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Summary. The Cahn-Hilliard equation is of importance in materials science and
a range of other fields. It represents a diffuse interface model for simulating the
evolution of phase separation in solids and fluids, and is a nonlinear fourth-order
parabolic equation, which makes its numerical solution particularly challenging. To
this end, a finite element formulation has been developed which can solve the Cahn-
Hilliard equation in its primal form using C0 basis functions. Here, analysis of a
fully discrete version of this method is presented in the form of a priori uniqueness,
stability and error analysis.
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1 Introduction

The Cahn-Hilliard [1] equation models the separation of phases in binary
mixtures. It is particularly relevant in material science, where it describes
microstructure evolution in alloys. As a diffuse interface model, it represents
the boundaries between pure phases as a small region across which the relative
concentration varies rapidly. This is an advantage in that discontinuities at
phase boundaries do not have to be modelled explicitly, but comes at the cost
of needing to resolve gradients at phase boundaries well and a high degree of
mathematical complexity.

The numerical solution of the Cahn-Hilliard equation is particularly chal-
lenging on a number of fronts. Foremost in the difficulties is the presence
of fourth-order spatial derivatives. A fourth-order term is necessary to bal-
ance the presence of a chemical potential in the Cahn-Hilliard equation which
is derived from a non-convex free energy function. The non-convex nature
of the chemical free energy further complicates both the numerical solution
strategy and the analysis of numerical methods. Extensive research has been
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performed over the past 20 years into the mathematical analysis of finite ele-
ment formulations for the Cahn-Hilliard equation. Initial efforts focused upon
C1 [2, 3] and non-conforming methods [4]. The majority of later efforts fo-
cused upon a mixed finite element formulation based on an operator split (see
Refs. [5, 6, 7, 8] for a selection of works).

We present here analysis of the finite element formulation for the Cahn-
Hilliard equation presented by Wells et al. [9]. The formulation allows the solu-
tion of the Cahn-Hilliard equation using standard C0 basis functions in the pri-
mal form, with continuity of the normal derivative across element boundaries
enforced weakly. In Wells et al. [9], stability and convergence in an energy-like
norm was demonstrated for the time-continuous case. Here, a fully discrete
formulation is analysed and an error estimate in the L2 norm is presented.

The rest of this work is organised as follows: the Cahn-Hilliard equation
is presented in its strong form, after which the semi-discrete Galerkin formu-
lation is presented and some key results are summarised. The fully discrete
formulation is then presented, followed by a priori analysis of uniqueness,
stability and error in the L2 norm. A numerical example is presented, sim-
ulating phase separation in a uniform mixture which is randomly-perturbed.
Following the numerical example, conclusions are drawn.

2 Cahn-Hilliard equation

Consider a binary mixture and let the concentration of one of its constituents,
say A, be denoted by c satisfying 0 < c < 1. The concentration of the other
constituent, B, is 1− c. Pure phases are obtained for c = 0 and c = 1. Let the
mixture occupy an open, simply connected region in space, Ω ⊂ Rd, where
d = 1, 2 or 3. The boundary of Ω is supposed to be sufficiently smooth, and
is denoted by Γ = ∂Ω, with outward unit normal n. In strong form we have
the following problem: find c : Ω × [0, T ] → R such that

c,t = ∇ ·
(
M∇

(
µ− λ∇2c

))
in Ω × (0, T ), (1)

∇c · n = 0 on Γ × (0, T ), (2)

∇
(
µ− λ∇2c

)
· n = s on Γ × (0, T ), (3)

c(x, 0) = c0(x) in Ω, (4)

where M ≥ 0 is the mobility, µ is the chemical potential, λ > 0 is a con-
stant related to the interfacial energy and c0 (x) are the initial conditions.
The boundary conditions of zero normal derivative for the concentration and
zero mass flux on the entire boundary are typical for the Cahn-Hilliard equa-
tion. The Cahn-Hilliard equation is a fourth-order diffusion equation, and the
presence of fourth-order spatial derivatives is due to the introduction of an
expression for the surface free-energy Ψs,

Ψs − λ

2
∇c · ∇c. (5)
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The mobility M can be either constant or concentration-dependent. If
made concentration-dependent, a common choice is

