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Abstract

PrologPF is a parallelising compiler targeting a distributed system of general
purpose workstations connected by a relatively low performance network.
The source language extends standard Prolog with the integration of higher-
order functions.

The execution of a compiled PrologPF program proceeds in a similar man-
ner to standard Prolog, but uses oracles in one of two modes. An oracle
represents the sequence of clauses used to reach a given point in the problem
search tree, and the same PrologPF executable can be used to build oracles,
or follow oracles previously generated.

The parallelisation strategy used by PrologPF proceeds in two phases, which
this research shows can be interleaved. An initial phase searches the prob-
lem tree to a limited depth, recording the discovered incomplete paths. In
the second phase these paths are allocated to the available processors in
the network. Each processor follows its assigned paths and fully searches
the referenced subtree, sending solutions back to a control processor. This
research investigates the use of the technique with a one-time partition-
ing of the problem and no further scheduling communication, and with the
recursive application of the partitioning technique to e�ect dynamic work
reassignment.

For a problem requiring all solutions to be found, execution completes when
all the distributed processors have completed the search of their assigned
subtrees. If one solution is required, the execution of all the path processors
is terminated when the control processor receives the �rst solution.

The presence of the extra-logical Prolog predicate cut in the user program
conicts with the use of oracles to represent valid open subtrees. PrologPF
promotes the use of higher-order functional programming as an alternative
to the use of cut. The combined language shows that functional support can
be added as a consistent extension to standard Prolog.
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Chapter 1

Introduction

PrologPF is named after Prolog in Parallel with Functions.

PrologPF is an implementation of a parallel logic language with the following
key features:

� The target environment for the compiled binaries is a distributed net-
work of heterogeneous processors with comparatively slow communi-
cation links, such as an ethernet or wide-area internet.

� The failure of individual processors during the parallel computation
can be accommodated without undue performance penalty

� The language is an extension of sequential Prolog [35].

� OR-parallelism is provided through the use oracles to name branches
in the search tree to be allocated for distributed search ([28] and section
1.1).

� PrologPF extends the Prolog base language with support for the def-
inition and deterministic application of higher-order functions in a
manner consistent with the parallelisation method.

In comparison with other functional logic languages1, PrologPF uses the
e�cient but incomplete depth-�rst search of standard Prolog, and the de-
terministic eager evaluation of function terms as in functional languages
such as Standard ML [55]. Using the comparison drawn by Paulson and
Smith in [62], PrologPF is a programming language for realists rather than
a theorem proving system for purists.

1Chapter 2 provides a detailed comparison with related work.

1



2 CHAPTER 1. INTRODUCTION

The development of the PrologPF system has provided a vehicle for the
analysis of scheduling algorithms suitable for the discovery and distributed
allocation of oracles. The integration of functions into the logic language
provides a means of avoiding the undesirable characteristics of some extra-
logical Prolog predicates that would conict with the parallelisation tech-
nique used.

Considerable e�ort has been made to maintain the portability of PrologPF.
The compiler should provide a sound basis for further research such as:

� Improvement of the strategies to be used for oracle distribution.

� Extension of the oracles into the function evaluation trees.

A processor designed to execute the compiled PrologPF programs is called a
path processor, with the general architecture suitable for creating and follow-
ing oracles being called the Delphi Machine. The previous implementation
of the Delphi Machine by Klein [49], further investigated by Saraswat [66],
is called in this dissertation DelphiKS.

1.0.1 Prolog

The de�nition of Standard Prolog is contained in [35], and many examples
of practical use of the language in [29].

Prolog is a logic language based upon the �rst-order predicate calculus. A
good introduction to the predicate calculus is provided by Lloyd in [50].
A Prolog program is a list of de�nite Horn clauses, i.e. clauses containing
exactly one positive literal, these programs called de�nite programs by Lloyd
in [50]. A clause with no positive literals de�nes the query. Each clause is
a conjunction of literals. A literal is a predicate with a list of terms as
arguments. A term can be a constant (i.e. a string or number), a variable,
or a compound term. Variables are string constants beginning with a capital
letter or . A compound term is a string constant with a list of terms as
arguments.

A clause containing one literal (which is positive) is called a fact. Clauses
with more than one literal (of which one is positive) are called rules.

Prolog syntax requires that the positive literal appears at the head of the
clause, while the negative literals (called the body) follow after the symbol
\:-". The conjunction of the negative literals is represented by \,". Clauses
end with a full-stop \.".

Comments are surrounded by /*...*/ or by %...<newline>.
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Examples of Prolog facts are:

a. % the proposition a

a(b). % relation a holds for term b

b(c). % relation b holds for term c

a(b,c). % relation a holds with arguments (b,c)

a(X). % relation a holds for any argument term X

Examples of Prolog rules are:

a :- b. % asserts a & not(b), i.e. a <= b

a :- b,c. % a & not(b) & not(c), i.e. a <= b & c

a(X) :- b(X). % relation a holds for term X if

relation b holds for the same term

Uni�cation is the process of matching each argument of a subgoal with
those in the head of a candidate clause. Genesereth and Nilsson describe
the process and provide a pseudo-code algorithm for uni�cation in [39] pages
66-69. The process arrives at a most general uni�er when the uni�cation is
successful and leads to failure and subsequent backtracking if unsuccessful.
The uni�er represents a set of variable bindings which would make the sub-
goal and the head of the candidate clause identical. These bindings form a
context within which the proof process continues.

In solving a query such as :- a(X,Y),b(Y) a sequential Prolog interpreter
will proceed from left-to-right, �nding a solution for each subgoal in turn.
To �nd a solution for a given subgoal (i.e. a(X,Y) �rst), the interpreter will
try the program clauses in a top-down order. After a successful uni�cation
with the head of a rule, the interpreter will attempt to solve left-to-right the
new goal de�ned by the instantiated body of that rule. On failure of this new
subgoal, the top-down search through the program clauses will continue.

1.0.2 Parallelism

Logic languages have potential for faster execution through the exploitation
of the available parallelism [71]. The declarative code can be parallelised in
several ways, illustrated by the following program fragment:

a(X) ( b(X;Y ) & b(Y; Y )
b(1; 2)
b(2; 2)

A query can be expressed such as a(Z) with the intended meaning that the
system should step through the program facts and rules to arrive at values
for Z for which a(Z) is provable.
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The opportunities for parallel execution within the proof search process
include:

AND-parallelism The subgoals b(X;Y ) and b(Y; Y ) in the body of the
rule for a may be searched in parallel to arrive at common solutions
for Y:

OR-parallelism The multiple rules for b can be searched in parallel to �nd
solutions for b(X;Y ) or b(Y; Y ).

Uni�cation parallelism The subgoal b(X;Y ) can be solved if suitable val-
ues are found for both X and Y: In the selection of a candidate rule,
these arguments can be uni�ed in parallel with the formal arguments
in the selected rule (e.g. (1; 2)).

PrologPF implements OR-parallelism through the use of oracles on an ex-
tended abstract machine called the Delphi machine. Further introduction
is given in section 1.1, a review of previous work on the Delphi machine in
Chapter 2, and a detailed analysis of the technique in Chapter 3.

1.0.3 Functions

This section provides some background and an introduction to the use of
functions in PrologPF. A detailed analysis of the functional support provided
in PrologPF is given in Chapter 5.

Functional reduction refers to the transformation of a reducible term to a
normal form which is considered to be irreducible. When this process is
embedded in the code produced by compilation of a functional program, the
reduction is called evaluation.

The execution of Prolog programs is limited to top-down, left-to-right search
with candidate clause matching through uni�cation. The terms given as
actual arguments to relations as subgoals are uni�ed directly with the cor-
responding terms given as formal arguments in the head of the candidate
program clause. Thus the Prolog system provides no direct support for the
evaluation of parameters (with the exception of the is relation and related
arithmetic terms, see Chapter 5).

However, equivalent relations can be de�ned representing the required func-
tions in a at form, with the result given as an auxiliary argument. For
example the length function to produce the length of a list can be de�ned
in Prolog as:
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length([],0).

length([X|Y],N) :- length(Y,N1), N is N1 + 1.

The length example illustrates the use of an auxiliary argument to hold
the result, and the at form imposed by the exclusive use of relations, with
the exception of the special is which evaluates the arithmetic expression
given as the second argument. With the de�nition given above, the relation
length can be used in a subgoal to produce a variable binding for the length
of a given list. The Prolog de�nition should be viewed in the context of these
comments from Compiling with Continuations, by Appel [7]:

The beauty of FORTRAN { and the reason it was an improvement over as-
sembly language { is that it relieves the programmer of the obligation to make
up names for intermediate results. For example we write x = (a+b)�(c+d)
instead of the assembly language:

r1  a+ b
r2  c+ d
x r1 � r2

For comparison with standard Prolog, a de�nition of length as a function
in PrologPF would be:

fun length([]) = 0;

length([X|Y]) = 1 + length(Y).

With the functional de�nition in PrologPF, the term length(X) can appear
anywhere in an argument term to represent the length of the list argument
X.

The reduction of functional expressions can be de�ned in terms of the lambda
calculus2 In lambda notation, terms are limited to:

Variables. Usually denoted by a constant string such as x.

Constants. Also denoted by constant strings, leaving context to di�eren-
tiate constants and variables.

Applications. I.e. the application of a function s to an argument t; both
s and t may be arbitrary lambda terms. An application can be rep-
resented by the simple juxtaposition of the function and argument,
e.g. s t. Application is generally de�ned to be left-associative, i.e.
s t u � (s t) u.

2An introduction to the lambda calculus can be found in [44], while Barendregt provides
encyclopedic coverage in [9].
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Abstractions. I.e. function de�nitions in the lambda notation, the func-
tion mapping an argument x to a term t being �x: t.

The application of an abstraction to an argument term relies upon the prin-
ciple of substitution. For example in the term (�x: t) a the reduction of the
application term proceeds with the substitution of the argument a for the
variable x in the term t, the result denoted t[a=x]. For example, (�x: x x) a
reduces to (x x)[a=x], i.e. (a a).

The x in the above example is referred to as a bound variable, represent-
ing the formal argument of the lambda abstraction with the extent of its
scope limited to the abstraction body. Terms within nested lambda abstrac-
tions may contain variables other than those of the immediately enveloping
lambda-term, and these variables are said to be free within that abstraction.
For example, in �x:(�y: x y) the variable x is said to be free in the term
�y: x y. The set of free variables in a term s can be denoted FV (s), and
the bound variables BV (s).

Reduction in the lambda calculus is based upon three transformations of
lambda terms:

1. �-conversion. The constant representing the name of the bound vari-
able in a lambda abstraction can be consistently changed throughout
that expression, to any value that is not a free variable in the expres-
sion. I.e. �x:s!� �y:s[y=x] provided y 62 FV (s)

2. �-conversion. The application of a lambda abstraction to an argument
term is equivalent to the body of the abstraction with the argument
term substituted for the bound variable. I.e. (�x: s) t!� s[t=x].

3. �-conversion. A lambda abstraction which applies a term to the bound
variable is equivalent to that term, provided the bound variable is free
in the term. I.e. �x: s x! s provided x 62 FV (s).

The evaluation of lambda terms is equivalent to the repeated application of
�-, �- and �-conversions until there is nothing more to be evaluated. When
no more reductions are possible except for �-conversions the term is said to
be in normal form, and is irreducible.

Within this framework there is still considerable exibility in the selection
of the conversion to be applied at each step, and the selection of the subex-
pression (the redex ) within the lambda term to be reduced. For example,
given:

(�x: x x) ((�y: a) a)
then an �-conversion could be applied to either of the lambda-abstractions,
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resulting in:
(�y: y y) ((�z: a) a)

or a �-conversion applied to the second application:
(�x: x x) a

or a �-conversion applied to the �rst application:
((�y: a) a) ((�y: a) a))

Any implementation of a functional programming language based upon the
lambda calculus de�nes a reduction strategy. For the purposes of the func-
tional support in PrologPF the �- and �-conversions are the most signif-
icant, with the redex selection for �-conversion being innermost �rst for
nested lambda applications.

PrologPF provides a way of naming function abstractions (the fun rela-
tion) and including lambda abstractions as argument terms (the lambda

compound term). A full description is given in Chapter 5.

1.1 The Delphi Machine: Background

This section provides an overview of OR-parallel Prolog execution using
oracles. A more detailed review of the prior work on the Delphi machine is
given in Chapter 2.

1.1.1 The Delphi principle

The Delphi technique for OR-parallel execution of logic programs exploits
the following:

1. The search involved in the solution to a given query can be expressed
as an OR-only tree.

2. Any point in the resultant search tree can be represented by a sequence
of integers giving the path to be taken at each internal node leading
from the root of the tree to the selected point. The sequence of integers
is called an oracle

3. The environment at a given point in the search can be recreated by
following the associated oracle, and the search continued from there.

The technique can be illustrated by the following example. Figure 1.1 from
[28] shows the AND-OR tree for the Prolog program given on the left.

The AND-OR tree consists of nodes representing the conjunctive subgoals
from the body of the rule, i.e. the AND-node from:

g(U,V) :- p(U),q(V),r(U,V),
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g(U,V) :- p(U), q(V), r(U,V).

p(1).

p(2).

q(1).

q(2).

OR

r(X,X).

q(V) r(U,V)p(U)

g(U,V)

p(2) q(1) r(X,X)q(2)p(1)

AND

OR

Figure 1.1: Search tree for goal clause g(U,V).

and OR-nodes from the alternate clauses available for the solution of each
subgoal. The p(U) subgoal transforms to an OR-node with the two children
p(1) and p(2).

The strict depth-�rst left-to-right execution strategy of Prolog ensures that
a solution to the subgoal p(U) is found before execution proceeds with a
search for a solution to q(V), and then for r(U,V). This means that the
subtree for q(V) can be moved and replicated under each leaf-node of the
subtree for p(U) (Figure 1.2 First Stage). The subtree for r(U,V) can then
be moved and replicated below each of the resultant leaf nodes, arriving at
the OR-only tree in Figure 1.2 (Second Stage).

The OR-parallelism exploited in PrologPF is equivalent to parallel search of
subtrees of the OR-only tree in Figure 1.2. If integers are used to label each
branch at each OR-node (Figure 1.3) then the sequence of integers leading
to a subtree is an oracle.

In Figure 1.3 each leaf node is labelled with the associated oracle, and the
two major subtrees in this example can be labelled with the oracles [1] and
[2] respectively.

An oracle forms a compact representation of any point within the Prolog
search tree for a program with a given query, and parallel computation of
the query can be implemented by passing oracles to distributed Delphi ma-
chines (also called path processors, Section 1.1.2) with an associated strategy
(Section 1.1.3).

If each n-branch node in the OR-only tree is replaced by a number of binary
nodes through the insertion of dummy nodes, then the tree becomes a binary
OR-only tree with the characteristic that the oracles become binary strings,
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g(U,V)

q(1)q(2)q(1) q(2)

q(V)

p(1)

p(U)

r(X,X)

r(U,V)

q(V)

OR

OR OR

First Stage:

p(2)

AND

OR

Second Stage:

q(1)q(2)q(1) q(2)

q(V)

p(U)

q(V)

OR

p(2)

g(U,V)

r(U,V) r(U,V) r(U,V) r(U,V)

r(X,X) r(X,X) r(X,X)r(X,X)

p(1)

OR

Figure 1.2: Transformation to an OR-only tree.

rather than sequences of natural numbers. This may bene�t the generation
of oracles using strategies not involving partial search of the proof tree.
The strategies evaluated for PrologPF3 all use partial search to generate
oracles, such that the n-ary tree representation is su�cient to describe the
operational behaviour. While traversal of the OR-only tree provides an
accurate representation of the behaviour of the path processors and de�nes
the interpretation of oracles, it is not necessary to construct the OR-only
tree. The current path in the OR-only tree is represented by the path
processor's accumulated state, which in turn is de�ned by the associated
current oracle.

1.1.2 Path processors

The distributed path processors provide the support for the execution of the
logic program, with the abstract machine extended to generate and follow
oracles. To accommodate a wide range of distributed execution strategies
(Section 1.1.3), the oracle support should include the following:

3Chapter 3 provides a detailed discussion of the PrologPF scheduling strategy.
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1

1

2

221

1 11 1

[2,2,1]

q(1)q(2)q(1) q(2)

q(V)

p(U)

q(V)

OR

p(2)

g(U,V)

r(U,V) r(U,V) r(U,V) r(U,V)

r(X,X) r(X,X) r(X,X)r(X,X)

p(1)

OR OR

Oracle: [1,1,1] [1,2,1] [2,1,1]

Figure 1.3: OR-only tree with integer branch labels.

1. Given an oracle, the path processor can follow that oracle from the
root of the search tree and report the status of that oracle:

Fail: The oracle resulted in failure, either at the end or along its path

Success: During execution of the oracle, a solution was found. This
may occur with a pre�x of the oracle, or may have used every
integer in the oracle string. The path processor can report the
solution with the oracle de�ning its position in the proof tree.

Open: The last OR-choice indicated by the last integer of the oracle
lead to a successful uni�cation with the head of a rule, such that
the execution of the oracle has led to neither success or fail.

2. The path processor can be asked to search the proof tree within some
bound (for example a �xed depth), and to report the open oracles
found within that bound.
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3. The path processor may be interrupted, when it should pause and
report the oracle representing its current search position.

The implementation of the Delphi machine embedded within PrologPF com-
bines the capabilities described in 1 and 2 above, such that the path proces-
sor represented by the executing compiled program can:

1. accept a depth bound L as a control parameter which can be zero, any
positive integer, or a special value representing in�nity

2. follow a given oracle to its end, reporting success or failure if that
occurs

3. continue searching from the end of the given oracle to an incremental
depth L, reporting any solutions found within that depth and gener-
ating and reporting the open oracles at that depth bound.

These capabilities support a simple scheduling strategy based upon the one-
time partitioning of the search tree. The third capability, returning the
current oracle on interruption, permits the strategy to be extended to a
recursive application of the partitioning algorithm, such that the work of
busy processors can be redistributed amongst those that have become idle.

When one PrologPF binary partially searches the proof tree to generate
an oracle (or many) for distribution to other processors to follow, the dis-
tributed system uses recomputation. The Delphi approach trades o� the
overhead of recomputation with the minimal communications requirement
of most successful distributed execution strategies.

1.1.3 Delphi strategies

The object program produced by the PrologPF compiler will execute sequen-
tially on any suitable workstation. Speedup though distributed processing is
achieved though the coordinated execution of the same binary on a network
of similar workstations used as path processors, with a separate workstation
(the control processor) controlling the work ow.

The control processor de�nes the scheduling strategy to be used for the al-
location of work. As a simple (and very ine�cient) example, the control
processor could generate oracles at random. These could be sent to ran-
domly selected path processors (with an incremental depth bound L of 0,
see Section 1.1.2) until a solution were found.
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The support for oracles embedded within PrologPF binaries is su�cient to
implement a wide range of strategies. The strategies evaluated in this and
previous research4 include:

� Non-backtracking strategies: In these strategies each path pro-
cessor is used to investigate forwards into the search tree from each
assigned oracle, reporting the status to the control processor.

Brute Force: [28]. This strategy uses the random allocation of ora-
cles described above

Branch-by-branch : [49]. The depth bound L is �xed at 1, and start-
ing at the root of the proof tree, the oracle is extended one digit
at a time. I.e. a path processor reports the open single-digit ora-
cles from the root, which are redistributed to the path processors,
which report back the open two-digit oracles and so on.

Expanding a Job: [28]. As with branch-by-branch, except the proof
tree is treated as a binary tree, and the oracle is extended a bit
at a time.

� Backtracking strategies: These strategies allow limited backtrack-
ing within a path processors after the assignment of an oracle. The
objective is to increase the amount of work performed on the path
processor before further communication with the control processor is
required.

Automatic Partitioning : [49]. Each path processor is given G, the
number of path processors in the pool, and N the individual
processor number. Each path processor uses these numbers to
arrive at a unique subtree within the proof tree. At each choice
point a given path processor can select a path modulo G with
o�set N (see Chapter 2 for further detail) and can identify the
point at which the path becomes unique to that path processor.
The path processor then searches the subtree below this point
without constraint.

Reassign-Job: [49]. This is a modi�cation to Automatic Partitioning
to allow path processors encountering failure to register with the
control processor for further work. Busy path processors are re-
quired to poll the control processor (in the Klein implementation)
to communicate their current oracle for re-partitioning.

Breadth-�rst Partitioning : [66] and Chapter 3. An initial run
takes place with a depth bound L set to generate a suitable
number of oracles. These oracles are then all allocated among

4For a detailed analysis of related work see Chapter 2.
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the available path processors. The path processors follow each
assigned oracle, and fully search the subtree below each.

Partitioning by Selective Sampling : [66]. This strategy attempts
to improve the e�ectiveness of the one-time allocation of oracles
to path processors by estimating the work beneath each oracle
generated in the depth-constrained �rst phase of breadth-�rst
partitioning. These estimates are used to achieve a more balanced
allocation of the oracles to the path processors for subsequent
unconstrained search. The work beneath each oracle is estimated
by partially searching the subtree (with a limit set on the number
of choice-points traversed) and accumulating the number of OR-
branches passed during the search.

Breadth-�rst Partitioning with Selective Sampling : [66]. The
�nal strategy from Saraswat's research has the same goal of im-
proving the allocation of the oracles from an initial breadth-�rst
phase. The method used in this strategy is to fully search the
subtree below every other oracle, and use the arithmetic mean of
the nodes encountered as a measure of the work associated with
the intermediate oracles.

1.2 The Delphi Machine and cut

This section gives an overview of the issues surrounding the extra-logical cut
relation (written '!' in Prolog). The topic is covered in detail in Chapter
4. Gupta and Santos Costa analyse the issues with the Prolog extra-logical
predicates in AND-OR parallel Prolog in [40].

Figure 1.4 shows the clauses and associated OR-only tree for a program
containing cut. The procedure for r is intended to de�ne a function that
maps a �rst argument 1 to 10, and any other �rst argument to 2:

r(1,10) :- !.

r(X,2).

A sequential implementation of Prolog will prune away the solution from the
second clause for r(1,X). Without the cut, there would be two solutions,
i.e. fX = 10, X = 2g. In an OR-parallel system such as PrologPF, the cut
must be communicated at run-time across processor boundaries (represented
by the dashed-arrows in Figure 1.4).

In systems implementing the Delphi principle, communication down a path
in the tree can be considered to be inexpensive, while between branches (i.e.
possibly between path processors) communication may be expensive.
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g(U) :- p(U), r(U,V), q(V).
p(1).
p(2).
q(1).
q(2).
r(1,10) :- !.
r(X,2).

                                      q(U)

                                      p(U)

                  p(1)                                p(2)

                r(1,V)                             r(2,V)

     r(1,10),!          r(1,2)            r(1,10)     r(2,2)

      q(10)             q(2)                              q(2)

 q(1)   q(2)     q(1)   q(2)                 q(1)       q(2)

Figure 1.4: Prolog implementation of r(U,V) with cut and transformed tree.

In PrologPF, alternative OR-paths in the proof tree may be executed asyn-
chronously, such that the recognition of the cut is likely to occur after the
tree has split further, and communication will be needed between multiple
path processors.

A general support for cut within the OR-parallel framework of distributed
Delphi machines would require a communications system to propagate the
cut to those path processors searching subtrees that should be pruned. The
pruning operation may in e�ect be a truncation of an allocated oracle, or it
may a�ect the subtree beneath an oracle. Oracle management is thus more
complicated. However, the two most critical issues a�ecting the implemen-
tation of general cut support within PrologPF are:

1. The cut within the program can be expected to be executed many
times, generating a great deal of communications tra�c if a general dis-
tributed support were implemented. PrologPF succeeds in a network
of general purpose workstations because the communications tra�c is
kept to a minimum.

2. The delivery of solutions to a client would have to be delayed until all
the path processors have completed, to ensure that all solutions below
any cut are correctly pruned. A major strength of PrologPF is the
e�cient delivery of a �rst solution.
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1.3 The Delphi Machine and functions

For a detailed discussion of the functional support in PrologPF see Chapter
5. The developers of the logic language Mercury [69, 43] found that a major
requirement for the extra-logical predicate \cut" is to enforce determinism
in user code. Deterministic code does not contain any choice points, and
the presence of the cut thus does not conict with the OR-parallelism im-
plemented in PrologPF. An example illustrating this is given later in this
section.

While cut can be used to enforce determinism, cut can also be used in non-
deterministic relations (those returning multiple solutions). Also a relation
containing cut may be deterministic with one set of actual arguments, but
nondeterministic with another.

The implementation of OR-parallelism using oracles in PrologPF requires
that determinism is explicit through the use of functions rather than rela-
tions containing cut. The evaluation of functions in PrologPF is de�ned to
be deterministic. As oracles add no information when the execution tree is
linear (i.e. representing a deterministic execution), oracle support can be
switched o� (see below) while functional evaluation occurs.

The example in Figure 1.5 shows a program similar to that using cuts given
earlier in Figure 1.4, but instead uses a function to de�ne r. As progression
down the tree represents the execution of the program, the function evalu-
ation can be represented as the linear subtree embedded on the right of the
proof tree.

g(U) :- p(U), q(r(U)).
p(1).
p(2).
q(1).
q(2).
fun r(X) :- if (X=1) then 10 else 2.

                       g(U)

            p(U)                  _V=r(U)

       p(1)      p(2)         if(X=1,10,2)

                                          =(X,1)

                                          q(_V)

                                    q(1)      q(2)

Figure 1.5: Program and search tree for program with function r(X).

Figure 1.6 shows the transformation of the search tree into an OR-only
tree suitable for labelling with oracles for allocation to distributed Delphi
machines. The linear portions due to the functional evaluation can be seen,
and it is clear that the integer labels of the OR-branches can be limited
to the alternatives for p(U) and q( V). The path de�ned by the oracle can
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be imagined to jump from the last OR-choice to the end of the functional
evaluation, and to continue from there.

                       g(U)

            p(U)               

       p(1)       p(2)       

                                   

                  

                                   

   _V=r(U)

       =(X,1)

       q(_V)

 q(1)      q(2)

   _V=r(U)

 

       =(X,1)

       q(_V)

 q(1)      q(2)

if(X=1,10,2) if(X=1,10,2)

Figure 1.6: Transformation of tree containing r(X) to OR-only tree.

The deterministic evaluation of functions is crucial to the technique of partial
suspension of oracle processing used in PrologPF. This ensures that the
oracle leading to the start of the functional evaluation branch can equally
be said to lead to the branching point of the next OR-choice.

Other functional logic languages, discussed in Chapter 2, aim for complete-
ness in the combined paradigms, providing non-deterministic reduction of
functions. The deterministic evaluation of functions in PrologPF was chosen
for compatibility with the e�cient implementation on the Delphi machine,
compensating for the removal of cut.

1.4 Research Motivation

Prior work on the DelphiKS implementation of Prolog with the Delphi prin-
ciple [49, 66] has shown the suitability of the method for OR-parallel exe-
cution of pure Prolog programs in distributed systems with relatively high
communications costs.

The computing trends exploited by the technique can be expected to con-
tinue:

1. The processor performance of generally available computers is increas-
ing faster than the performance of generally available network connec-
tions.

2. The number of general-purpose processors available within a general
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network environment (i.e. Ethernet or the Internet) is increasing.

Given the success of the technique with pure Prolog programs [66], a com-
patible extension to Prolog to allow the use of functions should bring the
bene�ts of parallel execution with the Delphi principle to a broader range
of problems.

The e�cient generation and allocation of oracles within a distributed sys-
tem is a�ected by the scheduling strategy used, the overhead of the oracle
management techniques, and the communications performance of the net-
work. Further research is needed to provide greater insight into the system
behaviour.

1.5 Research Goals

PrologPF has provided an insight into the practical issues of designing a us-
able environment for the development and parallel execution of un-annotated
user programs. In particular, the research goals were:

� to gain further insight into the behaviour patterns of execution algo-
rithms exploiting the Delphi principle

� to extend the Prolog on the Delphi machine with functional features
mitigating the removal of cut

� to implement a general purpose control system suitable for managing
the distributed execution of the path processors

� to test the combined system with a much broader range of Prolog and
other code than has been attempted previously

1.6 Contributions

The research documented in this dissertation shows that the Prolog language
can be extended with higher-order functions in a manner consistent with the
OR-parallel execution of a program with oracles. The combined language
can be e�ectively applied to a broader range of problems than was possible
with pure Prolog on previous implementations of the Delphi machine.

The PrologPF implementation is used to study the factors a�ecting the e�-
ciency of the scheduling strategies, and the inuence of the depth parameter
L on the breadth-�rst partitioning strategy is studied in detail. A recursive
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partitioning strategy supporting the e�ective redistribution of work amongst
the path processors is described.



