⊂ Ck,α(S2T ∗X) which

contains representatives of all diffeomorphism classes of Ricci-flat metrics on X close to gX .

Its tangent space TgXZ = ε(gX) is the space of Lichnerowicz harmonic sections of S2T ∗X.

Let M k
Z denote the space of Ck,α metrics on M which are Ck,α

δ -asymptotic to cylindrical

metrics dt + g2
X such that gX ∈ Z. If ρ is a cut-off function for the cylinder then ρZ can

be identified with a space of bilinear forms on M , and M k
Z is an open subset

M
k
Z ⊂ Ck,α

δ (S∗T ∗M) + ρZ.

Similarly let Dk+1
Z be the set of EAC diffeomorphisms with rate δ which are asymptotic to

elements of the isometry group IgX of gX . Then M k
Z contains representatives of all diffeo-

morphism classes of Ricci-flat metrics near g and, because Z is IgX -invariant, theorem 3.1.7

implies that any isometry between elements of M k
Z must lie in Dk+1

Z (a similar argument

for simplifying the problem by a slice at the boundary was used for the G2 case in lemma

4.2.26).

We therefore identify a slice in M k
Z for the action of Dk+1

Z at g. The tangent space to

M k
Z at g is

TgM
k
Z = Ck,α

δ (S∗T ∗M) ⊕ ρε(gX).

The tangent space at the identity of Dk+1
Z corresponds to vector fields which are Ck,α

δ -

asymptotic to translation-invariant Killing vector fields on the cylinder, i.e. to elements

of (H1
∞)♯, where H1

∞ denotes the translation-invariant harmonic 1-forms on the cylinder

X × R. By proposition 5.2.2 the tangent space to the Dk+1
Z -orbit at g is

δ∗g(C
k,α
δ (Λ1) ⊕ ρH1

∞).

Let K be the kernel of 2δg + d trg in TgM
k
Z .

Lemma 5.2.11. Let M be a Ricci-flat EAC manifold with a single end. Then

TgM
k
Z = K ⊕ δ∗g(C

k,α
δ (Λ1) ⊕ ρH1

∞). (5.8)

Proof. (2δg + d trg)δ
∗ = △g according to lemma 5.2.3, so it suffices to show that the image
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of 2δg + d trg : TgM
k
Z → Ck−1,α

δ (Λ1) is contained in the image of

△ : Ck+1,α
δ (Λ1) ⊕ ρH1

∞ → Ck−1,α
δ (Λ1).

It follows from proposition 2.3.21 that this has index 0, so its image is the L2-orthogonal

complement to its kernel H1
0, the space of bounded harmonic 1-forms.

Now, if h ∈ TgM
k
Z and β ∈ H1

0 then the difference between <δgh, β> and <h, δ∗gβ>= 0

is the divergence of the contraction of h with β. The boundary condition on h ensures

that the asymptotic limit of the contraction has no dt-component, so the integral of the

divergence is 0. Hence

<δgh, β>L2= 0.

The hypothesis that M has a single end ensures that the asymptotic limit of β has

no dt-component (corollary 2.3.40), so integration by parts also applies to show that

<d trgh, β>L2= 0. Thus the image of 2δg + d trg is L2-orthogonal to H1
0.

Now we can use a real analytic Ig-invariant submanifold S ⊂ M k
Z with TgS = K as a

slice for the Dk+1
Z -action. Let Q ⊂ S be the subset of Ricci-flat metrics. As in the compact

case Q is an analytic subset of an analytic submanifold Z ′ ⊂ S, defined as the zero set of

the composition of the Ricci functional S → Ck−2,α
δ (S2T ∗M) with the projection onto the

image of its derivative at g. On K the derivative of the Ricci functional is the Lichnerowicz

Laplacian, so TgZ
′ is the space of harmonic sections of S2T ∗M , exponentially asymptotic

to sections of S2T ∗X (i.e. the asymptotic limit has no dt-components). We call this the

space of infinitesimal Ricci-flat EAC deformations ε(g).

In general we can use by regularity and slice arguments like in §4.2.6 – 4.2.7 that Z

consists of smooth EAC metrics and extend the proof of theorem 5.2.7, thus proving that

Q/Ig is homeomorphic to a neighbourhood of g in W+.

We have now set up the deformation theory for EAC Ricci-flat metrics that is required,

together with the unobstructedness of deformations of torsion-free EAC G-structures for

G = G2 and Spin(7) proved in §4, in order to prove theorem 5.1.6 by the same argument

as for the compact case.
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5.3 M as a fibre bundle

Let G = Spin(7), G2 or SU(3), and M a compact G-manifold. We have established that

the natural map

m : M → WG (5.9)

is a submersion. We now prove that it is a smooth fibre bundle. We use the correspon-

dence between torsion-free G-structures and parallel spinors to show that the fibres are

determined by the topology of M , and then deduce theorem 5.1.7. We will prove the case

G = Spin(7) in detail, and remark on the minor adaptions required for G = G2 or SU(3).

5.3.1 The case G = Spin(7)

Let M be a compact Spin(7)-manifold. We begin by observing that the fibres of m in

Γ(S2T ∗M) and in the moduli space M are equivalent.

Lemma 5.3.1. Let g be a Spin(7)-metric on M . Then the fibre of m : M → WSpin(7) over

gD is homeomorphic to the fibre of m : Γ(ΛSpin(7)T
∗M) → Γ(S2T ∗M) over g.

Proof. If ψ is a Spin(7)-structure such that m(ψ) = φ∗g for some φ ∈ D then obviously

m((φ−1)∗ψ) = g. Thus the natural map from fibre over g to the fibre over gD is surjective.

Suppose that two torsion-free Spin(7)-structures which define the same metric are D-

equivalent. Then they represent the same class in H4(M). Since they are both harmonic

(with respect to the same metric) they must be equal. Therefore the map is injective

too.

Now consider the point-wise model for Spin(7)-structures which was described in §2.2.3.

ΛSpin(7)(R
8)∗ ⊆ Λ4(R8)∗ is the GL(R8)-orbit of the standard Spin(7)-structure ψ0 and each

element defines an inner product on R8. The subset that defines the same inner product

as ψ0 (i.e. the standard inner product on R8) is the orbit SO(8)ψ0. Recall that the positive

real spin representation σ+
8 of Spin(8) splits into irreducible components

σ+
8 = R ⊕ R

7

under the action of Spin(7). The R term defines an element u ∈ Pσ+
8 . Since SO(8) acts

transitively on Pσ+
8 with stabiliser Spin(7) at u it follows that there is a natural bijection

SO(8)ψ0
∼= Pσ+

8 .
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Spin(7) acts irreducibly on R7, so u is its unique fixed point in Pσ+
8 . Thus ψ0 is the

unique Spin(7)-structure defining the standard inner product that is fixed by Spin(7).

Hence if g is a Spin(7)-metric with Hol(g) = Spin(7) then the fibre over g is a point, and

m : M → WSpin(7) is a diffeomorphism.

Let I be the set of spin structures on M8. Given a Spin(7)-metric g on M , for each

i ∈ I let Fi be the space of parallel sections of the positive spinor bundle defined by i. Any

torsion-free Spin(7)-structure inducing g determines a spin structure i and a parallel spinor

in Fi. The point-wise considerations show that the fibre of m over g is homeomorphic to

the disjoint union of projective spaces

⊔

i∈I

PFi.

For each i and g either Fi = 0 or its dimension is given by the topological formula (2.16).

The fact that m : M → WSpin(7) is open implies that, for each i, triviality of Fi depends

only on the connected component of WSpin(7) containing gD.

If g′ is another Spin(7)-metric let F ′
i denote the corresponding spaces of parallel spinors.

If g′ is close to g then we may define a linear map Fi → F ′
i , and because they have equal

dimension it is easy to see that it is bijective for g′ sufficiently close to g. If we let Q be

the pre-moduli space of Spin(7)-metrics near g then this defines a local diffeomorphism

Q×
⊔

i∈I

PFi → M.

Transition functions between such maps are isomorphisms of projective varieties on the

fibres. The maps can therefore be used as local trivialisations for M as a smooth fibre

bundle over each connected component of WSpin(7).

It remains to check that the fibres are the same over different connected components.

A pair of spin structures i, j determines an element of H1(M,Z2) (the unique class whose

pull-back to the total space of the frame bundle ofM is the difference of the Stiefel-Whitney

classes of i and j), which in turn determines a double cover M̃ of M (cf. [37, §II.1]). i and

j lift to the same spin structure on M̃ . If g is a Spin(7)-metric on M and Fi and Fj are

both non-empty then the dimension of the space on parallel spinors on M̃ is twice that

of Fi. By the topological formula (2.16) for the dimension of the space of parallel spinors

on a Spin(7)-manifold this is a topological property of M̃ . Hence the number of non-empty

connected components PFi of the fibre of m above a Spin(7)-metric g is determined by
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the topology of M , independently of the choice of g. This concludes the proof of theorem

5.1.7 for the case G = Spin(7).

Remark 5.3.2. Another way to think of this is that if we fix a torsion-free Spin(7)-structure

ψ on M then the fibre of m containing ψ can be identified with the parallel sections of the

projective spinor bundle PS+ determined by ψ. Any such section corresponds to a parallel

spinor either on M or on a double cover of M .

5.3.2 The cases G = G2 and SU(3)

All that needs to be changed to extend the proof of theorem 5.1.7 above to the case when

M7 is a compact G-manifold is the point-wise model used in the identification of the fibres.

Recall that the spin representation σ7 splits into irreducible components

σ7
∼= R ⊕ R

7 (5.10)

under the action of G2. The R term defines an element u ∈ Pσ7. SO(7) acts transitively

on Pσ7 and the stabiliser of u is G2, so there is a natural identification SO(7)ϕ0
∼= Pσ7 of

the SO(7)-orbit of the standard G2-structure with Pσ7. For any G2-metric g on M the fibre

of m over g is identified with
⊔

i∈I PFi, where Fi is the space of parallel spinors defined by

g and a spin structure i. The rest of the proof of theorem 5.1.7 for G = G2 is identical to

the case G = Spin(7).

Remark 5.3.3. Let ϕ be a torsion-free G2-structure on a compact manifold M7. The iso-

morphism (5.10) implies that the spinor bundle on M defined by ϕ is S ∼= R ⊕ TM . We

can therefore identify the fibre of m over ϕ with parallel sections of P(R ⊕ TM). This

identification can be interpreted as given by ‘twisting’ ϕ.

If ψ is a G2-structure on a vector space V and v ∈ V is a unit vector then the 2-form

vyψ can be identified with an element Av,ψ ∈ so(V ). If v is a unit vector in R7 and θ ∈ R

then the identification of Pσ7 with SO(7)ϕ0 maps the line containing cos θ + v sin θ to

ϕθ = exp(2θAv,ϕ0
)ϕ0. Note that ϕθ satisfies a flow equation considered by Karigiannis [29],

d
dθ
ϕθ = Av,ϕθϕθ.

The torsion-free G2-structure ϕ can in this sense be ‘twisted’ by parallel vector fields on

M to produce other torsion-free G2-structures defining the same metric and all elements

in the connected component of ϕ in its fibre in m : M → WG2
arise this way.
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Finally we prove theorem 5.1.7 for G = SU(3). Let M6 be a compact Calabi-Yau 3-fold.

To identify the fibres ofm : M → WSU(3) we consider the spin representation σ6 of Spin(6).

This is the unique irreducible real rank 8 representation of Spin(6) (it can be regarded as

a rank 4 complex representation in two non-equivalent ways). As an SU(3)-representation

σ6
∼= C ⊕ C

3, (5.11)

where SU(3) acts naturally on C3. Let Pσ6 be the space of (real) lines in σ6. SO(6) acts

transitively on Pσ6 and the stabiliser of an element of PC ⊂ Pσ6 is SU(3). If we fix once

and for all an element u ∈ PC then this determines an identification SO(6)(Ω0, ω0) ∼= Pσ6

of the SO(6)-orbit of the standard Calabi-Yau structure with Pσ6. For any Calabi-Yau

metric g on M the fibre of m over g is identified with
⊔

i∈I PFi, where Fi is the space of

parallel spinors defined by g and a spin structure i.

SU(3) acts irreducibly on C3, so its fixed points in Pσ6 are exactly PC ∼= S1. Thus

when M is an irreducible Calabi-Yau manifold the fibres of m : M → WSU(3) are S1. This

corresponds to the S1-action on M given by multiplication of the holomorphic (3, 0)-form

Ω+ iΩ̂ by a unit complex scalar. The rest of the proof is identical to the case G = Spin(7).

Example 5.3.4. Let X6 a simply connected manifold with a Calabi-Yau structure (Ω, ω).

ϕ = Ω + dt ∧ ω defines a torsion-free G2-structure on M = S1 × X. The typical fibre of

M → WG2
is S1. The fibre containing ϕ corresponds exactly to the S1 fibre of Calabi-Yau

structures defining the same metric as (Ω, ω).

Example 5.3.5. In example 4.1.18 we constructed an irreducible compact Calabi-Yau man-

ifold X6 with structure (Ω, ω) and an involution a such that a∗Ω = Ω, a∗ω = −ω. The

involution acts as a reflection on the S1 of torsion-free G2-structures defining the product

metric on S1 × X. The pair of fixed points descend to torsion-free G2-structures on the

quotient M = S1 ×X/(−1, a). Thus the moduli space of torsion-free G2-structures on M

is a double cover of the moduli space of G2-metrics.

Remark 5.3.6. Let M7 be a compact G2-manifold. Hitchin [24] shows that the Hessian

of the volume functional defines a well-defined non-degenerate symmetric bilinear form

on M. If we identify TϕDM ∼= H3(M) then the form is positive-definite on H3
1⊕7(M) and

negative-definite on H3
27(M). In particular the signature is (1, b3(M) − 1) when M is a

connected irreducible G2-manifold.

If g is a G2-metric and ϕ is a torsion-freeG2-structure inducing g thenDmϕ : H3 → ε(g)

gives an isomorphism H3
1⊕27

∼= ε(g) and hence defines an inner product on ε(g). Because
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the irreducible components of S2T ∗M under G2 are also representations of SO(7) this inner

product is independent of the choice of ϕ. Therefore WG2
has a well-defined Lorentzian

metric (whether M is irreducible or not), such that m : M → WG2
is a pseudo-Riemannian

submersion.

5.3.3 The asymptotically cylindrical case

The only part of the proof that does not carry over directly from the compact case is

the identification of the fibres of M+ → WG in terms of the topology of M . But this

only requires us to determine the dimension of the space of parallel spinors on any EAC

G-manifold. For G = Spin(7) this is provided by proposition 4.1.7. For G = G2 the spinor

bundle is R ⊕ TM , and the dimension of the space of parallel 1-forms is determined by

Hodge theory (corollary 2.3.40).

Remark 5.3.7. Let G = Spin(7) or G2 and H = G2 or SU(3) respectively, and let M be an

EAC G-manifold with cross-section X. Let B : M+ → N be the boundary map from the

moduli space of torsion-free EAC G-structures on M to the moduli space of torsion-free

H-structures on X and let B : WG → WH be the boundary map from the moduli space

of G-metrics on M to the moduli space of H-metrics on X. The diagram below obviously

commutes.

M+

B - N

WG

m

? B - WH

m

?

It is easy to see that any tangent to the image B(M+) ⊆ N that is also tangent to the

fibre of m : N → WH is actually a tangent to the image of a fibre of m : M+ → WG.

Therefore m : B(M+) → B(WG) is a fibre bundle, whose fibres have the same dimension

as those of m : M+ → WG.
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Chapter 6

Deformations of glued G2-manifolds

Let M7
± be a pair of EAC G2-manifolds with the same cross-section X6, whose G2-struc-

tures ϕ± have matching asymptotic models in a sense to be made precise below. M+ and

M− can be glued along their cylindrical ends to form a compact smooth manifold M .

Topologically M can be regarded as a generalised connected sum of M+ and M−. In [34]

Kovalev explains a gluing construction, which produces a torsion-free G2-structure ϕ on

M from ϕ+ and ϕ− together with a gluing parameter L ∈ R+, which controls the diam-

eter of M . Kovalev constructs examples where the resulting compact G2-manifold M has

holonomy exactly G2. Increasing the gluing parameter in the construction gives a path of

G2-structures of increasing diameter, which has no limit in the moduli space of torsion-free

G2-structures on M . Intuitively this path corresponds to a boundary point of the moduli

space, where M is ‘pulled apart’ into the connected summands M±.

In this chapter we study how the gluing construction behaves under deformations. In

particular we try to determine whether any sufficiently small torsion-free deformation of the

resulting G2-structure ϕ on M arises as the gluing of some deformations of the structures

on M±. To this end we define a smooth gluing map Y which takes values in the moduli

space M of torsion-free G2-structures on M , and study its local properties. This leads to

a precise notion of how one can add boundary points to M, representing ways of pulling

M apart.

In §6.1 we describe the gluing construction in detail, and give statements of the main

results. As the domain for the gluing map we take a moduli space G of ‘gluing data’,

consisting of equivalence classes of arguments (ϕ+, ϕ−, L) for the gluing construction with
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L sufficiently large. G is a smooth manifold, and theorem 6.1.9 states that

Y : G → M

is a local diffeomorphism. In §6.2 we discuss the topology of the glued manifold M . A key

result for computing the derivative of the gluing map is theorem 6.2.6, which is a Hodge

theory gluing result.

