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We examine aspects of the computation of finite element matrices and vectors which are made
possible by automated code generation. Given a variational form in a syntax which resembles

standard mathematical notation, the low-level computer code for building finite element tensors,

typically matrices, vectors and scalars, can be generated automatically via a form compiler. In
particular, the generation of code for computing finite element matrices using a quadrature ap-

proach is addressed. For quadrature representations, a number of optimisation strategies which

are made possible by automated code generation are presented. The relative performance of two
different automatically generated representations of finite element matrices is examined, with a

particular emphasis on complicated variational forms. It is shown that approaches which perform
best for simple forms are not tractable for more complicated problems in terms of run time per-

formance, the time required to generate the code or the size of the generated code. The approach

and optimisations elaborated here are effective for a range of variational forms.

Categories and Subject Descriptors: G.4 [Mathematical software]: ; G.1.8 [Numerical analy-

sis]: Partial differential equations—Finite element methods; D.1.2 [Programming techniques]:

Automatic Programming

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Finite element method, Code generation

1. INTRODUCTION

The rapid development of solvers for a variety of partial differential equations while
achieving optimal or near-optimal run time performance is a possibility offered by
automated computer code generation. Rapid development and high performance
can be reconciled by introducing a compiler that translates high-level mathematical
representations of variational forms into low-level computer code. The FEniCS
Form Compiler (henceforth FFC) is an example of one such compiler [Logg et al.
2008; Kirby and Logg 2006]. FFC takes as input a variational form, posed in a
high-level mathematical language, and generates code for the computation of the
element tensors (element matrices, vectors or scalars) in a low-level language, such
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as C++. The generated code serves as input to a finite element assembler. FFC
version 0.5.1 generates C++ code consistent with the UFC specification [Alnæs
et al. 2008; Alnæs et al. 2009], and therefore the generated code can be used by any
assembly library which supports the specification. DOLFIN [Logg et al. 2008] is
an example of an assembly library which supports the UFC specification. However,
FFC is designed such that a user can implement support for output in any format
and in any language.

The automated generation of computer code for finite element tensors provides
scope for various representations and optimisations which are not feasible via con-
ventional code development approaches. A possibility is to adopt a ‘tensor contrac-
tion’ representation of element tensors, rather than the classical quadrature-loop
representation [Kirby and Logg 2006; Ølgaard et al. 2008]. The approach is based
on the multiplicative decomposition of an element tensor into two tensors, one of
which depends only on the differential equation and the chosen finite element bases
and can therefore be computed prior to run time. It has been proved for classes
of problems that the tensor contraction representation is more efficient than the
traditional quadrature approach, and the speed-ups can be quite dramatic [Kirby
and Logg 2006]. Furthermore, strategies which analyse the structure of the ten-
sor contraction representation can yield improved performance [Kirby et al. 2005;
Kirby et al. 2006].

It has been our experience that the tensor contraction approach does not scale
well for moderately complicated and complicated forms. This is manifest in three
ways: the time required to generate low-level code for a variational form becomes
prohibitive or may fail due to memory limitations or limitations of underlying li-
braries; the size of the generated code is such that the compilation of the generated
low-level code is prohibitively slow and file size limitations of compilers acting on the
low-level code may be exceeded; and the run time performance deteriorates rapidly
relative to a quadrature approach. Complicated forms are by no means exotic.
Many common nonlinear equations, when linearised, result in forms which involve
numerous function products. It was when addressing these types of problems that
we found automated code generation using the tensor contraction representation
would frequently break down. Approaches to reduce the time required for the code
generation phase when using the tensor contraction representation have been de-
veloped and implemented in FFC [Kirby and Logg 2007], although these cannot
counter the inherently expensive nature of the approach for complicated forms.
Various issues with automated code generation, particularly scaling, are only borne
out when considering complicated forms. Naturally, automated code generation
is most appealing when considering complicated variational forms which are time
consuming to program, difficult to optimise and problematic to debug.

We address here issues pertinent to automated code generation for quadrature
representations of finite element tensors, and in particular optimisations which are
made possible by automation and could not be reasonably expected of a developer
to program ‘by hand’. We wish in particular to target complicated forms, for
which the tensor contraction approach performs poorly. In assessing the tensor
contraction and quadrature representations, we consider

(1) The run time performance of the generated code;
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(2) The size of generated code; and
(3) The speed of code generation phase.

The relative importance of these points may well shift during a development cycle.
During initial development, it is likely that the speed of the code generation phase
and the size of the generated code are most important, whereas at the end of the de-
velopment cycle run time performance is likely to be the most crucial consideration.
Inevitably, and as we will show, the three are typically linked.

All developments which we present are implemented in FFC, which is freely
available at http://www.fenics.org/ under the GNU Public License. FFC is a
component of the FEniCS project [FEniCS 2008], which consists of a suite of tools
which aim to automate computational mathematical modelling, all of which are
released under a GNU public license. The examples presented in this work can be
‘compiled’ using FFC version 0.5.1.

The remainder of this work is arranged as follows. We summarise automated
code generation and representations of finite element tensors in Section 2. Then, we
describe in Section 3 the optimisations for quadrature representations which we have
applied. Examples and benchmarks on the performance of quadrature and tensor
contraction representations are presented in Section 4, after which conclusions are
drawn in Section 5.