M = c (1− c) , (6)

which largely restricts diffusion processes to phase interface zones. The chemi-
cal potential in the case of phase separation problems comes from a non-convex
chemical free-energy Ψ c. It is the non-convex nature of the free-energy which
drives phase separation. A typical chemical free-energy of a solution is given
by [1]

Ψ c = NkT (c ln c + (1− c) ln (1− c)) + Nωc (1− c) , (7)

where N is the number of molecules per unit volume, k is Boltzmann’s con-
stant, T is the absolute temperature and ω is a parameter related to the
mixing enthalpy that determines the shape of Ψ c. For ω > 2kT , the chemical
free energy is non-convex, with two wells close to c = 0 and c = 1 which
drives phase segregation into the two binodal points. The potential µ is given
by the functional derivative of the chemical free-energy with respect to the
concentration, DcΨ

c. Another possibility is the use of a quartic polynomial
for the chemical free energy,

Ψ c =
1
4
c2 (1− c)2 , (8)

which has the advantage of being continuous on the real line. This simplifies
the analysis of formulations and leads to more robust numerical procedures. It
does however allow for solutions outside of the range [0, 1]. The term λ governs
the magnitude of the free-energy related the interfaces in the presence of a
given concentration gradient.

3 Semi-discrete Galerkin formulation

3.1 Definitions

Consider a partition of Ω into nel polygonal open sets, Ωe, each with boundary
Γe = ∂Ωe:

Ω =
nel⋃
e=1

Ωe, such that
nel⋂
e=1

Ωe = ∅. (9)

It is assumed that Ω is a polygon and hence can be partitioned exactly. The
union of inter-element boundaries and the boundary Γ is denoted by

Γ̃ =
nel⋃
e=1

Γe, (10)

where Γe = ∂Ωe, and the union of element interiors is denoted by
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Ω̃ =
nel⋃
e=1

Ωe. (11)

The jump operator for a vector is denoted by

JaK = a1 · n1 + a2 · n2, on Γ̃\Γ, (12)
JaK = a · n on Γ, (13)

where the subscripts refer to the face of the element on either side of each
inter-element boundary, and n is the unit outward normal to an element
boundary. The average operator is denoted by

〈a〉 =
1
2

(a1 + a2) Γ̃\Γ, (14)

〈a〉 = a on Γ, (15)

where again the subscripts refer to the face of the element on either side of
each inter-element boundary.

3.2 Semi-discrete formulation

Classical Galerkin methods for the Cahn-Hilliard equation with the considered
boundary conditions seek approximate solutions in a subspace of H2

E (Ω),
which is defined as

H2
E (Ω) =

{
ch| ch ∈ H2 (Ω) , ∇ch · n on Γ

}
. (16)

The space satisfies the considered Dirichlet boundary condition by construc-
tion. However, in a finite element context, such functions are difficult to con-
struct. Here, a Galerkin formulation for the Cahn-Hilliard equation is exam-
ined which looks for solutions in a subspace of H1 (Ω), thereby allowing the
use of standard C0 Lagrange shape functions. Consider therefore the function
space

Wh =
{
ch| ch ∈ H1 (Ω) , ch ∈ P k (Ωe)∀e

}
, (17)

where P k (Ωe) is the space of the standard polynomial finite element shape
functions on element Ωe and k is the polynomial order. Note that ch ∈
H2
(
Ω̃
)
. A finite element problem for the Cahn-Hilliard equation then in-

volves [9]: find ch (t) ∈ Wh, t ∈ [0, T ] such that(
wh, ċh

)
Ω

+ a
(
wh, ch

)
= 0 ∀ wh ∈ Wh, (18)

where

a
(
wh, ch

)
Ω

=
(
∇wh,Mh∇µh

)
Ω

+
(
∇2wh,Mhλ∇2ch

) eΩ
+
(
∇wh,

(
∇Mh

)
λ∇2ch

) eΩ −
(q
∇wh

y
,
〈
Mhλ∇2ch

〉)eΓ
−
(〈

Mhλ∇2wh
〉
,
q
∇ch

y)eΓ +
α

h

(q
∇wh

y
,Mhλ

q
∇ch

y)
) eΓ , (19)



Analysis of a finite element formulation for modelling phase separation 5

and α is a dimensionless penalty term and h is a measure of the element size.
The notation

(a, b)X =
∫

X

ab dX (20)

for inner products has been adopted. In effect, the formulation imposes con-
tinuity of (a) the normal derivative of the concentration, (b) the normal flux
and (c) the Laplacian of the concentration across element boundaries in a
weak sense. For simplicity of notation, it has been assumed that α and h are
constant for all elements.