The main theorem 6.1.9 is proved in §6.3. In order to show that G is a smooth manifold

we make use of theorem 4.2.4 about the boundary map on the moduli space of torsion-free

EAC G2-structures.

In §6.4 we look at the consequences of the gluing construction for the moduli space M.

G can be considered as a fibre bundle with typical fibre R+ over a space B of equivalence

classes of matching pairs (ϕ+, ϕ−). We consider how M can be partially compactified by

attaching a quotient of B as a boundary, so that the path of torsion-free M of increasing

neck length arising from gluing a matching pair (ϕ+, ϕ−) converges to a boundary point.

6.1 Setup

6.1.1 Gluing construction

Let M7
± be a pair of oriented manifolds, each with a single cylindrical end, and the same

cross-section X6. We assume that X is oriented so that its orientation agrees with that

defined by M+ on its boundary, and is the reverse of that defined by M− on its bound-

ary. This ensures that the connected sum of M+ and M− obtained by identifying their

boundaries at infinity is oriented. Let t± be cylindrical coordinates on M± respectively.

Definition 6.1.1. Let ϕ± be torsion-free EAC G2-structures on M±. The pair (ϕ+, ϕ−) is

said to match if their asymptotic models are Ω±dt±∧ω, respectively, for some Calabi-Yau

structure (Ω, ω) on X compatible with the chosen orientation. Let Xy be the space of such

pairs.

Given L ∈ R+ let M±(L) = {y ∈ M± : t± ≤ L}. Identify the boundaries of M±(L) to

form a compact smooth manifold M(L), and let j∗ : X →֒ M(L) be the inclusion of the

common boundary.

Remark 6.1.2. M(L) is independent of L up to diffeomorphism, so we will often refer to it

simply as M . On the other hand, sometimes we wish to emphasise that we use a particular
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description M(L), e.g. if we ever wish to give a representative for a de Rham cohomology

class on M we consider it as a closed form on M(L) for some L.

For notational convenience we suppose that the cylindrical part of M± is given by

t± > −2 rather than t± > 0. By lemma 2.3.36 there is for every closed exponentially

asymptotically translation-invariant m-form α± on M± a decaying (m − 1)-form η±(α±)

which is supported on t± > L − 2, such that α± + dη±(α±) is translation-invariant on

t± > L− 1.

For (ϕ+, ϕ−) ∈ Xy let ϕ̃± = ϕ± + dη±(ϕ±). Then we can define a G2-structure

ϕ̃(ϕ+, ϕ−, L) on M(L) by ϕ̃|M±(L) = ϕ̃±|M±(L). Note that the choice of (cut-off function in

the definition of) η± does not affect the cohomology class of ϕ̃(ϕ+, ϕ−, L).

Proposition 6.1.3. There is an upper semi-continuous map L0 : Xy → R+ such that for

any (ϕ+, ϕ−) ∈ Xy and L > L0(ϕ+, ϕ−) there is a unique diffeomorphism class of torsion-

free G2-structures on M(L) in a small neighbourhood of ϕ̃(ϕ+, ϕ−, L) in its cohomology

class.

Sketch proof. The idea is that for large L the torsion of ϕ̃(ϕ+, ϕ−, L) is very small, and the

structure can be perturbed to a torsion-free one using a contraction-mapping argument.

For details see Kovalev [34, §5], in principle inspired by Floer [16].

The result can also be deduced from theorem 7.2.2 below, due to Joyce (with the

uniqueness part coming from proposition 7.2.4).

Remark 6.1.4. The resulting G2-metric on M(L) has an almost cylindrical ‘neck’ of length

roughly 2L. The diameter is diam M(L) ∼ 2L as L→ ∞.

One might expect to be able to find examples of matching pairs of G2-structures by

taking M− = M+, with the same G2-metric and opposite orientation and cross-sections

identified trivially. In fact, this only gives trivial examples; it is only possible when M+ has

a double cover isometric to a cylinder X × R (such as example 4.1.18), and the gluing of

M+ and M− is then covered by X × S1 and cannot have holonomy exactly G2.

Proposition 6.1.5. Let M− be M+ with its orientation reversed and (ϕ+, ϕ−) a matching

pair of G2-structures. If ϕ+ and ϕ− define the same metric then M+ has a double cover

isometric to a cylinder.

Proof. −ϕ− is a torsion-free G2-structure on M+ which defines the same metric as ϕ+. By

remark 5.3.3 this corresponds to a parallel section of P(R⊕TM+). The matching condition

for ϕ+ and ϕ− implies that the parallel section is asymptotic to [ ∂
∂t

]. In other words either
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M+ or a double cover of M+ has a parallel vector field asymptotic to ± ∂
∂t

. By corollary

2.3.40 this is impossible for a manifold with a single end, so M+ has a double cover which

is isometric to a cylinder by theorem 4.1.3.

This does not mean that it is impossible to obtain irreducible G2-manifolds by glu-

ing isometric EAC G2-manifolds, only that the identification of the boundaries must be

distinct from the asymptotic limit of the isometry. In §7.3.3 we see examples where an

EAC G2-manifold is glued to a copy of itself, using an anti-holomorphic isometry of the

boundary.

6.1.2 Results

We need to find an appropriate domain for the gluing map Y . Let M± denote the moduli

space of torsion-free EAC G2-structures on M±, and N the moduli space of Calabi-Yau

structures on their common cross-section X. We can define a subset My ⊆ M+ × M−

consisting of pairs which have matching images in N . While we can apply our understand-

ing of M± and their relationship to N (particularly theorem 4.2.4) to show that My is a

manifold, it is not an appropriate domain. The reason is that for a matching pair of points

in the moduli spaces M+,M− there is some ambiguity in how to glue them. This arises

both from choosing representatives of the diffeomorphism classes (this ambiguity in some

sense corresponds to the quotient of the automorphisms of X by a subgroup generated by

elements which extend to automorphisms of M+ or M−), and from the dependence of the

gluing construction on a gluing parameter L. Instead we define the gluing map on a moduli

space of arguments for the gluing construction.

Definition 6.1.6. A set of gluing data is a triple (ϕ+, ϕ−, L) such that (ϕ+, ϕ−) ∈ Xy and

L > L0(ϕ+, ϕ−). Let G0 be the space of gluing data.

G0 is an open subset of Xy × R. If we let M be the moduli space of torsion-free

G2-structures on M then proposition 6.1.3 provides a well-defined smooth map

Y : G0 → M. (6.1)

Let D± be the group of EAC diffeomorphisms of M± isotopic to the identity (cf. defi-

nition 2.3.6). Since the cross-sections of M+ and M− have been identified once and for all

we should only expect the gluing map to be invariant under diffeomorphisms that respect

this identification.
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Definition 6.1.7. (φ+, φ−) ∈ D+ ×D− is a matching pair of EAC diffeomorphisms if the

asymptotic models of φ± are (x, t±) 7→ (Ξ±(x), t± + h±) with Ξ+ = Ξ−. Let Dy be the

identity component of the group of such pairs.

For (φ+, φ−) ∈ Dy let h = 1
2
(h+ + h−), and define an action on Xy × R by

φ∗ : (ϕ+, ϕ−, L) 7→ (φ∗
+ϕ+, φ

∗
−ϕ−, L− h). (6.2)

The map L0 is not Dy-invariant, so nor is the open set G0 ⊆ Xy × R. Nevertheless we

can define

Definition 6.1.8. The moduli space of gluing data is G0 = G0Dy/Dy.

We will show that G0 is a smooth manifold. Moreover the gluing map (6.1) really is

invariant under the action of Dy, and therefore descends to a smooth map

Y : G0 → M. (6.3)

Proposition 6.3.9 computes the derivative of the gluing map (6.3). For each matching

pair (ϕ+, ϕ−) the derivative is invertible at (ϕ+, ϕ−, L)Dy ∈ G0 for all but finitely many

L > L0(ϕ+, ϕ−). Therefore Y is a local diffeomorphism on some open subset G ⊆ G0 whose

gluing parameters are sufficiently large. This gives the main result of the chapter.

Theorem 6.1.9. The gluing map Y : G → M is a local diffeomorphism.

The most important tool in the proof is that the projection πH : M → H3(M) to

de Rham cohomology is a local diffeomorphism. This means that we can study the local

properties of the gluing map in terms of what the gluing does to the cohomology classes.

This is discussed in §6.2. In particular we prove a Hodge theory gluing result.

We can restrict (6.2) to an action of Dy on the space Xy of matching pairs. The quotient

B is smooth, and G is obviously a fibre bundle over B with typical fibre R+. G can be

included in a fibre bundle G over B with typical fibre (0,∞] (so the boundary is B). In

§6.4 we deduce from theorem 6.1.9 that M can be partially compactified by inclusion

in a topological manifold M whose boundary B̂ is covered by B. The boundary points

parametrise ways of ‘pulling apart’ M into a pair of EAC connected-summands.

Theorem 6.1.10. M can be identified with the interior of a topological manifold M with

boundary B̂, so that the following holds: If (ϕ+, ϕ−) ∈ Xy then the path Y (ϕ+, ϕ−, L)

converges to the image of (ϕ+, ϕ−) in B̂ as L→ ∞.

131



Remark 6.1.11. It may be possible to pull apart a compact G2-manifold in more than one

direction. Theorem 6.1.10 can be used to attach one ‘face’ to the moduli space for each

topologically distinct way of writing the manifold as a union of a pair of manifolds with

cylindrical ends identified at the boundary.

6.2 Gluing and topology

6.2.1 Topology of the connected sum

Let Mn
± be oriented manifolds each with a single cylindrical end, which have common

cross-section X. As above we assume that X is oriented compatibly with M+ and reverse

to M−, and we form a generalised connected sum M . We collect here some results about

the topology of M that we will use.

As we remarked before, as a smooth manifold M is independent of the choice of gluing

parameter L. Up to isotopy there are natural inclusion maps

M

M+

i+

-

M−

�

i
−

X

j

6

j−

-
�

j
+

A large part of what we need to know about the topology is contained in the Mayer-

Vietoris sequence for M = M+ ∪M− and the sequence for the cohomology of M± relative

to X.

· · · −→ Hm−1(X)
δ

−→ Hm(M)
i∗
+
⊕i∗

−

−→ Hm(M+) ⊕Hm(M−)
j∗
+
−j∗

−

−→ Hm(X) −→ · · · (6.4)

· · · −→ Hm−1(X)
∂±
−→ Hm

cpt(M±)
e±
−→ Hm(M±)

j∗
±

−→ Hm(X) −→ · · · (6.5)
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The inclusions i± : M± →֒M induce maps i±∗ : Hm
cpt(M±) → Hm(M). Note that

δ = i+∗ ◦ ∂+ = −i−∗ ◦ ∂−. (6.6)

j∗± : Hm(M±) → Hm(X) is the Poincaré dual of ±∂± : Hn−m−1(X) → Hn−m(M) (the

sign difference comes from our assumption on the orientations of M± and X). The Poincaré

dual of the Mayer-Vietoris sequence is the sequence for relative cohomology of M relative

to X.

· · · Hm−1(X)
∂+⊕∂−
−→ Hm

cpt(M+) ⊕Hm
cpt(M−)

i+∗+i−∗

−→ Hm(M)
j∗

−→ Hm(X) · · · (6.7)

Lemma 6.2.1. If M± are Ricci-flat EAC manifolds then j∗ : H1(M) → H1(X) is injective.

Proof. The kernel of j∗ is the image of H1
cpt(M+) ⊕ H1

cpt(M−), which is 0 by corollary

2.3.42.

Denote the image of j∗± : Hm(M±) → Hm(X) by Am± , and let Amd be the image of

j∗ : Hm(M) → Hm(X). By the exactness of the Mayer-Vietoris sequence Amd = Am+ ∩Am− .

6.2.2 Gluing and cohomology

We explain how to glue a matching pair of closed forms on M+,M− to a well-defined

cohomology class on M .

Let Zm
y be the set of matching pairs of closed exponentially asymptotically translation-

invariant m-forms on M+,M−, i.e. (ψ+, ψ−) such that ψ± is a closed exponentially asymp-

totically translation-invariant m-form on M±, Ba(ψ+) = Ba(ψ−), and Be(ψ+) = −Be(ψ−).

If (ψ+, ψ−) ∈ Zm
y and L > 0 let ψ̃± = ψ± + dη±(ψ±). Choose the cut-off function for

the cylinders in the definition (2.35) of η± to ensure that ψ̃± is translation-invariant on

t± > 0. Then we can define ψ̃(ψ+, ψ−, L) on M(L) by i∗±ψ̃ = ψ̃±. We define a gluing map

YH : Zm
y × R

+ → Hm(M), (ψ+, ψ−, L) 7→ [ψ̃]. (6.8)

YH is independent of the choice of η±, so well-defined. Furthermore, YH is invariant under

the action of the group Dy of matching diffeomorphisms, defined similarly to (6.2).
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Definition 6.2.2. For (φ+, φ−) ∈ Dy with asymptotic models (x, t±) 7→ (Ξ(x), t± + h±)

let h = 1
2
(h+ + h−), and define an action on Zm

y × R by

φ∗ : (ψ+, ψ−, L) 7→ (φ∗
+ψ+, φ

∗
−ψ−, L− h). (6.9)

Proposition 6.2.3. If (ψ+, ψ−, L) ∈ Zm
y × R+ and (φ+, φ−) ∈ Dy with h± < L then

YH(ψ+, ψ−, L) = YH(φ∗
+ψ+, φ

∗
−ψ−, L− h) ∈ Hm(M).

Sketch proof. Let ψ̃ = ψ̃(ψ+, ψ−, L) and ψ̃′ = ψ̃(φ∗
+ψ+, φ

∗
−ψ−, L − h). φ+ and φ− can be

approximately glued to form a diffeomorphism φ̃ : M(L− h) →M(L). This pulls back [ψ̃]

to [ψ̃′].

Proposition 6.2.4. Let (ψ+, ψ−) ∈ Zm
y with Be(ψ±) = ±τ . If L, h ∈ R+ then

YH(ψ+, ψ−, L+ h) = YH(ψ+, ψ−, L) + 2hδ([τ ]), (6.10)

where δ is the boundary homomorphism appearing in the Mayer-Vietoris sequence (6.4).

Proof. It suffices to prove the result separately for the cases Ba(ψ) = 0 and Be(ψ) = 0.

If Be(ψ) = 0 pick a diffeomorphism f : (0, L) → (0, L + h) which is id on (0, 1) and

id + h on (L − 1, L). We can define a diffeomorphism M(L) → M(L + h) which is the

identity on the images of the compact pieces M±(0) in M(L) and (x, t) 7→ (x, f(t)) on the

cylindrical part. This pulls back ψ̃(ψ+, ψ−, L) to ψ̃(ψ+, ψ−, L+ h).

If Ba(ψ) = 0 then let c± = ±ψ̃± − d(ρ±t±τ), with ρ± chosen so that c± is supported in

t± < 1. By definition of the Mayer-Vietoris boundary map δ the form on M(L) obtained

by gluing d(ρ+t+τ) and −d(ρ−t−τ) is cohomologous to δ((t++t−)[τ ]) = 2Lδ([τ ]) for any L.

Hence for any L

YH(ψ+, ψ−, L) = i+∗([c+]) + i−∗(−[c−]) + 2Lδ([τ ]). (6.11)

Since i±∗ and δ are independent of L the result follows.

It is convenient to use proposition 6.2.4 to extend YH to negative gluing parameters in

a well-defined way.

Definition 6.2.5. Define

YH : Zm
y × R → Hm(M)
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as (6.8) on Zy × R+, and extend for any L > 0 and h ∈ R by (6.10).

6.2.3 Hodge theory

Now suppose that Mn
± have EAC Riemannian metrics whose cylindrical models match on

the cylinders. We wish to consider what the gluing of closed forms described in the previous

subsection does on pairs of harmonic forms.

Let Hm
±,0 be the space of bounded harmonic m-forms on M±. The space of matching

pairs of harmonic forms is

Hm
y = (Hm

+,0 ×Hm
−,0) ∩ Zm

y .

We prove that any cohomology class on M can be obtained by gluing a matching pair of

harmonic forms, except when the gluing parameter is an eigenvalue of a certain self-adjoint

endomorphism which is to be defined below.

Theorem 6.2.6. Let M± have EAC metrics. Considering L as a parameter, the linear

map

YH : Hm
y → Hm(M), (ψ+, ψ−) 7→ YH(ψ+, ψ−, L) (6.12)

is an isomorphism except when −2L is an eigenvalue of

πE(∂−1
+ C+ + ∂−1

− C−) : Em−1
d → Em−1

d . (6.13)

We use notation for harmonic forms analogous to that in the summary in §4.1.1, and add

subscripts ± to distinguish between objects associated to M+ and M−. We write Hm(X)

as orthogonal direct sums Am± ⊕ Em
± , where Am± is the image of j∗± : Hm(M±) → Hm(X).

Let Am
± and Em± be the spaces of harmonic representatives.

Let Am
d = Am

+∩Am
− . This is then the space of harmonic representatives for Amd . Similarly

let Emd = Em+ ∩ Em− and denote the corresponding subspace of Hm(X) by Em
d .