Chapter 2

Background

This chapter summarises research related to PrologPF, in the areas of par-
allel Prolog, functional logic, and the prior work on the Delphi machine.

PrologPF is a recomputation-based OR-parallel implementation of Prolog
without assert or retract, and with limited support for cut. The language
has been extended with the de�nition and deterministic evaluation of higher-
order functions, and the review of related research in this chapter reects
these design choices.

2.1 Parallelism in Prolog

As discussed in Chapter 1, a pure Prolog program can be parallelised by:

� parallel selection of clauses to prove subgoals

� parallel execution of subgoals in the body of a clause

� parallelisation of the uni�cation of multiple or compound arguments

These forms of parallelism are OR-parallelism, AND-parallelism and uni�-
cation parallelism respectively. Many papers have been written on a wide
variety of parallel Prolog implementations. A collection giving a broad cov-
erage of the techniques available can be found in [48].

OR-parallelism is illustrated in the proof tree of Figure 2.1, where the dashed
lines surround the subtrees of the proof tree which can be searched in par-
allel. The conjunctive subgoals p(U), q(V), r(U,V) may still be executed
sequentially, but the alternative clauses forming the procedures for p and q

may be searched in parallel.

19
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g(U,V) :- p(U), q(V), r(U,V).

p(1).

p(2).
OR

q(1).

q(2).

r(X,X).

q(V) r(U,V)p(U)

g(U,V)

p(2) q(1) r(X,X)q(2)p(1)

AND

OR

Figure 2.1: OR-parallel execution of goal clause g(U,V).

Similarly, AND-parallelism is illustrated in Figure 2.2, where the subgoals
p(U), q(V) and r(U,V) can be solved in parallel. Support is required to
communicate bindings of shared variables between subgoals.

g(U,V) :- p(U), q(V), r(U,V).

p(1).

p(2).

q(1).

OR

q(2).

r(X,X).

q(V) r(U,V)p(U)

g(U,V)

p(2) q(1) r(X,X)q(2)p(1)

AND

OR

Figure 2.2: AND-parallel execution of goal clause g(U,V).

Systems supporting AND-OR parallelism would combine the approaches of
�gures 2.1 and 2.2 such that all the dashed areas in �gure 2.1 could be
searched concurrently. The attempted proof of each subgoal involves the
uni�cation of the arguments in the subgoal with the arguments given in
each clause of the de�ning procedure. For example, the arguments U,V of the
subgoal r(U,V) will be uni�ed with the arguments X,X in the fact de�ning
r. In general, the multiple arguments may be uni�ed concurrently, and
the uni�cation algorithm itself contains opportunities for parallel execution
when compound terms, such as a(b,X,c(Y)) and a(Z,b,c(d)), are uni�ed.
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Few systems have exploited the potential concurrency in uni�cation, and
the technique is not used in PrologPF. Uni�cation parallelism will not be
discussed further in this dissertation.

2.1.1 OR-parallelism

The OR-parallel search of alternate clauses takes place in the context of the
variable bindings arising from the search leading to the current choice point.
The issue is shown best with the transformed OR-only tree. The dashed
areas in Figure 2.3 show the subtrees for q(V) for OR-parallel search, in an
environment where p(U) has already provided the binding fU/1g.

q(1)q(1) q(2) q(2)

q(V)

p(U)

q(V)

OR

p(2)

g(U,V)

r(U,V) r(U,V) r(U,V) r(U,V)

r(X,X) r(X,X) r(X,X)r(X,X)

p(1)

OR OR

Figure 2.3: Variable bindings in OR-parallel subtrees.

A subgoal r(U,V) appears in each dashed area, the �rst of which contains
the binding fU/1g from the earlier search and fV/1g from the chosen solution
for q(V). r(U,V) in the second dashed area will be searched in the context
fU/1,V/2g. Thus with OR-parallel execution the system must ensure that
the search continues in the context of the current variable bindings, and that
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new bindings arising in the OR-parallel subtree must be limited in scope to
that search.

Three techniques are commonly used to propagate and limit the scope of
variable bindings in OR-parallel systems:

1. The shared-binding environment model: a data structure is
maintained in memory representing the tree structured binding hi-
erarchy as the search is executed, with each processor building their
new bindings and referencing existing bindings higher up the structure.
This model is better suited to shared memory computers, illustrated
by the implementation of Aurora [52]. A survey of implementations
of this type is given by Delgano-Rannauro in [34].

2. The closed environment family: at each choice point for OR-
parallel execution the environment is copied to each selected processor,
which continues by locally extending that context. This technique is
suitable for distributed implementation if communications can be min-
imised, for example by using broadcast to propagate the environment
to many processors. The Kabu-Wake approach, described in [54], uses
environment copying.

3. The recomputation family: the search path to a given choice point
for OR-parallel execution is recomputed by the selected processors,
such that the environment at that choice point is rebuilt locally in
each processor. This technique is suitable for systems with high com-
munications overhead, and the PrologPF system described in this dis-
sertation develops this approach.

The techniques listed above show fundamental design choices in the imple-
mentation of the work splitting method. With any of these methods the
scheduling strategy used to decide at which point the problem should be
divided is as important as the technique used to communicate the task. The
most simplistic strategy might be to divide the work at every choice point,
to as many processors as there are alternate clauses. However, more e�cient
execution with better load balancing will generally be achieved with more
sophisticated strategies. Saraswat studied this issue with DelphiKS in [66],
and further discussion for other systems can be found in [4, 11].

PrologPF provides OR-parallelism through recomputation, and the under-
lying principles and related research are covered in section 2.3.
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2.1.1.1 Muse

Muse [4] is named after Multi-Sequential Prolog Engines and is a develop-
ment of the Multi-Sequential Machine [5]. The system supports OR-parallel
execution of full Prolog, with each processor having access to local and
shared memory. During execution, the OR-nodes representing the choice
points in the search can be either private or shared. Private nodes are ac-
cessible only by the worker which created them. Shared nodes are accessible
to all workers searching a subtree beneath that node. Work is divided be-
tween worker processors by moving the previous OR-nodes from the private
area to the shared area, and incremental copying of the WAM stack (the
trail) to the new worker.

The target architecture for the Multi-Sequential machine supports limited
broadcast to local memory of each worker [3], so the overhead of copying the
WAM stacks to multiple workers is minimised. Muse has been implemented
on parallel computers with both broadcast and switched communications
support.

The scheduling strategy used in Muse attempts to reduce the overhead of
work allocation, with the incremental copying of WAM stacks to new workers
and the assignment of multiple choice points to a new worker.

Muse is implemented upon sequential SICStus Prolog [16], and has been
shown to have a higher speedup than Aurora (see below) for the same bench-
marks [4].

2.1.1.2 Aurora

Aurora [52] is a prototype OR-parallel implementation of Prolog for shared
memory multi-processors based on the SRI model [74]. It supports the full
Prolog language, thus being able to execute existing Prolog programs with-
out any change. The system was a joint project between Argonne National
Laboratories, University of Bristol, and the Swedish Institute of Computer
Science.

Aurora uses a storage model in which the path of the search is represented
by a group of intertwining WAM stacks [71], with a stack group allocated
to each processor. Each choice points creates a branch-point on the stack,
and an idle processor can form a branch of the OR-tree emanating from
that branch-point. Holes may form in the stack groups when a branch
\dies back", i.e. when backtracking fails through the branch-points of the
branch. However, that stack group may have been extended with another
independent branch, and garbage collection will be delayed until the covering
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branch is completed.

In searching the branches from that choice point, multiple processors can
produce independent solutions, i.e. di�erent but valid variable bindings.
Thus bindings cannot be stored as values in the logical variables, and a
binding array is used per processor. The binding array is essentially a soft-
ware cache of variables and their values, for exclusive use by the associated
worker processor.

The Aurora systems is implemented using SICStus Prolog [16] and has pro-
vided a platform for the evaluation of multiple scheduling strategies [11].
The scheduler determines how tasks should be allocated to idle worker pro-
cessors and synchronises the access to the shared nodes nearer the root of
the search tree.

2.1.1.3 Kabu-Wake

The Kabu-Wake model [54] is based upon environment copying with selec-
tive backtracking to allow processors to compute alternate paths.

A processor computes sequentially until it is interrupted with a request for
work from an idle processor. The busy processor (called the parent) suspends
its computing when the request is received, sends a copy of its environment to
the idle processor, and then resumes. Part of the splitting procedure requires
the parent to temporarily backtrack to the splitting choice point, so that the
more recent variable bindings from the choice point are undone. In order
to recognise the validity of the bindings, the system uses an incremental
time-stamp in each variable cell.

The model leaves open the speci�cation of the algorithm for the selection
of a suitable parent by an idle processor. The response of a parent to
an interruption is immediate, without optimisations to improve the task
granularity. Load balancing is performed by the selection of the parent
processors by those which are idle. E�cient performance would require
the copying be minimised by targeting problems with well balanced search
spaces [34].

2.1.1.4 OPERA

The OPERA project [17] was inspired by the Kabu-Wake model (see above)
with the principle that the complete state of a busy processor is transferred
to an idle one to e�ect work sharing. The target architecture is similarly dis-
tributed processors with a high-performance communications network pro-
viding node-to-node connectivity. The implementation of OPERA on a dy-
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namically recon�gurable array of Transputers is optimised for a system with
relatively long connection setup times (� 250 �s) but an e�cient matrix
block transfer performance. Each point-to-point connection can transfer
data at between 500Kbps and 1Mbps (b=byte). DMA is used (Direct Mem-
ory Access) to move the data into and out of the processor memory so that
processing can continue concurrently with the data transfer. Most impor-
tantly, a crossbar switch system is used to implement the network so that
many transfers can take place in the network concurrently. The relatively
long communications setup time means that short data transfers are rela-
tively ine�cient, precluding the use of stack sharing models as in Aurora
(see above).

A multi-sequential approach is used: each processor executes a complete
Prolog engine based upon an extended WAM. The stack data structures are
modi�ed to improve the e�ciency of the copying operation. Choice points
are managed in a separate double-linked list, rather than being intertwined
with the clause activation records as in a standard WAM. This separation
is similar to the technique used in Muse (see above), and improves the
e�ciency of work splitting. Variable bindings on the trail stack are time-
stamped. Work splitting at a given choice point would require all variable
bindings that had occurred after that choice point be unbound. The time-
stamps (as in the Kabu-Wake model) mean that the copy process need not
thread though the trail stack to unbind these variables, but can simply
compare the time-stamp with that of the choice-point. To minimise further
the amount of stack copying, the prototype always splits with work of an
active worker at the topmost choice point (i.e. nearest the root), such that
the stacks to this point are as short as possible.

As the cost of task creation on an idle processor is relatively high, involv-
ing the copying of the state of the active processor, e�ective scheduling in
OPERA is important [17]. The scheduler has to consider the export and im-
port time of the active and idle processors compared to the expected time
for the search of the current subtree to complete. The scheduler should
ensure that the active worker, in passing choice points to an idle worker,
keeps enough work to remain active after the initialisation of the new task.
After consideration of alternatives, a scheduling model with a hierarchy of
scheduling processes was used, with spy processes on each worker processor
to estimate the workload of the active workers. The workload estimate is
performed dynamically, with the simple heuristic being used of the number
of choice points being held by the worker.

Good speedups have been achieved with the prototype up to a maximum of
16 processors. Further developments are aimed at reducing the task creation
overhead through the use of incremental copying.
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2.1.1.5 ANL-WAM

The ANL-WAM was an early experimental implementation of OR-parallel
Prolog at Argonne National Laboratory on a shared-memory multiprocessor
(a 20-cpu Encore Multimax). The principles evaluated using this system [37]
were used in the subsequent development of Aurora (see above).

As with Aurora, a hash-table structure was used to cache the multiple vari-
able bindings arising from OR-parallel execution of alternate choice points.
With ANL-WAM, starting a new worker process involves giving the worker
access to the variable bindings created so far, and the creation of a new hash
table to store the new variable bindings resulting from the allocated branch.
As shared memory was used, the copying process could be limited to the
headers of the hash table with pointers to the existing shared nodes. The
allocation of work to new workers was thus e�cient, with the design deci-
sion taken to trade this against contention for subsequent access to shared
variables.

The scheduling algorithm used in ANL-WAM created a �xed number of
worker processes to be assigned to branch points as they were created. On
�nishing a branch, the process will seek more work to do from a dispatching
pool. A graphical display tool was created to play back a trace log show-
ing the growth of the search tree and the allocation of branches to worker
processes. The tool was used to improve the dispatching algorithm.

Results were produced from ANL-WAM [37], showing e�ective speedups for
some problems up to a maximum of 16 worker processes.

2.1.1.6 Boplog

Boplog [72] is a multi-sequential OR-parallel Prolog design implemented on
the BBN Buttery Parallel Processor, which is a multi-cpu shared memory
design. The memory consists of segments local to each processor, which can
be accessed remotely by all other processors. Each processor's address space
is de�ned locally, such that an address of a word on a remote cpu may be
di�erent to di�erent processors. The Boplog implementation attempts to
optimise the use of the segmented memory.

To support parallel execution, the design makes extensive use of shared data
structures rather that structure copying, as the non-local memory access
time (6:3�s) was considered reasonably fast compared to the local memory
access time of 1:35�s. The resulting slower access time to shared data and
less e�cient reclamation of heap and stack space, which cannot be released
until no other processors need access to it, are traded for less time for copying
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and less memory for redundant or unused data [72].

In Boplog, variable bindings are time-stamped and stored in a doubly-
linked list to improve the e�ciency of the work reassignment. Scheduling is
achieved by idle processes obtaining more work from busy processes, select-
ing the untried branch nearest the root of the search tree. The early analysis
of Boplog's runtime behaviour suggested that work was reassigned on aver-
age every millisecond, with the allocation typically involving the transfer of
100 bytes of data.

2.1.2 AND-parallelism

With the AND-parallel execution of a Prolog Program, the conjunctive sub-
goals in the body of a clause are solved concurrently, while the alternative
clauses in a procedure are tried sequentially. Conery and Kibler in [31] sug-
gest the model can be further divided, according to the handling of shared
variables, as follows:

Independent AND-parallelism: Even when the subgoals share variables
they are solved independently. After all solutions are found, the shared
variables are tested for consistency.

Dependent AND-parallelism: Also called stream-and parallelism, sub-
goals with shared variables are executed dependently, that is they
interfere with one another. The word stream is used to represent the
ow of bindings from one AND-parallel process to another.

Restricted AND-parallelism: Subgoals sharing no variables are executed
in parallel, while subgoals sharing variables are executed sequentially.

The communication of solutions (i.e. variable bindings) between AND-parallel
subgoals is illustrated in Figure 2.4 where the three subgoals for p, q and r

are represented by the processes A, B, and C respectively.

The following sections summarise implementations of the AND-parallel logic
computation model. PrologPF is based upon the purely OR-parallel Delphi
machine, but an e�ort by Wrench [76] to extend the machine to support
both AND- and OR-parallel execution is summarised in section 2.3.

2.1.2.1 Parlog

Parlog is a stream AND-parallel logic programming system in which the
logic variables can be thought of as channels, down which partial results are
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A

q(V) r(U,V)p(U)

r(X,X).

g(U,V)

p(2) q(1) r(X,X)q(2)p(1)

AND

OR OR

B C

U

V
U,V

g(U,V) :- p(U), q(V), r(U,V).

p(1).

p(2).

q(1).

q(2).

Figure 2.4: Communication of bindings in dependent AND-parallelism.

sent between literals that are executed in parallel [24]. The model is suited
to implementation on a dataow architecture computer, or a conventional
multiprocessor with shared memory.

The language implemented in Parlog is that of guarded Horn clauses, built
upon the syntax and semantics developed in [23]. Procedures are annotated
with mode information, specifying which logical variables should be inputs
and outputs to each procedure. The guards are goals added to each clause
so that the form of clause selection is committed choice, i.e. only one clause
will be selected for which the guard literals evaluate to true. Parlog will
only ever �nd one solution to a query. At the time of the parallel guard
evaluation, all guard literals must be ground, i.e. contain no variables. Both
serial and parallel forms of connectives can be used in the de�nition of
the goal sequence in the body of a clause. \&" implies sequential left-to-
right execution of the goals, while \," implies the goals can be executed
in parallel. A later extension to Parlog allowed similar annotation of the
clauses in a procedure, where \." permits OR-parallel search, while \;"
implies top-down sequential search.

The treatment of variables in Parlog in optimised for stream AND-parallelism,
with the don't care parallelism (i.e. the commitment to the �rst goal with a
successful guard) limited to committed choice non-determinism. The OR-
parallel execution is provided though all-solution operational model using
set expressions.
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2.1.2.2 Concurrent Prolog

Like Parlog, Concurrent Prolog in based upon the stream AND-parallel
model and associated committed choice language proposed in [23]. The
system has been simulated in Prolog, with the proposal that it is best suited
to multiprocessor dataow architecture machines [68].

Concurrent Prolog does not require the guard literals to be ground at the
time of evaluation, such that clause selection (and commitment) does not
just rely upon successful evaluation of the guard sequence as in Parlog. The
evaluation of the guards must also return a set of variable bindings. The
committed choice nature of the clause selection, with the resultant single
solution to each goal, means that for many general logic programs the system
may fail to �nd a solutions. For example [75],

simple(X) :- p(X),q(X).

p(1).

p(2).

q(1).

q(2).

The Concurrent Prolog query solve(simple(X)) may commit to the solu-
tion X=1 for p(X) and subsequently fail the goal q(X). In a nutshell, both
Parlog and Concurrent Prolog have adopted a semantics markedly di�erent
than that of sequential Prolog.

2.1.2.3 Delta Prolog

Delta Prolog is a logic programming language extending Prolog with con-
structs for sequential and parallel composition of goals, interprocess com-
munication and synchronisation, and external non-determinism [32]. The
language is optimised for execution on distributed machines, and makes ex-
tensive use of the concepts of communicating sequential processes (CSP)
developed by Hoare in [45].

As with CSP, parallelism is made explicit in Delta Prolog through the use
of a split operator // where goals S1//S2 are to be evaluated in parallel.
Channels for communication between goals are established though the use
of event goals, with X!chan being considered to send the value of X along
channel chan, to be received by a complimentary subgoal Y?chan in a con-
currently executed goal. To be an acceptable candidate to receive the value,
the arbitrary terms X and Y must be uni�able, and the atom naming the
channel the same in both the transmitting and receiving event goals. The
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event goals can be guarded though the use of associated goal sequences with
the syntax X?chan:G where G is the goal sequence which must evaluate to
true for the communication event to be accepted. Non-deterministic accep-
tance of a communication event is provided though the de�nition of choice
goals. These goals have the form A1::A2::...::An where each Ai is of the
form H,B with H an event goal and B the (possibly empty) body of the
alternative clause.

The system provides e�cient support for the communication of values though
the use of event goals. Non-deterministic evaluation of goals requires the
implementation of distributed backtracking. The prototype implementa-
tion supports backtracking in some simple programs, but this is an area of
ongoing research.

2.1.2.4 EPILOG

EPILOG [75] is wholly based upon the dataow model of computation. In
place of Prolog's depth-�rst left-to-right evaluation strategy the EPILOG
model, by default, evaluates all clause-body literals in parallel, that is per-
forms breadth-�rst execution. All solutions to a query are found in parallel,
and back-uni�cation (the propagation of uni�ers from subgoals back up to
higher level goals) is used to be equijoined with other partial solutions to be
propagated to still higher level goals.

The process is illustrated for the query ans(X,Y,Z) in �gure 2.5.

EPILOG would be overwhelmed with data if no mechanisms were provided
to reduce the combinatorial explosion of data transfers arising from the
breadth-�rst nature of the parallel execution. Fixed sequencing constructs
are provided to reintroduce left-to-right evaluation of clause-body literals
and to order the clauses in a procedure. In addition, mode information on
variables can be speci�ed, and thresholds can be speci�ed giving the number
of arguments to be ground before a clause will be executed.

2.1.3 Other forms of parallelism in Prolog

As was mentioned in Chapter 1, the uni�cation algorithm used in Prolog
to match a subgoal with a suitable clause head contains opportunities for
parallel execution.

Parallel uni�cation of multiple arguments: With a subgoal p(a,b,c)
and a clause p(X,Y,Z) :- ... each argument can be uni�ed in paral-
lel, arriving at the uni�er X/a,Y/b,Z/c. Where variables are repeated
in the clause head, a communication mechanism must be provided to
synchronise the shared binding.
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age(michael,30).

age(ian,36).

height(michael,170).

height(ian, 180).

ans(X,Y,Z) :- age(X,Y), height(X,Z).

age(michael,30)

ans(X,Y,Z)

[ian,36]
[ian,180]

[michael,30]
[michael,170]

[ian,180]

[michael,170]
[michael,30]
[ian,36]

[michael,30,170]

[ian,36,180]

height(ian,180)age(ian,36) height(michael,170)

age(X,Y) height(X,Z)

Figure 2.5: Dataow communication of bindings in EPILOG.

Parallel uni�cation of compound subterms: Each argument to a re-
lation may be a compound term with a tree internal representation.
Di�erent branches of the tree may be uni�ed in parallel with corre-
sponding elements of the argument in the clause head. This technique
is a generalisation of the one given above.

E�ort into the concurrent execution of the uni�cation algorithm has been
limited, and in PrologPF and other OR-parallel Prolog systems the uni�ca-
tion algorithm is sequential.

2.2 Functional Logic

The integration of functional and logic programming languages can be ap-
proached from either a functional or logical starting point although both
techniques lead to similar operational principles [41]. As the primary foun-
dation for PrologPF is logic programming, the existing research listed here
emphasises that approach.

A survey of the �eld giving an introduction to the alternative approaches can
be found in [12], and a more recent summary with an emphasis on narrowing
[64] with application speci�c abstract machines can be found in [41].
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2.2.1 Functions as deterministic Prolog procedures

The eager evaluation of a function of N arguments can be replaced with
the execution of a Prolog goal of N + 1 arguments, where the additional
argument is a logical variable to hold the result. For example the function
factorial(N) can be replaced with the relation factorial(N,F):

factorial(1,1).

factorial(N,F) :- N > 1,

N1 is N - 1,

factorial(N1,F1),

F is N * F1.

The advantage of this approach is that the simple syntax and semantics
of standard Prolog can be retained for functional programming as well as
non-deterministic logical programming for which Prolog was designed. The
disadvantages include:

1. Higher-order functional programming: functions are not treated
as �rst-class data items in Prolog. For higher-order application of
functions the programmer must adhere to arbitrary programming con-
ventions and use extra-logical relations such as call to use functions
as arguments and results. E�ort has been applied to retaining the
relational de�nitions of functions but adding higher-order support to
Prolog, particularly through the use of call/N [69, 58] and apply/3

[58]. These techniques are compared with PrologPF in Chapter 5.

2. Flat programming style: the at syntax of standard Prolog means
that all intermediate functional results must be given a name. This
requirement has been likened to assembler [7]. To reduce the problem,
Prolog supports nested arithmetic expressions as the second argument
to the special is relation, but this support is arbitrarily limited to this
special use.

3. Use of cut : The deterministic evaluation of functions typically re-
quires the use of guard conditions in the de�nition of the alternate
clauses in the Prolog procedure (see N > 1 in the factorial example
above). For a procedure with many clauses, the guard conditions can
become unwieldy, such that the use of cut simpli�es the de�nition of
the sequential algorithm, excluding subsequent clauses from providing
alternative solutions. The use of cut introduces considerable complex-
ity in the OR-parallel execution of Prolog programs, and the issue is
covered in detail in Chapter 4.
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4. Execution e�ciency: the execution model for the deterministic ea-
ger evaluation of functions lends itself to an e�cient implementation
compared to the uni�cation and backtracking requirements of a Prolog
program. The compile-time analysis of logic programs to recognise de-
terministic modes of execution is a topic of current research in systems
such as Mercury [43]. The use of cut does not imply determinacy (see
Chapter 4). Use of a syntax for functions other than that determinis-
tic procedures in standard Prolog can render explicit the requirement
for deterministic evaluation.

2.2.2 Term evaluation

The most straightforward approach to adding functions to Prolog is to re-
quire the arguments to be fully instantiated before reduction is attempted.
The operational semantics of Prolog can be maintained and the responsi-
bility for this requirement placed on the programmer, e.g. in the standard
is predicate. Alternatively, function evaluation can be deferred until this
condition is met. The technique of deferral is called residuation, see [2].

A simple example from [53] may serve to illustrate the principle:

length([], 0).

length([X|Xs], N + 1) :- length(Xs, N).

:- length([a,b,c], 5).

no

:- length([a,b,c,d,e], 5).

yes

:- length([a,b,c], L).

L = 3

:- length(List, 5).

List = [_,_,_,_,_]

:- length(List, L).

List = [], L = 0;

List = [_], L = 1;

List = [_,_], L = 2;...

In the above example, N + 1 is a functional term providing a natural expres-
sion of the problem with more generality than that provided by is. This
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is illustrated by the last two examples, where with the Prolog operational
semantics non-ground functional terms (i.e. N +1) will be encountered dur-
ing execution. In implementations providing residuation (e.g. Le Fun [2],
GAPLog [53]), the function call (+) will be delayed. In the case of arith-
metic, uni�cation of two terms t1; t2 reduces to solving the equation t1 = t2.
If further constraints are imposed upon the arguments, namely [53]:

� Equivalent arguments. t1 and t2 are equivalent if and only if evaluation
of all their ground subterms makes them identical, and uni�cation
succeeds with a null uni�er.

� t1 or t2 is a variable X. If the other term t does not include X (occurs
check) then uni�cation succeeds with the mgu � = fX=tg.

then we approach the limitations of the prede�ned Prolog predicate is,
supporting calls such as X is 3 + 4 and 7 is 2 + 5 1.

Instantiated term evaluation allows external functional procedures to be
used in Horn clauses, and does not require the de�nition of the functions
in a common language. As the determinism of the functions is explicit, the
programs can be executed more e�ciently than within the general execution
mechanism of the logic programming environment.

While residuation ensures the function calls are only made when su�ciently
instantiated, the procedure is essentially incomplete and does not allow for
function inversion.

2.2.3 Mode and determinism declarations for relations

Many Prologs include support for mode declarations for system- and user-
de�ned relations, for example the SICStus list library relation to return the
maximum member of a list [16]:

maxlist(+,?)

indicates that the �rst argument to maxlist must be fully instantiated (i.e.
ground) before the call, and the second argument can contain zero or more
variables (i.e. be ground or non-ground). Thus permitted calls include:

maxlist([1,2,3],X)

1In fact with Prolog's is only the right-hand argument is evaluated, so 2 + 3 is 4 +

1 fails. The built-in arithmetic predicate '=:=' will evaluate the arithmetic expressions on
both the left-hand and right-hand sides, each side must be ground and Z =:= 2 + 3 fails.
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which will succeed with the substitution fX/3g and

maxlist([1,2,3],2)

which will fail.

The mode declaration provides an opportunity for the Prolog compiler to
produce more e�cient code, as choice points can be eliminated and the
uni�cation of parameters need not be as general. Most implementations of
Prolog (e.g. SICStus Prolog Version 3) perform no optimisations based on
the mode statements provided by the programmer, and the information is
treated as a comment.

Other logic languages, in particular Mercury [69], make extensive use of the
mode information to generate e�cient code. In the Mercury syntax, the
maxlist relation would have two modes:

mode maxlist(in,out) and mode maxlist(in,in)

Note that for every mode of a predicate in which an argument is produced
(mapped from free to bound) there is another mode for that predicate in
which the argument is consumed (mapped from bound to bound), and simi-
larly arguments ignored (mapped from free to free) have another mode with
the argument mapped from bound to bound. These additional modes are re-
ferred to in [69] as implied modes. In addition, Mercury can annotate mode
declarations with their intended determinism, with tags of det, semidet,

or nondet to indicate that calls of the given mode have exactly one solution,
zero or one solutions, or zero to many solutions respectively. The Mercury
compilation process transforms a logic program to C, and the current im-
plementation generates separate code for each declared and implied mode
of each predicate.

This meta-logical information enables the compiler to perform signi�cant ad-
ditional error checking and to generate e�cient code for each mode. Inline
code can be generated for some relations and for certain instances of uni�-
cation, for example instances of X = Y where one of X and Y is input (i.e.
ground ! ground) and the other is output (free ! ground). Deterministic
relations are transformed directly into C code for an e�ciency comparable
with that of imperative languages, while relations with the mode semidet
are transformed into deterministic C code returning a success or fail in-
dication. Non-deterministic modes are supported with the simulation of a
virtual machine similar to the WAM [1]. Execution of some simple determin-
istic and nondeterministic benchmarks (translated from Prolog) suggests an
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improvement in e�ciency from two to �ve times with Mercury's execution
algorithm.