2. FINITE ELEMENT TENSORS AND AUTOMATED COMPUTER CODE GENER-
ATION

We review briefly in this section two representations, quadrature and tensor con-
traction, of an element stiffness matrix. We choose as a canonical example the
bilinear form corresponding to the weighted Laplace equation −∇ · (w∇u) = 0,
where u is unknown and w is prescribed. The bilinear form associated with the
variational form of the weighted Laplacian reads

a (v, u) =
∫

Ω

w∇v · ∇udx. (1)

We assume that all of the above functions come from the finite element space

Vh =
{
v ∈ H1 (Ω) : v|K ∈ Pk (K)∀K ∈ T

}
, (2)

where Pk (K) denotes the space of polynomials of degree k on the element K of
the standard triangulation of Ω, which is denoted by T . The local element matrix,
often known as the ‘stiffness matrix’, for the cell K is given by

AKi1i2 =
∫
K

w∇φKi1 · ∇φ
K
i2 dx, (3)

where
{
φKi
}

are the local basis functions which span Vh on the element K.
The task of the form compiler is to take an input which resembles the notation of

equation (3) and generate low-level code. The FFC input for this problem is shown
in Figure 1 for continuous piecewise cubic functions on tetrahedra as a basis for all
functions in the form. Computer code is generated from the input shown in Figure 1
by simply running the compiler FFC on the input code. Options can be provided
which affect aspects of the generated code. Relevant to the topic of this work are
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element = FiniteElement("Lagrange", "tetrahedron", 3)

v = TestFunction(element)

u = TrialFunction(element)

w = Function(element)

a = w*dot(grad(v), grad(u))*dx

Fig. 1. FFC input for the weighted Laplacian form on cubic tetrahedral elements.

the representation options ‘-r quadrature’ for quadrature representation and ‘-r
tensor’ for tensor contraction representation, both of which are summarised in this
section. FFC generates not only the code for computing the element matrix AKi1i2 ,
but also a degree-of-freedom mapping for use in assembly, as well as a number of
utility functions, such as code for evaluating finite element functions at arbitrary
points. The generated code conforms to the UFC specification, and can be used
to assemble global matrices and vectors by an assembler which supports the UFC
specification, such as the FEniCS component DOLFIN, which is a problem solving
environment responsible for assembling the global system and solving the arising
linear system of equations.

FFC implements support for basic differential and algebraic operators. The op-
erators which are used in the examples in this work are: the gradient, grad(v);
the divergence, div(v); and inner products dot(v, w). Different types of inte-
grals are also available. Presented examples will use integration over a cell, *dx,
and integration over interior facets, *dS. The latter will be used in a discontinuous
Galerkin example. Related to discontinuous Galerkin methods, the compiler offers
the possibility of restricting functions evaluated on facets to either the plus side or
the minus side of a given facet, which is expressed as v(’+’) and v(’-’), respec-
tively. Also relevant to discontinuous Galerkin methods are operators for the jump,
jump(v), and the average, avg(v), of a function on a cell facet. Mixed elements
with arbitrary combinations of functions and function spaces are also supported.
FFC is built on top of Python, and therefore inherits Python syntax. This makes
the addition of user-defined operators simple, and in combination with the language
of FFC, makes it possible to define a wide range of variational forms simply and
compactly.

2.1 Quadrature representation

Finite element codes typically deploy quadrature at run time for the numerical
integration of local element tensors. Assuming the same local basis for all functions
in equation (3) and a standard affine mapping FK : K0 → K from a reference
element K0 to any given element K ∈ T (recalling that T is the triangulation of
the domain of interest Ω), a quadrature scheme reads

AK
i1i2 =

NX
q=1

dX
α1=1

dX
α2=1

nX
α3=1

Φα3(Xq)wα3

dX
β=1

∂Xα1
∂xβ

∂Φi1 (Xq)

∂Xα1

∂Xα2
∂xβ

∂Φi2 (Xq)

∂Xα2
det F ′

KW q, (4)
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where a change of variables from the reference coordinates X to the real coordinates
x = FK(X) has been used. In the above equation N denotes the number of inte-
gration points, d is the dimension of Ω, n is the number of degrees of freedom for
the local basis of w, Φi denotes basis functions (shape functions) on the reference
element, and W q is the quadrature weight at integration point Xq.

When generating code automatically using FFC, exact quadrature is used by de-
fault. FFC computes the polynomial order of the form and uses a scheme based on
the Gauss-Legendre-Jacobi rule mapped onto simplices [Kirby 2004]. This means
that for exact integration of a second-order polynomial, FFC will use two quadra-
ture points in each spatial direction i.e., 23 = 8 points per cell in three dimensions.
FFC does provide an option for a user to specify the number of quadrature points
which then permits inexact quadrature.

2.2 Tensor contraction representation

In reviewing the tensor contraction representation approach, we follow the work
of Kirby and Logg [2006]. Taking equation (4) as the point of departure, the
tensor contraction representation of the element matrix for the weighted Laplacian
is expressed by

AKi1i2 =
d∑

α1=1

d∑
α2=1

n∑
α3=1

detF ′
Kwα3

d∑
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∫
K0

Φα3

∂Φi1
∂Xα1

∂Φi2
∂Xα2

dX. (5)

Noteworthy is that the integral appearing in equation (5) is independent of the cell
geometry and can therefore be evaluated prior to run time. The remaining terms,
with the exception of wα3 , depend only on the geometry of the cell. Exploiting this
observation, the element tensor AKi1i2 can then be expressed as a tensor contraction,

AKi1i2 =
∑
α

A0
i1i2αG

α
K , (6)

where the tensors A0
i1i2α

(the ‘reference tensor’) and GαK (the ‘geometry tensor’)
are defined as

A0
i1i2α =

∫
K0

Φα3

∂Φi1
∂Xα1

∂Φi2
∂Xα2

dX, (7)

GαK = detF ′
Kwα3

d∑
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
. (8)

We refer to Kirby and Logg [2007] for a generalisation of the approach.
Using FFC to generate computer code for the tensor contraction representation,

the reference tensor A0
i1i2α

is precomputed and the contraction in equation (6) is
unrolled. For a certain class of simple forms this can lead to a tremendous speed-
up when evaluating the element matrices relative to a quadrature approach [Kirby
and Logg 2006]. Note, however, that as the number of functions and derivatives
present in the variational form increases, the rank of both the reference tensor
and the geometry tensor increases, thereby increasing the complexity of the tensor
contraction.
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In contrast to the quadrature approach, the tensor contraction representation is
somewhat specialised as it cannot be extended trivially to non-affine isoparametric
mappings while maintaining efficiency, and it is not effective for classes of nonlinear
problems which require the integration of functions that do not come from a finite
element space. The attractive feature of the approach is the run time performance
for classes of problems.