Recall that ∂± denotes the boundary map in the long exact sequence for relative coho-

mology (6.5). We define an isomorphism

C± : Em−1
± → im ∂± ⊆ Hm

cpt(M±)

as follows. If τ ∈ Em−1
± let ψ be the unique element of Hm

±,E (the bounded exact harmonic

forms on M±) such that Be(ψ) = τ . Taking η± as defined in (2.35), ψ+dη±(ψ)−d(ρ±t±τ)
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has compact support, so represents a class C±([τ ]) ∈ Hm
cpt(M±). This class is mapped to 0

by e±, so lies in the image of ∂±.

Remark 6.2.7. C± is independent of the choice of ρ±, but depends on both the metric and

the cylindrical coordinate: replacing t± by t± + λ adds λ∂± to C±.

Composing C± with the inverse of ∂± : Em−1
± → im ∂± gives an endomorphism ∂−1

± C±

of Em−1
± .

Lemma 6.2.8. ∂−1
± C± : Em

± → Em
± is self-adjoint.

Proof. This is really a rephrasing of proposition 2.3.38. If χ ∈ Hm
±,− with BDa(χ) =

(

β

α

)

∈

(Hm
X)2 then dχ is the unique element of Hn+1

±,E such that Be(dχ) = β.

C±[β] = [d(χ+ η±(dχ) − ρ±t±β)] = ∂±[α] ∈ Hm+1
cpt (M±),

so ∂−1
± C±[β] is the L2-orthogonal projection of [α] to Em

± . The result thus follows from

proposition 2.3.38.

It follows that the endomorphism (6.13) is self-adjoint too.

Proof of theorem 6.2.6. Consider the map (i∗+ ⊕ i∗−) : Hm(M) → Hm(M+) ⊕ Hm(M−) in

the Mayer-Vietoris sequence. Recall that L is fixed so that YH is regarded as a linear map

Hm
y → Hm(M). In order to prove that (6.12) is an isomorphism it suffices to show that

im ((i∗+ ⊕ i∗−) ◦ YH) = im (i∗+ ⊕ i∗−) and that YH : ker((i∗+ ⊕ i∗−) ◦ YH) → ker(i∗+ ⊕ i∗−) is an

isomorphism.

(i∗+ ⊕ i∗−)YH(ψ+, ψ−) = ([ψ+], [ψ−]) and it follows from the exactness of the Mayer-

Vietoris sequence that im ((i∗+ ⊕ i∗−) ◦ YH) = im (i∗+ ⊕ i∗−). Also ker((i∗+ ⊕ i∗−) ◦ YH) equals

Hm
y,E, the pairs of exact forms in Hm

y .

Thus the problem reduces to determining whether the restriction

YH : Hm
y,E → ker(i∗+ ⊕ i∗−)

of (6.12) is an isomorphism. Given τ ∈ Em−1
d let (ψ+, ψ−) be the unique element of Hm

y,E

such that τ = Be(ψ+) = −Be(ψ−). By the definition of C± and (6.11)

YH(ψ+, ψ−) = i+∗C+([τ ]) + i−∗C−([−τ ]) + 2Lδ([τ ]).
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Combining with (6.6) we find

YH(ψ+, ψ−) = δ
(

∂−1
+ C+([τ ]) + ∂−1

− C−([τ ]) + 2L[τ ]
)

. (6.14)

δ : Hm−1(X) → Hm(M) maps Em−1
d → ker(i∗+ ⊕ i∗−) isomorphically and vanishes on the

orthogonal complement of Em−1
d . Hence (6.14) is an isomorphism Hm

y,E → ker(i∗+ ⊕ i∗−)

unless −2L is an eigenvalue of the endomorphism (6.13).

6.3 The gluing map

We will now make use of the topological results of the previous subsections to study the

gluing map for torsion-free G2-structures. As in §6.1, M+ and M− are EAC G2-manifolds

with a common cross-section X and M is their connected sum. M denotes the moduli

space of torsion-free G2-structures on M and G0 the space of gluing data.

In order to prove theorem 6.1.9 we need to show that the gluing map is Dy-invariant

so that it is well-defined on G0 = G0Dy/Dy, to show that G0 is a smooth manifold and to

compute the derivative of the gluing map.

6.3.1 Diffeomorphism invariance

Note that the composition πH ◦ Y : G0 → H3(M) of the gluing map (6.1) with the local

diffeomorphism πH : M → H3(M) is simply the restriction to G0 of the map YH given by

definition 6.2.5. We will use this first to show that Y induces a well-defined map on G0,

i.e. the quotient of G0 by the group Dy of matching EAC diffeomorphisms. Later we will

determine the local properties of Y : G0 → M from those of YH : (Xy × R)/Dy → H3(M).

Proposition 6.3.1. The map Y is Dy-invariant, so descends to a well-defined continuous

function

Y : G0 → M. (6.15)

Proof. We need to show that if φ ∈ Dy and (ϕ+, ϕ−, L) ∈ G0 such that φ∗(ϕ+, ϕ−, L) ∈ G0

then

Y (ϕ+, ϕ−, L) = Y (φ∗(ϕ+, ϕ−, L)).

The idea of the proof is to connect (ϕ+, ϕ−, L) and φ∗(ϕ+, ϕ−, L) by a path in G0. The

image under Y of this path is the lift by the local diffeomorphism πH : M → H3(M) of a

path in H3(M), which is determined by propositions 6.2.3 and 6.2.4.
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Let [0, 1] → Dy, s 7→ φs be a path connecting the identity to φ, and take k sufficiently

large that φ∗
s(ϕ+, ϕ−, L + k) ∈ G0 for all s. By proposition 6.2.3 the path [0, 1] → M,

s 7→ Y (φ∗
s(ϕ+, ϕ−, L+ k)) is a lift of a constant path in H3(M), so

Y (φ∗(ϕ+, ϕ−, L+ k)) = Y ((ϕ+, ϕ−, L+ k)).

By proposition 6.2.4 the paths [0, k] → M

s 7→ Y (φ∗(ϕ+, ϕ−, L+ k − s)),

s 7→ Y (ϕ+, ϕ−, L+ k − s)

are both lifts of s 7→ YH(ϕ+, ϕ−, L + k) − 2sδ([ω]), so in particular they have the same

value at s = 1, which gives the result.

6.3.2 A coordinate chart

Next we describe coordinate charts for (Xy ×R)/Dy, which contains G0 as an open subset.

This mainly relies on the pre-moduli spaces of torsion-free EAC G2-structures that were

constructed in §4.2. The definition (6.2) of the action of Dy on Xy ×R can be restricted to

give an action on Xy, and (Xy ×R)/Dy is obviously a principal R-bundle over B = Xy/Dy.

It therefore suffices to find charts for B.

Let M± be the moduli space of torsion-free EAC G2-structures on M±, and N the

moduli space of Calabi-Yau structures on X. Let My ⊆ M+ ×M− be the pairs of diffeo-

morphism classes of EAC torsion-free G2-structures whose boundary images in N match.

There is a natural projection

B → My, (ϕ+, ϕ−)Dy 7→ (ϕ+D+, ϕ−D−). (6.16)

If b1(M) = 0 then we will see that this projection is a covering map. We begin by finding

charts for My.

Proposition 6.3.2. My is a submanifold of M+ ×M−.

Each point in My can be represented by a matching pair of torsion-free G2-structures

(ϕ+, ϕ−), asymptotic to a Calabi-Yau structure (Ω, ω) on X. Let R± be the pre-moduli

space of torsion-free EAC G2-structures near ϕ±.
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Definition 6.3.3. The pre-moduli space of matching pairs of torsion-free EAC G2-struc-

tures near (ϕ+, ϕ−) is a neighbourhood Ry of (ϕ+, ϕ−) in Xy ∩ (R+ ×R−).

To use Ry as a coordinate chart we first need to show that its boundary values form a

manifold. Let Q be the pre-moduli space of Calabi-Yau structures near (Ω, ω). By theorem

4.2.4 the boundary map

B± : R± → Q

is a submersion onto its image, which is an open subset of a submanifold Q±,A defined by

the equations [Ω′] ∈ A3
±, [ω

′2] ∈ A4
±. Thus the intersection

Qd,A = Q+,A ∩Q−,A

is defined as a subset of Q by [Ω′] ∈ A3
d, [ω

′2] ∈ A4
d.

Lemma 6.3.4. Qd,A ⊆ Q is a submanifold.

Proof. We can recycle the proof of proposition 4.2.9.

Proof of proposition 6.3.2. Let DX be the group of diffeomorphisms of X isotopic to the

identity. If (ψ+, ψ−) ∈ R+ × R− then the boundary values B±(ψ±) both lie in the pre-

moduli space Q. Therefore proposition 3.1.10 implies that they are DX-equivalent if and

only if they are equal. Hence Ry is homeomorphic to a neighbourhood of (ϕ+D+, ϕ−D−)

in My, and it suffices to prove that Ry is a submanifold of R+ ×R−.

By lemma 6.3.4 the image of Qd,A in Q+,A×Q−,A under the diagonal map is a subman-

ifold. Ry ⊆ R+ × R− is the inverse image of Qd,A ⊆ Q+,A × Q−,A under the submersion

B+ ×B− : R+ ×R− → Q+,A ×Q−,A, so it is a submanifold.

Remark 6.3.5. This argument shows also that for (ϕ+, ϕ−) ∈ Xy the tangent spaces to

the corresponding pre-moduli spaces Qd,A and Ry are what one would naively expect. In

particular

TϕRy = H3
y,cyl, (6.17)

the subspace of matching pairs in H3
+,cyl ×H3

−,cyl.

Now consider the fibres of the projection (6.16). Given (ψ+, ψ−) ∈ Ry any point in the

fibre above (ψ+, ψ−)Dy is represented by a matching pair (φ∗
+ψ+, φ

∗
−ψ−) with φ± ∈ D±. The

pair (φ+, φ−) need not match, and even if it does it need not lie in the identity component Dy

of the group of matching pairs of EAC diffeomorphisms. However, if (x, t) 7→ (Ξ±(x), t+h±)
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denotes the the asymptotic limit of φ± then χ = Ξ−1
− ◦ Ξ+ ∈ IX , where IX ⊂ DX is the

group of automorphisms of the Calabi-Yau manifold X that are isotopic to the identity.

Because φ+ and φ− are isotopic to the identity there is a path h : R → DX which is id for

t ≤ −1 and φ for t ≥ 0 such that (φ+, φ−h) ∈ Dy (regarding h as an EAC diffeomorphism

of M−).

Definition 6.3.6. Let ĨX be the group of paths in DX from the identity to elements of

IX modulo homotopies relative to the endpoints.

Remark 6.3.7. Proposition 3.1.10 implies that IX and ĨX are independent of of the Calabi-

Yau structure in Q. So are A1
d and A1

±, the harmonic representatives ofA1
d andA1

±. Similarly

the automorphism group IM±
of the EAC G2-manifold M± is independent of the choice of

G2-structure in R±.

If χ̃ ∈ ĨX then a representative for χ̃ can be considered as a diffeomorphism h± ∈ D±.

This is determined by χ̃ up to multiplication by diffeomorphisms asymptotic to the identity.

For (ψ+, ψ−) ∈ Ry let

χ̃∗((ψ+, ψ−)Dy) = (ψ+, h
∗
−ψ−)Dy ∈ B. (6.18)

This is well-defined, independent of the choice of h−. Any point in the pre-image of (ψ+, ψ−)

in B can be written in this form, so essentially the points of the fibre correspond to different

ways of identifying the cylinders of the G2-structures ψ+ and ψ−.

The identity component of ĨX is the universal cover of the identity component of IX .

Proposition 5.2.4 implies that TidIX is the Abelian Lie algebra (H1
X)♯. That is therefore the

universal cover of the identity component of IX , so we can identify the identity component

of ĨX with H1(X).

For (ψ+, ψ−) ∈ Ry let S ⊆ ĨX be the stabiliser of (ψ+, ψ−)Dy under the action (6.18).

Then

ĨX/S ×Ry → B, (χ̃S, ψ+, ψ−) 7→ χ̃∗((ψ+, ψ−)Dy) (6.19)

is a homeomorphism onto a neighbourhood. χ̃ ∈ S means that χ̃ = χ̃+χ̃− for some χ̃± ∈ ĨX

such that the corresponding EAC diffeomorphisms h± ∈ D± are equivalent to automor-

phisms of M± modulo diffeomorphisms asymptotic to the identity. The Lie algebra of IM±

corresponds to the bounded harmonic 1-forms H1
±,0, whose image under the boundary map

B± is A1
± ⊆ H1

X . Therefore the identity component of S is A1
+ ⊕ A1

−. Each A1
± ⊆ H1(X)

is a half-dimensional subspace according to proposition 4.1.6, while their intersection is

A1
d
∼= H1(M). Thus the components of ĨX/S are planes of dimension b1(M).
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The most interesting case is when M has holonomy exactly G2. Then b1(M) = 0, so

B → My is a covering map. In general one can still show that transition function between

the maps of the form (6.19) are smooth, and give B the structure of a smooth manifold.

Finally, let us write down a convenient coordinate chart for (Xy × R)/Dy based on

(6.19). First, for χ̃ ∈ ĨX we define

χ̃∗((ψ+, ψ−, L)Dy) = (ψ+, h
∗
−ψ−, L)Dy ∈ (Xy × R)/Dy. (6.20)

like (6.18). Note that if χ̃ is a loop in DX based at the identity then the glued G2-structures

Y (ψ+, ψ−, L) and Y (χ̃∗(ψ+, ψ−, L)) on M are certainly diffeomorphic, but not necessarily

by a diffeomorphism isotopic to the identity.

Let E1
d,ψ be the orthogonal complement of A1

+ + A1
− in H1(X) with respect to the

Kähler metric on X defined by the boundary value of (ψ+, ψ−) ∈ Ry. By lemma 6.2.1,

j∗ : H1(M) → H1(X) is injective and the image is precisely A1
d. It follows from proposition

4.1.6 that the complex structure Jψ maps A1
d → E1

d,ψ bijectively. Composition gives a

homomorphism

βψ : H1(M) → ĨX/S, (6.21)

mapping onto the identity component. Hence

Ry ×H1(M) × R → (Xy × R)/Dy, (ψ+, ψ−, a, L) 7→ βψ(a)∗(ψ+, ψ−, L)Dy (6.22)

parametrises a neighbourhood of (ϕ+, ϕ−, L)Dy in (Xy × R)/Dy.

6.3.3 The derivative of the gluing map

Since πH : M → H3(M) is a local diffeomorphism the local behaviour of the gluing map

Y : G0 → M is determined by that of YH = πH ◦ Y . YH is just the gluing map for

cohomology of definition 6.2.5, so can be defined on all of (Xy × R)/Dy. We will compute

the derivative.

Let (ϕ+, ϕ−) ∈ Xy, and let Ry be the pre-moduli space of matching pairs of torsion-

free EAC G2-structures near it. In the chart (6.22), YH is affine linear in the R factor by

proposition 6.2.4. The same is true for the H1(M) factor.

Lemma 6.3.8. Let (ψ+, ψ−) ∈ Ry with common boundary (Ω, ω), and let δ be the boundary

map in the Mayer-Vietoris sequence (6.4). Let α ∈ H1
X , and let χ̃ be the corresponding
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element of the identity component of ĨX . Then

YH(χ̃∗(ψ+, ψ−, L)) = YH(ψ+, ψ−, L) − δ([α♯yΩ]).

Proof. Let ρ : R → [0, 1] be a smooth function such that ρ(t) = 0 for t ≤ −1 and ρ(t) = 1

for t ≥ 0. Then h : R → DX , t 7→ exp(ρ(t)α♯) is a representative for χ̃. h can be considered

as a diffeomorphism of M−, and

YH(χ̃∗(ψ+, ψ−, L)) = YH((ψ+, h
∗ψ−, L)).

For s ∈ [0, 1]

d

ds
YH
(

ϕ+, (exp(ρsα♯))∗ϕ−, L
)

= YH
(

0, d(ρα♯y(exp(ρsα♯))∗ϕ−), L
)

= −δ
(

[α♯yΩ]
)

.

Recall that E2
d = ∗A4

d, the Hodge dual of the image of j∗ : H4(M) → H4(X). Proposi-

tion 4.1.5 implies that E2
d splits by type:

E2
d = E2

d,1 ⊕ E2
d,6 ⊕ E2

d,8.

Let πE : H2(X) → E2
d denote the orthogonal projection. In §6.2.3 we described the self-

adjoint endomorphism πE(∂−1
+ C+ + ∂−1

− C−) of E2
d . By an argument similar to the proof of

theorem 6.2.6 we show that the gluing map has invertible derivative at (ϕ+, ϕ−, L)Dy ∈ G0

unless −2L is an eigenvalue of πE(∂−1
+ C++∂−1

− C−) for some eigenvector in E2
d,8. In particular

the derivative is invertible for large L.

Proposition 6.3.9. Given (ϕ+, ϕ−) ∈ Xy the derivative of

YH : (Xy × R)/Dy → H3(M)

at (ϕ+, ϕ−, L)Dy is bijective for all sufficiently large L.