The de�nition of functions in logic programming languages has considerable
overlap with the de�nition of deterministic (or semi-deterministic) relations,
and the performance gains from more e�cient execution of deterministic
code should be similar in each case (i.e. substantial). It remains to be seen
whether the use of mode declarations or function de�nitions are the clearest
way of expressing this determinism.

2.2.4 Predicates as set-valued functions

This approach proposed in [63] has been investigated further in [19] to ad-
dress the incompleteness of Prolog's depth-�rst execution strategy. The
clauses of the logic program together with an input/output mode for the
goals are transformed into a system of mutually recursive de�nitions of set-
valued functions (SVF's). The transformation technique has the restriction
that only ground bindings are permitted for the output variables of the
goals. The evaluation of the set-valued functions is performed essentially in
a top-down, depth-�rst fashion, and critical to the implementation in [19] is
the provision of a functional environment to implement a memo-structure
such that loops in the functional code can be recognised and those calls
suspended. The use of moding, translation, and the operational principles
can be illustrated with a simple example:

source program: path(X;Y ) arc(X;Y )
path(X;Y ) path(X;Z); arc(Z; Y )

mode: path+�

arc+�

target SVF: path+�x = arc+�x; (path+�x)farc+�g

It is assumed that arc is de�ned by ground unit clauses. Set union is written
as \;" and the construct EfFg, where E is a set-valued expression and F
is a set-valued function, denotes the set formed by applying F to all the
elements of E and taking the union of the resulting sets. The de�nition of
the target function includes a loop (with path+�x on both the left- and right-
hand sides) and a standard functional evaluator would loop even though the
de�nition of arc might represent a tree so the set associated with path+� is
�nite. Hence the memo-structure.
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This approach addresses the issue of completeness in depth-�rst SLD-resolution
by providing an alternative operational semantics and constraining the use
of logical variables. However, the limitations of the current approach are
incompatible with the goals of the proposed research.

2.2.5 Predicates as Boolean functions

An example of this approach can be found in the language Escher [51], which
is essentially a functional language founded upon higher order logic based
on Church's simple theory of types. Predicates are regarded as functions
which map into the domain of type Boolean, and must be moded.

In common with many functional languages, the following limitations apply
to function de�nitions:

� Constructor-based. User declared functions are either free or de�ned.
A function is de�ned if it appears as the outermost functional symbol
on the left-hand side of a rewrite rule. These rules de�ne an equality
on terms with a direction of the rewrite, which in Escher and most
functional languages are always left to right. Free functions are irre-
ducible and can equally be viewed as constructors. With F the set of
de�ned functions and C the set of constructors, F [ C is the program
and F \ C = ;. If l ) r is a rule, then all functions in l except the
outermost must be in C. This precludes expression of equalities such
as append (append (a; b); c) = append (a; append (b; c)).

� Left linearity. No variable appears more than once in the left-hand
side of a rule.

� Free variables. If l ) r is a rule and V ars(t) is the set of variables
appearing in term t, then Vars(l) � Vars(r). Thus all variables in the
body (r) of the rule must be bound.

� Non-ambiguity. If the outermost function symbol of a term t isOuter(t)
andR is the set of rewrite statements of the form li ) ri de�ning func-
tion f , i.e. 8(li ) ri 2 R) : (Outer(li) = f), and Mode(f) is the mode
de�nition for f then exactly one statement in R must match any call
under mode(f).

In addition in Escher, where mode(f) speci�es a NONVAR argument, the cor-
responding term t in the call must contain no variables (Vars(t) = ;), and
where mode(f) allows an argument to be input or output (represented as ),
the corresponding argument in the function de�nition must be a variable.
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The principles can be illustrated with an example modi�ed from [51]:

FUNCTION Nil: Unit -> List(a);

Cons: a * List(a) -> List(a);

a,b,c: Unit -> Item.

FUNCTION Split: List(a) * List(a) * List(a) -> Boolean.

MODE Split(NONVAR,_,_).

Split(Nil,X,Y) => (X = Nil) and (Y = Nil).

Split(Cons(X,Y),V,W) =>

(V = Nil) and (W = Cons(X,Y) or

SOME [Z] ((V = Cons(X,Z)) and Split(Y,Z,W)).

FUNCTION Append: List(a) * List(a) -> List(a).

MODE Append(NONVAR,_).

Append(Nil,X) => X.

Append(Cons(U,X),Y) => Cons(U,Append(X,Y)).

The computational model is that of \rewriting" rather than theorem prov-
ing, and the call Append([a,b],[c]), with sugaring for Cons, will be re-
peatedly rewritten:

Append([a,b], [c])

+
[a | Append([b], [c])]

+
[a, b | Append(Nil, [c])]

+
[a,b,c]

This form of rewrite via function calls is straightforward. However, an ex-
ample with the function Split illustrates the need for additional rewrite
schemas:

Split([a,b],X,Y)

+
(X=Nil and Y=[a,b]) or

SOME [Z] (X=[a|Z] and Split([b],Z,Y))

+
(X=Nil and Y=[a,b]) or

SOME [Z] (X=[a|Z] and ((Z=Nil and Y=[b]) or

SOME [Z'] (Z=[b|Z'] and Split(Nil,Z',Y))))

+
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(X=Nil and Y=[a,b]) or

SOME [Z] (X=[a|Z] and ((Z=Nil and Y=[b]) or

SOME [Z'] (Z=[b|Z'] and (Z'=Nil and Y=Nil))))

+
(X=Nil and Y=[a,b]) or

SOME [Z] (X=[a|Z] and ((Z=Nil and Y=[b]) or (Z=[b] and Y=Nil)))

+
(X=Nil and Y=[a,b]) or

(X=[a|Z] and Z=Nil and Y=[b]) or

(X=[a|Z] and Z=[b] and Y=Nil)

+
(X=Nil and Y=[a,b]) or

(X=[a] and Y=[b]) or

(X=[a|Z] and Z=[b] and Y=Nil)

+
(X=Nil and Y=[a,b]) or

(X=[a] and Y=[b]) or

(X=[a,b] and Y=Nil)

This example illustrates the use of rewrite rules for user-de�ned functions,
logical and existentially quanti�ed expressions. The Escher system has many
rewrite schemas with the general process referred to in [51] as simpli�cation.
Examples include:

False ^A =) False

(A _B) ^ (A _ C) =) A _ (B ^ C)

9x1 : : : xn(A ^ (xi = T ) ^B) =) 9x1 : : : xi�1xi+1 : : : xn(A� ^B�)

(where � = fxi=Tg and

xidoes not occur in T )

The approach can provide great exibility but performance is an open is-
sue, with the implementation needing to search large and complex terms
to �nd suitable redexes, and selecting from a choice of over 100 rewrite
schemas to be applied. Given the functional foundations of the technique,
the implementation in Escher has statements as equations, in the functional
style, rather than implicational formulas in the logic programming style.
Also there is no explicit concept of non-determinism, which instead is rep-
resented implicitly by disjunction. Computations return all answers, and
failure is represented by returning False.

The implementation of Escher provides a complete search process without
use of non-logical features such as cut, but the rewriting semantics equate to
the delivery of all solutions at each stage of the proof, with the corresponding
cost in space and time.
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2.2.6 Resolution extended to equational systems

This approach provides the direct integration of functions into the logic lan-
guage, permitting program clauses de�ning the equality predicate. Whereas
the equality predicate \=" is prede�ned in Prolog as if with the rule X = X,
functions can be de�ned by admitting new clauses for \=" and extending
the Prolog operational semantics to include term rewriting, resulting in an
amalgamated language referred to as logic programming with equality.

The general procedure is to unify each non-variable subterm of the goal
with the left-hand side of an equality rule and replace the subterm with the
instantiated right-hand side of the rule, until the sub-term is ground. The
process is referred to as narrowing [65]. A detailed analysis can be found in
[47], annotated with examples in [41]. Extended uni�cation algorithms are
surveyed in [36]. In summary, given:

a set of function symbols F

a countable set of variables V

a term is either a variable 2 V or of the form f(t1; : : : ; tn), where
f 2 F and t1 : : : tn are terms

a set T (F; V ) of all terms over F and V

a set Vars(t) of the variables in term t

term t is ground i� Vars(t) = ;

if u is a non-variable subterm of t at position p, then tjp denotes u and
t[u0]jp denotes the result of replacing the subterm tjp by the term u0

a substitution � is a mapping from V to T (F; V ). �(t) represents the
term obtained by replacing the variables of t with their substitutes in
�

a rewrite rule is of the form l = r with Vars(l) � Vars(r)

a program is a set of rewrite rules R

term t is reducible at position p by the rewrite rule l = r 2 R i� there
is a substitution � such that �(l) = tjp and the reduction is denoted
by t! t[�(r)]jp

a term t is irreducible with respect to R i� no rule of R can be used
to reduce t

t0 is a normal form for term t if there exists a reduction sequence
t! t1 ! t2 : : :! t0 and t0 is irreducible

term t is narrowable at non-variable position p (tjp =2 V ) if there is
a partitioned substitution (�; �) which is a most general uni�er of tjp
with the left-hand side of some rule l = r 2 R (with variables renamed
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to ensure Vars(t) \ Vars(l = r) = ;) such that �(l) = �(tjp) and the
narrowing step can be denoted as t *[p;l=r;�] �(t[r]jp). Narrowing is
thus a proper extension of reduction.

Narrowing provides a sound and complete method which can be used to
solve equations with respect to a conuent and terminating set of rules R
[46]. However, the process of narrowing is non-deterministic, with narrow-
ing steps proceeding for each rule whose left-hand side is uni�able with a
subterm (redex) of the expression. The application of each rule to each po-
tential redex yields a huge search space with many in�nite paths even for
simple programs, and it is a fruitful research topic to analyse which restric-
tions are acceptable to limit this expansion. Most work has been applied to
constraining the selection of the redex for the next narrowing step. These
re�nements include:

� Basic narrowing.
Hullot in [46] describes an optimisation in which redexes are selected
for narrowing only if they are part of an original program clause or goal,
rather than new terms resulting from previous substitutions. This re-
striction results in a smaller search space than simple narrowing, but
is still sound and complete for a conuent and terminating equational
system. A signi�cant advantage of this method is that narrowing po-
sitions can be identi�ed at compile time permitting a more e�cient
implementation.

� Term ordering.
For a certain class of programs, solutions can be computed with the
redexes being selected in a left-to-right (or other) order. This restric-
tion, summarised by Hanus in [41], results in an incomplete search
process, and the implications have not been widely researched.

� Innermost narrowing.
In constructor-based programs, solutions can be found by consistently
selecting the innermost term as the redex to be narrowed, and the
procedure corresponds to eager evaluation in functional languages. In-
nermost narrowing is in general incomplete, but has been shown to be
complete if all functions are everywhere de�ned (also called totally
de�ned) such that the only irreducible ground terms are constructor
terms [38]. Innermost narrowing can be combined with basic nar-
rowing, and innermost left-to-right basic narrowing has been shown
in [15] to be equivalent to SLD-Resolution if the functional program
is transformed to a pure logic program by the process of attening.
This transformation requires that each functional term is given a rela-
tional representation with a logical variable to contain the result, and
nested functional terms are converted to an ordered sequence of these
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relational goals with the innermost functional term as the leftmost
relational goal.

� Normalisation and rejection.
This technique provides the opportunity of eliminating unnecessary
narrowing derivations. In solving an equation t1 = t2 in the context of
an equational system R, the basic approach is to perform a normali-
sation step on t1 and t2 (rewriting them to their normal form) so that
the outermost function symbols can be compared before narrowing. If
the symbols are for di�erent constructors, then the derivation can be
terminated at this point.

� Outermost.
This is the converse of innermost narrowing, selecting the outermost
de�ned function term as a candidate for a narrowing step. The pro-
cedure is analogous to lazy evaluation in functional languages, but it
is incomplete. Outermost narrowing requires the equational system to
be terminating (and conuent), a condition violated by the inclusion
of in�nite data structures, and to address this issue lazy narrowing has
been investigated [64], in which inner terms are narrowed if their value
is needed in a later outer narrowing step.

2.2.7 Extended Prolog call semantics

Chapter 5 provides a detailed discussion of the capabilities of the function
evaluation meta-relations call/N and apply/3 reviewed in this section.

As was noted in section 2.2.1, a function of N arguments can be replaced
with a relational procedure of N+1 arguments with the additional argument
to hold the result.

For comparison, de�nitions of an integer plus function and relation in
PrologPF and standard Prolog are:

fun plus(X,Y) = X + Y. % PrologPF function definition

plus(X,Y,Z) :- Z is X + Y. % standard Prolog clause definition

The de�nitions mean that:

� The appearance of an argument term plus(3,4) anywhere in a PrologPF
program is equivalent to the use of the constant 7.

� A goal plus(3,4,R) in a standard Prolog clause body will succeed
with the variable binding fR/7g.
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Given the sample de�nition for the function plus it is reasonable to ask for
the meaning of the term plus(3). Functional languages such as ML [55, 61]
encourage the use of functions with a reduced number of arguments as a
mechanism to introduce higher-order programming. This technique of cur-
rying [33, 67] is central to the design of the higher-order functional aspects of
PrologPF. The partial application of a function such as plus(3) evaluates to
a nameless function which will add 3 to its argument. The technique allows
powerful use of higher-order functions such as map(F,L) which applies the
function F to each element of the list L. For example map(plus(3),[1,2,3])
evaluates to [4,5,6]. The technique is general, such that map(plus(3))

represents the function which adds 3 to each element of a list.

The relational representation of the function in standard Prolog does not
include any support for the straightforward use of currying. Two pro-
posed library additions to Prolog to support the higher-order use of the
plus(X,Y,Z) de�nition given in the example above are call/N and apply/3

[58]. Chapter 5 makes a detailed comparison of these meta-relations with
the approach used in PrologPF.

2.2.7.1 call/N

In standard Prolog [35], call(A) treats A as a goal and calls it. For ex-
ample, A = plus(3,4,R), call(A) is equivalent to plus(3,4,R). call/N
[58] extends the standard call meta-relation to more than one argument.
call(A,B1,B2,...,Bn) calls A with additional arguments B1...Bn.

The higher-order use of the relational de�nition of plus with call/N is
illustrated with the following simple example:

A = plus(3), call(A,4,R).

The technique relies upon the conventional use of the last argument as the
result of a functional computation (R in the example). The `at' style of pro-
gramming is retained both for the function de�nition and the higher-order
application, such that call/N continues the convention of last argument as
result.

2.2.7.2 apply/3

Naish argues in [58] that an application meta-relation apply/3 provides
more general support for higher-order programming than call/N. apply/3
treats all function applications as to one argument. For example plus(3,4,R)
is equivalent to apply(plus,3,Plus3), apply(Plus3,4,R).
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The semantics of apply/3 diverge from call/N when higher-order inter-
mediate results are returned. For example, the goals call(plus(1),2,X)

and apply(plus(1),2,X) both bind X to the number 3. However, whereas
call(plus,2,X) results in an error or fails, apply(plus,2,X) binds X to a
representation of a function which adds 2 to its argument.

2.3 The Delphi Machine: previous work

A number of researchers have contributed directly to the development of
OR-parallel systems based upon the use of oracles and recomputation for
execution of pure Prolog programs:

1. Clocksin and Alshawi created the �rst simulation of the Delphi Ma-
chine and proposed a number of strategies for OR-parallel execution
of pure Prolog programs [28], summarised in [26].

2. Wrench investigated the extension of the Delphi principle into a system
providing both AND-parallelism and OR-parallelism [76].

3. Klein implemented a Prolog compiler targeting a modi�ed Warren
Abstract Machine [1] with additional instructions for the creation and
interpretation of oracles. Additional strategies were tested with this
compiler [49].

4. Barham focussed upon the issue of distributed control of the multiple
path-processors, implementing a hierarchical control system [10].

5. Saraswat provided a detailed performance analysis of the existing Del-
phi implementation, adding new scheduling strategies and a theoretical
analysis of the run-time to delivery of the �rst solution [66].

That work is summarised in the following sections.

2.3.1 The Delphi principle

A brief overview of the Delphi principle for the execution of logic programs
was given in Chapter 1.

From [66]: In an OR-only tree, if each path is executed by exactly one pro-
cessor then the total execution time required to cover the complete tree has
to be the time taken to execute the longest path within the OR-only tree.

The OR-only tree from Figure 2.3 can be annotated with choice indexes,
resulting in Figure 2.6.
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Figure 2.6: Oracles within the OR-only tree from Figure 2.3.

Figure 2.6 shows that at the depth indicated by the dotted line, there are
four branches available for further execution. The branches can be labelled
[1,1], [1,2],[2,1], and [2,2] respectively, each label being the oracle uniquely
de�ning that branch in the OR-only tree.

The OR-only tree for the query g(U,V) has a maximum of four OR-parallel
paths to be allocated to available processors, and the work can be distributed
by a control processor sending each a copy of the program and one of the
oracles. The path processors can either search the whole subtree below the
assigned oracle, reporting back solutions, or they can limit their search in
some way, reporting back solutions plus the status of oracles within the
subtree. The behaviour of the control processor in allocating work and the
associated behaviour of the path processors on receipt of one or more oracles
forms the scheduling strategy. The simplest strategies for the path processors
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are to either search fully the subtree below an assigned oracle, or to limit
the search to the next choice point in the subtree, reporting back the status
of the oracle extensions representing the new branches.

The use of recomputation to reconstruct the environment at a given branch
of a tree, with oracles used to de�ne the path from the root to the branch,
provides a exible mechanism for the OR-parallel distribution of work us-
ing a variety of strategies. The execution model implemented in PrologPF
provides a vehicle for the evaluation of di�erent strategies through the basic
support provided for:

1. the accumulation of a current oracle recording the sequence of clauses
used as the search progresses,

2. following an assigned oracle, and

3. searching a subtree below an assigned oracle to a speci�ed depth,
and reporting any solutions and the status of open oracles at that
depth. Di�erent speci�ed depths permit fundamentally di�erent types
of strategy:

zero: simply report back the status of the assigned oracle

1: extend the search to the next choice point (i.e. increase depth by
one)

integer > 1: perform a partial search within the assigned depth and
report back solutions and open oracles.

-1: search the whole subtree and report solutions or failure

The intermediate case in PrologPF, where the search of a subtree is con-
strained within a depth parameter, is a special case of a more general solution
where the search bound might be speci�ed with a boolean function. That is,
PrologPF assumes a search limit function fun inside limit() = Depth <

Depth limit where alternatives might use time or number of choice points
traversed.

The use of depth limited search to produce an e�ective one-time partitioning
of the program is described in Chapter 3. Chapter 8 describes an extension
to the technique using the interruption of busy processors with recursive
application of the partitioning algorithm to repeatedly reallocate work from
busy to idle processors.

2.3.2 Architecture

Figure 2.7 illustrates the distributed architecture suited to exploitation of
the Delphi principle and targeted by the PrologPF compiler.
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Figure 2.7: Distributed target architecture of the Delphi machine.

The machines labelled A through E represent path-processors connected
to a general purpose peer-to-peer network, represented in the diagram as
an Ethernet. Each path processor loads a copy of the program from the
�le server S. Work scheduling instructions are communicated to the path
processors from the control processor labelled P.

While the diagram shows the interconnection network as an Ethernet, the
strategies developed with PrologPF and earlier implementations of the Del-
phi machine aim to minimise the amount of communication between proces-
sors, and a lower performance network could be used. Oracles, in association
with the pre-loaded user program, provide an extremely compact represen-
tations of the environment at a given point in the search tree. This greatly
reduces the amount of data to transferred in the assignment of work, as a
trade-o� for the recomputation overhead.

Some scheduling strategies such as breadth-�rst partitioning, described in
[66] and Chapter 3, require no communication from the path processors
after the initial assignment of work except to return solutions and indicate
completion.

The DelphiKS implementation used by Klein and Saraswat in [49, 66] uses
an NFS2 �le server for the distribution of the compiled program. The same
technique is used by PrologPF. An extended control processor could commu-
nicate the compiled program over the same virtual connection used to send
oracles and receive results, such that the connection of every path proces-

2Network File System
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sor to a common �le server would be unnecessary. A similar bene�t could
be gained through the use of FTP3 rather than NFS. The earlier imple-
mentations of the Delphi machine and PrologPF make no use of broadcast
techniques for the distribution of the program or other scheduling informa-
tion, and the initial program load times from the shared �le server have not
been included in the performance measurements.

In [10], Barham proposes a hierarchical control mechanism for the schedul-
ing of work on the distributed Delphi machine, and PrologPF provides a
general hierarchical communications structure (described in Appendix A.4)
although its use in the current implementation is limited.

2.3.3 Oracles

The use of oracles assumes a the treatment of the alternative clauses in a
procedure as an ordered list, such that the clauses can be numbered 1 to N
in their textual sequence in the program.

In PrologPF an oracle is a list of integers, each representing the number of
the choice point to be selected at each branching point in the OR-only tree.

An oracle can be communicated from the control processor to a path-
processor to indicate a subtree for search, or a path-processor can return
a set of oracles representing unsearched branches in its allocated subtree.
PrologPF can also return the oracle representing the point at which each
solution was found.

It has been noted in [28, 49] that each n-ary OR-only tree resulting from the
direct transformation of the problem AND-OR search tree has an equivalent
binary representation. The transformation from n-ary tree to binary tree
requires the nominal insertion of binary nodes above each branch point with
more than two branches. The oracles used within this transformed tree are
sequences of bits, leading to a very compact representation of the environ-
ment at any point in the binary tree. The implementation of the Delphi
machine in [49] uses a special instruction setmax to record the number of
alternative clauses N in a given procedure, such that log2N bits will be
used from the oracle to de�ne or record the choice selected.

The binary representation of oracles may be the most compact form, op-
timised for communication across a relatively slow network. The list of
integers used in PrologPF is a compromise designed to facilitate debugging
and external interpretation of the oracles owing in the network. However,
after the right number of bits is picked o� an assigned oracle within the

3File Transfer Program
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Delphi machine the treatment of the clause number is the same.

An alternative representation of oracles with the same space requirement as
the integer list but a more e�cient execution would be to record the relative
label addresses of each selected clause in the compiled WAM program. The
path processor would then follow an oracle by treating it as a sequence of
direct jumps. This approach is yet to be tested.

The nature of the breadth-�rst partitioning (BFP) strategy means that the
oracles can be generated locally, i.e. within each path processor, during the
distributed one-time work assignment phase. This means that no oracles
are actually communicated across the network. BFP is described below and
in detail in Chapter 3 and [66].

2.3.4 Delphi scheduling strategies

A simplistic implementation of the Delphi machine has a �xed number of
path processors and a control processor. The control processor maintains
a queue of oracles representing portions potential paths, and sends oracles
from this queue to idle path processors [6]. In following an assigned oracle,
a path processor can arrive at three possible results:

1. success: a solution is found

2. failure: the execution path terminates in failure

3. open: the assigned oracle leads to a node in the search tree with
further branches to be explored

Within this framework, any algorithm can be employed by the control pro-
cessor to determine the generation of oracles and the assignment of oracles
to path processors. Similarly, in the third case, the path processor can
continued the search or report the status back to the control processor.

The algorithms used in the control processor for the allocation of work, and
in the path processors for the third case listed above, form the scheduling
strategy. A number of strategies have been tested in the original prototype
[6], the subsequent DelphiKS implementation [49] and PrologPF. The results
are summarised below.

2.3.4.1 Non-backtracking partitioning strategies

Non-backtracking strategies assume the capability of a path processor to
follow an oracle and report solutions and status, but do not assume a capa-
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bility for subsequent backtracking search if open branches are found. The
strategies illustrate the exibility of the Delphi principle, but perform badly
for most Prolog programs.

� Brute force strategies.
Strategies of this type do not reduce the search space by accumulating
information on previously completed paths. Two examples of brute
force strategies proposed by Clocksin and Alshawi in [28] are:

Random. The control processor generates random oracles for allo-
cation to idle path processors. The path processors report the
status of the assigned oracle back to the control processor and
return to the idle state. This process is repeated until a solution
is found.

Incremental. The control processor generates all possible oracles in
ascending sequence. Oracles of length one are allocated �rst,
then all oracles of length two and so on. As with the random
strategy, the path processors report the status of the assigned
oracle and become idle until the assignment of another. The
algorithm represents an iterative deepening strategy.

� Strategies recording incomplete paths.
The e�ectiveness of the control processor in assigning oracles can be
greatly improved with the use of a data structure to record those
oracles that have been found to lead to open branches. Oracles sent
to path processors can be limited to extensions of oracles previously
returned. Two strategies of this type evaluated by Klein in [49] di�er
in the behaviour of the path processor on the assignment of an oracle:

Expanding a job. On the assignment of an oracle, the path proces-
sor follows the oracle and reports failure or a solution (success)
if the oracle leads immediately to either. If the oracle leads to a
branching point in the search tree, the oracles representing each
branch are returned to the control processor, and the path pro-
cessor becomes idle. These oracles are added to the queue in the
control processor for redistribution to idle path processors.

Branch by branch. This strategy is similar in principle to the ex-
panding a job strategy given above. The strategies di�er when
the oracle assigned to a path processor leads to an open node.
With the branch by branch strategy the path processor will re-
port back the oracles representing all the new branches except
one, and will continue the search along that path. If the new ora-
cle leads to success or failure, that will be reported and the path
processor will become idle. If the new oracle leads to another
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branching point (i.e. is open), again the oracles representing all
the branches at that node except one are returned to the con-
trol processor. The path processor then continues with the newly
selected oracle.

Partitioning with oracle bu�ering. This strategy is an extension
to branch by branch given above, with the use of local bu�ering in
the path processors to record the open oracles as the search along
the selected branch progresses [66]. When the path processor
reaches the end of its selected branch, a new oracle is picked from
the local bu�er. If the path processor follows a lengthy branch
passing many choice points, such that the number of bu�ered
oracles passes a set threshold, then a quantity of oracles will
be transferred to the control processor to free up space in the
bu�er and provide work for other idle path processors. The path
processor becomes idle when it reaches the end of its selected
branch and the local bu�er is empty.

2.3.4.2 Backtracking partitioning strategies

These strategies assume the capability of the path processor to indepen-
dently search the subtree beneath an assigned oracle. The strategies di�er
in the method used to determine the oracle assignment, how to limit the
search within the path processor, and whether to reassign the work in a
given subtree after the initial assignment of the de�ning oracle.

� Automatic partitioning. Each path processor is given the program,
the number of processors in the group G, and the number of that path
processor within the group N4. The strategy is able to proceed with
no further communication from the path processors except to report
solutions and completion. Every path processor uses the parameters G
and N to select a branch at each OR-node from the root of the search
tree, until it has arrived at a unique subtree. The path processor
then searches that subtree using Prolog's normal depth-�rst left-to-
right execution strategy. In [49]5, Klein proposes three algorithms for
a path processor to select a branch at each OR-node:

Partition right. Each path processors starts at the root of the search
tree. At each OR-node with a number of branches denotedM , the
M � 1 path processors with the lowest unique processor numbers
each select in order the left-most M �1 branches. The remaining
G� (M � 1) processors follow the last (right-most) branch, to be

4Klein in [49] uses U to refer to the unique path processor number
5the description of these strategies by Saraswat in [66] di�ers from that in [49]
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similarly distributed at the next OR-node. When an OR-node is
reached at whichM is equal to the number of path processors re-
maining, each selects a branch in order of their unique processor
number. If an OR-node is reached with M larger than the re-
maining pool of path processors, then the branches are assigned
from the right to the remaining path processors in descending
order of unique processor number N , with the path processor
with the lowest N taking all the remaining left-most branches.
The partitioning of the sample search tree used in [49] with the
partition right algorithm is shown in Figure 2.8.
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by path proc X.

1
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Figure 2.8: Partition left of sample tree in [49] for G = 6.

Partition left. This strategy is the same as partition right given
above, except that the M �1 path processors are assigned one to
a branch except the left-most, with the remaining G� (M � 1)
all taking the left-most branch.

Partition central. This algorithm does not have the extreme left
or right assignment bias of the other two automatic partitioning
strategies. As with the other two strategies, when the number of
branches M equals the number of path processors, then the path
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processors are assigned one branch each. When the number of
available path processors exceeds M , the processors are divided
as evenly as possible across the branches. Where the division
results in a remainder, one additional processor is assigned to
each branch starting from the left. When the number of available
processors is less thanM , the branches are allocated to processors
as evenly as possible. Where the division results in a remainder,
one additional branch is assigned to each processor starting with
the lowest N . The example tree from [49] with the assignment of
subtrees to six path processors is shown in �gure 2.9.
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Figure 2.9: Partition central of sample tree in [49] for G = 6.