The formulation can be shown to be consistent with the Cahn-Hilliard
equation, and is stable if the penalty term is chosen to be sufficiently large [9].
How large it must be is dependent on constants in various inequalities which
are related to the order of elements and the element geometry. Stability esti-
mates and a priori error estimates in an energy-like norm for the semi-discrete
problem can be found in Wells et al. [9]. The focus in the rest of this work is
on estimates for the fully discrete problem.

4 Fully discrete formulation

We consider now the stability of a time-discrete problem whose numerical
scheme is parametrised by θ ∈ [0, 1]. The time continuous problem in equa-
tion (18) is replaced by a sequence of discrete steps at t1, t2, · · · , tn, tn+1,
where ∆t = tn+1 − tn. The problem at tn+1 then becomes: find ch,n+1 ∈ Wh

such that (
wh,

ch,n+1 − ch,n

∆t

)
+ a

(
wh, ch,n+θ

)
= 0 ∀ ch ∈ Wh, (21)

where
ch,n+θ = (1− θ) ch,n + θ ch,n+1. (22)

As usual, θ = 0 leads to the forward Euler scheme, θ = 1 leads to the backward
Euler scheme and θ = 1/2 leads to the Crank-Nicolson method.

In the following analysis, we restrict ourselves to the case of constant
mobility (M = 1) and a continuously differentiable chemical potential with
the property

dµ

dc
≥ −b0, (23)

where b0 ≥ 0. This condition holds for all commonly adopted chemical poten-
tials.

4.1 Uniqueness

Consider the function β = ch,n+1
1 − ch,n+1

2 , where ch,n+1
1 and ch,n+1

2 are so-
lutions to the fully discrete problem. Inserting β into the right-hand slot of
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the forms in equation (21), and noting the wh = β is an admissible weighting
function,

‖β‖2
Ω + ∆tθλ

∥∥∇2β
∥∥2eΩ − 2∆tθ

(
J∇βK ,

〈
∇2β

〉)eΓ + ∆tθ
αλ

h
‖J∇βK‖2eΓ

= −∆t
(
∇β,∇

(
µ
(
ch,n+θ
1

)
− µ

(
ch,n+θ
2

)))
Ω

, (24)

where ‖a‖X indicates the L2 norm on the domain X. From integration by
parts,∣∣∣(∇β,∇

(
µ
(
ch,n+θ
1

)
− µ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤
∣∣∣(∇2β, µ

(
ch,n+θ
1

)
− µ

(
h,n+θc2

))
eΩ
∣∣∣

+
∣∣∣(J∇βK , µ

(
ch,n+θ
1

)
− µ

(
ch,n+θ
2

))
eΓ
∣∣∣ , (25)

together with Lipschitz continuity of the chemical potential,∣∣∣µ(ch,n+θ
1

)
− µ

(
ch,n+θ
2

)∣∣∣ ≤ L
∣∣∣ch,n+θ

1 − ch,n+θ
2

∣∣∣
= Lθ |β| ,

(26)

where L > 0, and the Cauchy-Schwartz inequality, it follows that:∣∣∣(∇β,∇
(
µ
(
ch,n+θ
1

)
− µ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤ θL

∥∥∇2β
∥∥ eΩ ‖β‖Ω + θL ‖J∇βK‖eΓ ‖β‖eΓ . (27)

Application of Young’s inequality then leads to:∣∣∣(∇β,∇
(
µ
(
ch,n+θ
1

)
− µ

(
ch,n+θ
2

)))
Ω

∣∣∣
≤ θL

2ε0

∥∥∇2β
∥∥2eΩ +

θLε0
2

‖β‖Ω +
θL

2ε1
‖J∇βK‖2eΓ +

θLε1
2

‖β‖2eΓ , (28)

where ε0, ε1 > 0. Turning attention now to the first inter-element term in
equation (24),