3. A PRIORI OPTIMISATIONS FOR QUADRATURE REPRESENTATION

The automated generation of code provides scope for employing optimisations which
are not practically feasible in hand-generated code. An example of such an approach
which is pertinent to the tensor contraction representation involves the analysis of
structures in the reference tensor in order to minimise the number of floating point
operations required to compute an element matrix or vector [Kirby et al. 2005;
Kirby et al. 2006; Kirby and Logg 2008]. For simple problems, this can lead to a
significant reduction in the number of operations required to compute an element
tensor. However, it is our experience that one is generally not well-rewarded for
sophisticated optimisation strategies. Such strategies may not scale well in terms of
the required computer time to perform the optimisations for moderately complex
variational forms, proving to be prohibitive in terms of time and memory. This is in
conflict with the goal of minimising development time (code generation phase), as
described in the Introduction. Our experience indicates that simple optimisations,
some of which are described in this section, offer the greatest rewards, even to the
extent that the cost of evaluating element tensors becomes negligible relative to
other aspects of a computation, such as insertion of entries into a sparse matrix.

We outline here three simple a priori approaches for optimising generated code
for the quadrature representation of an element tensor. The central idea of all three
methods is to implement low-cost strategies to reduce the number of floating point
operations required to evaluate the local element tensor. By low-cost optimisations,
we imply strategies which do not impact the time required for the code generation
phase adversely. The optimisations which we have implemented are:

(1) Tabulation of basis functions: Basis functions are evaluated and tabulated at
integration points. In conventional codes, this evaluation is often performed at run
time. From an efficiency point of view it is better to tabulate the values of the basis
functions and look up the values when required. The tabulation of basis functions
is possible by hand for a particular basis and a particular quadrature scheme and
is often done in specialised codes. However, this is not practically possible by hand
in a generic problem solving environment where a variety of bases and quadrature
schemes are employed.

(2) Eliminate floating point operations on zeros: Basis functions and derivatives
of basis functions that are zero-valued at all integration points may be identified and
eliminated during the generation phase, thereby reducing the dimension of the loops
concerning these functions. In particular, when taking derivatives of basis functions
on a reference element zeros often appear. This requires creating a mapping of
indices in order to correctly access the basis values. This mapping results in memory
not being accessed contiguously at run time and can therefore potentially lead to a
performance drop, but in our experience this effect is outweighed by the reduction
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of operations.
(3) Optimise nested loops: A naive implementation of a quadrature represen-

tation of equation (4) in which the summations are replaced by loops results in a
set of nested loops where the number of required operations increase exponentially
with the number of loops. However, few terms in equation (4) are dependent on the
summation index in each of the sums. For instance, the value of the function w at a
given quadrature point is simply computed as w(Xq) =

∑n
α3=1 Φ(Xq)α3wα3 . This

means that the value for each entry of the element tensor AKi1i2 in equation (4), for
each combination of α1 and α2, can be computed in three operations, namely a sum
and two multiplications. This can be seen in the generated code for the weighted
Laplacian form which is shown in Figure 2.

The optimisations described above take place at the final stage of the code gen-
eration process where any given form is represented as simple loop and algebra
instructions. Therefore, the optimisations are general and apply to all forms and
elements that can be handled by FFC.

The generated code for the weighted Laplacian form in Figure 2 demonstrates
the three optimisations described above. The values of basis functions have been
tabulated in the variables Psi w, which is the basis for the function w, and Psi vu,
which contains derivatives of the basis for the test function v and the trial func-
tion u. A zero in the table Psi vu has been eliminated, which reduces the size
of the loops over i and j, corresponding to i1 and i2 in equation (4), from three
to two. Note also that for each combination of α1 and α2 in equation (4), we
can evaluate the expression using only three operations. Therefore, increasing the
number of functions and derivatives in the form will in general not lead to an as
dramatic increase in the form representation complexity compared to the tensor
contraction representation, although additional functions might lead to an increase
in the number of quadrature points needed for exact integration. While the above
optimisations are straightforward for simple forms and elements, their implemen-
tation using conventional programming approaches requires manual inspection of
the form and the basis. This is often done in specialised codes, but the extension
to non-trivial forms is difficult, time consuming and error prone. Furthermore, op-
timised code often bears little relation to the mathematical problem at hand. This
makes maintenance and re-use of the hand-generated code problematic.

Our early attempts at generating code for the quadrature representation em-
ployed only the tabulation of basis functions as an optimisation strategy and led
to disappointing performance results, both in terms of run time performance and
the time required for code generation. Adding a run time test for operations on
zeros led to a performance increase, but also led to a significant increase in the time
required for the C++ compilation of the generated code. A priori elimination of
operations on zeroes yielded run time improvements and a significant reduction in
the time required to compile the generated code. For complicated forms, it was the
optimisation of loops that led to dramatic performance improvements in both the
code generation time and the run time performance. With the optimisation of the
loops, for complicated forms we have observed improvements in the run time per-
formance of several orders of magnitude over automatically generated code which
did not optimise the quadrature loops.
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virtual void tabulate_tensor(double* A, const double* const* w,

const ufc::cell& c) const

{

...