� Reassign-job. This scheduling strategy was proposed by Klein in
[49], with further analysis by Saraswat in [66]. The automatic parti-
tioning strategies perform badly with a search tree with many short
branches. Path processors assigned these branches quickly become idle
and contribute no further to the OR-parallel search. It is common for
a sample program to be reduced to execution on a single path proces-
sor within milliseconds of startup [66]. The reassign-job mitigates this
problem with the following extensions:
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1. the control processor maintains a list of idle path processors as
each completes its assigned subtree

2. busy path processors pause and report the oracle representing
their current position on reaching a de�ned check-in interval

3. the automatic partitioning algorithm is modi�ed to perform split-
ting only after the path processor has followed an assigned oracle

The check-in interval is a constant, setting a depth limit, and the path
processor reports its current oracle to the control processor on reach-
ing this limit and becomes idle. On receiving an oracle, the control
processor initiates automatic partitioning on all idle processors includ-
ing the processor which reported the oracle, with the reported oracle
de�ning the new root for the splitting process. Thus the subtree pre-
viously allocated wholly to the busy path processor is reassigned to a
group of processors.

� Breadth-�rst partitioning. This strategy is suggested by Alshawi
and Moran in [6], and was implemented as an extension to DelphiKS
by Saraswat [66]. The strategy greatly improves the granularity of
task assignment over the earlier strategies, and is used by PrologPF.
The reassign-job strategy given above seeks to mitigate the problem
of early completion and subsequent idleness of many path processors
in the automatic partitioning strategies by continually redistributing
work from busy processors to idle ones. An alternative solution is to
more e�ectively allocate the work in the initial distribution, and the
breadth-�rst partitioning strategy achieves this.

The scheduling algorithm proceeds in two phases, illustrated in Fig-
ures 2.10 and 2.11. In the �rst phase shown in �gure 2.10, the control
processor executes the user program to a limited depth in the OR-
only tree. In [66] and throughout this document, this depth limit will
be called L. Within this depth limit any solutions are reported, and
the open oracles of length L recorded in a bu�er. It should be noted
that the search up to this limit proceeds with the normal depth-�rst
left-to-right strategy of standard Prolog. The open oracles (A. . . E
in �gure 2.10) can then be allocated to path processors, for exam-
ple allocating the nth oracle to path processor n mod G where G is
the number of processors available. In the second phase (�gure 2.11)
each path processor follows each allocated oracle and searches the
corresponding subtrees using the standard Prolog depth-�rst left-to-
right algorithm, returning solutions and reporting completion. Figure
2.12 compares the possible assignment of path processors to subtrees
with the partition central algorithm of automatic partitioning versus
breadth-�rst partitioning with a suitable choice of limit L, for a pro-
gram with many short branches. The tree is typical of the subtrees
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Figure 2.10: First phase of breadth-�rst partitioning.

found in the deterministic execution of relations such as member where
one rule represents the recursive case, and the other the termination
condition. Whether the tree is left- or right-biased depends purely
on the ordering of the clauses in the procedure, and the partition-left
and partition-right algorithms in automatic partitioning are critically
dependent upon the right match. BFP is thus potentially less a�ected
by the systematic presence of many short branches in the search tree,
but is dependent upon a good choice for L.

The open oracles at depth L can be generated concurrently by all
path processors, and a local algorithm can be used within each path
processor to determine a unique subset of the oracles to be searched.
With this approach, each path processor needs only a copy of the user
program, and the values of G, N , and L (number of processors in the
group, unique processor number, and depth limit), for execution to
proceed. This is the technique used in [66] on the Delphi machine and
in PrologPF.

The BFP algorithm is described in detail in [66] and analysis of the
performance of PrologPF for pure Prolog programs using BFP is given
in Chapter 3.

� Partitioning by selective sampling. The BFP strategy described
above improves upon the automatic partitioning strategy by achieving
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Figure 2.11: Second phase of breadth-�rst partitioning.

a better allocation of oracles to path processors, with less vulnerability
to the many short branches in a typical search tree. The depth limit
L must generate more oracles than there are path processors for the
strategy to be e�ective. The one-time allocation of oracles requires the
cumulative size of the subtrees beneath each assigned subset of oracles
to be reasonably well balanced, or the strategy will su�er due to many
processors becoming idle at an early stage in the execution. With
partitioning by selective sampling (also called PSS ), Saraswat in [66]
attempts to improve the e�ectiveness of the allocation by estimating
the size of the subtrees beneath each oracle. The �rst phase of this
strategy is identical to that of BFP. An intermediate phase is added,
called the feedback phase, in which the subtree beneath each oracle is
searched with a limit set on the number of choice points traversed, as
a means of estimating the size of the subtree beneath each oracle. A
heuristic algorithm [66] is then used to divide the oracles into G subsets
with approximately the same cumulative amount of work. Each subset
is allocated to a path processor, which proceeds as in the second phase
of BFP.

The partitioning by selective sampling strategy did not appear to make
an improvement over the underlying BFP. The issues of oracle distri-
bution to available path processors is analysed further in Chapter 3.
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Figure 2.12: Path processor assignment in AP versus BFP.

� Breadth-�rst partitioning with selective sampling. This strat-
egy, labelled BFPSS by Saraswat in [66], is another extension to
breadth-�rst partitioning to improve the one-time allocation of ora-
cles to available path processors. The �rst phase proceeds as in BFP
and PSS, generating a set of S open oracles at a depth L. As with
PSS, the �rst phase is followed by a feedback phase. BFPSS di�ers
from the previous PSS in the algorithm used to estimate the work in
the subtree beneath each oracle.

In this new strategy, the open oracles found at depth L are divided
evenly in consecutive groups among the available path processors.
Each path processor treats its assigned set of oracles as an ordered
list, and searches fully the subtree below every other oracle, reporting
solutions found and recording the amount of work in each subtree.
When all the alternate oracles have been fully searched, the path pro-
cessor calculates estimates for the intermediate oracles as the arith-
metic mean of the sizes of the two adjacent subtrees, and reports these
to the control processor. The control processor sorts all the estimates
into descending order, and assigns the associated oracles on a demand
basis to the path processors.

The strategy of breadth-�rst partitioning with selective sampling was
found to perform better than the earlier partitioning with selective
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sampling but the increased complexity introduced communication and
computation overhead such that the performance was less than that
of the simpler breadth-�rst partitioning [66].

2.4 Summary

This chapter has presented a summary of other research in the areas of:

� other parallel logic languages,

� functional logic, and

� the development of OR-parallel Prolog on the Delphi machine.

The Delphi principle has been illustrated with examples, and placed in the
context of other techniques for OR-parallel execution of logic programs.
The alternative approaches have been shown to use environment copying
on distributed architectures, and environment sharing on shared-memory
multiprocessors. The trade-o� of overheads of recomputation versus the
communication requirements of environment copying have been highlighted.
Current research on functional logic languages have been discussed in terms
of their suitability for implementation on the Delphi machine, as an alter-
native to the use of the extra-logical relation cut which is incompatible with
the Delphi principles.

The remainder of this dissertation analyses the behaviour of PrologPF in
the OR-parallel execution of pure Prolog programs, and reviews in depth
the addition of functions to the programming model.



Chapter 3

Prolog with Breadth-First

Partitioning

This chapter reviews the performance and behaviour of some test PrologPF
programs, with comparison with DelphiKS, the previous implementation of
the Delphi machine assessed by Saraswat in [66]. Further analysis is given
of the breadth-�rst partitioning strategy used by PrologPF, particularly of
the selection of the depth limit parameter used in the partitioning phase of
execution.

3.1 Introduction

The Breadth-First Partitioning scheduling strategy is described in detail by
Saraswat in his work on DelphiKS [66] and summarised in Chapter 2 section
2.3.

The execution of the strategy requires that three parameters are passed to
the path processor with the associated compiled program:

1. G: the total number of path processors working in parallel

2. N : the unique processor number assigned to a given path processor

3. L: the depth bound at which open oracles are recorded in the initial
search phase, for subsequent allocation for execution

In [66], Saraswat analysed a number of benchmarks with several di�erent
strategies with processor group sizes (G) from 1 to 30 to assess the e�ciency

59
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of the speedup of the Delphi machine. This comparative assessment of
PrologPF di�ers from the approach in [66]:

� While [66] evaluates a variety of strategies, this assessment is limited
to that found to have the best performance across the range of test
programs, namely Breadth-First Partitioning.

� Saraswat included a number of benchmarks known to contain little or
no OR-parallelism. Evaluation of these benchmarks with DelphiKS
con�rmed the expected absence of parallel speedup.

� This study provides a detailed analysis of the behaviour of the strategy
with di�ering values of L, rather than the optimal values of L used for
the runtime versus G graphs in [66].

3.2 Benchmarks used

The source code for the benchmarks is given in Appendix B. The appendix
also includes graphical representations of the search tree for each benchmark,
with the tree for the 8-queens problem repeated here.

3.2.1 8-queens

The 8-queens benchmark �nds solutions to the problem of placing eight
queens on an 8-by-8 chessboard with no two pieces on the same horizontal,
vertical or diagonal line of squares. The simple benchmark �nds all 92
solutions, including those which are rotated or reected versions of other
solutions.

The problem has a maximum search depth of 60, and a geometric repre-
sentation of the complete search tree is given in Figure 3.1. The root of
the search tree appears at the top of the �gure, and the \depth" value of
the ordinate represents the nested depth of subgoals into the search. The
OR-only tree contains a maximum of approxiamtely 1500 open branches at
a depth of 45.

The other benchmarks have much larger search trees than the 8 queens
problem. The complete mapping of the search space resulting in the tree
diagram in Figure 3.1 has not been repeated here for the other benchmarks,
but are in Appendix B.
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Figure 3.1: Search tree for 8 queens problem.

3.2.2 10-queens

This benchmark is identical to the 8-queens benchmark described above,
except the problem is extended to place ten queens on a 10-by-10 chessboard.

The problem has 724 solutions, and the maximum depth of the search tree
is 85. The OR-only tree has a maximum of approximately 26000 branches
at a depth of 65.

3.2.3 Pentominoes

A pentomino is a shape made up of �ve equal-sized squares, for example in
the shape of a letter T or a letter L. There are twelve possible shapes from
�ve connected squares, and the benchmark program pentbook attempts to
�t these pieces on a 20-by-3 board. Each piece has a number of possible
orientations and reections, and can be used only once. The benchmark
�nds 8 solutions. The maximum depth of the search tree is 90, with the
maximum of approximately 100,000 branches open at a depth of 58. The
Prolog source for the benchmark pentbook is contained in Appendix B.2.
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3.2.4 Other benchmarks in DelphiKS

In addition to the benchmarks discussed above, Saraswat in [66] analysed a
number of additional programs which have not been included in this com-
parison:

FFT: a fast-Fourier transform algorithm which contains no OR-parallelism,
and thus showed no speedup on the Delphi machine. Similarly, no
speedup would be expected with the use of PrologPF.

Adder, Permutation, Balanced: these benchmarks have low runtimes
even with a single cpu, and some generate many solutions. For ex-
ample, the perm benchmark compiled with the PrologPF compiler
completes in 540 milliseconds on a single cpu, generating 720 solu-
tions. The short runtime and large number of solutions cause the
input/output requirements to dominate the execution times in any
attempt at parallel speedup. DelphiKS took 7.87 seconds to execute
the perm benchmark on the same single processor, with more scope
for parallel improvement. The adder and balanced benchmarks took
12.61 seconds and 6.23 seconds to execute on a single cpu DelphiKS
system respectively.

3.3 Implementation di�erences

3.3.1 DelphiKS

The previous implementation of the Delphi machine, DelphiKS [49, 66] in-
cluded support for additional WAM [73] instructions:

onumtry, onumretry, onumtrust: these DelphiKS instructions are anal-
ogous to their WAM counterparts [1], building and removing choice
points at the entry-points of compiled alternative clauses in nondeter-
ministic procedures. The DelphiKS instructions accumulate the cur-
rent oracle as the search proceeds, and provide support for following
oracles when executing in that mode.

onumsing: this is a special instruction placed at the entry point of the
clause where a procedure contains only a single clause, such that no
choice point is built and the current oracle need not be extended. The
instruction is used instead of the usual nondeterministic instructions
listed above when non-backtracking strategies are used.
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setmax: this instruction is inserted at the beginning of each procedure,
before the �rst clause. It provides a point at which the number of
alternative clauses in the procedure can be recorded. This information
can be used to determine the right number of bits to remove from
the binary oracle being followed. The setmax instruction provides the
point at which scheduling decisions can be taken in the path processor.
For example, as the number of alternatives is known at this point (in
the argument to setmax) the incremental extensions to the current
oracle can be built and returned to the control processor. Alternatively
the current depth can be checked against the depth bound in the
breadth-�rst partitioning strategy.

In addition to the extra instructions, the extended WAM maintains a few
data structures, most notably the oracle stack.

3.3.2 Prototype PrologPF with Prolog oracles

In this implementation of PrologPF the user program is transformed to a
version in which every relation has additional arguments, such that the cur-
rent oracle is propagated through the procedure calls. The Prolog support
for di�erence lists and logical variables is exploited for an e�cient imple-
mentation.

A utility procedure o next(N,A) is provided which returns the next choice
index of the current oracle in N and accepts the current oracle A as an
argument. If the program is being used to build an oracle then N will be
returned as a logical variable embedded in A, such that the immediately
following call of a relation will instantiate that variable to the clause index.
For example, the following program illustrates the transformation:

a(X) :- b(X), c(X).

b(a).

b(c).

c(c).

this is transformed to:

a(1,A,[1|E],En,X) :- o_next(N1,A), b(N1,A,E,En,X),

o_next(N2,A), c(N2,A,E,En,X).

b(1,A,[1|E],E,a).

b(2,A,[2|E],E,c).

c(1,A,[1|E],E,c).
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A query such as a(X) is replaced with o next(N,A),a(N,A,A,X) in which
o next(N,A) provides the �rst oracle element N to be used as the �rst argu-
ment of the goal, and A,A represents the empty di�erence list of the initial
oracle.

An oracle to be followed is stored as a Prolog list in a global variable.

The general format of each relation is:
relation name(cn, orc, orc hole, new hole, args...)

where:

cn: clause number, in textual sequence of procedure.

orc: oracle accumulated so far and passed to procedure as di�erence list.

orc hole: logical variable representing end of orc.

new hole: variable returned by procedure as new hole at end of extended
orc when the procedure succeeds.

The semantics of o next(N,A) are:
on �rst call:
o next(N,A) :- if (current mode = FOLLOWING an oracle)

then N := next oracle element
else /* currently BUILDING an oracle */

if (current depth = depth limit L)
then

push A onto oracle stack;
fail

else
increment current depth.

and on backtracking:
o next( , ) :- decrement current depth,

fail.

At any point during the execution of the program, the logical variable A

contains the current oracle. The implementation of oracle support using
Prolog procedures and data structures provides a exible tool for the analysis
of di�erent strategies, but generates considerable overhead.

3.3.3 PrologPF with C oracles

To reduce the overhead of the use of Prolog data structures to represent
oracles and the de�nition of the utility relations such as o next as Prolog
procedures, the oracle support in PrologPF was re-implemented in C.
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For simplicity of implementation and debugging, a similar program trans-
formation technique was used, but with more e�cient primitives. As an
example of the more e�cient transformation, the same example will be used
as above.

a(X) :- b(X), c(X).

b(a).

b(c).

c(c).

The user program can be transformed into two subprograms, one suitable
for building an oracle as the search progresses, and the other suitable for
following an assigned oracle.

As the execution progresses, to accumulate an oracle as the search tree is
traversed the sample program can be transformed by the compiler to:

% BUILD code

a(X) :- o_build(1), b(X), c(X).

b(a) :- o_build(1).

b(c) :- o_build(2).

c(c) :- o_build(1).

The special relation o build is de�ned as follows:

o build(X) :- append index X to end of current oracle.
o build( ) :- pop last index from oracle, fail.

The o build relation is de�ned using C macros, and has the side-e�ect of
updating the state of the current oracle. At any point in the search, the
current oracle represents the sequence of clause indexes to traverse the tree
directly to the current node.

A query such as :- a(X) will initially create an oracle [1], and then solve
the subgoal b(X), appending 1 to the current oracle and returning with the
solution fX/ag. Then the subgoal c(a) is called, which fails, and on back-
tracking the b(X) goal removes the appended 1 from the oracle and searches
for an alternative solution for b(X). The b(c) clause is tried and succeeds,
appending 2 to the current oracle and returning the solution fX/cg. The
subgoal c(c) is now called, appending 1 to the current oracle and succeed-
ing. The a(X) goal succeeds, at which point the current oracle is [1,2,1].
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For the purposes of strategies such as breadth-�rst partitioning, it is useful
to accumulate additional state information as the search progresses, partic-
ularly the current depth of the search, or equally the length of the current
oracle. Breadth-�rst partitioning requires the use of a depth limit (referred
to as L). To constrain the search to within this depth, the o build rela-
tion can be made to fail whenever this depth is reached. So the extended
de�nition of o build is as follows, with the depth initially zero:

o build(X) :- increment depth
append index X to end of current oracle.
if depth = L
then record current oracle and fail.

o build( ) :- decrement depth
pop last index from oracle
fail.

The pseudo-code for o build show it has the following characteristics:

� the �rst clause succeeds if the current depth is not equal to L

� the second clause always fails

� if the current depth is less than L, the relation always has one solution

� if the current depth is equal to L, the relation always fails

� the current depth can never become greater than L

� when the query completes the depth will be zero, as each increment
operation is always followed by an associated decrement.

In the implementation in PrologPF, the current oracle is accumulated in a
C array with the current depth as the index.

It should be noted that the build code described above records the oracles
at points in the search where the current depth equals the depth limit L. In
order to follow these open oracles, a di�erent transformation of the sample
program can be used:

% FOLLOW code

a(1,X) :- o_follow(N1), b(N1,X), o_follow(N2), c(N2,X).

b(1,a).

b(2,c).

c(1,c).
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A query such as a(X)will similarly be transformed to o follow(N), a(N,X).
Given an oracle built by the transformed program using o build described
earlier, the de�nition of the special relation o follow is as follows:
o follow(X) :- return with X = next index from current oracle.

This de�nition of o follow is satisfactory when the oracle being followed
leads directly to a solution (or failure). If the assigned oracle is in fact open,
i.e. leads to an intermediate node in the search tree, then additional support
is required. After following an open oracle to its end, PrologPF will then
continue the search in build mode. This can be viewed as generating exten-
sions to the supplied current oracle. This cross-over from the transformed
program providing oracle following support to the code to build the oracle
extension can be achieved by extending the program transformation with
additional clauses:

% FOLLOW code

a(1,X) :- o_follow(N1), b(N1,X), o_follow(N2), c(N2,X).

a(0,X) :- a(X). % crossover clause

b(1,a).

b(2,c).

b(0,X) :- b(X). % crossover clause

c(1,c).

c(0,X) :- c(X). % crossover clause

The o follow relation is similarly extended to return 0 as an index when
it reaches the end of the currently followed oracle. From this point on, all
subgoals will map to their build counterparts and the search can continue,
again using a depth limit if required.

With the breadth-�rst partitioning strategy the unconstrained search in the
second phase means the overhead of the accumulation of the current oracle
in that phase is unnecessary. The crossover clause could equally transfer
execution to the subprogram with no oracle support, for an execution ef-
�ciency identical to that of the standard Prolog compiler. However, more
complex strategies, particularly those requiring redistribution of work during
the second phase, would require the continued accumulation of the current
oracle.

As with the o build relation, the o follow relation maintains a global value
to represent the current depth in the search. This depth is also the index
into the C array containing the current oracle.

In the follow transformation described above, the oracle index has been
shown as an new �rst parameter added to the head of each clause. The
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indexing of the �rst argument used in most Prologs and the C macro im-
plementation of o follow means the following of oracles can be particularly
e�cient.

The transformations of the sample program into the build code and follow
code results in a program suitable for executing many scheduling strategies
with small adjustments to the de�nitions of o build and o follow. The
transformations described above are applicable to all implementations of
Prolog providing linkage to C routines or macros.

In PrologPF, a small trade-o� has been made against execution e�ciency
for a simpler combined transformation, retaining the use of o build and
o follow. The transformed program in PrologPF is considered to execute
in one of two modes, build or follow, such that the o build and o follow

relations behave as before in the build and follow modes respectively, oth-
erwise they do nothing. The combined transformation used in PrologPF is
as follows:

a(X,1) :- o_build(1), o_follow(N1), b(X,N1), o_follow(N2), c(X,N2).

b(a,1) :- o_build(1).

b(c,2) :- o_build(2).

c(c,1) :- o_build(1).

An associated query such as a(X) is similarly transformed to:
o follow(N),A(X,N).

The added clause index is moved to the end of the parameter list in the head
of each clause, so that Prolog indexing on the �rst parameter can still be
exploited in build mode. The breadth-�rst partitioning strategy is designed
to involve much more search (in build mode) than the initial following of
assigned oracles by path processors, so the indexing of the added arguments
in the implementation described previously has been forfeited.

3.3.4 BFP and oracle allocation algorithm

The implementation of the breadth-�rst partitioning strategy is the same
for the oracle support in C or Prolog:

1. The arguments G, N and L are read from the command line.

2. The depth limit is set to L and a build version of the query is called.
This results in a stack of oracles in the global array.
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3. Beginning with the Nth oracle, and subsequently with every Gth ora-
cle, the path processor executes a follow version of the query with the
depth limit L = 1. I.e. path processor N will be allocated the ith
oracle i� (i mod G) = N . Solutions found are reported to the control
processor.

4. Completion is reported to the control processor.

3.4 Single CPU performance

The Prolog programs compiled for the Delphi Machine and with the PrologPF
compiler can be successfully run on a system with a single cpu simply by
specifying the group size G = 1, and allocating the selected processor the
unique processor number 0. The execution performance of the Delphi imple-
mentations can then be compared with each other and with some sequential
implementations of Prolog to assess the overhead caused by the use of ora-
cles.

3.4.1 Single CPU comparison: DelphiKS, PrologPF, sequen-

tial Prolog

The bar charts in �gures 3.2, 3.3 and 3.4 compare the performance of the
following systems using a single processor1:

DelphiKS: the �gures for the single cpu performance of the previous im-
plementation of the Delphi machine by Klein [49] are taken from
Saraswat's analysis [66].

PrologPF: these �gures refer to the execution of the compiled benchmarks
using the prototype implementation of PrologPF using Prolog data
structures to hold the oracles, and Prolog procedures to build and
follow oracles.

PrologPF(C): these �gures are from the benchmarks compiled with the
runtime oracle support in PrologPF implemented as C macros (see
section 3.3.3).

wamcc: the benchmarks were compiled with the sequential Prolog com-
piler wamcc on which PrologPF is based, and runtimes from a single
processor were recorded.

1MIPS-based DECStation 3100
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Sicstus: the SICStus sequential Prolog compiler (SICStus Version 3 [16])
was used to produce a compactcode compiled �le, for loading and ex-
ecuting with the SICStus runtime system. The compiler option pro-
ducing the fastest binaries, fastcode, was not available for the MIPS
systems used in the test.

As the scheduling strategy is of no purpose in a single cpu environment, the
overhead of the breadth-�rst partitioning strategy was minimised by setting
the depth limit L = 1. The compiled �les produced by PrologPF thus spent
very little time in the initial partitioning phase (less than 1ms), and the
overhead of PrologPF versus wamcc is caused by the runtime management
of the current oracle during the progress of the search.
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Figure 3.2: Single cpu runtimes for 8-queens benchmark.

The single processor execution times for each benchmark with each compiler
are given in Table 3.1.

Benchmark DelphiKS PrologPF(Prolog) PrologPF(C) wamcc SICStus
8-queens 59780 7859 1898 1636 3480

10-queens 1198770 197956 46497 38978 91490

Pentominoes 2824670 1041660 445959 410908 340885

Table 3.1: Single cpu execution times (in milliseconds)
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Figure 3.3: Single cpu runtimes for 10-queens benchmark.

The overhead of the oracle support coded with C macros in PrologPF(C)
for each of the three sample benchmarks is given in Table 3.2.

Benchmark PrologPF(C) overhead
8-queens 16%

10-queens 19%

Pentominoes 9%

Table 3.2: Overhead of PrologPF(C) oracle support.

3.5 Parallel execution performance

The runtime and speedup �gures for the parallel execution of each bench-
mark are summarised in Table 3.3.

3.5.1 8-queens

The graph showing the reduction in runtime for increasing number of path
processors with a suitable partitioning depth is given in Figure 3.5.

With the selected depth limit L = 21 for the breadth-�rst partitioning,
the program shows consistently reducing runtimes as the number of path-
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Figure 3.4: Single cpu performance for Pentominoes benchmark.

processors increases from 1 to 30. The 8-queens problem has a well balanced
search tree, and is therefore suited to the one-time breadth-�rst partitioning
OR-parallel execution technique used in PrologPF. The graph of runtime
ratios representing speedups over the single-cpu case are given in Figure
3.6.

As with the runtime graph, the speedup graph shows that with groups of
path-processors in the range G = 1 : : : 30 there is an improvement in per-
formance as processors are added. As will be seen with later benchmarks,
the speedup curve illustrates any reduction in e�ciency as processors are
added more clearly than the equivalent runtime graph. While the speedup
curve for the 8-queens benchmark is monotonically increasing, it does not
increase directly with the number of available processors G. For example the
speedup for G = 24 is approximately 12, so 50% of the available processing
resource has been e�ectively applied to the problem.

There are several factors which limit the e�ciency of the parallel execution
of the problem, and these are discussed in detail in section 3.6.

3.5.2 10-queens

The graph showing the reduction in runtime for increasing number of path
processors is given in Figure 3.7; the reciprocal data representing speedups
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Figure 3.5: Runtimes for 8-queens benchmark for G = 1 : : : 30 and L = 21.

over the single-cpu case is given in the graph of Figure 3.8. As with the 8-
queens benchmark, a suitable value for the depth limit L has been selected
for this initial performance analysis. The issue of the selection of the depth
limit is discussed further in section 3.6.

The speedup graph in Figure 3.8 shows a maximum speedup of approxi-
mately 19 for any number of path-processors from G = 1 : : : 30. For two
values of G, G = 21 and G = 30 the speedup is actually less than can be
achieved with fewer processors. The depth limit L is �xed at L = 27 for
the parallel execution with each value of G, such that the number of oracles
remains �xed at S = 864. The variation in speedup arises from the di�erent
allocation of oracles to path-processors with the simple modular algorithm
used in PrologPF. This issue is discussed further in section 3.6.

3.5.3 Pentominoes

The graph showing the reduction in runtime for increasing number of path
processors is given in 3.9, and the reciprocal data representing speedups over
the single-cpu case in Figure 3.10.

While showing improvements in runtimes up to approximately 18 path-
processors, further increase inG does not result in a reduction of the runtime
below approximately 40 seconds. At the depth limit L = 21 used in the test
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Figure 3.6: Speedup for 8-queens benchmark for G = 1 : : : 30 and L = 21.

there are 848 oracles, and one of those oracles has su�cient work beneath
it to cause the associated path processor to determine the overall runtime
�gure. This issue arises because:

� The breadth-�rst partitioning strategy used in PrologPF performs a
one-time allocation of oracles without subsequent work-splitting. The
introduction of work-splitting with PrologPF is described in Chapter
8.

� The overall runtime of the parallel execution of the problem is deter-
mined by whichever path processor takes the longest time to search
the subtrees of its allocated oracles.

The issue of the presence of large outlying oracles is discussed further in
section 3.6.

The speedup graph in Figure 3.10 emphasises the limit of reduction in run-
time as a maximum speedup for L = 21 of 12. In the same graph, the values
of G for which the speedup is actually lower than for a run with fewer
path-processors can be seen (G = 12; 24 and 30). As with the 10-queens
benchmark, these anomalies arise from the allocation of the 848 oracles at
L = 21 modulo G to the path-processors (see section 3.3.4).
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Figure 3.7: Runtimes for 10-queens benchmark for G = 1 : : : 30 and L = 27.

3.5.4 Summary

For the benchmarks containing available OR-parallelism tested, PrologPF
provides e�ective speedup over the single-cpu case. The parallel computing
environment consists of commonly available workstations interconnected in
a typical Ethernet-based intranet. With the one-time partitioning of BFP,
no communication is required between the cooperating processors after the
initial assignment of the work except to return solutions and report comple-
tion.

The parallel speedup provided by PrologPF is limited by a number of factors,
including:

� The size of the problem

� The modular allocation of the open oracles

� The one-time allocation of the open oracles, without subsequent work-
splitting

These issues are discussed in detail in the remainder of this chapter.
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Figure 3.8: Speedup for 10-queens benchmark for G = 1 : : : 30 and L = 27.

3.6 Issues

The performance tests from the three benchmark programs highlighted three
issues a�ecting the maximum speedup available with PrologPF:

� Although the problems with available OR-parallelism show a speedup
with increasing numbers of path-processors, the slope of the speedup
graph is less than 1. An ideal parallel implementation with G proces-
sors would achieve a speedup of G, and PrologPF falls short of this
goal, sometimes dramatically.