2
∣∣(J∇βK , 〈∇β〉) eΓ ∣∣ ≤ ε2C

∥∥∇2β
∥∥2eΩ +

1
hε2

‖J∇βK‖2eΓ . (29)

For the derivation of this expression, we refer the reader to Wells et al. [9].
Also from Wells et al. [9], there exists C > 0 such that

‖β‖2eΓ ≤ C

h
‖β‖2

Ω . (30)

Using these results in equation (24), it follows that
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‖β‖2
Ω + ∆tθλ

∥∥∇2β
∥∥2eΩ + ∆tθ

αλ

h
‖J∇βK‖2eΓ

≤ ∆tθL

2ε0

∥∥∇2β
∥∥2eΩ +

∆tθLε0
2

‖β‖2
Ω +

∆tθL

2ε1
‖J∇βK‖2eΓ

+
∆tθLε1C

2h
‖β‖2

Ω + ∆tθλε2C
∥∥∇2β

∥∥2eΩ +
∆tθλ

hε2
‖J∇βK‖2eΓ . (31)

Grouping related terms together,

‖β‖2
Ω +

(
∆tθλ− ∆tθL

2ε0
− λ∆tθCε2

)∥∥∇2β
∥∥2eΩ

+
(

∆tθαλ

h
− ∆tθL

2ε1
− ∆tθλ

hε2

)
‖J∇βK‖2eΓ

≤
(

∆tθLε0
2

+
∆tθLε1C

2h

)
‖β‖2

Ω . (32)

The goal now is to select εi such that the RHS is greater than ‖β‖2
Ω and

all terms on the LHS are positive. Setting ε0 = 1/∆tθL, ε1 = h/∆tθLC and
ε2 = ε′2/C

‖β‖2
Ω + θ

(
∆tλ− ∆t2θL2

2
− λ∆tε′2

)∥∥∇2β
∥∥2eΩ

+ θ

(
∆tαλ

h
− ∆t2θL2C

2h
− ∆tλC

hε′2

)
‖J∇βK‖2eΓ ≤ ‖β‖2

Ω . (33)

To demonstrate uniqueness, ∆t and α must be chosen such that all terms on
the LHS are greater than or equal to zero. Consider therefore the restriction
on the time step

∆t <
2λ (1− ε′2)

θL2
, (34)

where 0 < ε′2 < 1. Subject to this time step restriction and if

α > (1− ε′2) C +
C

ε′2
(35)

it follows that

‖β‖2
Ω + a1

∥∥∇2β
∥∥2eΩ + a2 ‖J∇βK‖2eΓ ≤ ‖β‖2

Ω , (36)

where a1, a2 > 0, which can hold only if β = 0. Therefore, under the time
step restriction, and for a sufficiently large penalty, the fully discrete scheme
has a unique solution. The analysis indicates that a larger penalty allows for
a larger time step since a large α allows for a small ε′2. Note that the time step
restriction is not dependent on the element size h. It is a function of model
and time stepping parameters only, whereas α is dependent only on element
shape parameters and not model parameters.

The time step restriction for uniqueness is due to the non-convex nature
of Ψ c. It is possible that a more subtle analysis of the problem may lead to a
tighter bound for the maximum allowable time step.
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4.2 Stability

Stability of the time discrete formulation is now considered by setting wh =
ch,n+θ in equation (21),(

ch,n+θ,
ch,n+1 − ch,n+1

∆t

)
Ω

+ a
(
ch,n+θ, ch,n+θ

)
= 0. (37)

Noting that

ch,n+θ =
(

θ − 1
2

)(
ch,n+1 − ch,n

)
+

ch,n+1 + ch,n

2
, (38)

equation (37) can be expressed as:(
θ − 1

2

)∥∥ch,n+1 − ch,n
∥∥2

Ω
+

∥∥ch,n+1
∥∥2

Ω
−
∥∥ch,n

∥∥2

Ω

2∆t

+ a
(
ch,n+θ, ch,n+θ

)
= 0. (39)

For the case θ ∈ [1/2, 1],∥∥ch,n+1
∥∥2

Ω
−
∥∥ch,n

∥∥2

Ω

2∆t
+ a

(
ch,n+θ, ch,n+θ

)
≤ 0. (40)