Proof. Let

Y ′
H : Ry ×H1(M) × R → H3(M)

be the representation of YH in the coordinate chart (6.22). By (6.17) the tangent space of

Ry at (ϕ+, ϕ−) is a space of matching pairs of harmonic forms H3
y,cyl. It can be described

as the subspace of H3
y consisting of pairs (ψ+, ψ−) such that the corresponding cylindrical

form B(ψ) = σ + dt ∧ τ is in H3
SU (i.e. satisfies (3.25)).
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Now consider the derivative

(DY ′
H)(ϕ+,ϕ−,0,L) : H3

y,cyl ×H1(M) × R → H3(M).

As in theorem 6.2.6 we consider the map (i∗+ ⊕ i∗−) : H3(M) → H3(M+) ⊕H3(M−) in the

Mayer-Vietoris sequence. To show that DY ′
H is an isomorphism it suffices to show that

im ((i∗+ ⊕ i∗−) ◦DY ′
H) = im (i∗+ ⊕ i∗−), and that DY ′

H : ker((i∗+ ⊕ i∗−) ◦DY ′
H) → ker(i∗+ ⊕ i∗−)

is an isomorphism.

The restriction of DY ′
H to H3

y,cyl × 0 × 0 is just YH . We first show that

(i∗+ ⊕ i∗−) ◦ YH : H3
y,cyl → im (i∗+ ⊕ i∗−)

is surjective. If [ψ] is a class in H3(M), let ψ± be the unique representative of i∗±[ψ] in

H3
±,cyl such that π8Be(ψ±) = 0 (cf. corollary 4.2.10). Then (ψ+, ψ−) lies in H3

y,cyl and

satisfies (i∗+ ⊕ i∗−)YH(ψ+, ψ−) = (i∗+[ψ], i∗−[ψ]).

It remains to determine whether

DY ′
H : ker((i∗+ ⊕ i∗−) ◦DY ′

H) → ker(i∗+ ⊕ i∗−)

is an isomorphism. δ : H2(X) → H3(M) restricts to an isomorphism E2
d → ker(i∗+⊕i

∗
−). The

derivative DY ′
H maps R isomorphically to δ(E2

d,1) by proposition 6.2.4. Also α 7→ ∗[α ∧ Ω]

defines an isomorphism A1
d → E2

d,6 by proposition 4.1.5, so lemma 6.3.8 implies that DY ′
H

maps H1(M) isomorphically to δ(E2
d,6).

The kernel of (i∗+ ⊕ i∗−) ◦ YH in H3
y,cyl is H3

y,E,cyl = H3
y,cyl ∩ H3

y,E. If we identify H3
y,E

with E2
d by (ψ+, ψ−) 7→ B(ψ) then H3

y,E,cyl is identified with E2
d,8 (cf. corollary 4.2.10). By

(6.14), DY ′
H restricted to H3

y,E,cyl × 0 × 0 is identified with

E2
d,8 → H3(M), [α] 7→ δ

(

πE(∂−1
+ C+ + ∂−1

− C−)[α] + 2L[α]
)

.

Hence the derivative is bijective unless πE(∂−1
+ C+ + ∂−1

− C−) has a non-zero eigenvector in

E2
d,8 with eigenvalue −2L.

Remark 6.3.10. It is possible to show that πE(∂−1
+ C+ + ∂−1

− C−) maps E2
d,8 to itself.

Lemma 6.2.8 implies that πE(∂−1
+ C+ + ∂−1

− C−) has only real eigenvalues. Therefore

{(ϕ+, ϕ−, L) ∈ Xy × R : −2L is an eigenvalue of πE(∂−1
+ C+ + ∂−1

− C−)}
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is locally a union of graphs of smooth functions Xy → R. The image of this set in the

quotient (Xy × R)/Dy is locally a union of graphs of smooth sections over B. In view of

proposition 6.3.9, YH : (Xy×R)/Dy → H3(M) is a local diffeomorphism on the complement

of this subset. We therefore define

G = {(ϕ+, ϕ−, L) ∈ G0 : −2L < all eigenvalues of πE(∂−1
+ C+ + ∂−1

− C−)}.

G ⊆ G0 is the subset of gluing data for which the gluing parameter is large enough to

guarantee that the derivative of the gluing map is surjective. The quotient G = GDy/Dy is

an open subset of G0, and Y : G → M is a local diffeomorphism. This completes the proof

of theorem 6.1.9.

6.4 Boundary points of the moduli space

Let the compact manifold M7 be the gluing of two EAC G2-manifolds M7
± as before and

Y : G → M

the gluing map for G2-structures. The gluing space G is a fibre bundle over B with typical

fibre R+. It can be considered as the interior of a topological manifold G with boundary B

‘at infinity’ by adding a limit point to each of the fibres. Proposition 6.3.9 means that each

boundary point in G has an open neighbourhood Ū such that Y is a diffeomorphism on the

interior of Ū (i.e. Ū ∩ G). Therefore we can use Y : Ū → M∪ B as coordinate charts for

the disjoint union of M and B as a topological manifold with boundary. The only problem

is that the induced topology on M∪B is not Hausdorff, because points of B need not be

separated by open sets; when we attach B as a boundary of M distinct points of B may

become limits of the same path in M. We then say that they define the same boundary

point for M.

To get around this problem we will instead attach a quotient of B as a boundary of M.

To do this we need to check that the relation of defining the same boundary point is an

equivalence relation on B, and let B̂ be the quotient. We then verify that the quotient map

B → B̂ is a covering map, so that B̂ is a smooth manifold. Let M = M ∪ B̂, and use

coordinate charts

Y : Ū → M (6.23)
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to give M the structure of a (Hausdorff) topological manifold with boundary, and thus

prove theorem 6.1.10.

As a first step we show that elements of B that define the same boundary point must

have the same image in My. If b1(M) = 0 then B → My is a covering map, and we will

find that B̂ is an intermediate cover. As usual, the case b1(M) = 0 is most interesting

since it is a necessary condition for the glued manifold M to have holonomy exactly G2.

The details of the proof are more complicated in general, so in the b1(M) > 0 case we

will only point out what the correct statements are. One still finds that B̂ is obtained by

identifying some connected components of the fibres of the submersion B → My. The

upshot is that whether b1(M) = 0 or not, B̂ is smooth manifold covered by B, there is a

natural submersion B̂ → My, the connected components of the fibres of the submersion

look like those for B → My, and theorem 6.1.10 holds.

Proposition 6.4.1. Suppose that (ϕ+, ϕ−), (ψ+, ψ−) ∈ Xy define the same boundary point

for M. Then ψ± is D±-equivalent to ϕ±.

Proof. Pick some R greater than the diameter of both of the compact piecesM±(0). For any

L the set of points x ∈M(L) for which the complement of the ball B(x, 2R) is connected

is contained in the compact subset M+(3R) ∪M−(3R) ⊂M(L).

Let Ry be the pre-moduli space of matching pairs of torsion-free G2-structures near ϕ.

The hypothesis means that there are sequences Li, L
′
i > 0, and (ϕi,+, ϕi,−), (ψi,+, ψi,−) ∈ Ry

such that Li, L
′
i → ∞, ϕi,± → ϕ± and ψi,± → ψ±, together with a sequence of diffeomor-

phisms φi : M(Li) →M(L′
i) which pull back Y (ψi,+, ψi,−, Li) to Y (ϕi,+, ϕi,−, L

′
i).

Pick a pair of points x± ∈ M±(0). Then φi(x±) ∈ M±(3R) for all i. (φi(x±) cannot lie

in M∓(3R) because φi is isotopic to the identity.) By passing to a subsequence we may

assume that φi(x±) converges to some x′± ∈M±(3R). Moreover, the derivatives Dφi|Tx±M

can be regarded as maps defined on Tx±M±, and we may assume that they converge to

isometries A± : (Tx±M±, gϕ±
) → (Tx′

±
M±, gψ±

). Now for any v ∈ Tx±M

φi(expϕ v) → expψ A±v

as i→ ∞. We can therefore define diffeomorphisms φ± of M± by φ±(expϕ v) = expψ(A±v)

for all v ∈ Tx±M±. The convergence of φi → φ± is uniform on M±(L) for each L (regarded

as a compact subset of either M± or M(L′) for all L′ > L), and φ± pulls back ψ± to ϕ±.

It is and is smooth and EAC by proposition 2.3.7.

We now make the simplifying assumption that b1(M) = 0.
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Lemma 6.4.2. Suppose that (ϕ+, ϕ−), (ψ+, ψ−) ∈ Xy define the same boundary point

for M. Then the path Y (ψ+, ψ−, L) converges to (ϕ+, ϕ−)Dy in M∪B as L→ ∞.

Proof. We only prove the lemma for b1(M) = 0.

Proposition 6.4.1 implies that (ψ+, ψ−) = χ̃∗(ϕ+, ϕ−) for some χ̃ ∈ ĨX , in the sense

of (6.18). In particular i∗±[ψ±] = i∗±[ϕ±] ∈ H3(M±), and the paths YH(ψ+, ψ−, L) and

YH(ϕ+, ϕ−, L) both lie in the affine space K = [ϕ] + δ(H2(X)). They are both affine rays

with slope 2δ([ω]).

Now consider the image in H3(M) of the interior U of a small neighbourhood of

(ϕ+, ϕ−)Dy in G. When b1(M) = 0 the image contains an affine cone in K. In partic-

ular it contains all but a finite part of the ray YH(ψ+, ψ−, L), and from this we will deduce

the result.

If b1(M) = 0 then we may take U to be represented by Ry × (L1,∞), where Ry is a

pre-moduli space of matching pairs of torsion-free EAC G2-structures near (ϕ+, ϕ−) and

L1 ∈ R is large. The projection of the gluing to H3(M) can be written as

YH : Ry × (L1,∞) → H3(M), (ϕ′
+, ϕ

′
−, L) = f(ϕ′

+, ϕ
′
−) + 2Lδ([ω′]), (6.24)

where i∗±f(ϕ′
+, ϕ

′
−) = [ϕ′

±], and ω′ is the Kähler form of the common boundary value of ϕ′
±.

If we let

R′
y = {(ϕ′

+, ϕ
′
−) ∈ Ry : i∗±ϕ

′
± = i∗±ϕ±}

then the restriction of YH maps R′
y × (L1,∞) locally diffeomorphically to K. The compu-

tation of the derivative in proposition 6.3.9 shows that the map

R′
y → δ(H2(X)), (ϕ′

+, ϕ
′
−) 7→ δ([ω′])

is an embedding, and that the tangent space to the image is a direct complement to the

radial line. The image of R′
y × (L1,∞) under YH therefore contains an open affine cone

in K, and in particular it contains the ray YH(ψ+, ψ−, L).

χ̃∗U is the interior of a neighbourhood of (ψ+, ψ−)Dy in G. By lemma 6.3.8, YH(χ̃∗U)

is a translate of YH(U), so their intersection also contains an open affine cone in K. In

particular the intersection is simply-connected. Therefore if Y (U) and YH(χ̃∗U) intersect

in M then any pair of points in Y (U) and YH(χ̃∗U) which represent the same cohomology

class must be equal. Hence Y (U) contains Y (ψ+, ψ−, L) for all sufficiently large L. As this

holds for the interior of any small neighbourhood of (ϕ+, ϕ−)Dy in G the result follows.
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The lemma implies that the relation on B of defining the same boundary point for

M is transitive. Let B̂ be the quotient. Proposition 6.4.1 implies that there is a natural

projection B̂ → My. It is clear that the quotient map B → B̂ has discrete fibres, because

points in a coordinate neighbourhood of B can always be separated by open sets in M∪B.

Next we check (when b1(M) = 0) that the quotient map is a covering map.

Lemma 6.4.3. Assume b1(M) = 0. Let (ϕ+, ϕ−) ∈ Xy, and let Ry be the pre-moduli space

of matching pairs of torsion-free EAC G2-structures near ϕ. Suppose that ϕ and χ̃∗ϕ define

the same boundary point for some χ̃ ∈ ĨX . Then ϕ′ and χ̃∗ϕ′ define the same boundary

point for each ϕ′ ∈ Ry.

Proof. The path YH(ϕ′, L) is a translation of YH(χ̃∗ϕ′, L) by an element in δ(H2(X)), so

the result follows by the argument of lemma 6.4.2.

Thus B̂ is an intermediate cover between B and My. In particular it is a manifold, so

if we let M = M∪ B̂ then we can use the gluing maps (6.23) to give M the structure of

a topological manifold with boundary. This completes the proof of theorem 6.1.10 for the

case when b1(M) = 0.

Remark 6.4.4. We could give G, and hence M, a smooth structure by choosing a homeo-

morphism of the fibre (0,∞] with a half-open interval [0, 1) that is a diffeomorphism on

the interior, but it is not clear if there is a natural choice.

Finally let us say something about the case b1(M) > 0, starting with a sketch proof of

lemma 6.4.2. (ϕ+, ϕ−) ∈ Xy determines a splitting E2 = E2
1 ⊕E2

6 ⊕E2
8 , which in turn gives

δ(H2(X)) = δ(E2
1) ⊕ δ(E2

6) ⊕ δ(E2
8). (6.25)

The image in H3(M) of the interior of a neighbourhood of (ϕ+, ϕ−) in G contains a cone

in K, whose tangent space is δ(E2
1⊕8) at points of the ray YH(ϕ+, ϕ−, L). If ψ = χ̃∗ϕ

determines the same boundary point as ϕ for some χ̃ ∈ ĨX then necessarily

YH(ϕ,L) − YH(ψ,L) ∈ δ(E2
1⊕8).

We can then deduce that the image in H3(M) of the interior of any small neighbourhood

of ϕDy in G contains YH(ψ+, ψ−, L) for all sufficiently large L, and proceed similarly to the

b1(M) = 0 case.

The quotient map B̂ → B has discrete fibres as before. To check that it is a covering

map one proves a more general version of lemma 6.4.3. Let (ϕ+, ϕ−) ∈ Xy and Ry the
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pre-moduli space of matching pairs of torsion-free EAC G2-structures near ϕ, and suppose

that ϕ and χ̃∗ϕ define the same boundary point for some χ̃ ∈ ĨX . What we can say when

b1(M) > 0 is that there is a smooth map χ̃′ : Ry → ĨX such that ξ̃∗ϕ′ and (ξ̃χ̃′)∗ϕ′ define

the same boundary point for each ϕ′ ∈ Ry and ξ̃ in the identity component of ĨX . Thus B̂

is smooth manifold covered by B, and theorem 6.1.10 holds.
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Chapter 7

Pulling apart G2-manifolds

In this chapter we attempt to reverse the gluing construction for compact G2-manifolds

from [34] summarised in §6.1, and show that some of the compact G2-manifolds produced

by Joyce’s Kummer-type construction can be deformed to the result of gluing a matching

pair of EAC G2-manifolds. A key technical result that is needed is a generalisation to the

EAC case of Joyce’s theorems for perturbing G2-structures with small torsion to torsion-

free G2-structures. We are able to cut some of Joyce’s compact examples into two parts

such that we can find torsion-free EAC G2-structures on each half, and apply deformation

results from §6 to show that the gluing of the two halves can be deformed to the original

manifold.

In the process we find some examples of irreducible EAC G2-manifolds. We compute

their Betti numbers and exhibit some examples of asymptotically cylindrical coassociative

submanifolds.

7.1 Results

In §7.2.1 we review how Joyce [27] constructs examples of compact G2-manifolds M by

desingularising the quotient of a flat torus T 7 by a finite group Γ preserving the standard

flat G2-structure. The construction has two main steps. First, the singularities of T 7/Γ are

resolved to obtain a smooth manifold M with a family of G2-structures with closed defining

3-form ϕ̃. These have arbitrarily small torsion in a suitable sense; one can estimate norms

of a 3-form ψ such that dΘ(ϕ̃) = d∗ψ. When the torsion is sufficiently small ϕ̃ can then

be perturbed to a torsion-free G2-structure ϕ in the same cohomology class.
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Suppose that the torsion-free G2-structure ϕ on M can be obtained by perturbing a

closed G2-structure ϕ̃ with small torsion that has a cylindrical neck, in the following sense.

There is a Calabi-Yau 3-fold X6 with structure (Ω, ω) and an interval I = (−ǫ, ǫ) such that

M has an open subset N ∼= X × I with

ϕ̃|N = Ω + dt ∧ ω, (7.1)

such that the complement of N in M has exactly 2 connected components. Furthermore we

require that the 3-form ψ controlling the torsion vanishes on the neck. Let M±(0) denote

the closures of the connected components of the complement in M of the hypersurface

X × {0} ⊂ N .

Let M± be the manifolds with cylindrical ends obtained by gluing X× [0,∞) to M±(0)

along the common boundary X. ϕ̃|M±(0) and Ω + dt ∧ ω can obviously be glued to define

a closed G2-structure ϕ̃± on M which is exactly cylindrical and torsion-free on the cylin-

drical end. This has small torsion in the same sense as ϕ̃. Joyce’s perturbation result for

G2-structures (cf. theorem 7.2.2) is carefully phrased so that it does not intrinsically rely

on the underlying manifold being compact (e.g. it does not involve any volume estimates).

It is therefore relatively straight-forward to generalise it to the EAC setting.

Theorem 7.1.1. Let µ, ν, λ positive constants. Then there exist positive constants κ,K

such that whenever 0 < t < κ the following is true.