� For some values of G the speedup with a given depth limit L is less
than the speedup with fewer path-processors.

� At some value of G for a given depth limit L, the runtime of the
parallel execution of the problem reaches a lower limit, after which no
improvement in runtime is available with increasing G.

These issues are apparent even with an optimally selected value of L. The
causes are as follows:

1. The initial phase of the breadth-�rst partitioning scheduling strategy,
producing open oracles at the depth limit L, is performed sequentially
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Figure 3.9: Runtimes for Pentominoes benchmark for G = 1 : : : 30 and L =
21.

before the subsequent allocation of the discovered oracles to path pro-
cessors. The time taken for this initial phase places an upper bound
on the speedup possible. This problem is most signi�cant for problems
with relatively small search trees.

2. PrologPF uses a simple modular allocation algorithm, given in section
3.3.4, to allocate the discovered oracles to the G available path proces-
sors. No estimate is made of the size of the subtree below each oracle
before it is assigned to a path processor. Some values of G may cause
the distribution of the oracles to be particularly unfavourable. As the
parallel runtime with one-time partitioning is dependent on the max-
imum runtime of any contributing path processor, a bad distribution
of oracles can result in a runtime worse than that of a more favourable
distribution on fewer path processors.

3. With a selected value of the depth limit L, a �xed number of open
oracles is produced. As PrologPF with one-time partitioning performs
no work splitting after the initial assignment of an oracle, the parallel
speedup is limited by the runtime of the search of the largest subtree.
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Figure 3.10: Speedup for Pentominoes benchmark for G = 1 : : : 30 and
L = 21.

3.6.1 Oracle discovery and allocation

In its �rst phase of execution of the 8-queens problem, PrologPF performs
sequential computation for an average of 30 milliseconds to produce the 184
open oracles at the depth limit L = 21 (see Table 3.3). The single-cpu
execution of the 8-queens problem completes in 1898 milliseconds (Table
3.1). The overhead of the initial breadth-�rst phases places an upper bound
of 1898=30, or 63, on the possible speedup for L = 21.

The 184 open oracles discovered at L = 21 reference subtrees containing
varying amounts of work. The distribution of the work expressed in mil-
liseconds per oracle is given in Table 3.4.

Work (ms): 0 5 10 15 20 25 30 35 40 45 50 55 60

Oracles: 65 27 32 37 6 7 8 1 0 0 0 1

Table 3.4: Oracle work distribution for 8-queens at L = 21

With the one-time allocation of oracles on the completion of the �rst phase
of the breadth-�rst partitioning strategy, with G = 30 each path processor
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will be allocated 6 or 7 of the 184 open oracles. The combined total of
the work beneath all the oracles is 2095 milliseconds, for an average oracle
size of 2095=184, or 11:4, milliseconds. It should be noted that the oracle
distribution contains one outlier with a subtree of 55 to 60 milliseconds,
and the presence of this outlier will dominate the parallel runtime. The
path processor which receives this outlier will also receive 5 other 'average'
oracles, for an approximate total execution time of:

Initial breadth-�rst partitioning phase: 30ms
Execution of 5 'average' oracles (5� 11:4ms): 57ms
Execution of 'outlier' oracle: 58ms
Approximate total runtime: 145ms

The path processor which has been allocated the outlier oracle will have
the longest runtime of those in the selected group. The speedup for L = 21,
G = 30 can be expected to be 1898=145, or about 13. This estimate matches
the performance data listed in Table 3.3. For lower values of G, the impact
of the outlier is reduced as a greater number of 'average' oracles is allocated
to each path processor.

The distribution of work represented by the 864 open oracles discovered at
L = 27 in the 10-queens problem is shown in Table 3.5.

Work (ms): 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Oracles: 379 187 109 60 62 35 17 6 4 1 1 2 0 1 1

Table 3.5: Oracle work distribution for 10-queens at L = 27.

With L = 27 the breadth-�rst partitioning �rst phase executes for 168 mil-
liseconds producing 864 oracles. Table 3.5 shows that there are 190 oracles
with underlying work greater than 90 milliseconds, permitting a reasonably
even distribution across the path processors for G � 30. Unlike the 8-queens
example with L = 21, the outliers are less signi�cant with 864=30, or 28,
oracles allocated to each path processor, with an average size of 55 mil-
liseconds. The larger size of the problem, permitting a greater optimal L
and consequent larger selection of oracles, generates more open oracles with
signi�cant subtrees, such that the speedup factor of 18 for G = 30 can be
achieved, an improvement over the 8-queens case.

The speedup graph for the Pentominoes benchmark given in �gure 3.10
shows signi�cant reduction in parallel performance for values of G = 12 and
G = 24. This reduced speedup for an increased number of available path
processors is caused by an unfavourable distribution of open oracles after
the breadth-�rst partitioning phase.

The distribution of work represented by the 848 open oracles discovered at
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L = 21 in the Pentominoes problem is shown in Table 3.6.

Work (seconds): 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Oracle count: 790 22 8 7 9 5 3 0 0 0 0 1 3

Table 3.6: Oracle work distribution for Pentominoes at L = 21

Table 3.12 shows there are four open oracles with subtrees resulting in
searches greater than 20 cpu seconds. The oracle numbers and subtree
sizes of these four largest oracles are given in Table 3.7.

Path
Oracle Subtree Processor
Number Size (ms) (G = 24)

183 25319 15
558 24947 6
195 24862 3
402 23982 18

Table 3.7: Allocation of largest oracles in Pentominoes problem G = 24.

The total workload associated with all 848 oracles discovered at L = 21 in
the Pentominoes problem is 449583 milliseconds. This �gure is greater than
the single-cpu runtime because that case can be executed with L = 1 as no
partitioning is to be performed. The average workload associated with an
open oracle for the Pentominoes problem with L = 21 is 530 milliseconds.
For G = 24, each path processor will receive an allocation of either 35 or 36
oracles, with an average total runtime of 18800 milliseconds. The four largest
oracles each contain single subtrees larger than this average, such that the
processors receiving the largest oracles might be expected to dominate the
overall parallel runtime. The individual runtimes of the four longest running
path processors for the Pentominoes program with G = 24 and L = 21 are
given in Table 3.8.

Path Total
Processor Runtime (ms)

15 51367
3 42708
16 42701
18 36243

Table 3.8: Runtimes of four longest running path processors in Pentominoes
problem G = 24.

The runtime of the parallel execution of the problem is determined by the
longest executing path processor, in this case path processor number 15.
The single-cpu runtime for the Pentominoes problem is 445959 milliseconds
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(see Table 3.1). Thus the speedup at G = 24 is 445959=51367, or 8:68 as
shown in Table 3.3 and the graph in �gure 3.10.

The issue of the presence of large outlier oracles is apparent in the Pentomi-
noes problem, illustrated by the fact that path processor 15 is allocated the
largest oracle (among its assignment of 35 oracles from the 848) and takes
the longest time to complete. This issue is compounded with the simple
one-time allocation of all the oracles at L = 21 to the available path pro-
cessors, such that one path processor may be allocated several large oracles,
while another may receive an allocation containing only oracles with small
subtrees.

Figure 3.11 compares the parallel runtime performance of the Pentominoes
benchmark for two similar depth limits L = 21 and L = 24. At L = 21 there
are 848 open oracles, and at L = 24 there are 1410 open oracles. Although
the larger count of oracles might be expected to improve the e�ectiveness
of the work allocation, the distribution of the large oracles at L = 24 is
particularly unfavourable to a regular round-robin allocation to the path
processors.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 3 6 9 12 15 18 21 24 27 30

m
s

G

L=21
L=24

Figure 3.11: Runtimes for Pentominoes benchmark for G = 1 : : : 30 and
L = 21 versus L = 24.

The analysis of the oracle distributions shown in Table 3.9 shows that in-
creasing the depth limit from L = 21 to L = 24 has not produced a signi�-
cant increase in the number of large oracles.
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Work (seconds): 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Oracle count L = 21: 790 22 8 7 9 5 3 0 0 0 0 1 3

Oracle count L = 24: 1348 31 12 5 6 4 2 0 0 0 0 1 1

Table 3.9: Oracle work distribution for Pentominoes at L = 21; 24.

3.6.1.1 All-solutions versus �rst-solution parallel runtimes

The problem of large outliers in the list of open oracles at the selected
BFP depth limit has a signi�cant impact on the runtime of problems which
require all the path processors to complete. This is because the runtime will
be determined by the longest running path processor, and the large outlying
oracles will cause the associated path processor to execute for a greater time
than average.

The problem of outlier oracles with the simple breadth-�rst partitioning
scheduling strategy is potentially less signi�cant for problems for which only
one solution is required, after which the path processors can be terminated.

The issue can be illustrated with the runtimes of the 12 processors forG = 12
in the Pentominoes problem (using L = 21). The runtimes are ordered in
Table 3.10.

Path Processor Oracle count Runtime Solution Count
0 71 2847 0
2 71 6039 0
10 70 23873 1
11 70 29037 0
8 70 29306 0
9 70 31932 0
1 71 32619 0
5 71 38048 2
7 71 42790 0
6 71 60172 4
4 71 65683 1
3 71 91939 0

Table 3.10: Path processor runtimes for Pentominoes G = 12, L = 21.

The parallel runtime to generate all the solutions is determined by path
processor number 3, taking 91939 milliseconds to complete. In general, the
parallel runtime is determined by whichever path processor takes the longest
time to complete. The speedup for the all-solutions case is 445959=91939 or
4:8.

For the �rst-solution case, the problem will complete when the �rst solution
is found by any of the 12 path processors. While the small number of large
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outlier oracles are very likely to dominate the runtime in the all-solutions
case, in the �rst solution case a solution may be found in the average work-
load of a more typically loaded path processor. In fact for the Pentominoes
problem with G = 12 and L = 21, the longest running path processor num-
ber 3 does not contribute any solutions, and the �rst solution is returned
by path processor number 6 after 930 milliseconds.

3.6.2 Work function estimation

For the Pentominoes problem with a depth limit L = 21, 848 open oracles
are generated. The work associated with each of these oracles can be found
by performing a run of the program assigning one processor to each oracle,
and logging the runtime of each path processor. The results from a simulated
performance test with G = 848 are shown in the graph of Figure 3.12. The
graph shows that there are many oracles with very small subtrees, sparsely
interspersed with larger oracles.

The oracles are grouped by the amount of work in the associated subtree in
the earlier Table 3.6. The 4 largest oracles in that table are given in Table
3.7 as oracle numbers 183, 195, 402 and 558. These four largest oracles can
be seen in Figure 3.12.
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Figure 3.12: Work in milliseconds under each oracle for Pentominoes L = 21

A clearer picture of the distribution of work under a subset of the oracles is
provided in Figure 3.13.
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Figure 3.13: Work in milliseconds under oracle number 200 to 400 for Pen-
tominoes L = 21

Earlier work by Saraswat [66] attempted to improve upon the simple breadth-
�rst partitioning algorithm by estimating the work beneath each oracle be-
fore its allocation to a path processor. If the work estimate were accurate,
then the workload could be more accurately divided between the available
path processors.

The two techniques used to estimate the size of the subtrees beneath the
oracles were:

1. Selective sampling of the tree.

2. Fully searching the subtrees of alternate oracles, and using the arith-
metic mean of the immediate neighbours as an estimate of the work
beneath the intermediate oracles.

An examination of the ordered list of open oracles discovered at L = 21 in
the Pentominoes problem shows that the second method of work estimation
would not provide useful results in that case. Table 3.6 shows that of the
848 oracles, 58 contain subtrees greater than 2000 milliseconds. The total
work associated with all 848 oracles is 449583 milliseconds, and the work
associated with the largest 58 oracles is 420303 milliseconds. Thus the 7%
largest oracles lead to 95% of the work. These large oracles are randomly
distributed throughout the ordered list of open oracles, and are most likely
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to have immediate neighbours which contain very little work.

3.6.3 Partitioning depth

The breadth-�rst partitioning strategy requires an additional parameter be
passed to each path processor specifying the depth to be searched before the
partitioning of the workload takes place. The selection of this parameter L
can have a signi�cant impact on the subsequent runtime of the problem:

L too small: not enough open oracles will be generated at this depth to
provide work for all the available path processors. Thus many path
processors may remain idle throughout. Any oracles generated which
point to small subtrees will cause the associated path-processor to
complete quickly, and then remain idle.

L too large: The amount of work in the tree within the depth limit may
become an appreciable proportion of the total work available in the
tree. The initial breadth-�rst partitioning phase is performed sequen-
tially, and the parallel speedup is limited to the subsequent unlimited
search phase.

The speedup performance of the breadth-�rst partitioning strategy with a
range of values for L is given in �gures 3.14, 3.15 and 3.16. The graph for the
8-queens problem includes a dashed line illustrating limits on the speedup
discussed in this section.

The example of the 8-queens problem illustrates the characteristics of values
of L which are too small (L < 21) and too large (L > 21). The number
of open oracles discovered at each value of L is given in Table 3.11. The
table also shows BF time, which is the time taken for the initial breadth-�rst
partitioning phase.

Table 3.11 also contains some calculated values for the minimum execution
time and the maximum speedup. For values of L = 1 : : : 12, fewer oracles
are produced than the number of available processors G = 30, and the
maximum possible speedup is at least limited to the number of open oracles
discovered. This maximum speedup assumes the oracles have subtrees of
equal sizes. The actual speedup �gures for L = 1 : : : 12 are below these
maxima because the oracles are of unequal sizes. For values of L = 15 : : : 36,
the minimum runtime of any path processor is the initial partitioning time
BF time plus the total work under all the oracles divided by G. Again this
lower bound for runtime assumes the work is perfectly evenly divided among
the oracles. In practice, the workload beneath the oracles is uneven resulting
in lower speedups, and the actual speedup curve can be seen to fall short
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Figure 3.14: Actual and limits for speedup of 8-queens benchmark for G =
30 and L = 1 : : : 36.

of the calculated upper bound at every point in the graph of �gure 3.14.
The shortfall is most signi�cant for small values of L, where the workload
is most unevenly distributed among the discovered open oracles.

The graphs shown in �gures 3.14, 3.15 and 3.16 show the speedups for a
range of values of L for a �xed number of path processors G = 30. The
curves are slices through the three-dimensional graphs of L, G and speedup
for each problem, given in �gures 3.17, 3.18 and 3.19. The graphs illustrate
the importance of the optimum value for L with one-time work allocation.
The parallelisation bene�ts reduce either side of the optimum value for L.
For the example benchmarks chosen, varying the number of processors in
the group has little e�ect on the optimal value of L. This is because with
one-time work allocation, the value of L which produces the most balanced
set of open oracles is generally suitable for all groups of processors where
the group size G is much less than the number of generated oracles S.

3.6.4 Fixed versus demand-based oracle allocation

Table 3.10 gives the sorted runtimes for each processor in a 12-processor
con�guration for the solution of the Pentominoes problem with a depth
limit L = 21. The runtimes range from 2874 milliseconds for path processor
0, through to 91939 milliseconds for path processor 3.
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Figure 3.15: Speedup for 10-queens benchmark for G = 30 and L = 1 : : : 30.

The total runtimes vary because the simple �xed allocation of one twelfth of
the 848 oracles at L = 21 to each path processor (70 or 71 oracles to each)
takes place without any consideration of the size of the subtree beneath
each oracle. The total workload is thus randomly distributed across the
12 path processors, resulting in an uneven distribution. As was discussed
in Sections 3.6.1 and 3.6.2, the distribution is particularly sensitive to the
presence of large 'outlier' oracles, and in the case of the Pentominoes problem
is determined by the allocation of the largest 7% of the oracles representing
95% of the work.

The �xed allocation algorithm where the 848 oracles in the Pentominoes
problem are divided equally and permanently among the available path pro-
cessors is particularly simplistic. If we take the case discussed above with
G = 12 and each path processor receiving 70 oracles, a path processor may
execute one or more large outlier oracles at an early stage in its execution
with many oracles still to be executed. At this stage other path processors
may already be idle, but the simple algorithm does not permit the reassign-
ment of the remaining oracles to the idle path processors. This issue can be
mitigated without the use of a work estimation function, as is demonstrated
by the demand based algorithm discussed below.

Without an e�ective work estimation function for the oracles, the parallel
performance might be improved with the use of a demand-based allocation
algorithm rather than the current �xed distribution. The demand algorithm
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Figure 3.16: Speedup for Pentominoes benchmark for G = 30 and L =
1 : : : 30.

would operate as follows:

1. The breadth-�rst partitioning phase would execute as before, gener-
ating a number S of open oracles at the depth limit L, forming an
ordered list of oracles numbered 0 : : : S � 1.

2. Each of the G available path processors with processor numbers N = 0
through N = G� 1 would be assigned an initial oracle with the same
number as the path processor number.

3. On completion of the search of the subtree beneath the initially as-
signed oracle, each path processor will request an additional oracle
from the control processor. The path processor continues to request
oracles after each assigned oracle is completed. Solutions found while
processing an assigned oracle are returned to the control processor (or
logged locally) and processing continues.

4. The control processor will allocate the remaining oracles to requesting
path processors in the order of the incoming requests, until all the
oracles have been allocated.
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Oracle Total Work per Min. Max.
L count work processor BF time Runtime Speedup
1 1 1898 1898 0 1898 1
3 1 1898 1898 0 1898 1
6 4 2016 504 0 504 4
9 10 1870 187 0 187 10
12 24 1887 79 0 79 24
15 52 1948 65 4 69 28
18 102 1953 65 16 81 23
21 184 2002 67 32 99 19
24 316 2039 68 74 142 13
27 484 2168 72 113 185 10
30 720 2285 76 176 252 7.5
33 966 2428 81 300 381 5.0
36 1188 2562 85 496 581 3.3

Table 3.11: Oracle count S and oracle sizes for 8-queens with L = 1 : : : 36.

5. The path processors become idle on completion of an assigned oracle
when the control processor indicates no further oracles are available.

For the Pentominoes problem with G = 12 and L = 21, the allocation of the
848 oracles on a demand basis can be simulated to result in the runtimes
given in Table 3.12.

Path Processor Oracle count Runtime
10 95 33752
6 71 34007
0 29 35205
1 44 35342
4 69 35776
8 43 36268
2 79 36789
3 103 40169
7 70 41557
5 79 42527
11 105 42812
9 61 43443

Table 3.12: Runtimes of each path processor for Pentominoes G = 12,
L = 21 using demand allocation with no retrieval delay.

Table 3.12 shows that the work is allocated more evenly than with the simple
�xed allocation algorithm, with a widely varying number of oracles being
assigned to each path processor. Path processor number 9 has the longest
runtime, resulting in a speedup over the single-cpu case of 445959=43443, or
10:3, an improvement on the speedup of 4:8 with the �xed allocation.
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Figure 3.17: Speedup for 8-queens benchmark for G = 1 : : : 30 and L =
1 : : : 36.

However, Table 3.12 represents the maximum improvement over the �xed
allocation algorithm as the overhead associated with each request for an
oracle has been set at zero milliseconds. The demand allocation algorithm
is sensitive to the communications delay associated with every request for
an oracle, as can be shown with the Pentominoes problem for a range of
depth limits with G = 30.

Figure 3.16 shows the speedup achieved by PrologPF for the Pentominoes
problem for values of the depth limit L = 1 : : : 30 and G = 30 using the �xed
oracle allocation algorithm. The graph also shows the calculated speedup
performance for a demand-based oracle allocation algorithm with oracle re-
trieval delays of 0, 25 and 250 milliseconds.

At each value of the depth limit L, the number of oracles generated S and
the time taken for this initial oracle discovery phase are given in table 3.13.

With reference to Figure 3.16, the demand-based oracle allocation algorithm
with the retrieval delay of zero or 25 milliseconds outperforms the �xed al-
location algorithm used by PrologPF for all values of L. With an oracle
retrieval delay of 250 milliseconds, the overhead of the demand-based algo-
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Figure 3.18: Speedup for 10-queens benchmark for G = 1 : : : 30 and L =
1 : : : 39.

rithm increases with the number of oracles S. Table 3.13 shows that for
L = 30, the number of oracles discovered S = 3396. For G = 30 at least one
processor will be allocated at least 3396=30, or 113 oracles. The time taken
to retrieve these 113 oracles places an upper limit on the possible speedup
with the demand-based allocation algorithm. With a retrieval delay of 250
milliseconds, the cumulative delay associated with the allocation of the or-
acles will be 113 � 250, or 28250 milliseconds, such that at least one path
processor will take at least this amount of time to complete, so the speedup
is limited by the retrieval delay to a maximum of the single-cpu time divided
by 28250, or 15:8. In practice the oracles also have a subtree search time,
such that the speedup curve peaks for a value of L with an optimal balance
of granularity of work under the discovered oracles with a su�ciently small
oracle count S to mitigate the retrieval overhead. The graph in Figure 3.16
shows this balance to be optimal with L = 18 for an oracle count S = 472.

3.6.5 Work splitting

After the initial breadth-�rst partitioning phase in which the open oracles
are discovered at the selected depth limit L, PrologPF uses a simple �xed
allocation algorithm to assign the oracles to the available path processors.
After this assignment takes place, with one-time partitioning the path pro-
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Figure 3.19: Speedup for Pentominoes benchmark for G = 1 : : : 30 and
L = 1 : : : 33.

cessors search the subtrees of all their allocated oracles and become idle
when all this work is completed. Some path processors will complete their
assigned work and become idle before others. An example of this behaviour
is illustrated in Table 3.10, where path processor 0 becomes idle after only
2827 milliseconds while path processor 3 executes for 91939 milliseconds.

As the parallel performance is determined by the path processor with the
highest runtime, a more balanced distribution of the work will increase the
overall speedup. To balance the workload in the example discussed, work
must be transferred from path processor 3 to other path processors.

Relative to the �xed allocation of oracles used by PrologPF and DelphiKS,
the demand allocation of oracles discussed in Section 3.6.4 represents a dy-
namic distribution of the workload. In e�ect the work that would otherwise
reside in the pool of oracles assigned to processor 3 is collected by other path
processors as they become idle. However, the 'outlier' oracles discussed in
Section 3.6.1 represent an additional problem, in that a path processor will
proceed without interruption to search the entire subtree beneath any given
oracle.
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Depth Limit L Oracle count S BFtime
1 1 0
3 2 4
6 12 4
9 44 12
12 134 58
15 268 156
18 472 332
21 848 672
24 1410 1261
27 2256 2281
30 3396 3702

Table 3.13: Oracle count S and initial oracle discovery time (BFtime) for
Pentominoes problem with L = 1 : : : 30.

This issue is more signi�cant the more imbalanced the work between the
S discovered open oracles at the selected depth limit L. Empirically, the
imbalance in workload between the discovered oracles become worse the
smaller the depth limit and the fewer the discovered oracles.

The issue of work splitting is illustrated in Figure 3.20.

In Figure 3.20 the initial depth limit has been set at L, and the illustrated
path processor N has been assigned the open oracles A, B, C, D and E.
The �gure illustrates the situation at some point while path processor N
is searching the subtree of oracle C, having completed oracles A and B. At
this point other path processors have completed all their oracles and have
become idle. The parallel performance of the system may be improved if
the remaining work of path processor N can be assigned to the idle path
processors. With the architecture of the Delphi machine, the remaining
work can be categorised as being of two types:

1. The oracles D and E represent subtrees yet to be searched.

2. Path processor N is currently at point X in its search of the subtree
beneath oracle C, proceeding with the standard Prolog depth-�rst left-
to-right search. The portion of the subtree under oracle C to the right
of X remains to be searched.

For the �rst case, the reassignment of the work of the remaining oracles
can be e�ected by allocating the remaining oracles D and E to two idle
processors.

The second case, in which path processor N has partially searched the sub-
tree under oracle C to arrive at point X, may require more complex treat-
ment involving an incremental breadth-�rst partitioning phase starting from



3.6. ISSUES 95

A B C D E

X

C1 C2 C3 C4

root

L1
X: current node

current oracle

L

Figure 3.20: Work splitting at busy path processor.

oracle C rather than the root of the problem search tree. This phase will
discover the open oracles C1, C2, C3 and C4 at the new depth limit L1.

Then the simplest approach may be to discard the work already performed
by path processor N , and to add that path processor to the pool of idle
path processors for the oracle reassignment. Those processors then search
the subtrees below oracles C1, C2, C3 and C4 in parallel.

An issue arises if solutions have been found by path processor N and re-
turned to the control processor. Further solutions found by the group of
processors assigned oracles C1, C2, C3 and C4 may be duplicates of those
already returned. If the previous search to position X by path processor N
is ignored, then the solutions returned must be labelled with their associ-
ated oracle, such that subsequent duplicates can be discarded. The use of
an oracle to uniquely identify a point in the search tree provides a powerful
mechanism to label any solution with a unique identi�er. In problems requir-
ing only one solution, or where duplicate solutions are acceptable or ignored,
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the transmission of the oracle with the solution is no longer necessary.

A more complex approach to reassigning the work of path processor N
beneath oracle C in Figure 3.20 can take advantage of the availability of
the current oracle in path processor N referring to point X at the time
of interruption. If the incremental partitioning depth L1 is smaller than
the current depth of X, then the oracles found at L1 have the following
characteristics:

1. One of the open oracles discovered at the incremental depth limit
L1 (C1, C2, C3 or C4) will form a pre�x of the oracle to X. This
is necessary because if X is a valid point in the search space then
all oracles representing every choice point up to X must have further
open branches to include X, and cannot be closed oracles representing
success or failure. For the following discussion this oracle will be called
Cx.

2. All oracles at the incremental depth limit L1 which are numerically
smaller than the oracle formed from the �rst L1 indexes in the oracle
leading to X have already been fully searched by path processor N .
This is true because the oracle indexes are ordered in the same order
as the textual sequence of the associated clauses, and the search order
used by PrologPF is the same as that of Prolog, namely top-down.

If further re�nement is required, the subtree referred to by oracle Cx (see
above) can be further partitioned at an incremental depth L2 to generate
additional open oracles. The same reasoning can be used as above to identify
the single oracle within this ordered list which includes X, such that all open
oracles to the right of that oracle can be assigned to idle path processors.

Chapter 8 builds upon a modi�ed breadth-�rst partitioning technique to
support work-splitting in PrologPF.

3.7 Breadth-�rst partitioning versus stream-AND

parallelism

Stream-AND parallelism in logic programming relies upon the treatment of
certain relations as producers and other relations as consumers. Newmarch
provides a tutorial introduction to stream-AND parallelism in [59] Chapter
10, and the technique is reviewed in this dissertation in Chapter 2 Section
2.1.2.

A conjunctive goal such as member(X,Biglist), factorial(X,Y) can be
viewed as a pair of connected parallel processes member and factorial. The
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member process generates values and sends them to the factorial process,
which in turn produces the associated sequence of factorials. The parallel
speedup arises from the fact that the member process can be working on the
production of the next value while the factorial process is still working on
the previous value.

The breadth-�rst partitioning scheduling strategy can produce comparable
bene�ts when the producer process involves relatively little work. This can
be illustrated with a sample tree for a member/factorial query with the
program listed below. The search tree for the following member/fact pro-
gram is given in Figure 3.21.

member(X,[X|_]).

member(X,[_|Y]) :- member(X,Y).

fact(1,1).

fact(X,F) :- X > 1, X1 is X-1, fact(X1,F1), F is X*F1.

:- member(X,[4,3,2,1]), fact(X,Y).

L

root

Figure 3.21: Search tree for member/fact program.

At the selected depth limit L a number of oracles are discovered which can
be passed to available path processors for execution. These path processors
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will recompute the value of X generated by the member relation by following
the assigned oracle. Following an oracle is an e�cient operation which takes
a time proportional to the length of the oracle, L. The reconstructed value of
X is then passed to the fact relation for the relatively lengthy computation.
The approach is most e�ective if the subsequent computation is much greater
than the initial work generating and following the open oracles, and the
technique is suited to generate-and-test programs where the test is complex.

3.8 Conclusions

The benchmark programs used to evaluate the pure Prolog performance of
PrologPF have su�cient OR-parallelism to provide useful results in tests
with 1 to 30 path processors2. Execution of the programs has illustrated
issues relating to the overall size of the selected problem, the use of the
breadth-�rst partitioning scheduling algorithm, and the selection of the
depth limit used in that scheduling algorithm.

PrologPF has an e�cient implementation with the use of simple oracle man-
agement primitives o build and o follow written in 'C' combined with a
standard Prolog compiler. Similar primitives can be implemented in Prolog
giving a exible system suitable for evaluation of the use of oracles with an
acceptable performance penalty. The PrologPF overhead relative to the use
of the standard compiler in a single-cpu environment for the test programs
was 9 to 19%.