For standard parabolic differential equations, a
(
ch,n+θ, ch,n+θ

)
≥ 0, leading

trivially to
∥∥ch,n+1

∥∥2 ≤
∥∥ch,n

∥∥2 which implies stability. However, this is not
the case for the Cahn-Hilliard equation as the term a

(
ch,n+θ, ch,n+θ

)
may be

negative. Demonstrating stability requires a more subtle approach.
Expanding the term a

(
ch,n+θ, ch,n+θ

)
and rearranging equation (40),

1
2∆t

∥∥ch,n+1
∥∥2

Ω
+ λ

∥∥∇2ch,n+θ
∥∥2eΩ +

αλ

h

∥∥q∇ch,n+θ
y∥∥2eΓ

≤ b0

2ε0

∥∥∇2ch,n+θ
∥∥2eΩ +

b0

2ε1

∥∥q∇ch,n+θ
y∥∥2eΓ +

b0ε0
2

∥∥ch,n+θ
∥∥2

Ω

+
b0Cε1

2h

∥∥ch,n+θ
∥∥2

Ω
+ λε2C

∥∥∇2ch,n+θ
∥∥2eΩ

+
λ

hε2

∥∥q∇ch,n+θ
y∥∥2eΓ +

1
2∆t

∥∥ch,n
∥∥2

Ω
, (41)

where εi > 0. Setting now ε0 = b0/2λε′0, ε1 = b0h/2Cλε′1, and ε2 = ε′2/C, it
follows that

1
2∆t

∥∥ch,n+1
∥∥2

Ω
+ λ (1− ε′0 − ε′1)

∥∥∇2ch,n+θ
∥∥2eΩ

+
λ

h

(
α− Cε′1 −

C

ε′2

)∥∥q∇ch,n+θ
y∥∥2eΓ

≤
(

b2

4λε′0
+

b2

4λε′1

)∥∥ch,n+θ
∥∥2

Ω
+

1
2∆t

∥∥ch,n
∥∥2

Ω
. (42)
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Setting ε′0 = ε′1 = 1− ε′2, the term λ (1− ε′0 − ε′1)
∥∥∇2ch,n+θ

∥∥2eΩ vanishes, and
if

α > (1− ε′2) C +
C

ε′2
, (43)

then (λ/h) (α− Cε′1 − C/ε′2)
∥∥q∇ch,n+θ

y∥∥2eΓ > 0. It follows then from equa-
tion (42) that

∥∥ch,n+1
∥∥2

Ω
≤ ∆tb2

λ (1− ε′2)

∥∥ch,n+θ
∥∥2

Ω
+
∥∥ch,n

∥∥2

Ω
. (44)

For the case θ = 1, this implies that if

∆t <
λ (1− ε′2)

b2
(45)

then the method is stable as the solution at time step n + 1 is bounded in
terms of the solution at time step n, although it does not imply

∥∥ch,n+1
∥∥

Ω
≤∥∥ch,n

∥∥
Ω

. For other cases,∥∥ch,n+θ
∥∥2

Ω
≤ 2

(∥∥(1− θ) ch,n
∥∥2

Ω
+
∥∥θch,n+1

∥∥2

Ω

)
. (46)

Therefore, for θ = 1/2 the critical time step is the same as for the θ = 1 case.
Stability is assured if the critical time step is met since when summing over
all time steps, the solution remains bounded in terms of the initial conditions.

Due to the presence of second-order derivatives in the weak form, for the
case θ ∈ [0, 1/2) the allowable time step ∆t ∝ h4. This makes the usefulness
of such schemes extremely limited. Hence, the analysis of such schemes is not
pursued here.

4.3 Accuracy

Consider the elliptic projection Phu : H2
E (Ω) → Wh defined by: given u ∈

H2
E (Ω), find Phu ∈ Wh such that(
∇2wh,∇2

(
Phu− u

)) eΩ −
(q
∇wh

y
,
〈
∇2
(
Phu− u

)〉)eΓ
−
(〈
∇2wh

〉
,
q
∇2
(
Phu− u

)y)eΓ
+

α

h

(q
∇wh

y
,
q
∇Phu

y)eΓ = 0 ∀wh ∈ Wh, (47)

where (
wh, 1

)
Ω

= 0,
(
1, Phu

)
Ω

= (1, u)Ω . (48)