Let M7 be a manifold with cylindrical ends and cross-section X6, and let ϕ̃ be a closed

G2-structure on M that is exactly cylindrical and torsion-free on the cylindrical end. Sup-

pose that ψ is a smooth compactly supported 3-form on M satisfying d∗ψ = d∗ϕ̃, and let

r(ϕ̃) and R(ϕ̃) be the injectivity radius and Riemannian curvature of the EAC metric gϕ̃

on M . If

(i) ‖ψ‖L2 < λt4, ‖ψ‖C0 < λt1/2, ‖d∗ψ‖L14 < λ,

(ii) r(ϕ̃) > µt,

(iii) ‖R(ϕ̃)‖C0 < νt−2,

then there is a smooth exact 3-form dη on M , exponentially decaying with all derivatives,

such that

‖dη‖L2 < Kt4, ‖dη‖C0 < Kt1/2, ‖∇dη‖L14 < K, (7.2)

and ϕ = ϕ̃+ dη is a torsion-free G2-structure.
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Remark 7.1.2. The fact that dη is exponentially decaying is more important than its precise

rate of decay. We will need to choose the rate δ > 0 so that δ2 is smaller than any non-zero

eigenvalue of the Hodge Laplacian on X. It should be easy to modify the proof of the

theorem to allow ϕ̃ to be EAC and ψ to be exponentially decaying. In that case one would

also need δ to be smaller than the decay rates of ϕ̃ and ψ.

Applying theorem 7.1.1 to ϕ̃± gives a matching pair of torsion-free EAC G2-structures

(ϕ+, ϕ−) on M±. As discussed in §6, these can be glued with an additional sufficiently large

parameter L to give a torsion-free G2-structure Y (ϕ+, ϕ−, L) on M . Varying the parameter

L defines a path in the moduli space M whose image in H3(M) is an affine line with slope

δ([ω]). In the partial compactification M defined in §6.4 the path converges to a point in

the boundary B̂.

Restricting the glued structures toM± defines the same cohomology class as the original

G2-structure ϕ, but it is hard to relate them directly beyond that. We can, however, define

another path of G2-structures on M by ‘stretching’ ϕ. Let M(L) denote the manifold

obtained by increasing the length of the cylindrical neck of M by 2L. ϕ̃ can be stretched

to define a G2-structure ϕ̃(L) on M(L). This too has small torsion, so can be perturbed

to a torsion-free G2-structure ϕ(L) by Joyce’s results. As L→ ∞ the path ϕ(L) converges

to a boundary point in the partial compactification M.

Theorem 7.1.3. Let M7 be a compact manifold with a closed G2-structure ϕ̃. Suppose

that ψ is a 3-form such that d∗ϕ̃ = d∗ψ, that the estimates (i)-(iii) in theorem 7.1.1 are

satisfied, and that t is sufficiently small. Suppose further that M has a cylindrical neck in

the sense of (7.1), and that ψ vanishes on the neck. Define the path ϕ(L) as above. Let ϕ±

be torsion-free EAC G2-structures on M± that are close to ϕ̃± in the sense of (7.2), which

exist by theorem 7.1.1.

Then ϕ(L) is in the image of the gluing map for sufficiently large L. In the sense of

theorem 6.1.10, the path L 7→ ϕ(L)D converges to a point in the boundary B̂ of M, whose

image under the projection B̂ → My is (ϕ+D+, ϕ−D−).

We prove the results in §7.2. For them to be meaningful we also need examples to which

they can be applied. In §7.3 we show how some of Joyce’s examples can be obtained by

performing the resolution of orbifold singularities in two steps so that the intermediate

resolution has a cylindrical neck in the sense of (7.1), and theorem 7.1.3 applies. Some

of the EAC G2-manifolds obtained this way have holonomy exactly G2. We explain how

to compute their Betti numbers and find some examples of asymptotically cylindrical

coassociative submanifolds.
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Joyce’s construction actually gives a path of torsion-free G2-structures, whose limit can

be thought of as a boundary point of the moduli space M of torsion-free G2-structures,

defined by the orbifold G2-structure the construction started from. When theorem 7.1.3 can

be applied we therefore find that a component of M has boundary points of two different

types: both orbifold and connected-sum.

7.2 Main arguments

7.2.1 Summary of Joyce’s construction

We sketch the setup used by Joyce [27, §11] to construct examples of compactG2-manifolds.

Let T 7 be the quotient of R7 by a lattice, equipped with the standard flat G2-structure,

and let Γ be a finite group of automorphisms of T 7. The quotient T 7/Γ is a G2-orbifold.

T 7/Γ has singularities coming from the fixed point sets of elements of Γ. For each

component of the fixed point sets we choose a topological resolution of the singularity and

a family of G2-structures with small torsion on the resolution. Since different parts of the

fixed point set may intersect or map to the same singularity in T 7/Γ these choices have

to satisfy some compatibility conditions if they are to be used to resolve the singularities

of T 7/Γ. Joyce calls a suitable choice of resolutions a set of R-data. For simplicity we only

sketch the definition of R-data and the resolution process for the case when the fixed point

sets do not intersect.

For concreteness we assume also that the elements of Γ are all of order 2, since those

are the only examples we consider. Then each component Fα of the fixed point set is a flat

torus T 3. A tubular neighbourhood of Fα is isomorphic to a neighbourhood of T 3 × {0}

in T 3 × C2, equipped with a flat product G2-structure. In suitable coordinates (θi on T 3,

zj on C2) the product structure is of the form

dθ1 ∧ dθ2 ∧ dθ3 + dθ1 ∧ ω0 + dθ2 ∧ β0 + dθ3 ∧ β′
0,

where ω0 = − i
2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) and β0 + iβ′

0 = dz1 ∧ dz2.

Let γα be the element of Γ that fixes Fα. The action of γα on the tubular neighbourhood

of Fα corresponds to multiplication by −1 on C2. Choose a resolution πα : Wα → C2/{±1},

together with an asymptotically locally Euclidean (ALE) Calabi-Yau metric with Kähler

form ωα. This means that the restriction πα : Wα \ π−1
α (0) → (C2 \ {0})/{±1} is an

isomorphism, and that the difference between ω0 and the push-forward of ωα is of order

152



O(r−4), where r is the distance to the origin in C2. Then Wα has a parallel (2, 0)-form

β + iβ′, and

ϕα = dθ1 ∧ dθ2 ∧ dθ3 + dθ1 ∧ ωα + dθ2 ∧ β + dθ3 ∧ β′

is a torsion-free G2-structure on T 3×Wα. We require that there is an equivariance condition

with respect to Γ: if γ ∈ Γ maps Fα to Fβ then there is an identification Wα ↔ Wβ such

that the corresponding map T 3 ×Wα → T 3 ×Wβ pulls back ϕβ to ϕα. In particular the

stabiliser of Fα acts by automorphisms on T 3 ×Wα. The R-data consists of choosing the

resolutionsWα for each fixed set component Fα and the isomorphismsWα ↔ Wβ for each γ.

Once the R-data is fixed, we obtain a compact resolution M of T 7/Γ. For each compo-

nent of the singular set in T 7/Γ we cut out a neighbourhood, pick a pre-image Fα and glue

in a neighbourhood of T 3 ×Wα divided by the stabiliser of Fα (the stabiliser acts freely on

T 3 ×Wα because of the simplifying assumption that different pieces of the fixed point set

do not intersect). We can use a (fixed) smooth cut-off function to interpolate between the

flat G2-structure ϕ0 on T 7 and the torsion-free G2-structures ϕα on the resolving neigh-

bourhoods, and define a G2-structure ϕ̃ on M with dϕ̃ = 0. The equivariance condition for

the R-data with respect to Γ ensures that both M and ϕ̃ are independent of the choice of

pre-images Fα.

Although both ϕ0 and the ϕα are torsion-free, ϕ̃ has some torsion in the region where

the cut-off function used is non-constant. The magnitude of the torsion depends on the

derivatives of ϕα in the cutting-off region. This can be reduced by composing the resolutions

Wα → C2/{±1} with C2 → C2, z 7→ tz for small t > 0. We then need to rescale the metric

ωα by t2 to keep it ALE. This increases the Riemannian curvature of ωα by a factor t−2.

Using these resolutions instead will thus decrease the torsion of ϕ̃ at the cost of increasing

the curvature of the metric it defines.

Theorem 7.2.1 ([27, Theorem 11.5.7]). Let T 7/Γ be an orbifold of T 7 with flat G2-struc-

ture ϕ0. Suppose we are given a set of R-data for T 7/Γ, and M is the corresponding

resolution. Then we can write down the following data on M explicitly:

• constants ǫ ∈ (0, 1], and λ, µ, ν > 0,

• a G2-structure ϕ̃ on M with dϕ̃ = 0 for each t ∈ (0, ǫ],

• a smooth 3-form ψ on M with d∗ψ = d∗ϕ̃ for each t ∈ (0, ǫ].

These satisfy the three conditions
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(i) ‖ψ‖L2 < λt4, ‖ψ‖C0 < λt3, ‖d∗ψ‖L14 < λt16/7,

(ii) the injectivity radius is r(ϕ̃) > µt,

(iii) the Riemannian curvature R(ϕ̃) satisfies ‖R‖C0 < νt−2.

These conditions ensure that for sufficiently small t the G2-structure ϕ̃ can be perturbed

within its cohomology class to a torsion-free G2-structure on M .

Theorem 7.2.2 (cf. [27, Theorem 11.6.1]). Let µ, ν, λ positive constants. Then there exist

positive constants κ,K such that whenever 0 < t < κ the following is true.

Let M7 be a compact manifold, and ϕ̃ a closed G2-structure on M . Suppose ψ is a

smooth 3-form on M satisfying d∗ψ = d∗ϕ̃, and

(i) ‖ψ‖L2 < λt4, ‖ψ‖C0 < λt1/2, ‖d∗ψ‖L14 < λ,

(ii) the injectivity radius is > µt,

(iii) the Riemannian curvature R satisfies ‖R‖C0 < νt−2.

Then there is a smooth exact 3-form dη on M with

‖dη‖L2 < Kt4, ‖dη‖C0 < Kt1/2, ‖∇dη‖L14 < K, (7.3)

such that ϕ = ϕ̃+ dη is torsion-free.

Thus we obtain a family of torsion-free G2-structures on M . Note that as t → 0 both

ϕ̃ and ϕ resemble the singular G2-structure on T 7/Γ. We can think of the family ϕ as

converging to a boundary point of the moduli space of torsion-free G2-structures on M ,

defined by the singular G2-structure.

Also note that there may be many different choices of R-data for a single orbifold T 7/Γ,

which can give rise to many topologically inequivalent resolutions π : M → T 7/Γ and many

different diffeomorphism classes for M .

We will often informally refer to a form satisfying estimates like (7.3) as small. For

future reference we point out that the uniform estimate in (7.3) follows from the L2 and

L14
1 estimates by a version of Sobolev embedding.

Theorem 7.2.3 ([27, Theorem G1]). Let µ, ν and t be positive constants, and suppose M

is a complete Riemannian 7-manifold, whose injectivity radius δ and Riemannian curvature
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R satisfy δ ≥ µt and ‖R‖C0 ≤ νt−2. Then there exists C > 0 depending only on µ and ν,

such that if χ ∈ L14
1 (Λ3) ∩ L2(Λ3) then

‖χ‖C0 ≤ C(t1/2‖∇χ‖L14 + t−7/2‖χ‖L2).

The torsion-free G2-structure ϕ given by theorem 7.2.2 depends continuously on the

input ϕ̃ and ψ. In a certain sense it represents a unique diffeomorphism class of torsion-free

G2-structures near ϕ̃. In particular, the resolution ϕ of (ϕ̃, ψ) is independent of ψ up to

diffeomorphism, and two families of torsion-free G2-structures which are cohomologous and

“close” must be diffeomorphic.

Proposition 7.2.4. For i = 0, 1 let ϕ̃i be a closed G2-structure and ψi a smooth 3-form

satisfying the hypotheses of theorem 7.2.2. Suppose moreover that the difference between ϕ̃0

and ϕ̃1 is exact, and that it satisfies

‖ϕ̃0 − ϕ̃1‖L2 < λt4, ‖ϕ̃0 − ϕ̃1‖C0 < λt1/2, ‖ϕ̃0 − ϕ̃1‖L14
1
< λ

(measured in the metric defined by ϕ̃0). If t is sufficiently small then the torsion-free

G2-structures ϕi produced from (ϕ̃i, ψi) by theorem 7.2.2 are diffeomorphic.

Proof. Connect ϕ̃0 and ϕ̃1 by an affine line segment of closed G2-structures ϕ̃s, s ∈ [0, 1].

Let ψ′
s = ϕ̃s + ∗s(∗0ψ0 − Θ(ϕ̃0)), where ∗s denotes the Hodge star of the metric defined

by ϕ̃s. Then (ϕ̃s, ψ
′
s) satisfies the hypotheses of theorem 7.2.2, so when t is sufficiently small

it defines a torsion-free perturbation ϕ′
s of ϕ̃s for each s ∈ [0, 1].

Then define a line segment ψ′′
s connecting ψ1 to ψ′

1. Theorem 7.2.2 gives a torsion-free

perturbation ϕ′′
s of ϕ̃1 for each input (ϕ̃1, ψ

′′
s ). The concatenation of the paths ϕ′

s and ϕ′′
s is

a continuous path connecting ϕ0 and ϕ1, staying in a single cohomology class. By theorem

3.2.1 the image of the path in the moduli space of torsion-free G2-structures is constant,

so the end-points are diffeomorphic.

7.2.2 Proof of theorem 7.1.1

Theorem 7.1.1 is an extension of theorem 7.2.2 to the EAC setting. We wish to find an exact

exponentially asymptotically decaying 3-form dη such that ϕ̃+dη is torsion-free. The proof

consists of three parts. First we show that for ϕ̃+ dη to be torsion-free it suffices that η is

a solution of a certain elliptic equation, the same that Joyce used in the proof of theorem

7.2.2. Then we find a solution for this equation by a contraction-mapping argument. The
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details of this are complicated, but largely carry over from the compact case as solved

by Joyce. Elliptic regularity shows that solutions are smooth and uniformly decaying. In

the next subsection we prove that the solutions decay exponentially, which completes the

proof.

Proposition 7.2.5. There is an absolute constant ǫ1 such that the following holds. Let M7

be an EAC manifold, ϕ̃ a closed EAC G2-structure on M and ψ an exponentially decaying

3-form such that ‖ψ‖C0 < ǫ1 and d∗ψ = d∗ϕ̃. Suppose that η is 2-form asymptotic to a

translation-invariant harmonic form, and that ‖dη‖C0 < ǫ1. Suppose further that

△η = d∗ψ + d∗(fψ) + ∗dF (dη), (7.4)

where the function f is defined by fϕ̃ = 7
3
π1(dη) and F is the quadratic part of the non-

linear fibre-wise map Θ : Λ3
G2

→ Λ4, ϕ 7→ ∗ϕϕ. Then ϕ̃ + dη is a torsion-free EAC

G2-structure on M .

Proof. This is an asymptotically cylindrical version of [27, Theorem 10.3.7]. The proof

relies on integrating by parts. It is easy to check that, in the asymptotically cylindrical

setting, the necessary integrals still converge provided that η is bounded and dη decays, so

we can still use (7.4) as a sufficient condition for the torsion to vanish.

A key part in the proof of theorem 7.2.2 is the contraction-mapping result [27, Propo-

sition 11.8.1]. We observe that this can easily be adapted to the EAC case.

Proposition 7.2.6. Let (Ω, ω) be a Calabi-Yau structure on a compact manifold X6 and

µ, ν, λ be positive constants. Then there exist positive constants κ,K,C1 such that whenever

0 < t < κ the following is true.

Let M7 be a manifold with cylindrical ends and cross-section X, and ϕ̃ a closed EAC

G2-structure on M with asymptotic limit Ω+dt∧ω. Suppose that ψ is a smooth exponentially

decaying 3-form on M satisfying d∗ψ = d∗ϕ̃, and that

(i) ‖ψ‖L2 < λt4, ‖ψ‖C0 < λt1/2, ‖d∗ψ‖L14 < λ,

(ii) the injectivity radius is > µt,

(iii) the Riemannian curvature R satisfies ‖R‖C0 < νt−2.
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Then there is a sequence ηj of smooth exponentially asymptotically translation-invariant

2-forms with η0 = 0 satisfying the equation

△ηj = d∗ψ + d∗(fj−1ψ) + ∗dF (dηj−1), (7.5)

where fjϕ̃ = 7
3
π1(dηj) for each j > 0. The solutions satisfy the inequalities

(i) ‖dηj‖L2 < 2λt4,

(ii) ‖∇dηj‖L14 < 4C1λ,

(iii) ‖dηj‖C0 < Kt1/2,

(iv) ‖dηj+1 − dηj‖L2 < 2−jλt4,

(v) ‖∇(dηj+1 − dηj)‖L14 < 4 · 2−jC1λ,

(vi) ‖dηj+1 − dηj‖C0 < 2−jKt1/2.

Proof. We prove that the sequence exists using the Hodge theory in §2.3. As before we let

Hm
∞ denote the space of translation-invariant harmonic m-forms on the cylinder X×R and

ρ a cut-off function for the cylinder on M . Take δ > 0 smaller than the decay rates of ϕ̃

and ψ such that δ2 is smaller than any positive eigenvalue of the Hodge Laplacian on X.