The breadth-�rst partitioning algorithm provides a means of allocating the
work to a number of available path processors with no subsequent commu-
nication after the initial assignment of the problem. The optimal selection
of the depth limit for the breadth-�rst partitioning strategy has a signi�-
cant impact on the e�ectiveness of the subsequent parallelisation, with the
�xed one-time work allocation algorithm resulting in an uneven utilisation
of the path processors. The utilisation of the path processors would be
more even if the breadth-�rst oracle discovery technique were complimented
with a demand-based allocation algorithm and work splitting of large oracles
during their execution if other path processors are idle.

PrologPF with its breadth-�rst partitioning algorithm provides similar par-
allelisation bene�ts to those obtained with stream-AND parallelism for generate-
and-test programs in which the generation procedure is relatively lightweight.

2The experimental system at Cambridge was generally limited during this research to
30 processors



3.9. SUMMARY 99

3.9 Summary

Three OR-parallel pure Prolog benchmarks have been used to investigate
the e�ectiveness of the parallelisation techniques used in PrologPF:

8-queens: the chess-based problem of �tting eight queens onto an eight-
by-eight chessboard with none attacking any other.

10-queens: the same problem with ten queens and a ten-by-ten chess-
board.

Pentominoes: the problem of �tting twelve de�ned geometric shapes onto
a three-by-twenty board.

The programs selected have been used to:

1. Assess the speedup provided by PrologPF for the execution of each
problem on a range of distributed systems with 1 to 30 processors.

2. Compare the performance of PrologPF with previous implementations
of the Delphi machine.

3. Compare the performance of PrologPF and previous Delphi implemen-
tations with the single-cpu performance of other compilers.

4. Investigate the overhead of the partitioning time for a range of values of
the depth limit parameter of the breadth-�rst partitioning algorithm.

5. Investigate the impact of the random distribution of the workload
beneath the typical range of discovered open oracles.

The earlier implementation of a Prolog system using oracles, DelphiKS,
utilised an extended Warren Abstract Machine [73] with additional instruc-
tions for oracle manipulation. A prototype version of PrologPF uses Prolog
data structures to hold the oracles, with Prolog procedures to create and
interpret the structures. The �nal version of PrologPF uses similar proce-
dures written in 'C' with the oracles held in 'C' arrays for a faster execution.
Each system has produced compiled binaries suitable for parallel execution
on a distributed system of common Unix workstations.

PrologPF is based upon the 'wamcc' Prolog compiler [30]. The following ta-
ble compares the single-cpu performance of DelphiKS, PrologPF with Prolog
oracle primitives, PrologPF with C primitives, wamcc, and SICStus Prolog
Version 3 (compactcode) on the same DECStation 3100. The �gures are
calculated from the geometric mean of the results of the three benchmarks
used, and are normalised against wamcc.
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DelphiKS PrologPF(Prolog) PrologPF(C) wamcc SICStus
19.8 3.95 1.15 1.00 1.61

Table 3.14: Single cpu runtime ratios.

In this analysis PrologPF uses a breadth-�rst partitioning strategy, in which
an initial phase of execution proceeds in the normal Prolog depth-�rst left-to-
right manner, but is limited to a selected AND-OR depth. During execution,
PrologPF maintains a list of the indexes of each clause leading to the current
position in the search, this list being the current oracle. Each time the depth
limit is reached in the initial phase, the current oracle is recorded on the
oracle stack. On completion of the initial phase of execution, the oracles on
the oracle stack are assigned to the available path processors for re-execution
in a second phase in which the subtree beneath each can be searched.

For the 8-queens problem, PrologPF achieved a maximum speedup with 30
processors of 13.5. On the same distributed system the speedup achieved for
the 10-queens problem was 18.5 and for the Pentominoes problem was 10.8.
The runtime for the 8-queens problem was reduced from 1.9 seconds to 141
milliseconds, the 10-queens problem from 46.5 seconds to 2.5 seconds, and
the Pentominoes problem from 446 seconds to 41.5 seconds.

The benchmark programs were used to investigate the characteristics of the
breadth-�rst partitioning strategy. In general, the actual speedups achieved
were less than the number of available path processors. The analysis of the
actual performance of the benchmarks clari�ed the issues involved, suggest-
ing improvements to the technique.

The issues can be summarised as follows:

1. The initial breadth-�rst partitioning phase of execution is performed
sequentially, without bene�t of parallel speedup. The time taken to
generate the open oracles during this phase places an upper bound
on the overall speedup. This issue is most apparent in programs with
relatively small search trees, as the initial breadth-�rst phase can rep-
resent an appreciable proportion of the overall execution.

2. After the open oracles have been generated and allocated, each path
processor will follow each of its assigned oracles to arrive at the associ-
ated subtree. Following an assigned oracle represents a recomputation
of that section of the search space. If a large number of oracles is
generated, each of a signi�cant length (the depth limit was relatively
deep) then this recomputation overhead may be signi�cant.
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3. With a �xed one-time allocation of oracles to the available path pro-
cessors without any consideration of the work beneath each oracle, the
work to the path processors may be imbalanced, leading to a range
of total runtimes for the path processors. As the parallel performance
for an all-solutions problem is determined by the longest running path
processor, this leads to a reduction in overall speedup.

4. The analysis of the benchmarks shows that the subtrees represented by
the oracles discovered at the depth limit refer to subtrees containing
widely di�ering amounts of work. In many cases, the majority of the
oracles refer to relatively small subtrees, while a minority refer to a
small number of very large subtrees. Not only all the oracles allocated
at the end of the �rst breadth-�rst partitioning phase, but the subtree
beneath each individual oracle is searched to completion. Other path
processors may be idle while one path processor is busy in the search
of a very large subtree.

The analysis of these issues suggests a number of improvements needing
further work:

� The time spent in the initial breadth-�rst partitioning phase is a more
signi�cant issue for small problems, becoming less signi�cant as the
problem size increases. This issue might be ignored for large problems,
or compile-time analysis might be used to optimise the strategy for
smaller problems such as 8-queens.

� The recomputation overhead associated with following oracles is very
low with the breadth-�rst partitioning strategy, as the time spent fol-
lowing the allocated oracles to arrive at the designated subtree is much
lower than the time spent searching the subtrees. For this overhead
to be minimised a good technique is needed to generate as many ora-
cles with non-trivial subtrees as possible. The automatic partitioning
strategy [49, 66] was greatly impacted by this issue, and breath-�rst
partitioning improves the situation by generating a much larger pool
of open oracles.

� The �xed allocation of the oracles after the initial breadth-�rst parti-
tioning phase minimises the subsequent communication requirements,
but leads to a signi�cant imbalance of the workload. The workload can
be much better balanced with a demand-based strategy, in which the
path processors request additional oracles on completion of the search
of each assigned oracle. A trade-o� is made of the workload balancing
against the communications requirements.

� The presence of large outlier oracles in the pool discovered at the se-
lected depth limit implies that work splitting is required to interrupt
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the execution of a busy processor to re-partition the work associated
with the large oracle. One approach is to re-use the breadth-�rst par-
titioning strategy within the subtree represented by the large oracle.
The ordering of the clause indexes combined with the Prolog strict
top-down left-to-right search means that some optimisations can be
applied to take advantage of the search within the subtree already
performed by the busy path processor. These enhancements are dis-
cussed in Chapter 8.

For some problems, PrologPF with the breadth-�rst partitioning strategy
provides similar parallel behaviour to that obtained with stream-AND par-
allelism. The producer-consumer model in stream-AND parallelism is re-
placed in PrologPF with a recomputation technique for the generation of
the 'produced' values. The techniques are comparable in e�ciency if the
computational requirements of the producer procedure are relatively low.

In general, PrologPF provides e�ective speedup for many Prolog programs
on a distributed network of general-purpose workstations. The technique is
simple, and suited to an environment where many workstations are available.
No special programming techniques are required, and the use of oracles
allows speedy recovery in the event of an individual workstation failure.



Chapter 4

Cuts versus the Delphi

Principle

This chapter discusses the role of the Prolog extra-logical operator cut in
pruning the sequential search tree, and highlights the issues that arise when
the tree is searched in parallel. Alternative approaches to addressing the
issue are considered. Gupta and Santa Costa discuss the related issues with
AND-OR parallel Prolog programming in [40].

4.1 Cut in standard Prolog programs

Standard Prolog [35] provides a built-in extra-logical predicate \cut" (!/0)
aimed at performing some control by pruning the search tree. The predicate
always succeeds, but has a drastic e�ect on the sequential search tree: some
branches are pruned, removing the associated sub-trees, in order to force a
predication to execute more quickly without constructing and visiting those
sub-trees. The example program containing cut from [35] is given below:

p(X,Y) :- q(X), !, r(X,Y).

p(X,Y) :- s(X).

q(a).

q(b).

q(c).

r(b,b1).

r(c,c1).

s(d).

:- p(U,V).

103
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or

q(a) q(b) q(c) r(b,b1) r(c,c1)

q(U) "cut" r(U,V)

p(U,V) p(U,V)

s(U)

p(U,V)

or

&

or

Figure 4.1: The e�ect of cut on the AND-OR search tree.

The AND-OR search tree for this simple example is given in Figure 4.1.

The search tree can be transformed to the OR-only tree given in Figure
4.2, more clearly representing the execution sequence of the Prolog depth-
�rst left-to-right search. The �rst \cut" encountered prunes the alternative
branches to the right of the current branch, such that only one clause is used
to solve p(U,V) and also only one clause for q(U).

The use of cut by a Prolog programmer requires careful analysis of the se-
quence in which the search tree is traversed, in order to ensure the required
behaviour is obtained. The built-in predicate is often used to enforce de-
terminacy of a relation, usually within a particular mode of call. A typical
example can be found in the de�nition of the relation max:

max(X,Y,X) :- X > Y, !.

max(X,Y,Y).

The max relation is expected to be used with the �rst two arguments instan-
tiated, and the third a variable. On succeeding, the third argument will be
uni�ed with the larger of the �rst two arguments. The use of cut assumes
the top-down, left-to-right execution of sequential Prolog: if the �rst clause
succeeds, then the alternative clause for max will be pruned from the search.
If the cut were omitted, a goal such as :- max(5,3,X) would return two
answers, fX=5, X=3g, and to avoid this problem the relation would be de�ned
with additional conditional guards:

max(X,Y,X) :- X > Y.

max(X,Y,Y) :- X =< Y.
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p(U,V)

"cut" "cut" "cut"

r(a,Y) r(b,Y) r(c,Y)

r(b,b1) r(c,c1)

q(c)q(a) q(b)

q(U) s(U)

s(d)

Figure 4.2: E�ect of cut on OR-only search tree.

Thus the presence of cut has the following implications:

1. Subsequent conditions can be omitted from later clauses in the proce-
dure.

2. The Prolog system can execute more e�ciently by avoiding the con-
struction of choice points, unifying the arguments and calling the guard
conditions of later clauses.

3. The �rst de�nition of max which would otherwise return multiple so-
lutions is rendered deterministic.

While the relation max has the required behaviour in the expected mode, the
non-logical de�nition of the relation can introduce problems. If the relation
is called with all three arguments instantiated then unexpected results may
be produced. For example, with the �rst de�nition of max with cut, the
goal :- max(5,3,3) will succeed, which might not be what the programmer
expected. On uni�cation of the arguments with the head of the �rst clause,
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the subgoal X > Y fails, such that the cut is never reached, and execution
continues with the second clause which succeeds.

While the use of cut in procedures such as max is a common programming
practice in Prolog, the problems caused can be avoided with the logical
de�nition given in the second example. The deterministic execution of a
procedure can be made explicit through the use of functions, as discussed
in detail in Chapter 5, without the use of non-logical relations with cut.

4.2 Experimental Analysis

The benchmarks used in the earlier analysis of the PrologPF system contain
a number of deterministic relations. The e�ciency of execution can be
improved by the addition of cuts to the programs:

8 queens and 10 queens: The program used for these benchmarks con-
tains two deterministic procedures, notthreatened which succeeds if
two pieces are not attacking each other and safe which succeeds if a
partial board passed as an argument has no attacking pieces. One cut
can be inserted into each procedure to improve the e�ciency of the
deterministic execution.

Pentominoes: This benchmark contains six deterministic procedures, used
to initialise the board and test the partially �lled board for consistency.
The introduction of six cuts, one per procedure, makes the determin-
ism explicit to the Prolog system for a more e�cient execution.

For the execution of the benchmark programs on a DECStation 3100, Table
4.1 shows the frequency of cuts encountered during the search of each proof
tree.

Source Execution Cuts Time
Benchmark Cuts Time(ms) Encountered per cut
8-queens 2 1898 28666 66�s

10-queens 2 46497 814772 57�s

Pentominoes 6 445959 197878 2.5ms

Table 4.1: Count of cuts encountered for the benchmarks on a single cpu.

Table 4.1 gives the total number of cuts encountered for each benchmark
during the traversal of each search tree. Using the execution times for the
single-cpu case (Table 3.1 in Chapter 3), the average period between each
cut can be calculated. In a parallel processing case this period represents an
upper bound on the average time between the discovery of each cut in the
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search tree, and the average will reduce by the speedup factor of a parallel
execution.

4.3 Strategies for dealing with cut in the Delphi

Machine

The breadth-�rst partitioning algorithm can be applied to the search tree
represented in Figure 4.2. If the partitioning depth limit is set at a low
�gure, such as L = 2, then oracles will be created for the alternate paths via
q(U) and s(U) in the diagram. If these oracles are allocated to di�erent path
processors, then the discovery of the cut after the solution of q(a) must be
communicated to the path processor executing the other oracle, such that
that search can be aborted.

The path processor searching the subtree to be pruned on the discovery of
the cut may have already communicated solutions to the control processor.

If the system is intended to execute Prolog programs in parallel including
subtrees which may be pruned by cuts discovered by other path processors,
then the simple Delphi system must be extended as follows:

� Solutions reported to the control processor must be tagged with the
associated oracle.

� Any subsequent reporting of a solution to a client program must be
delayed until the subtrees to the left of the solution in the OR-only tree
have been fully searched, to ensure the absence of cuts which would
otherwise have pruned the solution.

� Similarly, the reporting of solutions found within the depth limit dur-
ing the �rst phase of the scheduling algorithm must be delayed until
the left subtrees have been searched.

� The discovery of a cut in a subtree must be communicated to the path
processors searching subtrees to the right of the discovered cut, such
that pruning can be applied. However, the communication must be
delayed until the subtrees to the left of the discovered cut have been
fully searched to ensure that the subtree containing the cut should not
itself be pruned.

The pruning of the search tree is limited to the depth of the clause containing
the cut. The example in Figure 4.2 can be extended with an additional
procedure:

t(X,Y) :- p(X,Y).

t(a,b).
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Figure 4.3 shows the search tree for the query :- t(U,V). The pruning due
to the cut in the OR-only tree beneath q(a) is limited to subtrees beneath
the node labelled p(U,V).

t(a,b)

"cut" "cut" "cut"

r(a,Y) r(b,Y) r(c,Y)

r(b,b1) r(c,c1)

q(c)q(a) q(b)

q(U) s(U)

s(d)

p(U,V)

t(U,V)

Figure 4.3: A�ect of cut limited to depth of containing clause in OR-only
tree.

In communicating the discovery of the cut to other path processors, an
oracle can be used to de�ne the choices a�ected by the cut. With reference
to Figure 4.3, on discovering the cut beneath q(a) the path processor must
communicate the oracle referring to the node labelled q(U). Path processors
receiving the communication must abort any search of subtrees with a pre�x
equal or greater to that oracle. Additional data must be recorded to relate
each cut to the root of the correct subtree in the OR-only tree such that the
required oracle can be created.

Section 4.2 shows cuts may be encountered during the execution of a pro-
gram thousands or even millions of times each second. The target archi-
tecture for PrologPF assumes a large supply of processing power with a
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relatively limited communications capacity. For this reason distributed sup-
port for cut was not implemented, and an alternative approach taken.

4.4 Cuts in PrologPF

The requirement for \cut" in PrologPF is accommodated in two ways:

1. Support for higher-order functional programming is provided to miti-
gate the need for cut to provide:

� E�cient deterministic execution of relations which would other-
wise return multiple solutions. These relations should be replaced
with functions in PrologPF. Functional support in PrologPF is
discussed in detail in Chapter 5.

� Support for the use of boolean functions, where otherwise the
programmer might have used the more error-prone negation-as-
failure.

2. Cut is permitted in user procedures, but those procedures must be
deterministic. Oracle support is suspended during the execution of
procedures containing cut.

The requirement that the relations containing cut must be deterministic is
illustrated by the search tree for the following program given in Figure 4.4.

t(X,Y) :- p(X,Y), q(X).

t(a,b).

p(X,Y) :- q(X), !, r(X,Y).

p(X,Y) :- s(X).

q(b).

q(c).

r(b,b1).

r(c,c1).

s(d).

:- t(U,V).

The example program has one solution for the subgoal p(U,V): fU=b, V=b1g.
Oracle processing is suspended during the execution of that subgoal due
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1 2

"cut"

1

q(b)

BA
s(U)q(U)

p(U,V)

t(U,V)

t(a,b)

q(b)

r(b,V)

r(b,b1)

q(c)

Figure 4.4: Deterministic execution of a PrologPF relation containing cut.

to the compiler detection of the cut in the procedure. When the relation
succeeds with its single solution, oracle processing continues such that the
solution to the top-level query has the oracle [1,1].

Figure 4.5 gives the search tree for the same program with the addition of
the clause r(b,b2) at the end of the procedure r, which becomes:

r(b,b1).

r(c,c1).

r(b,b2).

The additional clause for r means that the subgoal p(U,V) has two solutions
fU=b, V=b1g and fU=b,V=b2g in spite of the presence of the cut within the
procedure for p. Oracle processing is suspended during the execution of the
subgoal p(U,V), and restarted on the success of that subgoal. The multiple
solutions to p(U,V) result in two positions in the search tree having the
same oracle. The oracle [1,1] now refers to the position of both solutions
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s(U)q(U)

1

p(U,V)

t(U,V)

t(a,b)

q(b)

r(b,V)

r(b,b1) r(b,b2)

"cut"

1 2

q(c)

q(b) q(b)

1

Figure 4.5: Oracle ambiguity cause by cut in a relation with multiple solu-
tions.

in the search tree, the ambiguity preventing the use of oracles for parallel
partitioning.

It is important to note that the incompatibility of oracles with the use of
cut arises from the subsequent use of open oracles in the partitioning of the
workload among the distributed path processors, illustrated with the same
example in Figure 4.6.

In Figure 4.4, at the depth limit L selected, there are three open oracles:
[1,1,1], [1,1,2], and [1,2,1]. The second and third open oracles refer to sub-
trees that should be pruned on discovery of the cut in the subtree referenced
by the �rst oracle. Suspending oracle processing during the execution of de-
terministic procedures containing cut ensures that no open oracle can be gen-
erated within that procedure, potentially referring to a subtree that would
otherwise be pruned by a cut elsewhere in the code. With the breadth-�rst
partitioning strategy used in PrologPF, each open oracle is discovered at the
�xed depth limit. The issue of oracle ambiguity caused by non-deterministic
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s(d)
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Figure 4.6: Pruned subtree allocation caused by open oracles in relation
with cut.

relations containing cut would be addressed by an extended de�nition of the
depth limit:

� Oracle processing continues during the execution of procedures con-
taining cut.

� Forced failure at the selected depth limit in the �rst phase of breadth-
�rst partitioning is deferred until the procedure containing the cut
would otherwise succeed.

The second requirement can be viewed as a distortion of the depth limit to
include the entirety of the subtree pertaining to the relation containing the
cut. This approach is illustrated in Figure 4.7.

The support for cut in PrologPF is limited to the simple suspension of oracle
processing while procedures containing cut are executed. The programmer
is responsible for ensuring those procedures are semi-deterministic, i.e have
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Figure 4.7: Modi�ed depth limit de�nition to permit non-deterministic re-
lations with cut.

only one solution or fail. No parallel speedup is available to procedures
containing cut, and the functional support is provided to render the deter-
ministic execution of those algorithms explicit.

4.5 Conclusions

The simple distributed implementation of the cut extra-logical relation would
require the communication of the discovery of the cut to all path proces-
sors searching a�ected subtrees. Oracles can be used to identify the subtrees
a�ected by the cut, but the communication requirements to support the dis-
tribution of the pruning information could be substantial. This distributed
implementation is unsuited to the target architecture for PrologPF, in which
many general purpose processors are loosely coupled with a local- or wide-
area network.
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Cuts can be accommodated within the distributed processing framework
of PrologPF by modifying the oracle management algorithms and depth
limit processing within procedures containing cut. The PrologPF compiler
recognises cut within user procedures, and disables oracle processing during
the execution of those procedures. The techniques discussed do not permit
parallel speedup of procedures containing cut.

PrologPF aims to minimise the requirement for cut by providing support
for higher-order functional programming, discussed in detail in the next
chapter.

4.6 Summary

Standard Prolog [35] provides a extra-logical predicate \cut" (!/0) which
always succeeds, but has the side e�ect of removing following alternative
subtrees from the problem search tree. The semantics of cut are dependent
upon the depth-�rst, left-to-right execution semantics of sequential Prolog.

Procedures containing the special predicate \cut" are often designed to be
used within a particular mode, in which some arguments are expected to be
instantiated at the time of the call while other are expected to contain logical
variables. The use of procedure with a di�erent pattern of instantiated and
uninstantiated arguments can lead to unintended results. The use of cut
within Prolog programs is a common source of error.

The benchmark programs used in the analysis of the distributed performance
of PrologPF contain some deterministic procedures with cuts. Run-time
analysis on a single cpu showed that the cuts were encountered in those
sample programs between 400 and 18000 times each second. The simple
implementation on multiple cpu's would be expected to increase that rate.

Oracles could be used to support a distributed implementation of the cut
predicate, in which the subtrees to be pruned are identi�ed with the associ-
ated oracle to be propagated to the a�ected path processors.

The target architecture for the distributed execution of PrologPF programs
has a relatively high cost of communication, in contrast to an abundance of
processing power within each distributed path processor. For this reason,
simple support for cut is provided in which oracle processing is suspended
during execution of procedures containing cut. This prevents the discovery
of open oracles within any procedure containing cut. No oracles referring to a
subtree within the search tree of a procedure containing cut can be generated
by PrologPF, and so cannot be allocated for processing in a separate path
processor.
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In PrologPF, procedures containing cut must be deterministic to avoid am-
biguity of the oracles skipping over the subtrees of those procedures. A
modi�cation to the de�nition of the depth limit used in the breadth-�rst
partitioning strategy of PrologPF would remove that limitation.

The use of the predicate \cut" in PrologPF programs can often be avoided
through the use of higher-order functional programming, a technique not
available to programmers of standard Prolog. This approach forms the sub-
ject of the following chapter.



Chapter 5

Higher-Order Functions in

PrologPF

5.1 Introduction

The earlier implementations of parallel Prolog exploiting the Delphi prin-
ciple, described in [28, 25, 76, 49, 66], can support programs written in a
pure subset of Prolog. The use of the extra-logical predicate cut must be
avoided, as was discussed in Chapter 4.

PrologPF extends the Delphi Machine to allow the use of cut, but only for
deterministic procedures. The programmer must avoid the intentional or
accidental use of cut within procedures which still (in spite of the cut) have
multiple solutions.

However, the need for cut within a PrologPF program is greatly reduced
as support is included for the de�nition and application of functions, in
which the deterministic execution is ensured by the system. Also, boolean
functions can often be used where Prolog would rely upon the use of failure
to express negation.

The higher-order functional support in PrologPF is su�cient to allow straight-
forward programming of all the exercises in an undergraduate ML functional
programming course [60], and to allow a version of the SRI Prolog Technol-
ogy Theorem Prover [70] to be implemented without cuts. The application
of PrologPF to the functional programming exercises and PTTP is discussed
in detail in Chapter 6.

PrologPF extends Prolog with support of the de�nition and deterministic
evaluation of higher-order functions, with the functions treated as �rst-class

116
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values within the logic system. The Delphi oracles do not extend into the
functional reduction graph, and no parallelism is provided for the evalua-
tion of an individual function call. This is consistent with the objective of
replacing Prolog procedures containing cuts. PrologPF does not attempt to
exploit all the parallelism available in the non-deterministic but complete
evaluation of functions treated as general equational theories using algo-
rithms such as lazy narrowing. Chakravarty and Lock provide the semantics
and an implementation of lazy narrowing in [20].

While PrologPF provides a consistent environment for higher-order func-
tional programming, the language has the same syntax (with the de�nition
of some additional operators) as normal Prolog. Thus a PrologPF program
can be read by a standard Prolog compiler to produce a program in which
all function applications are treated as irreducible Prolog terms.

By careful selection of the specially treated operators, the functional syntax
of PrologPF will be familiar to users of Standard ML.

5.1.1 Implementation goals

1. To be compatible with the Delphi principle, functional reduction must
be deterministic

2. The capabilities of the functional component of PrologPF should min-
imise the requirement for cut in the body of Prolog rules

3. The syntax should allow functional algorithms to be clearly expressed,
with support for Prolog terms and variables including those represent-
ing functions, i.e. higher-order functions should be supported

4. The syntax and semantics of PrologPF should facilitate the straight-
forward use of functions within Prolog rules, and permit deterministic
calls to Prolog procedures from within functions

5.2 Function de�nition: the fun relation

5.2.1 A PrologPF example

Before reviewing the syntax and semantics of PrologPF functions in detail
with comparison to other approaches, the following examples of the factorial
and append functions in PrologPF may place the alternatives in context.
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Firstly, the factorial function:

fun fact(1) = 1;

fact(N) = N * fact(N-1).

or equally (see Section 5.5.4):

fun fact(N) = if (N = 1)

then 1

else N * fact(N-1).

The append function can be de�ned as follows:

fun append( [],Y) = Y;

append([X|Xs],Y) = [X|append(Xs,Y)].

5.2.2 The PrologPF approach

Functions are de�ned in PrologPF with the special relation fun/1, which is
de�ned as a Prolog pre�x operator of low precedence with op(1200,fx,fun).

Function de�nition in PrologPF also uses the = and ; operators but the
standard Prolog precedence has been maintained.

The syntax supported is shown in Table 5.1

In PrologPF, the underlying Delphi Machine has been extended to support
cut (see Chapter 4), and this support is exploited to implement deterministic
functional reduction.

Each fun relation is transformed through a process of attening [22] into a
deterministic procedure, with the actual arguments being matched against
the formal parameters until a successful uni�cation is made, at which point
the choice of equality rule is committed and the reduction continuing with
the term on the right-hand-side. Thus the selection of the appropriate equal-
ity rule is top-down, and the rewrite is strictly left-to-right.

The equality is required to be constructor-based, that is the terms in the
function head must not themselves contain any de�ned functions. This
requirement is also described as head normal form [42]. The syntax of the
formal parameters is given in Table 5.1 as Prolog Term, i.e. a standard
Prolog term not including the application of any de�ned functions.

While the operational semantics of function evaluation in PrologPF have
most in common with languages such as Standard ML [61, 55], the argument
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Function De�nition ::= fun Alternate De�nitions .

Alternate De�nitions ::= Fun Equality
j Fun Equality ; Alternate De�nitions

Fun Equality ::= Fun Head = PrologPF Term

Fun Head ::= Prolog Atom ( Args. . . )
j Prolog Atom @ [ Args. . . ]
j Prolog Atom @ []

Args ::= Prolog Term
j Prolog Term , Args

PrologPF Term ::= Prolog Term
j Function Application

Table 5.1: Syntax: Function De�nition with the fun Relation

matching process is replaced with Prolog's uni�cation. Argument uni�cation
in PrologPF thus di�ers from the matching in functional languages such as
ML in two signi�cant ways:

1. There is no requirement for left-linearity in the equality rules, i.e. vari-
ables can be repeated in the function head. The functional component
of PrologPF, like the underlying Prolog, has no occurs check. As with
Prolog, it is the programmer's responsibility to avoid actual parame-
ters which would cause the uni�cation algorithm to loop, as with the
goal :- Y = a(Y).

2. Partially instantiated data structures (i.e. terms containing logical
variables) can be passed as arguments and returned as results. This
means that, for example, di�erence lists can be supported and that a
list of variables can be appended to another.

The Prolog atom used to name a de�ned function denotes a function of
�xed arity, set by the number of formal parameters given in the fun rela-
tion. Alternative de�nition of functions using the same name but a di�ering
number of parameters is agged as an error by the PrologPF compiler. This
approach clearly di�ers from the Prolog style where a relation name can be
considered a combination of the naming atom and the arity (as in foo/2),
but is essential to permit currying within the standard Prolog syntax.
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5.2.3 Alternative approaches

5.2.3.1 Deterministic relations in Prolog

Within Prolog, it is possible to de�ne deterministic relations which then can
be treated as functions:

fact(1,1).

fact(N,F) :- N > 1, N1 is N - 1, fact(N1,F1), F is N * F1.