// Quadrature weight

const static double W0 = 0.5;

// Tabulated basis functions and arrays of non-zero columns

const static double Psi_w[1][3] =\

{{0.33333333333, 0.33333333333, 0.33333333333}};

const static double Psi_vu[1][2] = {{-1, 1}};

static const unsigned int nzc0[2] = {0, 1};

static const unsigned int nzc1[2] = {0, 2};

// Geometry constants

const double G0 = Jinv_00*Jinv_10*W0*det;

const double G1 = Jinv_01*Jinv_11*W0*det;

const double G2 = Jinv_00*Jinv_00*W0*det;

const double G3 = Jinv_01*Jinv_01*W0*det;

const double G4 = Jinv_10*Jinv_10*W0*det;

const double G5 = Jinv_11*Jinv_11*W0*det;

// Loop integration points

for (unsigned int ip = 0; ip < 1; ip++)

{

// Compute function value

double F0 = 0;

for (unsigned int r = 0; r < 3; r++)

F0 += Psi_w[ip][r]*w[0][r];

const double Gip0 = (G0 + G1)*F0;

const double Gip1 = (G2 + G3)*F0;

const double Gip2 = (G4 + G5)*F0;

for (unsigned int i = 0; i < 2; i++)

{

for (unsigned int j = 0; j < 2; j++)

{

A[nzc0[i]*3 + nzc0[j]] += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip1;

A[nzc0[i]*3 + nzc1[j]] += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip0;

A[nzc1[i]*3 + nzc0[j]] += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip0;

A[nzc1[i]*3 + nzc1[j]] += Psi_vu[ip][i]*Psi_vu[ip][j]*Gip2;

}

}

}

}

Fig. 2. Part of the generated code for the weighted Laplacian using linear elements in two dimen-

sions. The variables like Jinv 00 are components of the inverse of the Jacobian matrix and det

is the determinant of the Jacobian. A holds the values of the local element tensor and w contains

nodal values of the weighting function w.
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As stated in Section 2.1, a quadrature scheme based on the Gauss-Legendre-
Jacobi rule is applied. A further optimisation would be to construct the quadrature
rules directly for simplices, in which case the required number of integration points
for exact quadrature could be reduced, although we recall that a user may specify
the number of integration points to be used.

4. PERFORMANCE COMPARISONS

We compare now generated tensor contraction and quadrature-based code in terms
of the metrics outlined in the Introduction, namely the run time performance, the
size of generated code and the speed of the code generation phase. The aim is to
elucidate features of the two representations for various problems with the goal of
finding a guiding principle for selecting the most appropriate representation for a
given problem.

We set the scene by first considering some typical forms of differing complexity
and nature to illustrate some trends and differences between the representations.
We then proceed with a systematic comparison using some very simple forms for
which we expect the tensor contraction representation to prove superior, before
increasing the complexity of the forms in order to investigate the cross-over point
at which the quadrature representation becomes the better representation in terms
of run time performance. Exact quadrature is used for all examples.

All tests were performed on an Intel Core 2 X6800 CPU at 2.93GHz with 3.2GB
of RAM running Ubuntu 8.04.1 with Linux kernel 2.6.24. We used Python version
2.5.2 and NumPy version 1.0.4 (both pertinent to FFC), and g++ version 4.2.3
with the ‘-O2’ optimisation flag to compile the generated C++ code. For tests
which involve compressed sparse matrices, we use DOLFIN to assemble the global
sparse matrix. DOLFIN provides various linear algebra backends, and we have used
PETSc [Balay et al. 2001] as the backend for the assembly tests. The non-zero
structure of the compressed sparse matrix is initialised and no special reordering of
degrees of freedom has been used in the assembly tests.

4.1 Performance for a selection of forms

We set out by comparing the two representations to demonstrate the strengths and
weaknesses for different ‘real’ forms. The first form considered is a mixed Poisson
formulation using fifth-order Brezzi-Douglas-Marini (BDM) elements [Brezzi and
Fortin 1991], automation aspects of which have been addressed by Rognes et al.
[2008]. The FFC input for this form is shown in Figure 3. We also consider a
discontinuous Galerkin method for the biharmonic equation [Ølgaard et al. 2008]
which involves both cell and interior facet integrals, and is shown in Figure 4. The
third example is a complicated form which has arisen in modelling temperature-
dependent multiphase flow through porous media [Wells et al. 2008]. It involves
standard simple Lagrange basis functions of low order but the products of many
functions. The input for the form is shown in Figure 5. Due to the origins of this
form, we denote it as the ‘pressure equation’.

The three forms have been compiled with FFC using the tensor contraction and
quadrature representations. In Table I, the time required to generate the code, the
size of the generated code and the time required to compile the C++ code are re-
ported for each form. Results are presented for the tensor contraction case, together
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BDM = FiniteElement("Brezzi-Douglas-Marini", "triangle", 5)

DG = FiniteElement("Discontinuous Lagrange", "triangle", 5 - 1)

mixed_element = BDM + DG

(tau, w) = TestFunctions(mixed_element)

(sigma, u) = TrialFunctions(mixed_element)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

Fig. 3. FFC input for the stiffness matrix of the mixed Poisson problem using BDM elements of
order five.

element = FiniteElement("Lagrange", "triangle", 3)

v = TestFunction(element)

u = TrialFunction(element)

n = FacetNormal("triangle")

h = MeshSize("triangle")

alpha = 10.0

a = dot(div(grad(v)), div(grad(u)))*dx \

- dot(avg(div(grad(v))), jump(grad(u), n))*dS \

- dot(jump(grad(v), n), avg(div(grad(u))))*dS \

+ alpha/h(’+’)*dot(jump(grad(v),n), jump(grad(u),n))*dS

Fig. 4. FFC input for the stiffness matrix of a discontinuous Galerkin formulation for the bihar-

monic equation in two-dimensional elements of order three.

Table I. Timings and code size for the compilation phase for the various variational forms. ‘gener-

ation’ is the time required by FFC to generate the tensor contraction code; ‘size’ is the size of the
generated tensor contraction code; and ‘C++’ is the time to compile the generated C++ code.

The ratio q/t is the ratio between quadrature and tensor contraction representations.