It is assumed under these conditions and subject to a suitably large penalty
that the solution of equation (47) is unique (see Elliott and French [3] for
details). The problem in equation (47) is in essence the same as the problem
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presented in Engel et al. [10], for which error estimates were presented. From
these estimates, for k = 2,∥∥Phu− u

∥∥
Ω
≤ Ch2 ‖u‖3,Ω , (49)

and for k > 2 ∥∥Phu− u
∥∥

Ω
≤ Chk+1 ‖u‖k+1,Ω . (50)

The error in the solution at time tn is given by

ch,n − c (tn) = ch,n − Phc (tn)︸ ︷︷ ︸
eh,n

+Phc (tn)− c (tn)︸ ︷︷ ︸
ρn

, (51)

where we have an estimate for ρn, therefore we seek to estimate eh,n in order
to bound the error.

From equation (21) and consistency of the formulation,(
w,

eh,n+1 − eh,n

∆t

)
Ω

+ λ
(
∇2w,∇2eh,n+θ

) eΩ +
αλ

h

(
J∇wK ,

q
∇eh,n+θ

y)eΓ
= −

(
∇wh,∇µ

(
ch,n+θ

)
−∇µ

(
c
(
tn+θ

)))
Ω

−

(
w,

Phc
(
tn+1

)
− Phc (tn)

∆t
− c,t

(
tn+θ

))
Ω

− λ
(
∇2wh,∇2

(
(1− θ) c (tn) + θc

(
tn+1

)
− c

(
tn+θ

))) eΩ
+ λ

(q
∇wh

y
,
〈
∇2eh,n+θ

〉)eΓ + λ
(〈
∇2wh

〉
,
q
∇eh,n+θ

y)eΓ
+ λ

(q
∇wh

y
,
〈
∇2
(
(1− θ) c (tn) + θc

(
tn+1

)
− c

(
tn+θ

))〉)eΓ . (52)

We set wh = eh,n+θ in this relation, and consider α sufficiently large such that
∃ C? > 0 such that ∀ wh ∈ Wh(

∇2wh,∇2wh
) eΩ − 2

(q
∇wh

y
,
〈
∇2wh

〉)eΓ +
α

h

(q
∇wh

y
,
q
∇wh

y)eΓ
≥ C?

(∥∥∇2wh
∥∥2eΩ +

α

h

∥∥q∇wh
y∥∥2eΓ

)
(53)

(which is effectively stability of the formulation). This leads to(
eh,n+θ,

eh,n+1 − eh,n

∆t

)
Ω

+ C?λ
∥∥∇2eh,n+θ

∥∥2eΩ + C? αλ

h

∥∥q∇eh,n+θ
y∥∥2eΓ

≤
∥∥µ (ch,n+θ

)
− µ

(
c
(
tn+θ

))∥∥
Ω

∥∥∇2eh,n+θ
∥∥ eΩ

+
C

h

∥∥µ (ch,n+θ
)
− µ

(
c
(
tn+θ

))∥∥
Ω

∥∥q∇eh,n+θ
y∥∥eΓ

+

∥∥∥∥∥Phc
(
tn+1

)
− Phc (tn)

∆t
− c,t

(
tn+θ

)∥∥∥∥∥
Ω

∥∥eh,n+θ
∥∥

Ω

+ λ
∥∥∇2

(
(1− θ) c (tn) + θc

(
tn+1

)
− c

(
tn+θ

))∥∥ ∥∥∇2eh,n+θ
∥∥ eΩ

+ λ
∥∥q∇eh,n+θ

y∥∥eΓ ∥∥〈∇2
(
(1− θ) c (tn) + θc

(
tn+1

)
− c

(
tn+θ

))〉∥∥eΓ . (54)
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Using equation (30), the above can be rearranged such that(
eh,n+θ,

eh,n+1 − eh,n

∆t

)
Ω

+ C?λ
∥∥∇2eh,n+θ

∥∥2eΩ + C? αλ

h

∥∥q∇eh,n+θ
y∥∥2eΓ

≤

[
C
∥∥µ (ch,n+θ

)
− µ

(
c
(
tn+θ

))∥∥
Ω

+

∥∥∥∥∥Phc
(
tn+1

)
− Phc (tn)