Inductively, the RHS of (7.5) is d∗ of a 3-form that decays exponentially with rate δ. The

EAC Hodge decomposition theorem 2.3.27 implies that there is a unique coexact solution

ηj ∈ Ck,α
δ (Λ2) ⊕ ρH2

∞ for all k ≥ 2.

The inequalities can be proved inductively, using exactly the same argument as in [27,

Theorem 11.8.1]. (i) and (iv) are proved using an integration by parts argument, and since

each dηj decays exponentially this is still justified when M has cylindrical ends.

(ii), (iii), (v) and (vi) are proved using interior estimates, which do not require com-

pactness.

It follows that dηj is a Cauchy sequence and has a limit χ with

‖χ‖L2 < Kt4, ‖χ‖C0 < Kt1/2, ‖∇χ‖L14 < K, (7.6)

for some K > 0. χ is closed, L2-orthogonal to the decaying harmonic forms H3
+ and satisfies

the equation

d∗χ = d∗ψ + d∗(fψ) + ∗dF (χ), (7.7)
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where fϕ̃ = 7
3
π1(χ). We do not know a priori that χ is the exterior derivative of a bounded

form, so we cannot yet apply proposition 7.2.5 to show that ϕ̃+ χ is torsion-free. We first

show by elliptic regularity that χ is smooth and uniformly decaying.

Proposition 7.2.7. If t is sufficiently small then χ ∈ L14
k (Λ3) for all k ≥ 0.

Proof. Since F (χ) depends only point-wise on χ and is of quadratic order we can write

∗dF (χ) = P (χ,∇χ) +Q(χ), (7.8)

where P (u, v) is linear in v and smooth of linear order in u, while Q(u) is smooth of

quadratic order in u for u small. We can then rephrase (7.7) as stating that β = χ is a

solution of

d∗β − P (χ, β) − d∗(f(β)ψ) = d∗ψ +Q(χ),

dβ = 0,
(7.9)

where f(β)ϕ̃ = 7
3
π1(β). The LHS is a linear partial differential operator acting on β. Its

symbol depends on χ and ψ, but not on their derivatives. By taking t small we can ensure

that χ and ψ are both small in the uniform norm (see (7.6) and hypothesis (i) in proposition

7.2.6) so that the equation is elliptic.

Now suppose that χ has regularity L14
k . Then so do the coefficients and the RHS of

(7.9). Because β = χ ∈ L14
1 (Λ3) is a solution of (7.9) standard interior estimates (a Sobolev

version of theorem 4.2.20) imply that it must have regularity L14
k+1 locally. Moreover, be-

cause the metric is asymptotically cylindrical the local bounds are actually uniform (cf.

theorem 4.2.22), so in fact χ is globally L14
k+1. The result follows by induction on k.

Corollary 7.2.8. If t is sufficiently small then χ decays uniformly with all derivatives.

Proof. Because M is EAC, standard Sobolev embedding results imply that we can pick

r > 0 such that M is covered by balls B(xi, r) with the following property:

‖χ|B(xi,r)‖Ck < C‖χ|B(xi,2r)‖L14
k+1
,

where the constant C > 0 is independent of xi ∈ M . If we ensure that each point of M is

contained in no more than N of the balls B(xi, 2r) then

∑

i

‖χ|B(xi,r)‖
14
Ck < NC14‖χ‖14

L14
k+1

.
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As the sum is convergent the terms tend to 0, i.e. the kth derivatives of χ decay uniformly.

If we can show that χ decays exponentially then, because χ is closed and L2-orthog-

onal to the decaying harmonic forms H3
+, χ = dη for some exponentially asymptotically

translation-invariant η by the Hodge decomposition theorem 2.3.27. Proposition 7.2.5 then

implies that ϕ̃ + χ is torsion-free, and the proof of theorem 7.1.1 would be complete. In

the next subsection we prove the required exponential decay result.

7.2.3 Exponential decay

By hypothesis ϕ̃ is exactly cylindrical on the cylindrical end t > 0 of M , and ψ is supported

in t ≤ 0. Thus on the cylindrical end the equation (7.7) for χ simplifies to

d∗χ = ∗dF (χ). (7.10)

On the cylindrical end t > 0 we can write

χ = σ + dt ∧ τ,

F (χ) = β + dt ∧ γ,

where τ ∈ Ω2(X), σ, γ ∈ Ω3(X) and β ∈ Ω4(X) are forms on the cross-section X depending

on the parameter t. Let d
X

denote the exterior derivative on X. Then the conditions dχ = 0

and (7.10) are equivalent to

d
X
σ = 0, (7.11a)

∂
∂t
σ = d

X
τ, (7.11b)

d
X
∗τ = −d

X
β, (7.11c)

∂
∂t
∗τ = −d

X
∗σ − ∂

∂t
β + d

X
γ. (7.11d)

(7.11b) implies that σ(t1) − σ(t2) is exact for any t1, t2 > 0. Since the exact forms form a

closed subspace of the space of 3-forms on X (in the L2 norm) and σ → 0 as t → ∞ it

follows that σ is exact for all t > 0. Similarly (7.11d) implies that ∗τ − β is exact for all

t > 0. (The equations (7.11a) and (7.11c) are thus redundant.) The path (σ, τ) is therefore
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constrained to lie in the space

F = {(σ, τ) ∈ d
X
L2

1(Λ
2T ∗X) × L2(Λ2T ∗X) : ∗τ − β is exact}.

Remark 7.2.9. We have not assumed that χ is L1 on M .

β is a function of σ and τ , and it is of quadratic order. The implicit function theorem

applies to show that if we replace F with a small neighbourhood of 0 then it is a Banach

manifold with tangent space

T0F = B = d
X
L2

1(Λ
2T ∗X) × d∗

X
L2

1(Λ
3T ∗X).

We can now interpret (7.11b) and (7.11d) as a flow on F , or equivalently near the origin

in B. By the chain rule we can write ∂
∂t
β as

∂
∂t
β = A2

∂
∂t
τ + A3

∂
∂t
σ + β′,

where Am is a linear map from ΛmT ∗X to Λ2T ∗X, determined point-wise by σ and τ and of

linear order, while β′ is a 2-form determined point-wise by σ and τ and of quadratic order.

In particular, for large t the norm of A2 is small, and (7.11b) and (7.11d) are equivalent to

∂
∂t
σ = d

X
τ,

∂
∂t
τ = (id+ A2)

−1(d∗
X
σ − ∗A3dXτ − ∗β′ + ∗d

X
γ).

(7.12)

The origin is a stationary point for the flow, and the linearisation of the flow near the origin

is given by the linear operator L =

(

0 d
X

d∗
X

0

)

on B. Because L is formally self-adjoint B

has an orthonormal basis of eigenvectors. L is injective on B, so B can be written as a

direct sum of subspaces with positive and negative eigenvalues,

B = B+ ⊕B−.

{e∓tL : t ≥ 0} defines a continuous semi-group of bounded operators on B±. If we let

µ denote the smallest absolute value of the eigenvalues of L then etµe∓tL is uniformly

bounded on B± for t ≥ 0, so the origin is a hyperbolic fixed point. By analogy with the

finite-dimensional case we expect that any flow line approaching the origin must do so at

an exponential rate.
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A similar problem of exponential convergence for an infinite-dimensional flow is consid-

ered by Mrowka, Morgan and Ruberman [44, Lemma 5.4.1]. Their problem is more general

in that the linearisation of their flow has non-trivial kernel, so that they need to consider

convergence to a ‘centre manifold’ rather than to a well-behaved isolated fixed point. As a

simple special case we can prove L2 exponential decay for χ.

Proposition 7.2.10. Let δ > 0 such that δ2 is smaller than any positive eigenvalue of the

Hodge Laplacian on X. Then χ is L2
δ.

Proof. Identify F with a neighbourhood of the origin in the tangent space B, and let x

be the path in B corresponding to (σ, τ) in F . Then (7.12) transforms to a differential

equation for x,
dx

dt
= Lx+Q(x),

where L is the linearisation of (7.12) as above, and Q is the remaining quadratic part. Let

x = x++x− with x± ∈ B±. If we let µ denote the smallest absolute value of the eigenvalues

of L then

‖Lx+‖L2 ≥ µ‖x+‖L2 , ‖Lx−‖L2 ≤ −µ‖x−‖L2 .

Applying the chain rule to the quadratic part gives

‖Q(x)‖L2 < O(‖x‖L2)‖x‖L2
1
+O(‖x‖2

L2).

By corollary 7.2.8, x converges uniformly to 0 with all derivatives as t→ ∞. Therefore for

any fixed k > 0 we can find t0 such that

‖Q(x)‖L2 < k‖x‖L2

for any t > t0. As µ2 is an eigenvalue for the Hodge Laplacian on X we may fix k so that

µ− 2k > δ.

We thus obtain that for t > t0

d

dt
‖x+‖L2 ≥ µ‖x+‖L2 − k‖x‖L2 , (7.13a)

d

dt
‖x−‖L2 ≤ −µ‖x−‖L2 + k‖x‖L2 . (7.13b)

In particular ‖x+‖L2 − ‖x−‖L2 is an increasing function of t. Because it converges to 0 as
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t→ ∞,

‖x+‖L2 ≤ ‖x−‖L2

for all t > t0. Substituting into (7.13b)

d

dt
‖x−‖L2 ≤ −µ‖x−‖L2 + 2k‖x−‖L2 ,

so ‖x−‖L2 is of order e(−µ+2k)t. Hence so is ‖x‖L2 , so eδtχ is L2-integrable on M .

Corollary 7.2.11. χ decays exponentially with rate δ.

Proof. We prove by induction that χ is L2
k,δ for all k ≥ 0. Interior estimates for the elliptic

operator d + d∗ on M imply that we can fix some r > 0 and cover the cylindrical part of

M with open balls U = B(x, r) such that

‖χ‖L2
k+1

(U) < C1(‖dχ‖L2
k
(U) + ‖d∗χ‖L2

k
(U)) + C2‖χ‖L2(U).

The constants C1 and C2 depend on the local properties of the metric and the volume of

U . Since M is EAC we can take the constants to be independent of U . Recall that, on the

cylinder, dχ = 0 and d∗χ = ∗dF (χ). In view of the chain rule expression (7.8) there is a

constant C3 > 0 such that

‖dF (χ)‖L2
k
(U) < C3‖χ‖Ck(U)

(

‖∇χ‖L2
k
(U) + ‖χ‖L2

k
(U)

)

.

As χ decays uniformly we can ensure that ‖χ‖Ck(U) < 1/2C1C3 by taking U to be suffi-

ciently far along the cylindrical end. Then

‖χ‖L2
k+1

(U) < ‖χ‖L2
k
(U) + 2C2‖χ‖L2(U).

Hence χ is L2
k,δ for all k ≥ 0.

This completes the proof of theorem 7.1.1.

Remark 7.2.12. We did not obtain any bounds on the weighted norms in terms of t. Thus,

while we have estimates for the non-weighted norms of dη and know that dη decays expo-

nentially, we have no idea how far down the cylinder we need to go before the exponential

decay kicks in.

162



7.2.4 Proof of theorem 7.1.3

Recall that the torsion-free G2-structures ϕ(L) are obtained by perturbing the closed

G2-structures ϕ̃(L) with small torsion, which are in turn defined by stretching the cylindri-

cal neck X × I of ϕ̃ by a length 2L. The cohomology class [ϕ(L)] = [ϕ] + 2Lδ([ω]), where

ω is the Kähler form on X, so the image of the path ϕ(L) in H3(M) is an affine line with

slope 2δ([ω]).

We also defined torsion-free EAC G2-structures ϕ± on M± by perturbing the G2-struc-

tures ϕ̃± obtained by cutting ϕ̃ in half. Gluing ϕ+ and ϕ− defines a path Y (ϕ+, ϕ−, L) of

torsion-free G2-structures on M . The restrictions i∗±[Y (ϕ+, ϕ−, L)] = i∗±[ϕ], so the image

of the path in H3(M) lies in the affine space K = [ϕ] + δ(H2(X)). It too is an affine line

with slope 2δ([ω]).

We first prove the result using the simplifying assumption that b1(M) = 0. Let Ry be

the pre-moduli space of matching pairs of torsion-free G2-structures near (ϕ+, ϕ−), and

R′
y = {(ψ+, ψ−) ∈ Ry : i∗±ψ± = i∗±ϕ±}.

As in the proof of lemma 6.4.2, for large L1 ∈ R the image of YH : R′
y × (L1,∞) → K

contains an open affine cone in K.

The difference between [ϕ(L)] and [Y (ϕ+, ϕ−, L)] is constant in L. Therefore for suf-

ficiently large L there is an L′(L) close to L and a matching pair (ϕ+(L), ϕ−(L)) ∈ R′
y

such that ϕ(L) is cohomologous to the glued structure Y (ϕ+(L), ϕ−(L), L′(L)). In fact,

because the RHS of (6.24) is dominated by the 2Lδ([ω]) term for large L, the distance

between (ϕ+(L), ϕ−(L)) and (ϕ+, ϕ−) is of order 1/L, measured in the C1 norm (since

Ry has finite dimension all sensible norms are Lipschitz equivalent). Hence the difference

between Y (ϕ+, ϕ−, L) and Y (ϕ+(L), ϕ−(L), L) is of order 1/L in C0 norm. As the volume

is of order L it follows also that the difference is of order L−1/2 in L2-norm, and order

L−13/14 in L14
1 -norm.

Now ϕ(L) and Y (ϕ+(L), ϕ−(L), L′(L)) are both torsion-free perturbations of ϕ̃(L)

within its cohomology class, so we can try to use proposition 7.2.4 to show that they

are diffeomorphic. For large L the difference between Y (ϕ+(L), ϕ−(L), L′(L)) and ϕ̃(L) is

dominated by the difference between ϕ̃± and ϕ±, which is estimated in terms of t in (7.2).

Therefore if t is sufficiently small then for all sufficiently large L the estimates required to
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apply proposition 7.2.4 are satisfied, and

Y (ϕ+(L), ϕ−(L), L′(L)) ∼= ϕ(L).

This proves theorem 7.1.3.

Remark 7.2.13. Looking more closely at the contraction-mapping argument in the proof

of theorem 7.2.2, one can use Y (ϕ+(L), ϕ−(L), L′(L)) as an ansatz for ϕ(L) and deduce

that the distance between the two is in fact controlled by L alone, and not by t. Therefore

the representatives ϕ(L) converge in ‘geometric’ sense. Let M±(L) denote the gluing of

M±(0) and X × [0, L], which can be regarded as a compact subset of either M± or M(L′)

for L′ > L. Then ϕ(L′)|M±(L) → ϕ±|M±(L) uniformly as L′ → ∞ with L fixed. This way

torsion-free EAC G2-structures can be recovered from compact G2-structures.

Some minor changes to the above argument are needed to deal with the case b1(M) > 0.

Then (cf. (6.25)) δ(H2(X)) splits as

δ(H2(X)) = δ(E2
1) ⊕ δ(E2

6) ⊕ δ(E2
8).

The affine space K is modelled on δ(H2(X)) so we may consider the quotient K/δ(E2
6). The

image of YH : R′
y × (L1,∞) → K/δ(E2

6) contains an open cone. Therefore for sufficiently

large L there is an L′(L) close to L and a matching pair (ϕ+(L), ϕ−(L)) ∈ R′
y such that

YH(ϕ+(L), ϕ−(L), L′(L)) − [ϕ(L)] ∈ δ(E2
6).

Lemma 6.3.8 implies that there is χ̃(L) in the identity component of ĨX such that ϕ(L) is

cohomologous to the glued structure Y (χ̃∗(ϕ+(L), ϕ−(L), L′(L))). As L→ ∞, we have the

same bounds as before for the difference between ϕ̃(L) and Y (ϕ+(L), ϕ−(L), L).

Meanwhile, χ̃(L) converges as L → ∞. We can therefore choose the representative for

Y (χ̃∗(ϕ+(L), ϕ−(L), L′(L))) so that it is close to Y (ϕ+(L), ϕ−(L), L′(L)) in C0, L2 and

L14
1 -norm. For one is obtained from the other by ‘twisting’ the cylindrical part by a path

of automorphisms of the cross-section. If the twisting is stretched out to take place over

a length L of the cylinder then the difference in L1-norm is kept approximately constant,

but the C0 norm is of order 1/L, the L2 norm of order L−1/2, and the L14
1 -norm of order

L−13/14. One can then complete the proof as in the b1(M) = 0 case.
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7.3 Examples

We now show how theorem 7.1.3 can be applied to pull apart some of Joyce’s examples

of compact G2-manifolds into pairs of EAC G2-manifolds. In the process we find some

examples of EAC manifolds with holonomy exactly G2. We compute the Betti numbers of

the manifolds, and find some examples of EAC coassociative submanifolds.

7.3.1 A preliminary example

We begin with an example which does not require any preparation (but for which the glued

G2-manifold is reducible). Let γ : T 7 → T 7 be the involution acting by

(x1, x2, x3, x4, x5, x6, x7) 7→ (−x1, x2,−x3, x4,−x5, x6,−x7).