Form generation [s] q/t size [kB] q/t C++ [s] q/t

mixed Poisson 3.9 1.00 1500 0.92 15.7 0.76

DG biharmonic 16.2 0.35 3200 0.13 47.5 0.19

pressure equation 35.1 1.03 2600 0.19 41.4 0.22

with the ratio of the time/size for the quadrature representation case divided by the
time/size required for the tensor contraction representation case, denoted by q/t.
In measuring the C++ compile time and the run time performance, the generated
code has been compiled against the library DOLFIN. Noteworthy from the results
in Table I is that the generation phase for the quadrature representation is at least
as fast as the tensor contraction representation generation phase (the difference for
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scalar_p = FiniteElement("Lagrange","triangle",2)

scalar = FiniteElement("Lagrange","triangle",1)

dscalar = FiniteElement("Discontinuous Lagrange","triangle",0)

vector = VectorElement("Discontinuous Lagrange", "triangle", 1)

q = TestFunction(scalar_p)

p = TrialFunction(scalar_p)

f0 = Function(scalar)

f1 = Function(scalar)

f2 = Function(scalar)

f3 = Function(scalar)

f4 = Function(scalar)

f5 = Function(scalar)

f6 = Function(scalar)

f7 = Function(dscalar)

f8 = Function(dscalar)

f9 = Function(dscalar)

f10 = Function(dscalar)

f11 = Function(dscalar)

f12 = Function(dscalar)

f13 = Function(dscalar)

f14 = Function(dscalar)

f15 = Function(vector)

f16 = Function(vector)

f17 = Function(vector)

S0 = f14*f7*dot(f15, grad(q))

S1 = f14*f8*dot(f16, grad(q))

S2 = f14*f9*dot(f17, grad(q))

S = S0 + S1 + S2

a0 = f10*f0*f9*1/f11*p*q*dx\

- f7*(1-f12)*dot(f15, grad(p))*q*dx\

- f8*(1-f12)*dot(f16, grad(p))*q*dx\

- f9*(1-f12)*dot(f17, grad(p))*q*dx\

- f13*f1/f2*(1-f12)*dot(grad(p),grad(q))*dx\

- f13*f3/f4*(1-f12)*dot(grad(p), grad(q))*dx\

- f13*f5/f6*(1-f12)*dot(grad(p), grad(q))*dx

a1 = f10*f0*f9*1/f11*p*S*dx\

- f7*(1-f12)*dot(f15, grad(p))*S*dx\

- f8*(1-f12)*dot(f16, grad(p))*S*dx\

- f9*(1-f12)*dot(f17, grad(p))*S*dx\

+ f13*f1/f2*(1-f12)*div(grad(p))*S*dx\

+ f13*f3/f4*(1-f12)*div(grad(p))*S*dx\

+ f13*f5/f6*(1-f12)*div(grad(p))*S*dx

a = a0 + a1

Fig. 5. FFC input for the ‘pressure equation’ in two dimensions.
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Table II. Run time performance for the various variational forms.
Form flops q/t run time [s] q/t

mixed Poisson 12866 73.90 4.5 60.33

DG biharmonic 26420 1.19 25.0 1.27

pressure equation 160752 0.17 190.0 0.17

the pressure equation is only slight). Our experience is that the difference grows
in favour of the quadrature representation for complicated forms. In all cases the
size of the generated quadrature code is smaller than the tensor contraction code,
which is reflected in the C++ compile time. The differences in the C++ compile
time are substantial for the biharmonic and pressure equations (approximately a
factor of five), which is important during the code development phase with frequent
recompilations.

Timings and operation counts for the three forms are presented in Table II. We
define the number of floating point operations (flops) as the sum of all ‘+’ and ‘∗’
operators in the code for computing the element matrix. Although multiplications
are generally more expensive than additions, this definition provides a good measure
for the performance of the generated code. The compound operator ‘+=’ is counted
as one operation. For the run time performance, the time required to compute
the element tensors N times is recorded. For the mixed Poisson problem N =
4.5×105, for the discontinuous Galerkin biharmonic problemN = 1×106 and for the
pressure equation N = 2.5×106. Table II presents the timings and operation counts
for tensor contraction representation, together with the ratio of the quadrature
representation case and the tensor contraction representation case, q/t. The run
time performance is indicative of an aspect of the two representations; there can
be significant performance difference depending on the nature of the differential
equation. For the mixed Poisson problem, the tensor contraction representation
is close to a factor of sixty faster than the quadrature representation, whereas for
the pressure equation the quadrature representation is close to a factor of six faster
than the tensor contraction case. This observation of dramatic difference in run
time performance highlights the desirability of a strategy to determine the best
representation, without generating the code for each case. Such concepts have been
successfully developed in digital signal processing [Püschel et al. 2005].

4.2 Performance for common, simple forms

We consider now the performance of the two representations for two canonical ex-
amples: the scalar ‘mass’ matrix and the ‘elasticity-like’ stiffness matrix. The input
for the mass matrix form is shown in Figure 6 and the input for the elasticity-like
stiffness matrix is shown in Figure 7. The performance of the two representations
are compared for two- and three-dimensional cases on simplicies and for various
polynomial orders. Code is generated using FFC, and we report the number of
floating point operations required to form the element matrix for all cases. In ad-
dition to reporting the number of floating point operations, the time required to
compute the element matrix N times is also presented, which we expect in most
cases to be strongly correlated to the floating point operations count. As before,
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element = FiniteElement("Lagrange", "triangle", 2)

v = TestFunction(element)

u = TrialFunction(element)

a = dot(v, u)*dx

Fig. 6. FFC input for the mass matrix in two dimension with element order q = 2.

element = VectorElement("Lagrange", "tetrahedron", 3)

v = TestFunction(element)

u = TrialFunction(element)

def eps(v):

return grad(v) + transp(grad(v))

a = 0.25*dot(eps(v), eps(u))*dx

Fig. 7. FFC input for the elasticity-like matrix in three dimensions with element order q = 3.

values are reported for the tensor contraction representation case together with
the ratio of the quadrature value over the tensor contraction value. We also re-
port the time required for insertion into a sparse matrix, which is independent of
the element matrix representation. The total assembly time is the ‘run time’ plus
the ‘insertion’ time, which provides a picture of the overall assembly performance.
The ratio of the total assembly time for the quadrature representation over the
total assembly time for the tensor contraction representation, denoted by aq/at, is
also presented. When taking this into account, for some forms the difference in
performance between different representations appears less drastic.