In general, however, determinism inference is an undecidable problem, at
least dependent upon the solution of the halting problem:

foo(X,Y) :- complicated(X,Y).

foo(X,X).

foo/2 can have more than one solution only if complicated/2 can succeed.

In many cases, the programmer uses cut within the Prolog program to ensure
determinacy of an otherwise non-deterministic relation. For example:

fact(1,1) :- !.

fact(N,F) :- N1 is N - 1, fact(N1,F1), F is N * F1.

However, the presence of cut is not enough to guarantee determinacy, as in
the following example:

a(a).

a(b) :- !.

a(c).

The query :-a(X). has the multiple solutions X=a, X=b.

Deterministic reduction is essential for the successful support of functions
on the Delphi Machine (see Chapter 4), so the use of un-annotated Prolog
relations to de�ne functions would introduce a signi�cant possibility of error.

5.2.3.2 Mercury

In the Mercury system, each procedure is annotated with determinism in-
formation [43]. The syntax of Prolog relation de�nition permits the use of
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relations and functions in multiple modes, i.e. di�ering arguments being in-
stantiated at the time of the call, with others expected as results. Mercury
functions are thus annotated with determinism information for each mode.
For example:

:- pred factorial(int, int).

:- mode factorial(in,out) is det.

factorial(N, F) :-

( N =< 0 ->

F = 1

;

N1 is N - 1,

factorial(N1, F1),

F is F1 * N

).

Note that the mode information de�nes factorial to be det, i.e. deter-
ministic, while the relational style of de�nition is retained. The Mercury
compiler checks the supplied determinism information by analysis of the
code. In this example the alternative representation of the function shown
below would be inferred to be non-deterministic through limitations in the
compiler's analysis of mutually exclusive conditions, so the earlier if-then-
else form must be used:

factorial(0, 1).

factorial(N, F) :-

N > 0,

N1 is N - 1,

factorial(N1, F1),

F is F1 * N.

The use of Mercury's determinism and type inferencing techniques have po-
tential for exploitation on the Delphi Machine. In PrologPF all functions
are, to use Mercury terminology, semi-deterministic. That is they can suc-
ceed once or fail. The issue of function failure in PrologPF is discussed in
Section 5.7. Non-deterministic modes of functions are not required, and the
syntax of function de�nition and application can be considerably simpli�ed
and optimised for the deterministic use.
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5.2.3.3 Curry

The logic capabilities of the language Curry [42] are provided through the
support for non-deterministic functions, and the function de�nition syntax
supports this:

f :: Int -> Int

f 1 = 10

f 2 = 20

f 2 = 30

The language is typed, with f de�ned as int ! int above. The call f 2 will
produce the multiple results 20 and 30. The left-hand-sides of the functional
equality de�nitions can be de�ned with conditional guards, such that the
de�nitions are referred to as conditional equations where the conditions are
constraints which must be solved in order for the equation to be applied.
This form is used in the de�nition of factorial:

factorial :: Int -> Int

factorial 1 = 1

factorial n | n > 1 = n * factorial (n - 1)

The constraint n > 1 is added to the second equality de�ning the factorial
function to ensure deterministic evaluation of factorial 1 which would
otherwise match the right-hand side of both rules. To ensure deterministic
execution of a function in Curry, the de�ning equations must be checked
to ensure that the conditions are not simultaneously satis�able [56], and no
new variables can be introduced in the equations' right-hand sides.

The condition constraint in Curry can also be a boolean function expres-
sion, as an abbreviation for the rule <bool expr>=True. This is similar
to the treatment of function applications in relation positions in PrologPF,
discussed in Section 5.6.

5.2.3.4 External procedures

The functions can be de�ned in a language other than Prolog, and called as
external procedures. Many existing implementations of Prolog support this
capability, and e�ort has been made to formalise the approach [14, 53, 13].
These systems do not support higher-order programming.
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5.2.3.5 Logic programming with equality

A more general solution is to de�ne functions in terms of a set of equalities
[41, 57], extending Prolog's '=' relation, with conditional support provided
in the form of guards. For example:

fact(1) = 1.

fact(N) = N * fact(N-1) :- N \== 1.

The use of guards (in this example N n== 1) provides access to Prolog re-
lations, including those with multiple solutions. The use of the equality
relation itself imposes no constraints on the form of the de�nition, permit-
ting for example

append(X,append(Y,Z)) = append(append(X,Y),Z).

This is useful if a most general equation solving procedure is to be used,
with non-deterministic selection of rewrite rules and of terms for reduction,
and right-to-left as well as left-to-right application of each equality rule.

The non-deterministic solution of equations would provide interesting op-
portunities for the application of the Delphi principle to the extended proof
tree. However, the research in this dissertation ensures the functional re-
duction process is deterministic such that the parallelised program has the
e�ciency associated with direct execution of compiled machine code.

5.3 Function application: the @ operator

The development of the @ operator as a relation denoting function applica-
tion in Prolog, with an interpretation expressed in Prolog, can be found in
[27].

5.3.1 Extending Prolog for explicit function application

The standard syntax for Prolog terms is supported, with special meaning
applied to a new operator @ (de�ned in PrologPF as op(600,yfx,@)). The
presence of the operator in a PrologPF term indicates that the normal uni-
�cation step should be preceded by functional evaluation.
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For example, in the goal for the relation \=":

:- Z = foo @ [a].

the term foo @ [a] should be evaluated before the terms Z and the result
of foo @ [a] are uni�ed with the arguments of the = relation.

If foo is a de�ned function (i.e. de�ned with the fun relation described in
Section 5.2), then the rewrite rules speci�ed in the associated fun relation
are used for the reduction. Otherwise foo is a constructor and the term is
irreducible.

For nested @ terms, function evaluation is strict, i.e. innermost arguments
are evaluated �rst. For example in:

:- Z = foo @ [goo @ [a], hoo @ [b]].

the terms goo @ [a] and hoo @ [b] will be evaluated before the results
are used in the evaluation of foo with those arguments. The evaluation of
argument terms takes place left-to-right. Evaluation ordering is signi�cant
in PrologPF because the usual functional programming one-way matching
is replaced with uni�cation, and variable arguments are permitted. The full
@ syntax is given in Table 5.2.

Function Application ::= Function Term @ [ Args. . . ]
j Function Term @ []

j De�ned Atom ( Args. . . )

Function Term ::= De�ned Atom
j Variable
j Lambda Expression
j Function Application

Lambda Expression ::= lambda([ Formal Args. . . ] , PrologPF Term )

j lambda([], PrologPF Term )

Formal Args. . . ::= Prolog Term
j Prolog Term , Formal Args. . .

Args. . . ::= PrologPF Term
j PrologPF Term , Args. . .

De�ned Atom ::= Prolog Atom de�ned in earlier fun clause

Table 5.2: Syntax: Function Application with the @ Operator

Note that a function is always applied to a list of arguments, so terms such as
foo @ a or foo @ X do not denote function application (the correct syntax
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would be foo @ [a] and foo @ [X]).

A function foo can be de�ned with no arguments, and the reduction of that
function can be made explicit with foo @ []. This use of nil is similar to
the value unit in Standard ML, and is useful where function abstractions
are used to emulate laziness, as in the example with in�nite lists in Chapter
6. Nil argument functions are discussed further in Section 5.8.

5.3.2 Function application: syntactic sugaring

It should be noted that in PrologPF the term:

foo(a,b)

in which foo is a de�ned function, is semantically equivalent to:

foo @ [a,b]

This allows the most convenient syntax for function application to be used
within PrologPF programs and allows consistent treatment of constructors
and functions. For example, the solution of the goal:

:- Z = foo(goo(a),hoo(b)).

can involve functional reduction of any of foo, goo, or hoo. With fun

goo(X) = gg. and fun hoo(X) = hh. then the goal will succeed with the
single solution Z = foo(gg,hh).

This consistent treatment of constructors and functions can be seen in the
de�nition of a wrap function which maps a list to a similar list with each
element wrapped with the constructor envelope:

fun wrap([]) = [];

wrap([X|T]) = [envelope(X)|wrap(T)].

5.4 Higher-order functions and currying

A goal of the PrologPF system is to support functions as �rst-class data
items in the extended Prolog semantics, and to permit a syntax which facil-
itates the straightforward creation and application of function closures.

The approach in PrologPF owes much to Standard ML [55], with support
for nameless functions as lambda-expressions and the creation of closures
via currying [33, 67].
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5.4.1 Lambda-expressions

Nameless functions are created in PrologPF using the special constructor
lambda/2. The syntax is given in Table 5.2.

An example of a goal using a lambda expression representing the increment
function is:

:- Z = lambda([X],X+1) @ [6].

returning the single solution Z = 7.

As with de�ned functions in PrologPF, the evaluation of the function term
proceeds with the uni�cation of the actual parameter (in this example 6)
with the argument of the lambda expression (X). The instantiated second
argument of the lambda term is then evaluated to produce the �nal result.

Unlike standard Prolog, the scope of the formal arguments of the lambda
expression (X in the example above) is limited to that expression. This
ensures the correct operation of goals such as:

:- Y = lambda([X],X+1) @ [6], Z = lambda([X],X*2) @ [7].

PrologPF lambda terms can be de�ned to take no arguments, providing a
mechanism to delay the evaluation of the expression given as the second
argument. For example:

Z = lambda([],f(100))

The expression f(100) will not be evaluated until a subsequent application
Z @ []. This use of nil arguments is discussed further in Section 5.8.

5.4.2 Currying

The support for currying in PrologPF ensures that the following equivalence
holds true:

foo @ [a] @ [b] @ [c] � foo @ [a,b,c]

The arity of a de�ned function is �xed in the fun relation (Section 5.2).
Any alternate de�nition using the same function name but with a di�ering
number of formal parameters is agged by PrologPF as an error. This means
the PrologPF compiler can generate appropriate code to return a lambda
expression where a function is called with fewer arguments than appear in
the fun de�nition. The de�nition of the operator @ was shown in Section
5.3 to be left-associative (the 'yfx' in op(600,yfx,@).

These capabilities combine to provide the exible support for higher-order
abstraction through the partial application of functions, known as currying.
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For example, if a function foo is de�ned with 3 arguments as in:
fun foo(X,Y,Z) = X+Y+Z.

then (using symbol ; to represent 'evaluates to'):
foo @ [a] ; lambda([Y,Z],foo(a,Y,Z))

=)
foo @ [a] @ [b] @ [c] � ((foo @ [a]) @ [b]) @ [c]

; (lambda([Y,Z],foo(a,Y,Z)) @ [b]) @ [c]

; lambda([Z],foo(a,b,Z)) @ [c]

; foo(a,b,c)

� foo @ [a,b,c]

The explicit use of the @ operator and the use of currying permit the straight-
forward de�nition and application of functions such a map:

fun map(F,[]) = []; % map definition

map(F,[X|Xs]) = [F @ [X]|map(F,Xs)].

:- Z = map(+1,[10,20,30]). % curried +

:- Inc = map(+1), Z = Inc @ [[10,20,30]]. % curried map, +

Each query succeeds with the single solution for Z = [11,21,31].

5.5 Special treatment of if-then-else

PrologPF includes a prede�ned function if to provide conditional evaluation
of alternative expressions. The systematic eager evaluation in PrologPF
precludes the de�nition of if as a normal PrologPF function with three
arguments:

fun if(true, A,B) = A;

if(false,A,B) = B.

As the argument evaluation semantics of PrologPF are eager, in an expres-
sion such as if(Z=0, 1, 100/Z) all three arguments would be evaluated
before the application of if, producing a possible run-time arithmetic error
during the attempted evaluation of 100/Z.

To provide more useful behaviour, if is treated as a prede�ned function
with exceptional semantics. The special treatment is unique to if:

1. The evaluation of the alternative expressions is delayed until after
the condition has determined which of the two alternatives should be
evaluated. Only one of the two alternatives will then be evaluated.
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If Expression ::= if(PrologPF Term1, PrologPF Term2, PrologPF Term3)

j if PrologPF Term1 then PrologPF Term2 else PrologPF Term3

j if PrologPF Term1 then PrologPF Term2

Table 5.3: Syntax: if

2. The condition term is treated as a Prolog goal, rather than a boolean-
valued reducible expression

5.5.1 Syntax

The syntax for the conditional if expression is given in Table 5.3.

The use of the prede�ned operators if, then and else is permitted to
reduce the use of brackets and allow a syntax similar to that of languages
such as Standard ML. Where the if-then-else form is used, the resultant
expression is equivalent to the term if(Term1,Term2,Term3).

To allow a convenient syntax without modifying the precedence of the stan-
dard Prolog operators, the following precedences are used for if, then and
else:

:- op(675,fx,if). % 'if' is prefix

:- op(650,xfx,then). % 'then' is infix

:- op(625,xfx,else). % 'else' is infix

The precedence of the prede�ned if, then and else operators in PrologPF
implies that:
if Term1 then Term2 else Term3

� if (Term1 then (Term2 else Term3 ))

� if(then(Term1,else(Term2,Term3)))

The else-expression can be omitted, such that:
if Term1 then Term2 � if Term1 then Term2 else fail

The precedence of the if-then-else compound term has been set higher
than that of the Prolog's = and ; operators to minimise the need for brackets
in function de�nitions, and in goals of the form Z = if-expression. The
compromise means that conditional operators used in if conditions (i.e.
Term1) must be bracketed, as must be nested if expressions.
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For example:

if (A < 20) then (if (A > 12)

then middle

else lower

)

else upper

5.5.2 Evaluation

Special code is generated in the call to if in the evaluation of if-expressions.

5.5.2.1 De�ned evaluation ordering with if

For any other arity/3 function call such as foo(Term1,Term2,Term3) for
de�ned function foo, code of the following form would be generated:

[code to evaluate Term1 with result as term X1]

[code to evaluate Term2 with result as term X2]

[code to evaluate Term3 with result as term X3]

functional evaluation of foo(X1,X2,X3)

In the case of the special function if the eager evaluation of both alternative
expressions in terms such as if (Z = 0) then 1 else 100/Z would not
execute as intended for Z = 0, so consequently code of the following form
will be generated:

[code to �nd �rst solution of call(Term1) as relational goal] (Section 5.5.2.2)

<on success:> [code to return result of evaluation of Term2]

<on failure:> [code to return result of evaluation of Term3]

PrologPF ensures that:

1. The condition goal completes before the evaluation of the alternate
expressions of the if-expression.

2. The condition goal succeeds with one solution, or fails.

3. Only one of the alternate expressions will be evaluated: the then

expression if the condition goal succeeds, or the else expression if
it fails.
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5.5.2.2 if condition as relational goal

There is considerable advantage in giving functions within the combined
functional logic system access to the relations in the program and those in the
Prolog libraries. The implementation chosen for the Delphi Machine requires
that the function evaluation be deterministic. A successful compromise has
been achieved with:

1. The only place a function in PrologPF can call a Prolog relation is in
the condition of an if-expression

2. The call uses Prolog's normal search, but determinism is maintained
with �rst-solution semantics

3. The acceptance of boolean functions as relational goals reintroduces
functional terms as conditions (Section 5.6)

An example showing how the Prolog library append relation can be used to
produce a similar (but deterministic) function would be:

fun append(X,Y) = if append(X,Y,Z) then Z.

This example relies upon the following:

1. The if semantics ensure the goal append produces a value for Z before
the evaluation of the sub-expressions Z and fail.

2. The if semantics ensure that only one of the sub-expressions is eval-
uated, after the solution of the conditional goal.

3. The relation append/3 and the function append/2 are recognised as
having di�erent names (see Section 5.6)

4. The missing else-expression is equivalent to else fail, so the de�-
nition is an abbreviation for:

fun append(X,Y) = if append(X,Y,Z) then Z else fail.

5. The prede�ned function fail is available to produce function failure
(Section 5.7)

The use of relational goals as conditions, combined with Prolog's left-to-right
search rule, leads to a Prolog syntax with semantics similar to the special
operators in languages such as Standard ML for andalso and orelse [55]:

Conjunction: (P,Q,R) � P andalso Q andalso R

Disjunction: (P;Q;R) � P orelse Q orelse R
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For example, using the standard Prolog library relations > and <:

fun account_status(Bal) = if (Bal > 0, Bal < 100)

then normal

else needs_attention.

In using a relational goal as the condition, the PrologPF if expression has
similar behaviour to the Prolog conditional goal, written A -> B; C. The
de�nition of the operators \->" and \;" are provide in [35]. The subgoal
A is called to provide one solution or fail. In the former case, subgoal B
is then called, else subgoal C is called. The semantics are complicated by
the presence of any cuts in subgoals A, B or C. The deterministic execution
of functions in PrologPF permits the provision of an if-then-else expression
without these complexities.

5.5.3 Value declarations

A value declaration gives an expression a name within a particular scope.

The PrologPF support for if if ensures that the relational condition is ex-
ecuted before the alternate expressions. The uni�er of the free variables in
the condition is thus valid for the evaluation of the then-expression, which is
only evaluated if the condition has succeeded. Thus the use of the = relation
in the condition of an if-then-else expression can give a value a name,
which will be valid in the scope of the then sub-expression.

The use of the uni�cation of the condition to support naming in this way
is convenient if a sub-expression is to be repeated within an expression, as
often occurs within an if-then-else. An example is in a de�nition of a
max function to �nd the highest integer in a list:

fun max([X]) = X;

max([X|Xs]) = if (M = max(Xs))

then (if (X > M)

then X

else M

).

In the recursive case, the condition goal M = max(Xs) results in the evalu-
ation of max(Xs) being uni�ed with a new free variable M, with the uni�er
M/n (where n is the largest integer in Xs) being valid for the subsequent
evaluation of if (X > M) then X else M.
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The use of M as a name to represent the value max(Xs) is equivalent to the
repeated appearance of the value in the then expression. The max function
could equally be written:

fun max([X]) = X;

max([X|Xs]) = if (X > max(Xs))

then X

else max(Xs).

As these value declarations are using the standard = relation in the condi-
tion, the method supports a convenient technique for using functions that
return multiple results as a tuple. This can be seen with the second of the
complementary functions zip and unzip. The function zip takes two lists
of equal length as arguments, and returns a list of pairs [42]:

fun zip([],[]) = [];

zip([X|Xs],[Y|Ys]) = [(X,Y)|zip(Xs,Ys)].

The complementary function unzip has a convenient de�nition using a value
declaration [61]:

fun unzip([]) = ([],[]);

unzip([(X,Y)|Pairs]) = if ((Xs,Ys) = unzip(Pairs))

then ([X|Xs],[Y|Ys]).

A version of unzip that did not use a value declaration could be written
using of auxiliary functions to extract the elements of the tuple and repeating
the unzip(Pairs) sub-expression. Alternatively, an auxiliary function could
be de�ned to add a pair of elements to pair of lists, as in:

fun addpair((X,Y),(Xs,Ys)) = ([X|Xs],[Y|Ys]).

fun unzip([]) = ([],[]);

unzip([Pair|Pairs]) = addpair(Pair, unzip(Pairs)).

However, the use of value declarations in unzip avoids the use of auxiliary
functions.

In the absence of common-expression elimination optimisations in the PrologPF
compiler, the use of value declarations results in a more e�cient object pro-
gram. In general, the use of names to represent expressions that are complex
or repeated can result in programs that are more comprehensible.
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5.5.4 Alternate function de�nitions � if

In PrologPF, the function de�nition style using alternate argument patterns
can be shown to be equivalent to a single functional equality using the
prede�ned if function.

The following characteristics of the if function are important in the equiv-
alence:

� The de�ned lazy conditional evaluation of the arguments to if

� The call to the condition goal is de�ned to precede the evaluation of
one of the functional terms. Value declarations from uni�cation of
terms in the condition goal with local variables are therefore guaran-
teed to be bound in the scope of the subsequently evaluated dependent
expression.

With the example of the factorial function:

fun fact(1) = 1;

fact(N) = N * fact(N-1).

The equivalent if-then-else form is:

fun fact(Z) = if (Z=1)

then 1

else (if (Z=N)

then N * fact(N-1)

).

The general form of the translation is:

fun Function_name(Arg_pattern1, Arg_pattern2...) = Expression_1;

Function_name(Arg_pattern3, Arg_pattern4...) = Expression_2...

goes to:

fun Function_name(Var1,Var2...)

= if (Var1 = Arg_pattern1, Var2 = Arg_pattern2...)

then Expression_1

else (if (Var1 = Arg_pattern3, Var2 = Arg_pattern4...)

then Expression_2

else ...

).
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Value declarations in the relational goal of the if condition can be seen
more clearly with the transformation of the append function:

fun append( [],Y) = Y;

append([X|Xs],Y) = [X|append(Xs,Y)].

goes to:

fun append(L,Y) = if (L=[])

then Y

else (if (L=[X|Xs])

then [X|append(Xs,Y)]

).

5.5.5 Summary of PrologPF if semantics

The goal of the if-then-else implementation in PrologPF is to provide
useful conditional evaluation semantics, while supporting deterministic ac-
cess to relations.

With the expression if Term1 then Term2 else Term3:

� The conditional expression Term1 is treated as a relational goal, either
succeeding with a variable binding, or failing.

� The depth-�rst, left-to-right search of standard Prolog is used to �nd a
solution to Term1, and the search is limited to �nding the �rst solution.

� The call to the conditional expression Term1 completes before the
evaluation of either Term2 or Term3.

� If Term1 succeeds then Term2 is evaluated in the context of any bind-
ings resulting from the solution of Term1, and the result returned as
the value of the if-expression.

� If Term1 fails then Term3 is evaluated and returned as the result of
the if-expression.

� If the else-expression (else Term3) is omitted, the semantics are the
same as if an else-expression (else fail) were added.
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5.6 Boolean functions as relations

In summary, the following equivalence holds for functions used in the posi-
tion of relational goals:

?- foo(a). � ?- foo(a) = true

i� foo is a de�ned function of arity/1.

A function application term is permitted to appear in the position of a
relational goal, where it is treated as a call to the Prolog = relation to unify
the result of the function application with true. This applies to the body
of each rule and the condition of each if expression.

For example, with a boolean function prime(X) returning true for a prime
argument and false otherwise, the goal:

?- p(X), prime(X), write(X).

is equivalent to:
?- p(X), prime(X) = true, write(X).

The explicit treatment of boolean functions as relations in this way can be
seen in the prototype produced by Paulson and Smith [62]. The language
Escher [51] has all relations declared as boolean functions in this way.

Either the explicit @ operator can be used to denote the function application,
or the Prolog compound term syntax can be used. In the latter syntax, the
outermost functor of the goal will only be recognised as a de�ned function if
the number of actual parameters matches the arity of the de�ned function
of the same name. The speci�cation of a reduced number of arguments in a
curried application is not useful where a boolean result is required. A partial
(i.e. curried) function application would always return a higher-order result,
such that:

(<curried application> = true) � fail

The requirement for the arities of the de�ned function and the actual use
within a goal facilitates the conversion of library relations (such as append)
into functions and vice versa. I.e. the functional de�nition of append/2 does
not conict with the relational de�nition append/3, and the library relation
can be used in the function de�nition:

fun append(X,Y) = if append(X,Y,Z) then Z.

Equally, the deterministic functional version of append given in Section 5.5.4
could have been used for a version of the library relation limited to deter-
ministic modes:

append(X,Y,Z) :- Z = append(X,Y).
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To summarise the naming/arity issues arising from both currying and the
acceptance of boolean functions as relations:

1. Each alternate equality statement in the de�nition of a function must
have the same number of formal parameters, and this number is the
arity of the function.

2. A function can have the same name as a relation, but must not have
the same arity.

The �rst rule is to allow currying, the second to allow boolean functions
as goals. The functional logic language Mercury has a similar rule to 2
above, but in Mercury a function must not have an arity that is one less
that a relation of the same name. The Mercury name/arity constraints are
inconvenient, as it is natural to de�ne a function (such as append/2) to
have an arity one less that an equivalent relation (i.e. append/3). PrologPF
exploits this capability to de�ne functions representing deterministic modes
of many frequently-used library relations such as append and =...

In the design of PrologPF, a choice was made to introduce rule 2, rather
than the alternative that boolean functions as goals should require explicit
use of the @ operator. The body of Prolog code converted for execution on
the PrologPF system has not yet included enough examples of relations with
multiple arities to con�rm this design decision.

5.7 Failure of functions

The functional support in PrologPF is embedded within an environment
of relations which are expected to succeed (with an associated variable
binding) or fail. The treatment of function applications as relation argument
terms associates every application with an underlying relation, for example
in:

?- Z = fact(5).

the function application of fact is as an argument of the relation =.

5.7.1 Functional failure ) Relation failure

In PrologPF, function failure is supported through the provision of a special
term fail. This mirrors the standard Prolog relation fail, which always
fails.

1. The evaluation of the term fail within an expression produces no
value but always fails.
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2. A function application fails if evaluation of a subexpression in the
right-hand-side of the associated de�nition fails.

3. A relation fails if the evaluation of a functional argument fails.

The use of fail within a function de�nition can be seen in the lookup

function, which returns a value associated with a key in a list of paired
key-value terms:

fun lookup(_,[]) = fail;

lookup(Key,[(Key,Value)|_]) = Value;

lookup(Key,[_|T]) = lookup(Key,T).

The function might be used in a program such as:

a(a).

a(b).

a(c).

?- a(X), write(lookup(X,[(a,1),(c,3),(e,5)])).

The subgoal a(X) produces values a, b and c for X, calling write with the
value of the lookup application. As the key-value list argument contains no
entry for b, the application will fail for that argument value. Backtracking
will take place as in standard Prolog, such that write will display the values
1 and 3 from the successful application of lookup with a and c.

5.7.2 Function fail as an exception

Within the function evaluation, the semantics of fail are those of an un-
caught exception. An introduction to exceptions in Standard ML can be
found in [61]. In PrologPF, the exception can be considered to be caught
at the point immediately preceding the uni�cation of the term with the
corresponding argument of the relation, where it causes that relation to fail.

The general support for exceptions would be consistent with the rest of the
functional support in PrologPF as

1. Function evaluation in PrologPF is innermost nested term �rst (re-
ferred to as eager), so the evaluation of the expression term to be
raised as an exception can occur before the exception is raised and
the value of the expression returned as the exception value. A lazy
functional language with call-by-need argument evaluation semantics
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would require special treatment of the expressions given to the throw
function.

2. PrologPF permits partially de�ned functions (where some legal actual
argument patterns have no matching left-hand-side in the function
de�nition) and function failure. A more general support for exceptions
can be provided for which these are special cases.

If, as in Standard ML [55], a general support for exceptions were provided
though the use of raise and handle operators, then the use of fail within
PrologPF could be shown to be equivalent to the limited use of those ex-
ceptions:
fail in PrologPF � raise Fail

with declared exception Fail

With relation R, argument
expressions e1; :::; en, and
goal R(e1; : : : ; en) � ei handle Fail )

ensure failure of R
at each argument ei; i = 1 : : : n

5.7.2.1 A proposal for more general exception support in PrologPF

Standard Prolog [35] has support for exceptions at the level of relations
with the prede�ned catch and throw meta-logical operators. An exception
is generally referred to as a Ball.

The format for the use of throw is:
throw(Ball)

where Ball is any Prolog term to be propagated as an exception. Similarly
the format for the use of catch is:

catch(Goal,Ball,Handler)

where:

Goal is a Prolog relational goal potentially containing throw subgoals

Ball is a term to be uni�ed with the actual argument of any throw

operators encountered during execution of Goal

Handler is a subgoal to be called when an exception is caught, i.e. suc-
cessfully uni�ed with Ball

Often, Ball and Handler will contain common free variables, as a means of
propagating values from the throw.
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The goal:
catch(throw(foo),X,write(X))

will have the e�ect of writing "foo\ to the output, with the execution pro-
ceeding as follows:

1. catch calls the subgoal given as its �rst argument, namely throw(foo).

2. The subgoal throw(foo) throws (raises) the ball (exception) foo.

3. The ball foo propagates to the level of the surrounding catch where
it is uni�ed with the second argument of the catch relation (X). If
this uni�cation had failed, then the ball continues to propagate to any
higher enclosing catch relation.

4. With the successful uni�cation of foo with X, the subgoal write(X)
given as the third argument to catch is called.

5. foo is written to the output.

In the context of standard Prolog's catch and throw, the use of fail within
de�ned functions in PrologPF can be treated as:

fail in PrologPF � if throw(fail) then else

A goal containing relation R,
as in : : : ; R; : : : � : : : ;catch(R,fail,fail); : : :

Note the use of if-then-else to map the relational call to throw into an
expression. The implicit catch which can be considered to be wrapped
around each relation call containing functional arguments is shown to only
handle one value of exception (fail). The catch goal will then fail if this
type of exception is caught.

With this de�nition we arrive at the semantics for our use of fail within
functions as uncaught exceptions, leading to failure of the associated rela-
tion.

The de�nition using catch and throw could lead to the more exible use
of exceptions within the functional component of PrologPF, although the
implementation to date only permits the support for fail.