The singularities of T 7/〈γ〉 can be resolved with the classical Kummer construction to give

M = T 3 × K3. If we resolve the singularities using Joyce’s results then we find that the

conditions of theorem 7.1.3 are satisfied, so that we can pull apart M .

γ preserves the standard flat G2-structure on T 7 and theorem 7.2.1 provides a family

of closed G2-structures ϕ with small torsion on the resolution M .

Now let I ⊂ (0, 1
2
) be an open interval and X the flat torus T 6 with the standard

Calabi-Yau structure. I × X ⊂ T 7 maps injectively to its image N ⊆ T 7/〈γ〉. If I is not

too close to 0 or 1
2

then N is not affected when the singularities are resolved, so can be

regarded as a subset of M .

ϕ|N = Ω + dt ∧ ω,

so N ⊂ M can be taken as a cylindrical neck. The family of torsion-free G2-structures on

M together with the neck N satisfies the hypotheses of theorem 7.1.3 (with an appropriate

choice of λ). The resulting EAC G2-manifolds are of the form T 3 ×S±, where S± are EAC

manifolds of holonomy SU(2).

Remark 7.3.1. S+ and S− are equivalent as complex surfaces, and can be obtained as the

complement of an anti-canonical divisor of the blow-up of CP 2 at 9 points. Since S+ and

S− can be glued to form a K3 we will refer to them as half-K3 surfaces.
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7.3.2 Preparing the examples

We describe how to cast some of Joyce’s examples into a form to which theorem 7.1.3

applies by resolving only some orbifold singularities in a first step. This idea is similar to

an outline argument for how to construct irreducible quasi-asymptotically locally Euclidean

G2-manifolds in Joyce [27, p. 277].

Assume that the flat torus from which the construction starts has the form S1 × T 6,

where T 6 is a torus with a flat Calabi-Yau structure. Let Γ be a finite group of G2 auto-

morphisms of S1×T 6. Choose R-data and form the resolution M of (S1×T 6)/Γ. Theorem

7.2.1 provides a family of closed G2-structures ϕ̃ with small torsion on M , which can be

perturbed to torsion-free G2-structures. We would like to claim that these torsion-free

G2-structures can also be obtained by perturbing a G2-structure with small torsion that

satisfies the hypotheses of theorem 7.1.3.

Suppose that the elements of Γ act by products of isometries of S1 and T 6 and let Γ′ be

the subgroup acting trivially on the S1 factor. We assume that some elements of Γ act by

reflection on S1 (as has to be the case if b1(M) = 0). If θ ∈ S1 is not a fixed point of any

of the reflections then {θ} × T 6 does not meet the fixed point set of Γ \ Γ′, and its image

divides (S1 ×T 6)/Γ into exactly two connected components. In order to make things work

we assume furthermore that the fixed point set of Γ \ Γ′ does not meet that of Γ′.

The R-data for (S1 × T 6)/Γ can be restricted to give R-data for S1 × T 6/Γ′. Let M ′

be the corresponding resolution. Theorem 7.2.1 gives closed G2-structures ϕ̃′ with small

torsion and by theorem 7.2.2 they can be perturbed to torsion-free G2-structures ϕ′. M ′ is

homeomorphic to S1 ×X6 for a compact manifold X.

The lemma below can be thought of as a simple version of the Cheeger-Gromoll line

splitting theorem (cf. lemma 4.1.9) and ensures that there is a Calabi-Yau structure on X

such that M ′ is isomorphic to S1 ×X as a G2-manifold (cf. Chan [11, p. 15]).

Lemma 7.3.2. Let Tm be a torus and X a compact manifold with b1(X) = 0. If g is a

Ricci-flat metric on T n × X that is invariant under translations of the torus factor then

there is a function f : X → Rn such that the graph diffeomorphism

T n ×X → T n ×X, (t, x) 7→ (t+ f(x), x)

pulls g back to a product metric.

Sketch proof. Let ∂
∂θ1
, . . . , ∂

∂θn
be the unit coordinate vector fields on T n, and set αi = ∂

∂θi
♭
.

∂
∂θi

is a Killing vector field, so αi is harmonic by proposition 5.2.4. Since b1(X) = 0 the
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closed forms αi|X are exact. Define f : X → Rn by picking fi such that αi = dfi.

The compatibility conditions for the R-data ensure that the quotient group Ψ = Γ/Γ′

acts in a well-defined way on M ′. Moreover ϕ̃′ is invariant under this action and hence ϕ′

is too. We can use the R-data to resolve the singularities of M ′/Ψ and topologically this

gives M . If I ⊂ S1 is an interval not containing any fixed points of the reflections then

I ×X maps homeomorphically onto its image N in M and is a candidate for a cylindrical

neck. We wish to to define a closed G2-structure on M with small torsion, whose restriction

to N is ϕ′.

The issue is that theorem 7.2.2 relies on the orbifold singularities that are to be resolved

with small torsion being modelled on a quotient of the flat G2-structure. But ϕ′ need not

be flat near the fixed point set F of Ψ.

Let S be a tubular neighbourhood of F . Recall that ϕ′ = ϕ̃′+dη′ for some dη′ satisfying

the estimates (7.3). The assumption that the fixed point sets of Γ′ and Γ \ Γ′ are disjoint

ensures that ϕ̃′|S is flat. In order to ‘restore’ the flatness near F we wish to define an exact

form that is supported on S, equal to dη′ near F , and small in the same sense that dη′ is

small. To do this we use a version of the classical Poincaré lemma.

Lemma 7.3.3. Let F be a compact Riemannian manifold and I a bounded open interval.

For any n ≥ 0, k ≥ 0 and p ≥ 1 there is a constant C > 0 such that for any exact Lpk
m-form dη on the Riemannian product X = F×In there is an (m−1)-form χ with dχ = dη

and

‖χ‖Lp
k+1

< C‖dη‖Lp
k
. (7.14)

Proof. The proof is by induction on n. The result holds for n = 0 by usual Hodge theory.

For the inductive step, we show that if a manifold X satisfies the conclusion of the theorem,

then so does X × I (with the product metric).

For s ∈ I let Xs denote the hypersurface X × {s}. Let t denote the coordinate on I,

and write

dη = α+ dt ∧ β,

with α and β sections of the pull-back of Λ∗T ∗X to X × I. Write α(s), β(s) for the

corresponding forms on Xs. Fix s0 ∈ I and let

χ1(s) =

∫ s

s0

β(t)dt.
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Let ∇ denote the covariant derivative on X × I, and consider χ1 as a form on X × I. For

any 0 ≤ i ≤ k and s ∈ I

‖(∇iχ1)(s)‖
p
Lp(Xs)

=

∫

X

∥

∥

∥

∥

∫ s

s0

(∇iβ)(t)dt

∥

∥

∥

∥

p

volX

≤ V p−1

∫

X

∫ s

s0

‖(∇iβ)(t)dt‖pdt volX ≤ V p−1‖∇iβ‖pLp(X×I),

where V is the length of I. Hence

‖∇iχ1‖
p
Lp(X×I) ≤

∫

I

‖(∇iχ1)(s)‖
p
Lp(Xs)

ds ≤ V p‖∇iβ‖pLp(X×I),

and

‖χ1‖Lp
k
(X×I) ≤ V ‖dη‖Lp

k
(X×I).

d(η−χ1) has no dt-component, so the dt-component of d2(η−χ1) is ∂
∂t
d(η−χ1) = 0. Hence

d(η − χ1) is the pull-back to X × I of an exact form on X. By the inductive hypothesis

there is a form χ2 such that dχ2 = d(η − χ1) and χ = χ1 + χ2 satisfies (7.14) for some C

independent of dη.

Therefore there is a 2-form χ on S such that

dχ = dη′|S

and χ satisfies estimates proportional to (7.3) (the uniform estimate comes from theorem

7.2.3). If ρ is a cut-off function which is 1 near F and 0 outside S then

‖d(ρχ)‖L2 < K ′t4, ‖d(ρχ)‖C0 < K ′t1/2, ‖∇d(ρχ)‖L14 < K ′, (7.15)

with K ′ independent of t. ϕ̃′ + d(η′ − ρχ) is a family of closed G2-structures which are flat

near F . It is clear from the chain rule that torsion is small, but we need to take care to

choose the small form ψ′ such that d∗ψ′ = dΘ(ϕ̃′+d(η′−ρχ)) in such a way that it vanishes

not only on the cylindrical neck region, but also near F . Because F has dimension 3 any

closed 4-form on the tubular neighbourhood S is exact. By lemma 7.3.3 we can write

(Θ(ϕ̃′ + dη′) − Θ(ϕ̃′))|S = dχ′

for some 3-form χ′ on S, so that d(ρχ′) satisfies estimates of the form (7.15). We can then
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take

ψ′ = ∗(Θ(ϕ̃′ + d(η′ − ρχ)) − Θ(ϕ̃′ + dη′) + d(ρχ′)),

which is supported in S but 0 near F .

We can ensure that all forms are invariant under Ψ, so d(η′ − ρχ) descends to an exact

3-form β on the orbifold M ′/Ψ. As it is supported away from the singular set, β is also

defined on the resolution M . In the same way ψ′ descends to a small 3-form ψ1 on M .

Recall that we denoted by ϕ̃ the G2-structure on M with small torsion obtained by

resolving (S1 × T 6)/Γ. ϕ̃′ + d(η′ − ρχ) descends to an orbifold G2-structure on M ′/Ψ with

small torsion. Its orbifold singularities are modelled on quotients of the flat G2-structure,

so the singularities can be resolved like in theorem 7.2.1 to define a closed G2-structure

on M . This is precisely ϕ̃ + β. The torsion introduced by the resolution is small, in the

sense that there is a smooth 3-form ψ2 on M , supported near the pre-image F ′ of the

singular set, such that d∗ψ2 = d∗ϕ̃ near F ′ and ψ2 satisfies the estimate (i) in theorem

7.2.1. Now (ϕ̃ + β, ψ1 + ψ2) satisfies the hypotheses of theorem 7.1.3 (for t sufficiently

small). Moreover, proposition 7.2.4 shows that the torsion-free G2-structures obtained by

perturbing the ‘one-step’ resolution ϕ̃ and the ‘two-step’ resolution ϕ̃+β are diffeomorphic.

7.3.3 A simple example

We now discuss the example of [27, §12.2]. This is a resolution of the quotient of T 7 by the

group Γ ∼= Z3
2 generated by

α : (x1, . . . , x7) 7→ (x1, x2, x3,−x4,−x5,−x6,−x7),

β : (x1, . . . , x7) 7→ (x1,−x2,−x3, x4, x5,
1
2
− x6,−x7),

γ : (x1, . . . , x7) 7→ (−x1, x2,−x3, x4,
1
2
− x5, x6,

1
2
− x7).

(7.16)

The fixed point set of each of α, β and γ consists of 16 copies of T 3 and these are all disjoint.

αβ, βγ, γα and αβγ act freely on T 7. Furthermore 〈β, γ〉 acts freely on the set of 16 3-tori

fixed by α, so they map to 4 copies of T 3 in the singular set of T 7/Γ. Similarly 〈α, γ〉 and

〈α, β〉 acts freely on the 16 3-tori fixed by β and γ, respectively. Thus the singular set of

T 7/Γ consists of 12 copies of T 3.

At each T 3 in the singular set the normal space is C2/{±1}. To form a set of R-data

we need to choose a resolution of C2/{±1} for each component of the fixed point set.

Topologically the essentially unique resolution is the blow-up Y of C2/{±1} at the origin.

This has a family of ALE SU(2)-metrics called Eguchi-Hansen metrics. So for each of
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the 48 copies of T 3 in the fixed point set we use Y with an Eguchi-Hansen metric as our

resolution of C2/{±1}. The equivariance condition on the R-data then means that we must

actually choose the same Eguchi-Hansen metric for each quadruple of 3-tori which map to

the same component of the singular set.

Once R-data have been chosen we can apply theorems 7.2.1 and 7.2.2 to give torsion-

free G2-structures on a resolution M7 of T 7/Γ. This G2-manifold can be pulled apart in

several different ways. In order to say something about the topology of the resulting EAC

manifolds let us first recall the technique for computing the Betti numbers of the resolutions

from [27, §12.1]. We consider first the compact G2-manifold M .

The cohomology of T 7/Γ is just the Γ-invariant part of the cohomology of T 7, so

b2(T 7/Γ) = 0 while b3(T 7/Γ) = 7. For each of the 12 copies of T 3 in the singular set we cut

out a tubular neighbourhood, which deformation retracts to T 3, and glue in a resolution

T 3 × Y . Y is the blow-up of C2/{±1} at the singular point, which is biholomorphic to

T ∗CP 1. T 3 ×Y therefore deformation retracts to T 3 ×S2. Each of the operations increases

the Betti numbers of M by the difference between the Betti numbers of T 3 × Y and T 3.

This is justified using the long exact sequences for the cohomology of T 7/Γ relative to its

singular set and M relative to the resolving neighbourhoods. Hence

b2(M) = 12 · 1 = 12,

b3(M) = 7 + 12 · 3 = 43.

To compute the Betti numbers of the EAC G2-manifolds we consider them as resolutions of

(T 6 ×R)/Γ. In the cases where the holonomy is exactly G2 we find that the Betti numbers

of (T 6 × R)/Γ are b2 = 0, b3 = 4, b4 = 3, b5 = 0. There are singular sets not only of the

form T 3, but also T 2 × R. Resolving these adds 1, 2 and 1 to b2, b3 and b4, respectively.

(i) To begin with, choose Γ′ to be the stabiliser of the S1 factor corresponding to the x1

coordinate, i.e. Γ′ = 〈α, β〉. The quotient S1 × T 6/Γ′ is isomorphic to S1 ×X19, for a

simply-connected Calabi-Yau 3-fold X19. The fixed points of the reflections on S1 are

0 and 1
2
, so if we take I ⊂ (0, 1

2
) then the image N in M of I ×X19 can be used as a

cylindrical neck for some closed G2-structure ϕ̃ with small torsion. The manifolds M±

with cylindrical ends that result from pulling apart along N are simply connected

with a single end. Therefore by theorem 4.1.11 they have holonomy exactly G2.

The G2-manifolds M+ and M− are isometric. Their boundaries are identified by the

anti-holomorphic involution of X19 induced by the action of γ on T 6.
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The singular set in (R × T 6)/Γ consists of 8 copies of T 2 × R and 2 copies of T 3.

Therefore
b2(M±) = 8 · 1 + 2 · 1 = 10,

b3(M±) = 4 + 8 · 2 + 2 · 3 = 26,

b4(M±) = 3 + 8 · 1 + 2 · 3 = 17,

b5(M±) = 2 · 1 = 2.

We can also compute the Betti numbers of the cross-section X19, and find that

b2(X19) = 19, b3(X19) = 40. Therefore its Hodge numbers are

h1,1(X19) = h1,2(X19) = 19.

If instead we pull M apart in the x2 or x4 direction we get essentially the same result.

We just need to use 〈γ, α〉 or 〈β, γ〉 as Γ′ to define the intermediate resolution.

(ii) If we pull apart along the x3 direction we get a slightly different result. In this case

Γ′ = 〈α, βγ〉, which only contains one element with fixed points. The cross-section of

the neck is a resolution X11 of T 6/Γ′. The first Betti number b1(X11) vanishes, but

X11 is doubly covered by T 2×K3, so Hol(X11) = Z2⋉SU(2). The EAC G2-manifolds

M± are however simply-connected without cylindrical double covers. They are thus

examples of irreducible EAC G2-manifolds with locally reducible cross-section.

In this case the singular set in each half is 4 copies of T 3 and 4 copies of T 2 ×R. The

Betti numbers are therefore

b2(M±) = 4 · 1 + 4 · 1 = 8,

b3(M±) = 4 + 4 · 2 + 4 · 3 = 24,

b4(M±) = 3 + 4 · 1 + 4 · 3 = 19,

b5(M±) = 4 · 1 = 4.

The Hodge numbers of X11 = (T 2 ×K3)/Z2 are

h1,1(X11) = h1,2(X11) = 11.

(iii) If we pull apart along the x5 or x6 direction then Γ′ is 〈β〉 or 〈γ〉 respectively. The

resulting EAC G2-manifolds are of the form S1×M ′
±, whereM ′

± is a simply-connected

EAC Calabi-Yau 3-fold and the cross-section is T 2 × K3. This case therefore looks
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similar to the twisted connected sums of reducible EACG2-manifolds used by Kovalev

in [34]. However, this example cannot arise from Kovalev’s method for generating

matching pairs of reducible EAC G2-manifolds, since the connected sum of such

pairs always has b2 ≤ 9.

(iv) Finally, if we pull apart along the x7 direction then Γ′ = 〈αβ〉. This has no fixed

points, so the cross-section X of the neck is flat. It has b1(X) = 2. Like in §7.3.1 there

is no need for an intermediate resolution in this case. Of the two EAC G2-manifolds

one is a product of S1 with a simply-connected EAC Calabi-Yau 3-fold, and the other

is a quotient of the product of T 3 with a half-K3 surface, as described in remark 7.3.1.

7.3.4 EAC coassociative submanifolds

Let us also give some examples of EAC coassociative submanifolds of EAC manifolds with

holonomy exactly G2. The deformation problem for such submanifolds has been consider

by Joyce and Salur [28].