The various timings for the mass matrix problem are reported in Table III for
the two-dimensional case and in Table IV for the three-dimensional case. What is
clear from these results is that tremendous speed-ups for computing the element
matrices can be achieved using the tensor contraction representation, particularly
as the element order is increased. This is perhaps not surprising considering that
the geometry tensor for this case is simply a scalar, therefore the entire matrix is
essentially precomputed. The speed-up is mitigated, however, by the time required
to insert terms into a sparse matrix. For the case of q = 4 in three dimensions, the
tensor contraction representation is a factor of 358 faster for computing the element
matrix, but when insertion is included an overall speed-up factor of only 2.76 is
observed. A factor of 2.76 is not trivial, but obviously to reap the full benefits
of the tensor contraction approach for these types of problems, matrix insertion
must be addressed. The various timings for the elasticity-like stiffness matrix are
presented in Table V for the two-dimensional case and in Table VI for the three-
dimensional case. Compared to the mass matrix, the differences in performance of
the tensor contraction representation relative to quadrature representation are less
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Table III. Timings for the mass matrix in two dimensions for varying polynomial order basis q.
flops q/t run time [s] q/t insertion [s] aq/at

q = 1 (N = 1× 107) 10 11 0.13 6 8 1.07

q = 2 (N = 1× 107) 25 39 0.27 19 23 1.21

q = 3 (N = 1× 107) 89 54 0.67 37 59 1.40
q = 4 (N = 1× 106) 214 79 0.12 71 13 1.64

q = 5 (N = 1× 106) 442 108 0.20 112 24 1.91

Table IV. Timings for the mass matrix in three dimensions for varying polynomial order basis q.

flops q/t run time [s] q/t insertion [s] aq/at

q = 1 (N = 1× 107) 17 23 0.31 8 11 1.19

q = 2 (N = 1× 107) 101 80 0.65 60 72 1.52
q = 3 (N = 1× 106) 281 273 0.18 202 34 2.06

q = 4 (N = 1× 106) 1226 375 0.60 358 121 2.76

Table V. Timings for the elasticity-like matrix in two dimensions for varying polynomial order
basis q.

flops q/t run time [s] q/t insertion [s] aq/at

q = 1 (N = 1× 107) 236 1.1 0.64 3 19 1.06

q = 2 (N = 1× 107) 728 7 1.65 17 100 1.25
q = 3 (N = 1× 106) 2728 13 0.69 33 29 1.74

q = 4 (N = 1× 105) 7724 20 0.41 22 7 2.16

dramatic, but nonetheless substantial, especially for higher-order functions in three
dimensions.

4.3 Performance for forms of increasing complexity

The complexity of the forms investigated in the previous section is now increased
in order to examine under which circumstances the quadrature representation will
be more favourable in terms of run time performance. The comparison is based
on the floating point operation count as this is a good indicator of performance
and the size of the generated file for a large class of problems. We consider the
‘complexity’ of a variational form to increase when the number of function products
increases and when the number of derivatives present increases. Increasing the
number of derivatives and/or the numbers of functions appearing in a form leads
to higher rank tensors for the tensor contraction representation. Also, increases in
the polynomial order of the basis of a function leads to an increase in complexity of
the geometry tensor. We initially restrict ourselves to manipulating the number of
function multiplications in the forms and the polynomial order of these functions,
before introducing products of derivatives.

To generate forms of greater complexity than those in the previous section, we
take the mass matrix and elasticity-like problems with a Lagrange basis of order
q, and premultiply the forms with nf functions of order p. An example is shown
in Figure 8 for the mass matrix where q = 2, nf = 2 and p = 3. A comparison of
the representations for the mass matrix with a different number of premultiplying
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Table VI. Timings for the elasticity-like matrix in three dimensions for varying polynomial order

basis q.

flops q/t run time [s] q/t insertion [s] aq/at

q = 1 (N = 1× 106) 1098 1.1 0.27 3 8 1.07
q = 2 (N = 1× 105) 8622 11 0.36 15 9 1.54

q = 3 (N = 1× 104) 44010 38 0.19 60 6 2.81
q = 4 (N = 1× 103) 155529 90 0.08 115 2 5.38

element = FiniteElement("Lagrange", "triangle", 2)

element_f = FiniteElement("Lagrange", "triangle", 3)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element_f)

g = Function(element_f)

a = f*g*dot(v, u)*dx

Fig. 8. FFC input for the mass matrix in two dimension with with q = 2, premultiplied by two
functions (nf = 2) of order p = 3.