∆t
− c,t

(
tn+θ

)∥∥∥∥∥
Ω

+(1 + C) λ
∥∥∇2

(
(1− θ) c (tn) + θc

(
tn+1

)
− c

(
tn+θ

))∥∥
Ω

](∥∥∇2eh,n+θ
∥∥ eΩ +

1
h

∥∥q∇eh,n+θ
y∥∥eΓ

)
. (55)

In this form, together with the results in equations (49) and (50), the analysis
of Elliott and French [3, Theorem 3.1] can be applied directly, yielding the
estimate ∥∥ch,n − c(tn)

∥∥
Ω
≤ C (hp + ∆tq) , (56)

where C is dependent on the exact solution. For k = 2 gives p = 2, and k > 2
gives p = k + 1. For θ ∈ (1/2, 1] leads to q = 1 and θ = 1/2 leads to q = 2.

5 Numerical example of phase separation

The numerical example presented in this section illustrates a response which
is typical for the Cahn-Hilliard equation. Phase separation is modelled on
a unit square from an initially uniform state which is randomly perturbed.
The parameters for the example are given in non-dimensional form. Consider
therefore a length scale L0, which is representative of the size of the domain
Ω, and time scale T0 = L4

0/Dλ. Relevant dimensionless quantities, denoted
with an asterisk, are given by:

t? = t/T0, x? = x/L0, µ?
c = µcL

2
0/λ. (57)

Using these, the dimensionless counterpart of equation (1) is given by:

c,t? = ∇? · β∇?
(
µ?

c −∇?2c
)
, (58)

where β is a dimensionless term reflecting the nature of the mobility. In the
case of constant mobility β = 1, and in case of degenerate mobility β =
c (1− c).

For this test, the following parameters have been adopted: ω/kT = 3,
NkTL2

0/λ = 3000, β = c (1− c) (degenerate mobility), α = 5 and ∆t∗ =
2×10−8. For the initial conditions, the average concentration is equal to 0.63,
with random fluctuations of zero mean and no fluctuation greater than 0.05.
Triangular elements with quadratic basis functions (k = 2) have been used
and the problem has been stepped in time using the Crank-Nicolson method
and a full Newton procedure.
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t? = 0 t? = 2× 10−6 t? = 4× 10−6

t? = 8× 10−6 t? = 1.6× 10−5 t? = 3.2× 10−5

t? = 6.4× 10−5 t? = 1.28× 10−4 t? = 2.56× 10−4

Fig. 1. Evolution of concentration contours from a randomly perturbed initial con-
dition.

Using a random triangulation with h ≈ 1/100, the evolution of the concen-
tration field is depicted in Figure 1. The concentration evolution can basically
be categorised in two phases: the first phase, which is predominantly gov-
erned by spinodal decomposition and phase separation, and a second phase
which is characterised by grain coarsening. During the first phase, changes in
concentration are driven primarily by the minimisation of the local chemical
energy Ψ c. This period is basically terminated as soon as the local concentra-
tion is driven to either value of the two binodal points. Approximately from
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t? = 8×10−6 onwards, local changes in concentrations are primarily governed
by the surface free energy Ψs. In order to minimise its contribution, the gener-
ated patterns cluster and grains tend to coarsen. This Ostwald ripening takes
place at a much longer time scale.

6 Conclusions

A fully discrete finite element formulation for the Cahn-Hilliard equation has
been analysed. The formulation requires consideration of the concentration
field only and exploits simple Lagrange finite element basis functions. The
necessary continuity of derivatives across element boundaries is enforced in
a weak sense and a penalty term acting on jumps in the normal derivative
across element boundaries is added to maintain stability.

It is shown for Crank-Nicolson and backward Euler time stepping schemes
that critical time steps for both uniqueness and stability exist, but are inde-
pendent on the element size h. Interestingly, the allowable time step is related
to the penalty term. A larger penalty term enhances stability and allows for a
larger time step. It is possible that the presented time step restrictions could
be tightened and the time step restriction for uniqueness quantified. For the
explicit forward Euler scheme, the critical time step scales with h4, making the
scheme impractical. Finally, the fully discrete problem has been posed in such
a form that an existing a priori error estimate for the Cahn-Hilliard equation
in the L2 norm can be applied directly, proving optimal rates of convergence
for the proposed scheme.
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