Coassociative submanifolds are instances of calibrated submanifolds as introduced by

Harvey and Lawson [23]. They call a closed m-form α on a Riemannian manifold a cal-

ibration if α|V ≤ volV for any oriented m-dimensional tangent space V . An oriented m-

dimensional submanifold C is said to be calibrated by α if α|C = volC . It is elementary

to deduce from the definition that any calibrated submanifold is volume-minimising in its

homology class. If M7 is a G2-manifold with G2-structure ϕ then ∗ϕ is a calibration.

Definition 7.3.4. A 4-dimensional submanifold C ⊂ M is called coassociative if it is

calibrated by ∗ϕ.

The next two propositions are elementary to prove by working in the point-wise model for

the G2-structure.

Proposition 7.3.5 ([27, Lemma 10.8.2]). A 4-dimensional submanifold C ⊂ M is ori-

entable and coassociative (with respect to one of its orientations) if and only if ϕ|C = 0.

Proposition 7.3.6 ([27, Proposition 10.8.5]). Let σ : M →M be an involution such that

σ∗ϕ = ϕ. Then each connected component of the fixed point set of σ is either a coassociative

4-manifold or a single point.

Let M7 be the compact G2-manifold constructed in §7.3.3, and denote its torsion-

free G2-structure by ϕ. Joyce [27, §12.6] applies proposition 7.3.6 to find examples of
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coassociative submanifolds of M . We consider just the two simplest examples, where the

coassociative 4-manifolds are diffeomorphic to T 4 or K3.

Example 7.3.7. Define an orientation-reversing isometry of T 7 as in [27, Example 12.6.4].

σ : (x1, . . . , x7) 7→ (1
2
− x1, x2, x3, x4, x5,

1
2
− x6,

1
2
− x7). (7.17)

Then σ commutes with the action of Γ defined by (7.16) and pulls back ϕ0 to −ϕ0. When

the singularities of T 7/Γ are resolved to form the compact G2-manifold M one can ensure

that σ lifts to an involution of M such that σ∗ϕ = −ϕ. It is easy to see that the fixed point

set of σ in M consists of 16 isolated points and one copy of T 4, which is a coassociative

submanifold of M .

We can also consider (7.17) to define an involution σ of T 6 × R. Provided that the

R factor corresponds to the x2, x3 or x4 coordinate this again commutes with the action

of Γ. When we pull apart M in the x2, x3 or x4 direction the resulting irreducible EAC

G2-manifolds M± are resolutions of (T 6 × R)/Γ, so σ lifts to an involution of M± that

reverses the torsion-free G2-structure. The fixed point set in each half M± consists of 8

isolated points and one copy of T 3×R, which is an asymptotically cylindrical coassociative

submanifold of M±.

Example 7.3.8. Define an orientation-reversing isometry of T 7 as in [27, Example 12.6.4].

σ : (x1, . . . , x7) 7→ (1
2
− x1,

1
2
− x2,

1
2
− x3, x4, x5, x6, x7).

Again, σ lifts to an involution of M such that σ∗ϕ = −ϕ and whose fixed point set in T 7/Γ

consists of 16 isolated points and two copies of T 4/{±1}. The corresponding coassociative

submanifolds in M are two copies of the usual Kummer resolution of T 4/{±1}, which is a

K3 surface.

If we pull apart M in the x4 direction then σ defines also involutions of the resulting

irreducible EAC G2-manifolds M±. In each half the fixed point set has two 4-dimensional

components, which are resolutions of (T 3 ×R)/{±1}. These are asymptotically cylindrical

coassociative submanifolds of M , diffeomorphic to the half-K3 from remark 7.3.1.

Remark 7.3.9. Compact coassociative submanifolds have a well-behaved deformation the-

ory. For any coassociative submanifold C ⊂ M the normal bundle of C is isomorphic to

Λ2
+T

∗C. McLean [41] shows that if C is compact then the moduli space of coassociative

submanifolds isotopic to C is a smooth manifold of dimension b2+(C). In particular, if C is

diffeomorphic to T 4 or K3 then the dimension of the deformation space equals the codi-
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mension of C in M . They also have trivial self-dual bundle, so they are candidates for

fibres of fibrations by coassociative submanifolds.

Joyce and Salur [28] prove an EAC analogue of McLean’s result. Let M7 be an EAC

G2-manifold with cross-section X6 and C ⊂M an asymptotically cylindrical coassociative

submanifold with cross-section L ⊂ X (L is then a special Lagrangian submanifold of the

Calabi-Yau 3-fold X, i.e. L is calibrated by the real part Ω of the holomorphic volume

form on X). Then the space of deformations of C asymptotic to the fixed boundary L

is a smooth manifold and its dimension is b2+(C), the dimension of the positive part of

the compactly supported subspace H2
0 (C) ⊆ H2(C). For T 3 × R or the half-K3 surface

this vanishes, so the coassociative submanifolds in example 7.3.7 and 7.3.8 are rigid if the

boundary is kept fixed.

7.3.5 Another example

Now let us consider the example of [27, §12.3]. This is a slight modification of the previous

example. The components of the singular set still do not intersect each other, but some of

the components have two different possible resolutions.

Let T 7 be the standard torus with the standard flat G2-structure ϕ0. Let Γ ∼= Z3
2 be

the group of automorphisms of T 7 generated by

α : (x1, . . . , x7) 7→ (x1, x2, x3,−x4,−x5,−x6,−x7),

β : (x1, . . . , x7) 7→ (x1,−x2,−x3, x4, x5,
1
2
− x6,−x7),

γ : (x1, . . . , x7) 7→ (−x1, x2,−x3, x4,−x5, x6,
1
2
− x7).

The fixed point set of each of α, β and γ consists of 16 copies of T 3 and these are all

disjoint. αβ, βγ, γα and αβγ act freely on T 7. Furthermore 〈β, γ〉 and 〈α, γ〉 act freely on

the set of 16 3-tori fixed by α and β, respectively. However, αβ maps each component of

the fixed point set of γ to itself. Therefore the singular set of T 7/Γ consists of 8 copies of

T 3 and 8 copies of T 3/Z2. The T 3 fixed by γ has a natural choice of coordinates x2, x4, x6.

In these coordinates the action of αβ is

αβ : T 3 → T 3, (x2, x4, x6) 7→ (−x2,−x4,
1
2

+ x6).

To form R-data we can first use the blow-up Y of C2/{±1} with an Eguchi-Hansen

metric for each of the 8 3-tori in the singular set, just as in §7.3.3. For each of the 8
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copies of T 3/Z2 there are, however, two non-equivalent choices Y+ and Y− of resolution of

C/{±1}. This is because αβ acts on the normal space C2 to the T 3 fixed by γ, and the

R-data must include a compatible automorphism of the resolution. Both Y+ and Y− are

diffeomorphic to Y , but αβ acts differently on them. In fact the induced action on the

second cohomology H2(Y±) ∼= R is (αβ)∗ = ±1. Y+ and Y− both have ALE SU(2)-metrics

which are αβ-invariant.

The upshot is that for each of the 8 copies of T 3/Z2 there are two topologically distinct

choices of resolutions. The different R-data will therefore give 28 topologically distinct

resolutions π : M → T 7/Γ (however some of the manifolds M are diffeomorphic).

We can pull the resulting G2-manifold M apart in several ways as in §7.3.3. To help

compute the Betti numbers of the parts let us tabulate the contributions from the different

types of resolutions used.

Singularity Resolution b2 b3 b4 b5

A T 3 × (C2/{±1}) T 3 × Y 1 3 3 1

B (T 3 × (C2/{±1}))/Z2 (T 3 × Y+)/Z2 1 1 1 1

C (T 3 × (C2/{±1}))/Z2 (T 3 × Y−)/Z2 0 2 2 0

D T 2 × R × (C2/{±1}) T 2 × R × Y 1 2 1 0

E (T 2 × R × (C2/{±1}))/Z2 (T 2 × R × Y+)/Z2 1 1 0 0

F (T 2 × R × (C2/{±1}))/Z2 (T 2 × R × Y−)/Z2 0 1 1 0

For the compact G2-manifold M one uses 8 A-resolutions, and a total of 8 B- or C-

resolutions. If 0 ≤ k ≤ 8 is the number of B-resolutions used then

b2(M) = 8 · 1 + k · 1 = 8 + k,

b3(M) = 7 + 8 · 3 + k · 1 + (8 − k)2 = 47 − k.

(i) Pulling apart M in the x1 direction gives a pair of simply-connected EAC manifolds

M± with holonomy exactlyG2 and cross-sectionX19, similar to §7.3.3(i). The resolved

singular set in each half consists of 8 copies of T 2 × R and 4 copies of T 3/Z2. If we
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use k± B-resolutions and 4 − k± C-resolutions (so k = k+ + k−) then

b2(M±) = 8 · 1 + k± · 1 = 8 + k±,

b3(M±) = 4 + 8 · 2 + k± · 1 + (4 − k±)2 = 28 − k±,

b4(M±) = 3 + 8 · 1 + k± · 1 + (4 − k±)2 = 19 − k±,

b5(M±) = k± · 1 = k±.

(ii) Pulling apart M in the x2 or x4 directions still gives simply-connected EAC manifolds

M± with holonomy exactly G2, and cross-section X19, but the topology is different.

The resolutions used are 2 × A, 4 ×D, k × E and (8 − k) × F .

b2(M±) = 4 · 1 + 2 · 1 + k · 1 = 6 + k,

b3(M±) = 4 + 4 · 2 + 2 · 3 + k · 1 + (8 − k)1 = 26,

b4(M±) = 3 + 4 · 1 + 2 · 3 + (8 − k)1 = 21 − k,

b5(M±) = 2 · 1 = 2.

(iii) Pulling apart M in the x3 or x5 direction gives a pair of simply-connected EAC

manifolds M± with holonomy exactly G2 and cross-section X11, similar to §7.3.3(ii).

Now one uses resolutions 2 × A, 4 ×D, k± ×B and (4 − k±) × C.

b2(M±) = 4 · 1 + 2 · 1 + k± · 1 = 6 + k,

b3(M±) = 4 + 4 · 2 + 2 · 3 + k± · 1 + (4 − k±)2 = 26 − k±,

b4(M±) = 3 + 4 · 1 + 2 · 3 + k± · 1 + (4 − k±)2 = 21 − k±,

b5(M±) = 2 · 1 + k± · 1 = 2 + k±.

(iv) Pulling apartM in the x6 direction one obtains EACG2-manifolds which are products

of S1 with simply-connected EAC Calabi-Yau 3-folds, topologically the same as those

in §7.3.3(iii).

(v) Pulling apart M in the x6 direction produces one EAC G2-manifolds which is a

product of S1 with a simply-connected EAC Calabi-Yau 3-fold and one which is

doubly covered by the product of T 3 and half-K3, similar to §7.3.3(iv).
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7.4 Concluding remarks

We have explained the pulling-apart argument for G2-manifolds only in some simple cases

and many natural questions remain. One obvious question is how to deal with those exam-

ples obtained by desingularising quotients of tori where different parts of the singular set

intersect. In these cases it is more difficult to write down an intermediate resolution which

has both a torsion-free cylindrical neck and suitably small torsion.

One way to deal with this difficulty would be to implement a method for constructing

G2-structures with small torsion proposed by Joyce in [27, p. 304]. Let X6 be a Calabi-

Yau 3-fold with Calabi-Yau structure (Ω, ω) and suppose that a is an anti-holomorphic

involution of X with a∗Ω = Ω, a∗ω = −ω. Then Ω + dt ∧ ω is a torsion-free G2-structure

on S1×X, which descends to a well-defined G2-structure on the quotient (S1×X)/(−1, a)

(cf. example 4.1.18). If the fixed point set L of a is non-empty then the quotient is singular.

In this case L is a real 3-dimensional submanifold of X (in fact it is special Lagrangian).

The singular set of (S1×X)/(−1, a) is {0, 1
2
}×L and locally each point should be resolved

like R3 × Y , where Y is an Eguchi-Hansen space. One would need to vary the choice of

metric on Y smoothly. Joyce suggests that a suitable choice can be made to obtain a

G2-structure with small torsion on the resolution provided that L has a non-vanishing

harmonic 1-form. The main purpose of this argument would be to produce new examples

of compact G2-manifolds. However, finding Calabi-Yau 3-folds to which it can be applied

is a non-trivial task.

Examples produced by this method would automatically satisfy the conditions of the-

orem 7.1.3, so they could be pulled apart. If the construction were made rigorous then

it could almost certainly be applied to give intermediate resolutions for many of Joyce’s

examples.

For many cases it would suffice to carry the argument through for the special case

when X = T 2 ×K3, with a acting by (x, y) 7→ (x,−y) on T 2 and by an anti-holomorphic

involution on K3. By applying a hyper-Kähler rotation to K3 this problem is equivalent

to resolving the singularities of a quotient (T 2 ×K3)/〈b〉 within holonomy SU(3), where b

acts by −1 on T 2 and by a holomorphic involution on K3. The quotient is then a singular

analytic variety, and can be resolved by blowing up the singular set. One would then need

to find a Calabi-Yau metric on the blow-up and give estimates for its distance to the

T 2 ×K3 metric away from the singularities.

Resolving quotients of T 2 × K3 within holonomy SU(3) should also be sufficient to

construct some examples of EAC manifolds with holonomy exactly Spin(7). One reason
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why the method in §7.3 for constructing EAC manifolds with holonomy exactly G2 does

not carry over directly is that in the Kummer-type construction for compact Spin(7)-

manifolds there are always intersecting singular sets. The simplest example Joyce gives is

in [27, §14.2]. This starts from the singular quotient of T 8 by a group Γ ∼= Z4
2 generated by

α : (x1, . . . , x8) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7, x8),

β : (x1, . . . , x8) 7→ (x1, x2, x3, x4,−x5,−x6,−x7,−x8),

γ : (x1, . . . , x8) 7→ (1
2
− x1,

1
2
− x2, x3, x4,

1
2
− x5,

1
2
− x6, x7, x8),

δ : (x1, . . . , x8) 7→ (−x1, x2,
1
2
− x3, x4,−x5, x6,

1
2
− x7, x8).

The quotient can be resolved in an essentially unique way to produce a compact Spin(7)-

manifold M8. Pulling apart M in the x4 (or x8) direction yields halves which have the right

topology to be EAC manifolds with holonomy exactly Spin(7), but the argument from

§7.3.2 cannot be applied directly to produce an intermediate resolution with a cylindrical

neck because the fixed point sets of α and β intersect at the 256 fixed points of αβ. One

could get around this problem by performing the resolution in three steps. First resolve

the quotient T 8/〈β〉 to obtain T 4 × K3. Then resolve (T 4 × K3)/〈γ, δ〉 to get S1 × Y 7,

where Y is a G2-manifold. Hopefully the second resolution can be made in such a way that

a neighbourhood of the singular set of α remains very close to a product R4 ×K3, with α

acting as −1 on R4 and trivially on the K3 factor. Finally the singularities of (S1×Y )/〈α〉

could then be resolved to give a Spin(7)-structure with small torsion and a neck region

isomorphic to the product of Y with an interval. An analogue of theorem 7.1.1 should then

provide torsion-free EAC Spin(7)-structures on the two halves.

If one succeeds in constructing EAC Spin(7)-manifolds this way one could ask if the

compact Spin(7)-manifold can be deformed to a glued manifold. This would require a set-

up for a gluing construction for EAC Spin(7)-manifolds and a study of its deformation

properties, similar to that for G2-manifolds in §6. The technical details are likely to be

more complicated. The fact that the image in H4(M) of the moduli space of torsion-free

Spin(7)-structures is a submanifold rather than an open subset makes it harder to write

down a local expression for the gluing map.

Another remaining question concerns the boundary of the moduli space M of torsion-

free G2-structures. We have exhibited some examples of compact G2-manifolds M7 where

a single component of M has boundary points of both orbifold and connected-sum type.

In fact, in these examples there are 7 different kinds of connected-sum boundary points,
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corresponding to the different directions in which M can be pulled apart. One can ask

whether M can be compactified in a natural way, so that different types of boundary

points lie on the same connected component. Naively, one would expect that a face of

orbifold type and a face of connected-sum type would be joined by a codimension 2 edge,

parametrised by classes of matching pairs of EAC orbifolds. Similarly, two different faces

of connected-sum type boundary point may meet at a codimension 2 edge defined by

quarters of M . Defining the boundary conditions for such quarters would be rather more

complicated than the definition for EAC manifolds.

Finally, one possible application of “pulling-apart” is to provide a way to study Joyce’s

examples complex analytically. While we highlighted the cases where the connected compo-

nents have holonomy exactlyG2 for their novelty, the cases when the connected components

are reducible may give more information about the decomposed manifold. When the con-

nected components are of the form S1 ×X6
±, where X± are EAC Calabi-Yau 3-folds, then

X± can be considered as the complement of an anti-canonical divisor in a compact complex

3-fold X±. This is very similar to the matching pairs of reducible EAC G2-manifolds found

in [34]. In [35] Kovalev proposes a method to produce coassociative fibrations for compact

G2-manifolds obtained as the gluing of such pairs, by patching together fibrations of each

half by complex submanifolds of the X±-factor. This way one may hope to find coasso-

ciative fibrations of those of Joyce’s examples which can be pulled apart into reducible

connected components.
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