Table VII. The number of operations and the ratio between number of operations for the two
representations for the mass matrix in two dimensions as a function of different polynomial orders

and numbers of functions.

nf = 1 nf = 2 nf = 3 nf = 4
flops q/t flops q/t flops q/t flops q/t

p = 0, q = 1 10 11.30 11 10.36 12 9.58 13 8.92

p = 0, q = 2 25 39.28 26 37.81 27 36.44 28 35.18

p = 0, q = 3 89 54.12 90 53.55 91 52.96 92 52.39
p = 0, q = 4 214 78.98 215 78.61 216 78.25 217 77.90

p = 1, q = 1 48 2.91 171 2.21 558 0.79 1773 0.51
p = 1, q = 2 183 5.70 474 4.15 1917 1.09 5448 0.63

p = 1, q = 3 431 11.43 1442 5.46 5381 1.50 15368 0.77
p = 1, q = 4 1128 15.14 3819 6.50 12006 2.09 36549 0.94

p = 2, q = 1 81 4.56 555 1.56 4143 0.40 26007 0.11
p = 2, q = 2 258 7.57 2412 1.40 14724 0.36 94428 0.08

p = 2, q = 3 950 8.26 6800 1.73 42998 0.39 251876 0.10
p = 2, q = 4 2457 10.10 15987 2.15 95247 0.48 585567 0.10

p = 3, q = 1 181 2.44 1715 1.02 20991 0.16 218767 0.03
p = 3, q = 2 550 3.78 6992 0.78 73596 0.11 754084 0.02

p = 3, q = 3 1910 4.21 20100 0.84 202900 0.11 2038820 0.02
p = 3, q = 4 4285 5.86 44099 1.04 452775 0.13 4538983 0.02

functions and a range of orders p and q are presented in Table VII for the two-
dimensional case and in Table VIII for the three-dimensional case. What is clear
from Table VII is that with few premultiplying functions, the tensor contraction
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Table VIII. The number of operations and the ratio between number of operations for the two

representations for the mass matrix in three dimensions as a function of different polynomial

orders and numbers of functions.

nf = 1 nf = 2 nf = 3 nf = 4
flops q/t flops q/t flops q/t flops q/t

p = 1, q = 1 116 4.00 528 3.43 2224 0.92 9200 0.59

p = 1, q = 2 608 13.77 3084 6.62 12412 1.69 52124 0.81
p = 1, q = 3 2660 29.11 12432 12.26 46528 3.30 205424 1.30

p = 1, q = 4 7955 57.90 38007 20.99 155751 5.14 622679 2.04

p = 2, q = 1 314 6.02 3336 1.75 34984 0.40 359984 0.08

p = 2, q = 2 1838 11.21 20100 2.13 202900 0.39 2034140 0.06
p = 2, q = 3 7610 20.07 79800 3.36 765592 0.57 8039600 0.08

p = 2, q = 4 23285 34.29 239415 5.33 2451775 0.78 24538775 0.11

p = 3, q = 1 644 3.77 13584 1.21 279984 0.13 5759984 0.02

p = 3, q = 2 3752 5.83 80700 1.03 1564572 0.09 FFC failure

p = 3, q = 3 14684 10.57 315216 1.40 6372120 0.11 - -

p = 3, q = 4 47795 16.80 979575 1.96 19594199 0.14 - -

approach is generally more efficient, even for relatively high order premultiplying
functions. The situation changes quite dramatically for p > 0 as the number of pre-
multiplying functions increases, and as the polynomial order of the premultiplying
functions increases. The cases with numerous premultiplying functions are typical
of the Jacobian resulting from the linearisation of a nonlinear differential equation
in a practical simulation, and are therefore important. Obviously, the selection of
the representation can have a tremendous performance impact. The relative per-
formance of the representations in three dimensions is shown in Table VIII. The
number of operations has increased relative to the two-dimensional case, which cor-
responds to an increase in the size of the generated code. For the more complex
forms, compilation of the generated C++ code for the tensor contraction represen-
tation is no longer feasible, and in some cases simply not possible due to compiler
limitations. For the most complicated cases, FFC was unable to generate tensor
contraction code due to memory being exhausted. In practice, time is the limiting
factor as a memory error is usually only encountered after many hours of code
generation for the tensor contraction case. FFC was able to generate quadrature
representation code for all cases.

Interestingly, for complicated forms the operation count is not always a good
indicator of performance. For the three-dimensional mass matrix case with p = 1,
q = 4 and nf = 4, we would expect from the operation count that the tensor
contraction representation would be faster. However, when computing the element
tensor 48000 times, we observed a ratio of q/t = 0.78, indicating that the quadrature
representation is faster. Noteworthy for this case is that the size of the generated
code for tensor contraction representation is 11 MB, while the size of the generated
quadrature code is only 362 kB. This size difference leads not only to a significant
difference in the C++ compile time, but also appears to result in a drop in run time
performance. The performance drop could be attributed to the increased memory
traffic noted by Kirby and Logg [2006]. Also, it may be that the compiler is unable
to perform effective optimisations on the unrolled code, or that the compiler is
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Table IX. The number of operations and the ratio between number of operations for the two

representations for the elasticity-like tensor in two dimensions as a function of different polynomial

orders and numbers of functions.

nf = 1 nf = 2 nf = 3
flops q/t flops q/t flops q/t

p = 1, q = 1 888 0.34 3060 0.36 10224 0.11

p = 1, q = 2 3564 1.42 11400 1.01 35748 0.33
p = 1, q = 3 10988 3.23 34904 1.82 100388 0.63

p = 1, q = 4 26232 5.77 82548 2.87 254304 0.93

p = 2, q = 1 888 1.20 8220 0.31 54684 0.09

p = 2, q = 2 7176 1.59 41712 0.49 284232 0.11
p = 2, q = 3 22568 2.80 139472 0.71 856736 0.17

p = 2, q = 4 54300 4.36 337692 1.01 2058876 0.23

p = 3, q = 1 3044 0.36 30236 0.16 379964 0.02

p = 3, q = 2 12488 0.92 126368 0.26 1370576 0.03
p = 3, q = 3 36664 1.73 391552 0.37 4034704 0.05

p = 3, q = 4 92828 2.55 950012 0.49 9566012 0.06

p = 4, q = 1 3660 0.68 73236 0.11 1275624 0.01

p = 4, q = 2 17652 1.16 296712 0.16 4628460 0.02

p = 4, q = 3 57860 1.71 903752 0.22 13716836 0.02
p = 4, q = 4 138984 2.46 2133972 0.29 32289984 0.03

Table X. The number of operations and the ratio between number of operations for the two rep-
resentations for the elasticity-like tensor in three dimensions as a function of different polynomial

orders and numbers of functions.

nf = 1 nf = 2 nf = 3
flops q/t flops q/t flops q/t

p = 1, q = 1 5508 0.26 25200 0.40 112176 0.09

p = 1, q = 2 40176 2.42 169020 1.95 597564 0.55

p = 1, q = 3 201348 8.37 735408 5.44 3422160 1.16
p = 1, q = 4 708291 19.78 2958831 9.25 11728143 2.33

p = 2, q = 1 13986 0.70 158256 0.22 1691676 0.05
p = 2, q = 2 103518 3.17 1059804 0.74 11132244 0.14

p = 2, q = 3 450882 8.86 5417136 1.44 FFC failure

p = 2, q = 4 1836225 14.90 18941967 2.50 - -

p = 3, q = 1 11160 0.89 443376 0.19 13218516 0.01
p = 3, q = 2 186624 1.76 4402620 0.35 FFC failure

p = 3, q = 3 1035684 3.86 21777552 0.62 - -

p = 3, q = 4 3681171 7.43 FFC failure - -

p = 4, q = 1 49311 0.69 1940256 0.09 FFC failure

p = 4, q = 2 364275 2.14 13527684 0.20 - -

particularly effective at optimising the loops in the generated quadrature code.
A similar comparison is made for elasticity-like forms and the results are pre-

sented in Table IX for the two-dimensional case and in Table X for the three-
dimensional case. Similar trends to those observed for the mass matrix hold.
In three dimensions FFC fails to generate code for a number of the more com-
plex forms using the tensor contraction representation. Code generation using the
quadrature representation is successful in all cases. Also, file size considerations,
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element = VectorElement("Lagrange", "triangle", 2)

element_f = VectorElement("Lagrange", "triangle", 3)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element_f)

g = Function(element_f)

a = div(f)*div(g)*dot(grad(v), grad(u))*dx

Fig. 9. FFC input for the vector-valued Poisson problem in two dimension with with q = 2,

premultiplied by the divergence of two vector valued functions (nf = 2) of order p = 3.

Table XI. The number of operations and the ratio between number of operations for the two

representations for the vector-valued Poisson problem in two dimensions as a function of different
polynomial orders and numbers of functions.

nf = 1 nf = 2
flops q/t flops q/t

p = 1, q = 1 686 0.33 6126 0.07
p = 1, q = 2 2180 1.22 18372 0.18

p = 1, q = 3 8068 2.23 66372 0.29
p = 1, q = 4 22526 3.38 183870 0.43

p = 2, q = 1 1390 0.17 24558 0.06
p = 2, q = 2 7768 0.36 162744 0.05

p = 2, q = 3 24872 0.73 512872 0.07

p = 2, q = 4 60190 1.27 1246478 0.10

p = 3, q = 1 2094 0.42 96750 0.04
p = 3, q = 2 11640 0.55 541800 0.03

p = 3, q = 3 44776 0.73 1697576 0.03

p = 3, q = 4 110774 1.09 4099406 0.04

especially in the three-dimensional cases, will rule out the tensor contraction rep-
resentation for a number of forms where, based on the ratio, it would be expected
to outperform the quadrature representation. It is more difficult in these cases to
make broad generalisation as to the best representation. This again demonstrates
the desirability of a method for automatically determining the best representation
based on inspection of the form.

Finally, we investigate the influence of premultiplying a vector-valued Poisson
form by the divergence of vector-valued functions. The form for the case nf = 2,
p = 3 and q = 2 is shown in Figure 9. A comparison of tensor contraction and
quadrature representations is performed, as in the previous cases, and the results
are shown in Table XI. Premultiplying forms with derivatives of functions clearly
increases the complexity to such a degree that the tensor contraction representation
involves fewer operations for only a very limited number of the considered cases.
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5. CONCLUSIONS

We have presented two representations, namely the tensor contraction and quadra-
ture representations, for the computation of element tensors arising in the finite
element method. The generation of code for these representations is automated
and permits both the rapid development of solvers for broad classes of problems
and the application of specialised performance optimisations. In particular, we
have addressed strategies for optimising automatically the quadrature represen-
tation code. The strategies introduce negligible overhead in the code generation
phase, but can yield substantial run time speed-ups. The presented techniques are
possible with conventional ‘hand’ coding, and in fact commonly employed in spe-
cialised codes and simple problems. Automation makes the approach generic and
allows the application of simple but tedious to implement by hand strategies to an
unlimited range of problems.

The relative performance of two representations of finite element tensors has been
investigated for a range of different problems. Numerical experiments have shown
that the relative performance of the two representations can differ substantially
depending on the nature of the considered variational form. Furthermore, small
modifications of a form can mean that the most efficient representation changes.
In general, however, the quadrature representation is significantly faster for more
complicated forms. Also, relative to the tensor contraction representation, the time
required to generate code for the quadrature representation is less and the size
of the generated code is smaller. Automation is most attractive for complicated
forms as they are time consuming to implement, implementations are error prone
and performance is more elusive. In addressing the quadrature representation in
the context of automated code generation, we have extended the applicability of
automated modelling and of FFC to complicated variational forms. In practice,
a sophisticated solver will often involve the assembly of various forms of differing
complexity, so having both tensor contraction and quadrature representations as
part of the computational arsenal allows the most appropriate representation for a
given form to be used.

A particular challenge is the automated selection of the best representation. FFC
presently computes the operation count for the code which is generated, on the basis
of which a choice could be made, but this involves generating computer code for
each case which can be time consuming. Ideally, the form compiler would select
the best representation based on an inspection of the form. It turns out, however,
that this is a non-trivial task if the goal is a general approach which holds for any
form which FFC can handle and is a topic of ongoing investigation.
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