An improved support would:

� Allow any term to be raised as an exception value within a de�ned
function, for example throw(foo).
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� Allow exceptions to be caught within the functions rather than prop-
agating to the relational level.

� Treat any uncaught exception from a functional evaluation as fail.

The implementation would require the following:

� The meta-relation throw should be mapped to a similar function throw/1,
where an expression throw(X) would have the same meaning as

if throw(exception(X)) then else .
The de�nition would use the support in PrologPF for relations as if-
conditions. The use of anonymous variables as the alternate expres-
sions is arbitrary, as the function throw would never return any value.
Function could then use throw within any expression.

� As with the meta-relation catch, a functional equivalent would allow
the handling of exceptions at any level of a nested functional expres-
sion, as in Standard ML. The ML syntax is

E handle P1 => E1j : : : jPn => En

where E is the expression which may possibly raise an exception, Pi

is an expression matching the exception and Ei is the corresponding
value to be returned instead of E. The equivalent support in PrologPF
would be by nested applications of a catch function, which would have
the same capabilities as catch(E,exception(Pi),Ei) for each pat-
tern Pi for uni�cation with the exception term thrown.

� The implicit catch wrapper around each relation R would be
catch(R,exception(X),fail).

This can be contrasted with the more limited form supporting fail

given above.

5.8 Unit

ML has a built-in type 'unit' with only one member, namely \()". A
function of intended arity zero will be de�ned of type \unit ! �", and the
value of that function will be returned by the explicit application of that
function to \()".

An example ML function de�nition of this type is:

>fun foo () = 22;

foo: unit -> int

>val a = foo ();

a = 22 : int
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In PrologPF, all functions are explicitly applied to a list of actual argu-
ments, using Prolog syntax for lists, and the application of a function to
no arguments can be explicit by using an empty list (i.e. nil: \[]"). The
application of a function to no arguments simply returns that function, i.e.
foo @ [] for de�ned function foo with arity 0 � evaluated foo

bah @ [] for arity bah > 0 is � bah

) bah @ [] @ [] @ [] � bah

) bah @ [] @ [] @ [X] � bah @ [X].

5.9 The interaction of functions and relations

In the combined functional and logic programming paradigm of PrologPF,
most e�ort has been placed in the design of the overlap between the use
of de�ned functions and relational rules. The resultant system allows the
exploitation of de�ned functions within rules and access to relations from
within functions in a straightforward way with clear semantics.

The interaction between the functional and logic elements of a PrologPF
program is limited to:

Function de�nition. The relation fun is given special meaning as declar-
ing the ordered equational rewrite rules de�ning a named function.

Function application. The semantics of the actual argument terms of
predicates has been extended to include the application of de�ned
functions with the special operator @. The functional reduction is de-
�ned to occur as a step preceding the uni�cation of the resultant term
with the predicate formal arguments.

Function failure. Function failure is de�ned, such that a goal with a failing
function as an argument term is de�ned to fail.

Relation call from within functions. The condition term of the built-in
PrologPF function if is de�ned to be a relational goal, with determin-
ism ensured by one-solution call semantics.

Functions as goals. The non-curried application of a de�ned function as
a goal is de�ned to be equivalent to the = goal with that application
term and true.

Functions as �rst-class data items. A function abstraction returned as
the result of a higher-order function or the user de�nition of a lambda-
term can be uni�ed with a logical variable for application within sub-
sequent goals or sub-goals.
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5.10 Some PrologPF examples

A comprehensive review of the application of PrologPF to both logic and
functional problems is given in Chapter 6.

PrologPF examples of functions for factorial, append, map, and max have
been given in the preceding sections, and are repeated here for clarity:

fun fact(1) = 1;

fact(N) = N * fact(N-1).

fun append( [],Y) = Y;

append([X|Xs],Y) = [X|append(Xs,Y)].

fun map(F,[]) = [];

map(F,[X|Xs]) = [F @ [X]|map(F,Xs)].

fun max([X]) = X;

max([X|Xs]) = if (M = max(Xs))

then (if (X > M) then X else M).

5.10.1 Undergraduate Prolog exercise attempt

An interesting example of functional logic syntax could be seen in an at-
tempt by an undergraduate to write a relation remhigh/2 in which the �rst
argument is a list of integers, and the second is the same list excluding the
highest element. The undergraduate wrote:

%%%% remhigh: L2 is list L1 excluding highest member of L1

remhigh(L1,L2) :- remove( max(L1), L1, L2).

%%%% remove(Element, List, Remainder_list) :

%%%% Remainder_list is List excluding Element

remove(N, [N|T], T).

remove(N, [H|T], [H|T1]) :- N \== H, remove(N, T, T1).

From the de�nition of remhigh it can be seen that the student expected a
functional support that is not present in Prolog. The student is also sug-
gesting a natural syntax. The above attempt would be correct in PrologPF
with the de�nition of max given above in Section 5.5.
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5.10.2 Lazy lists

This example is extended and reviewed in more detail in Chapter 6, where
in�nite streams of primes are created. Here we will show the use of the
higher-order features of PrologPF to represent in�nite lists.

In�nite lists in this program will be represented by constructor terms of the
form:

item(Head,Tail)

where Head is the value at the head of the list and Tail is a function of arity
zero which returns the tail of the list. The empty list can be represented by
a constructor such as empty. The functions to extract the components of a
list are:

fun head(empty) = fail;

head(item(X,_)) = X.

fun tail(empty) = fail;

tail(item(_,F)) = F@[].

A function to create the in�nite list of natural numbers is:
fun make nats(N) = item(N,lambda([],make nats(N+1))).

The application make nats(N) can now be used to represent an in�nite list
the natural numbers starting from N.

A goal such as ?- Z = head(tail(tail(make nats(1)))). will return the
expected solution Z = 3. With this representation of in�nite lists, a version
of the higher-order function map can be de�ned in PrologPF:

fun imap(F,empty) = empty;

imap(F,item(X,T)) = item(F@[X], lambda([],imap(F,T@[]))).

The function can be demonstrated in a goal such as
?- Z = head(tail(tail(imap(*2,make nats(1))))).

giving the solution Z = 6.

The imap function illustrates the combined use of constructors (empty,item),
higher-order variables (F), explicit application with @, implicit application
of imap, use of lambda expressions, and the use of nil to denote evaluation
of an arity/0 function. The example shows that the syntax facilitates the
use of these capabilities without obscure programming constructs.
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5.11 Comparison of PrologPF with call/N, apply/3

The semantics of the support for functions in PrologPF has most in common
with Naish's apply/3 [58], although he retains the de�nition of functions as
Prolog relations, and permits non-deterministic evaluation. Naish's de�ni-
tion of apply/3 is designed as a more capable replacement for the call/N

extra-logical predicate provided in some Prologs and used as the basis for
the higher-order functional support in Mercury [69].

Table 5.4 compares PrologPF with call/N and apply/3 using the examples
from [58].

call/N apply/3 PrologPF

map(F,[],[]). map(F,[],[]). fun map(F,[]) = [];

map(F,[X|Xs],[Y|Ys]) :- map(F,[X|Xs],[Y|Ys]) :- map(F,[X|Xs]) =

[F @ [X]|map(F,Xs)]

call(F,X,Y), apply(F,X,Y),

map(F,Xs,Ys). map(F,Xs,Ys).

filter(P,[],[]). filter(P,[],[]). fun filter(P,[]) = [];

filter(P,[X|Xs],Ys) :- filter(P,[X|Xs],Ys) :- filter(P,[X|Xs]) =

(call(P,X) -> (apply(P,X,true) -> if (P @ [X])

Ys = [X|Z] Ys = [X|Z] then [X|filter(P,Xs)]

; ; else filter(P,Xs).

Ys = Z Ys = Z

), )

filter(P,Xs,Z). filter(P,Xs,Z).

foldr(F,B,[],B). foldr(F,B,[],B). fun foldr(F,B,[]) = B;

foldr(F,B,[X|Xs],R) :- foldr(F,B,[X|Xs],R) :- foldr(F,B,[X|Xs]) =

foldr(F,B,Xs,R1), foldr(F,B,Xs,R1), F @ [X,foldr(F,B,Xs)].

call(F,A,R1,R). apply(F,X,FA),

apply(FA,R1,R).

compose(F,G,X,FGX) :- compose(F,G,X,FGX) :- fun compose(F,G,X) =

F @ [G @ [X]].

call(G,X,GX), apply(G,X,GX),

call(F,GX,FGX). apply(F,GX,FGX).

converse(F,X,Y,FYX) :- converse(F,X,Y,FYX) :- fun converse(F,X,Y) =

F @ [Y,X].

call(F,Y,X,FYX). apply(F,Y,FY),

apply(FY,X,FYX).

Table 5.4: Comparison of call/N, apply/3 and PrologPF

The above relations and functions are then tested against the queries in
Table 5.11 [58].

With the syntax shown in the right-hand column, PrologPF can support
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call/N, apply/3 PrologPF

1. filter(>(5),[3,4,5,6,7],As) As = filter(>(5),[3,4,5,6,7])

2. map(plus(1),[2,3,4],As) As = map(+1,[2,3,4])

3. map(between(1),[2,3],As) ) non-deterministic function

4. map(plus(1),As,[3,4,5]) ) reversible map, plus

5. map(plus(X),[2,3,4],[3,4,5]) ) reversible plus

6. map(plus(X),[2,A,4],[3,4,B]) ) reversible plus

7. map(plus(X),[A,3,4],[3,4,B]) ) reversible plus

8. foldr(append,[],[[2],[3,4],[5]],As) As = foldr(append,[],[[2],[3,4],[5]])

9. foldr(converse(append), As = foldr(converse(append),

[], [],

[[2],[3,4],[5]], [[2],[3,4],[5]]

As ).

).

10. compose(map(plus(1)), As = map(+1) @ [foldr(append,[]) @

foldr(append,[]), [[2],[3,4],[5]]

[[2],[3,4],[5]], ].

As

).

11. foldr(compose(append,map(plus(1))), As = foldr(compose(append, map(+1)),

[], [],

[[2],[3,4],[5]], [[2],[3,4],[5]]

As ).

).

12. map(plus,[2,3,4],As). As = map(+,[2,3,4]).

Table 5.5: Queries from [58] for call/N, apply/3, PrologPF

the functional examples given in [58] with the exception of those requiring
multiple answers (3) or reversible functions (4-7). Call/N does not pro-
vide reversible functions (4-7) or permit general higher-order programming
as in (11-12). Apply/3 does not provide reversible functions (4-7). A dis-
cussion of the signi�cant features of each example is given below (and in
[Nai96]), followed here by some more examples highlighting the capabilities
of PrologPF.

1. filter(>(5),[3,4,5,6,7],As)
The function > passed to filter is curried, representing the boolean
function �x! (5 > x). The higher-order function filter applies this
argument to [3,4,5,6,7], returning [3,4]. The example exercises
the de�nition of higher-order functions and currying.

2. map(plus(1),[2,3,4],As)
In a similar fashion to example 1, the curried function plus(1) is
passed to the higher-order function map. In PrologPF the function
and predicate name-spaces are distinct (see Section 5.6), so the plus
function can be given the name + rather than a special relation being
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needed. The PrologPF library includes the de�nitions of all the arith-
metic functions, e.g. fun +(X,Y) = if (Z is X+Y) then Z else fail..
The is relation is redundant in PrologPF.

3. map(between(1),[2,3],As)
The relation between(I,J,X) has multiple solutions, and its call from
within a functional expression in PrologPF such as

if between(1,9,N) then N else 0

would ensure deterministic execution of the predicate. This would en-
force a single solution or failure. Example 3 has no equivalent in the
functional component of PrologPF, as that would conict with the
implementation on the Delphi Machine.

4. map(plus(1),As,[3,4,5])
Examples 4 through 7 require the functions map or plus to be re-
versible. None of call/N, apply/3 or PrologPF provides support for
reversible functions.

5. map(plus(X),[2,3,4],[3,4,5])
See 4 above.

6. map(plus(X),[2,A,4],[3,4,B])
See 4 above.

7. map(plus(X),[A,3,4],[3,4,B])
See 4 above.

8. foldr(append,[],[[2],[3,4],[5]],As)
The higher-order function foldr accepts a function abstraction (in
this case the function append) and recursively applies it to the ar-
gument list, treating the argument [] and the �nal element. With
call/N and apply/3, the �rst call to append is with the last element
of the list of lists and [], e.g. append([5],[],R), where R is an
intermediate result. Similarly, PrologPF stacks the intermediate re-
sult of append([5],[]). Each call to append is with both required
arguments ground, and call/N, apply/3 and PrologPF provide the
attened solution [2,3,4,5].

9. foldr(converse(append),[],[[2],[3,4],[5]],As)
The example proceeds in a similar manner to example 8, with the
function abstraction provided by converse(append). When called by
foldr, the abstraction is passed both required arguments which are
appended in reverse, resulting in the solution [5,3,4,2].

10. compose(map(plus(1)),foldr(append,[]),[[2],[3,4],[5]],As)
This is a more complex combination of currying and higher-order func-
tions, but with similar system requirements to examples 8 and 9.
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map(plus(1)) increments each member of a list, while foldr(append,[])
attens a list of lists, so the term represents:

increment list(atten list([[2],[3,4],[5]])).
This can be represented more naturally in PrologPF than in the at
syntax with call/N and apply/3.

11. foldr(compose(append,map(plus(1))),[],[[2],[3,4],[5]],As)
This example is evaluated successfully with apply/3 and in PrologPF,
but not with call/N. The composition of append and map(plus(1))

results in a function which increments the elements of an argument
list, and returns a function which prepends that result onto its argu-
ment (i.e. compose(append,map(+1)) @ [[1,2,3]]

; �x! append([1,2,3],x)). This abstraction can be passed to
foldr to be recursively applied to the argument list [[2],[3,4],[5]]
and [] producing [3,4,5,6]. The problem that call/N has with
this example stems from the fact that an intermediate result is pro-
duced which is a function abstraction. Call/N requires that the right
number of arguments must be given for the call to work correctly.
For example, call(plus(1),2,Z) works correctly giving Z = 3, but
call(plus,1,X) results in an error or fails. This limitation of call/N
provides the motivation for Naish [58] to recommend apply/3 in which
every application is to one argument and a closure is returned if the
function is de�ned with more.

12. map(plus,[2,3,4],As)
In this case, the application of map must return an array of function
abstractions, highlighting the weakness of call/N as in example 11.
PrologPF and apply/3 both produce the expected result, which can
be tested in a query such as
?- map(plus,[2,3,4],[Fa,Fb,Fc]), apply(Fb,5,Z).

or for PrologPF
?- [Fa,Fb,Fc] = map(plus,[2,3,4]), Z = Fb @ [5].

giving the solution Z = 8.

The examples above illustrate the limitations of call/N and show the sim-
ilarities of apply/3 and PrologPF for non-deterministic functions. Other
examples will highlight the syntactic advantages of PrologPF over apply/3,
in Table 5.11.

1. Apply/3 consistently treats all functions as relations, such that the
at form of arithmetic expressions is retained with the is relation, as
in the example with the de�nition of inc. The functional support in
PrologPF allows direct use of nested arithmetic expressions, so the is
relation is redundant. In fact, if is appears in a PrologPF goal with an
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apply/3 PrologPF

1. inc(X,Y) :- Y is X+1. fun inc(X) = X+1.

2. fact(1,1). fun fact(1) = 1;

fact(X,Y) :- X n== 1, fact(N) = N * fact(N-1).

X1 is X-1,

fact(X1,Y1),

Y is X * Y1.

3. apply4(F,A1,A2,R) :- F = plus, Z = F @ [1,2].

apply(F,A1,F1),

apply(F1,A2,R).

F = plus, apply4(plus,1,2,Z).

4. divby2(X,Y) :- Y is X / 2. map(lambda([X],X/2),[2,4,6]).

map(div by 2,[2,4,6]).

5. fun div by n(N) = lambda([X],X/N).

Z = div by n(2) @ [10].

6. fib(0,0). fun fib(0) = 0;

fib(1,1). fib(1) = 1;

fib(N,M) :- N > 1, fib(N) = fib(N-2) + fib(N-1).

N2 is N-2,

fib(N2,M2),

N1 is N-1,

fib(N1,M1),

M is M2 + M1.

7. ffib(F,0,M) :- apply(F,0,M). fun ffib(F,0) = F @ [0].

ffib(F,1,M) :- apply(F,1,M). ffib(F,1) = F @ [1].

ffib(F,N,M) :- N > 1, ffib(F,N) =

N2 is N-2, F @ [ffib(F,N-2) + ffib(F,N-1)].

ffib(F,N2,M2),

N1 is N-1,

ffib(F,N1,M1),

MM is M2 + M1,

apply(F,MM,M).

Table 5.6: Further programming examples showing PrologPF capabilities

arithmetic argument, the argument will be evaluated before uni�cation
with the corresponding is formal parameter. This means that Z is

1 + 2 � R = 1 + 2, Z is R. is has quite asymmetric functionality
in which the �rst argument must be a number or a variable while the
second argument can also be an arithmetic expression. (1 + 2) is

Z is not permitted in standard Prolog both for Z a variable or with
Z instantiated to a number. In PrologPF the use of = with library
functions provides more consistent support for arithmetic, allowing
both Z = 1 + 2 and (1 + 2) = Z. The bracketed terms are for clarity,
and 1 + 2 = Z is equally acceptable.

2. The example of the factorial function fact shows that deterministic
functions in the relational style must have guard conditions in subse-
quent clauses (i.e. X n == 1) to prevent erroneous non-deterministic
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execution. For more complex functions the conditions can obscure
the meaning of the code, and Prolog's cut is used to provide an e�-
cient solution. apply/3 does not attempt to address the presence on
cut to ensure determinism in functions, while PrologPF has consistent
deterministic functional evaluation.

3. The use of apply/3 provides consistent support for higher-order func-
tional programming, but su�ers from the implicit treatment of all func-
tion applications as nested applications to one argument and the at
representation of application terms. The example shows the applica-
tion of an arity/2 function to two arguments, and Naish [58] suggests
the de�nition of an auxiliary relation apply4 to mitigate this di�culty.
PrologPF allows the application of functions to an arbitrary number
of arguments in a single term.

4. Without nameless functions, the use of apply/3 requires that de�ned
functions are created for each requirement, and the chosen name used
in the place of the lambda expression in PrologPF. The example shows
the speci�cation of a function which divides-by-two. The issue with
apply/3 is mitigated by the use of currying, such that if the required
function were times-by-two, then a curried application, for example
times(2), could by used. In general, however, an auxiliary fact will
be needed, as the example shows.

5. The use of de�ned functions as an alternative to lambda-expressions
with apply/3 is unsatisfactory where the lambda-expression contains
free logical variables. The example shows such an expression in the
de�nition of div by n, and the issue would similarly arise within a goal
such as ?- N = @, Z = lambda([X],X/Z) @ [10]. The implemen-
tation with apply/3 would require the use of the Prolog extra-logical
relation assert or the accumulation of free variables as additional
arguments to the auxiliary functions.

6. The eager argument evaluation semantics of PrologPF is equivalent to
the attened form of Prolog relations used with apply/3. The example
of the Fibonacci function shows the syntax of PrologPF to be a better
match to the requirement.

7. The awkwardness of the attened form with apply/3 is exacerbated
when nested expressions and higher-order applications appear in the
function de�nition. The example gives a modi�ed Fibonacci function
where an additional parameter speci�es a function (F) to be applied
to the sub-terms before summation in the recursive case.
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The apply/3 example of ffib illustrates the following di�erences with
PrologPF:

(a) The condition N>1 is required as apply/3 has no special consider-
ation for deterministic execution, and assumes use of additional
conditions or cut.

(b) All expressions with apply/3 retain their at Prolog form, leading
to an unwieldy syntax for expressions which would naturally be
nested.

(c) Arithmetic with apply/3 relies upon the use of the special Pro-
log relation is. In PrologPF arithmetic expressions can appear
anywhere as a valid argument term, and will be reduced before
the term is uni�ed with the corresponding formal argument.

(d) Function application in PrologPF can be either explicit with the
@ operator, or implicit by using a de�ned function name in a
compound argument term. The latter case is de�ned to be syn-
tactic sugaring for the former. The de�nition of ffib using
apply/3 di�erentiates between the application of a higher-order
term represented by the variable F in apply(F,MM,M) and the
recursive call to the function ffib in ffib(F,N2,M2). For con-
sistent use of apply/3, the recursive call would be replaced by
apply(ffib(F,N2),M2) which would be converted by apply/3

to the call ffib(F,N2,M2). It is unclear whether it is better
to make consistent use of apply/3 in higher-order functions and
render the non-curried calls more obscure, or whether a mix of
apply/3 and normal relation calls should be used.

5.12 Conclusions

Higher-order functions can be neatly integrated with Prolog's relations with
a deterministic evaluation semantics compatible with the requirements of a
Delphi implementation.

Examples given in this and the following two chapters show the capabilities
chosen for implementation in PrologPF to be su�cient to express a wide
range of programs without resorting to arti�cial or obscure coding devices.

The capabilities of PrologPF, including the de�nition and application of
functions, the call-once semantics of the if condition, and the use of boolean
functions as relations, have proved su�cient to preclude the need for cut in
all the test programs reviewed to date.
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5.13 Summary

The functional component of PrologPF extends the Prolog language in the
following ways:

� The de�nition of functions through the fun relation

� The application of functions through the @ operator

� Support for higher-order functional programming through the use of
lambda-expressions and currying

� A general strict functional evaluation semantics with the single excep-
tion of a pre-de�ned if function

� Use of relations within functions is limited to the condition argument
of the if function, where deterministic search for the �rst solution is
enforced

� Support for boolean functions to be treated as relations

These features have proved consistent in use and su�cient to implement a
wide range of sample programs without resorting to cut.

The de�ned semantics permit an e�cient implementation on an extended
Delphi Machine, where function applications embedded within a Prolog pro-
gram are compiled to direct machine-code calls. Such an implementation
has been produced in PrologPF.



Chapter 6

Case Studies: Foundations of

Computer Science Exercises

4 and 6, and the Prolog

Technology Theorem Prover

This chapter provides an analysis of the use of PrologPF in expressing al-
gorithms typical of higher-order functional programming, and testing the
use of PrologPF on a substantial problem. The sample programs have been
taken from the functional programming exercises in Standard ML [55] set
to undergraduate students on a university Computer Science class [60], and
the Prolog Technology Theorem Prover from SRI [70].

The �rst example, Exercise 4, introduces the style of functional program-
ming in PrologPF and shows the use of a Prolog relation within a function
de�nition. The second example, Exercise 6, uses higher-order functional
programming to create in�nite lists, and shows how this style of function-
ally implemented data structure can be used within a relational program.
The Prolog Technology Theorem Prover, with a large test problem, provides
a suitable body of Prolog code for transferral to PrologPF, for potential par-
allel speedup.

152
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6.1 Foundations of Computer Science Exercise 4 -

Routes

6.1.1 Problem Description

The sample problem is to form the transitive closure of a relation. A function
routes is to be de�ned which, given a list representing the arcs of an acyclic
graph, returns a similar list representing all possible connections. The initial
list representing the graph can be [(a,b),(b,c),(b,d),(d,e)], for the graph given
in Figure 6.1.

a

e

b

c d

Figure 6.1: Initial acyclic directed graph for Exercise 4.

The function call routes([(a,b),(b,c),(b,d),(d,e)]) should return the
expanded list [(a,c),(a,d),(a,e),(b,e),(a,b),(b,c),(b,d),(d,e)],
representing the graph in Figure 6.2.

6.1.2 Startpoints and Endpoints

The �nal algorithm will use some utility functions to produce intermediate
results. Firstly, we de�ne the function startpoints which, given a list
of arcs and a node, will return the sublist of arcs with that node as the
endpoint.

fun startpoints([],Z) = [];

startpoints([(X,Z)|Pairs],Z) = [X|startpoints(Pairs,Z)];

startpoints([(X,Y)|Pairs],Z) = startpoints(Pairs,Z).

The functional syntax of PrologPF is clearly similar to Standard ML [55].
The eager evaluation semantics are also similar, but PrologPF is typeless.
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e

a

b

c d

Figure 6.2: Complete graph for Exercise 4.

The Prolog syntax for variables and lists has been preserved. The function
de�nition is terminated with a full stop (.), allowing the de�nition to be a
readable term in standard Prolog [35]. The functional support in PrologPF
can be added to a Prolog compiler without change to the parser. A PrologPF
program without functions has the same syntax as an identical Prolog pro-
gram. The PrologPF de�nition of startpoints has exploited the use of a
logical variable Z in the second case. The de�nition assumes an ordering of
the cases, with the �rst left-hand-side to successfully unify with the argu-
ments in the call being deterministically selected for the next reduction step.
The function could be written with an if-then-else expression replacing the
second and third cases, avoiding the use of logical variables, in which case
the code would be almost identical to the same function written in ML.

To produce a sublist of endpoints from a given startpoint, a similar function
endpoints is needed:

fun endpoints([],X) = [];

endpoints([(X,Y)|Pairs],X) = [Y|endpoints(Pairs,X)];

endpoints([(Z,Y)|Pairs],X) = endpoints(Pairs,X).

6.1.3 Allpairs and append

Here we develop the function allpairs which produces the Cartesian prod-
uct of two lists of pairs. The function will use a utility function append,
which returns the list formed from appending its two actual arguments:

fun append(X,Y) = if append(X,Y,Z) then Z.
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The PrologPF if-then-else expression has a relational goal as the condition.
If the goal succeeds (with an associated uni�er) then the result is the then
expression, otherwise it is the else expression. The if-then form used in the
example has an implicit else expression of fail. The example of append
shows the straightforward mapping of a particular mode of a relation into an
equivalent function. PrologPF distinguishes between functions and relations
of the same name if they have di�ering numbers of arguments. Curried use
of the PrologPF function append is permitted, where the function call will
have fewer than two actual arguments. In the simplest de�nitions, such
as append, the equivalent relation will often have one more argument than
the equivalent function. This enables PrologPF to provide a set of library
functions representing many of the relations expected in a standard Prolog
library, using the same names.

The �rst stage to provide the Cartesian product of two lists is to de�ne a
function which pairs one element with every value of a list, producing a list
of pairs. This function, pairx is de�ned as follows:

fun pairx(_,[]) = [];

pairx(X,[Y|Ys]) = [(X,Y)|pairx(X,Ys)].

The function pairx illustrates the use of \ " to represent an anonymous
variable, consistent with the syntax in both Prolog and ML. The function
allpairs also uses an anonymous variable, and the functions append and
pairx:

fun allpairs([],_) = [];

allpairs([X|Xs],Ys) = append(pairx(X,Ys), allpairs(Xs,Ys)).

In common with the global de�nition of relational procedures, PrologPF has
no support for the lexical scoping of function de�nitions. The equivalent
functions in ML could be nested to place the value of x in allpairs within
the scope of pairx:

fun allpairs([],_) = [];

allpairs((x::xs),pairs) =

let

fun pairx([]) = [];

pairx(y::ys) = (x,y)::pairx(ys).

in

pairx(pairs) @ allpairs(xs,pairs)

end;

The ML de�nition also takes advantage of the in�x de�nition of the ML
library append function @.
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6.1.4 Addnew

We can call a list of arcs complete if whenever it contains two arcs (a,b) and
(b,c) then it also contains the arc (a,c). The function addnew, given an arc
and a complete list of arcs, will return a complete list including the new arc.
For example, addnew((a,b),[(b,c)]) will return [(a,b),(b,c),(a,c)].
Functions addall and addnew are mutually recursive. Firstly, the function
addall uses addnew to insert each arc in its �rst argument into the complete
list given as its second.

fun addall([],Pairs) = Pairs;

addall([P|Ps], Pairs) = addall(Ps, addnew(P,Pairs)).

The function addnew has an arc as its �rst argument and a complete list of
arcs as its second.

fun addnew(Pair,[]) = [Pair];

addnew((X,Y), Pairs) =

if (member((X,Y),Pairs); X=Y)

then Pairs

else addall( append( allpairs( startpoints(Pairs,X), [Y]),

allpairs( [X], endpoints(Y,Pairs))),

[(X,Y)|Pairs]).

In the general case, addnew will prepend the new arc (X,Y) onto the com-
plete list of arcs given as a second argument, and will call addall to recur-
sively add all the arcs leading to X or leading from Y. The example if-then-else
expression in addnew further illustrates the use of a relational goal as the
condition, in which the disjunctive operator ; is used to represent orelse.
The operator has the same left-to-right interpretation as in sequential Pro-
log.

6.1.5 Routes

Finally the function routes, given an arbitrary list of arcs as its argument,
will recursively call addnew to add each arc to an accumulated complete list:

fun routes([]) = [];

routes([(X,Y)|Pairs]) = addnew((X,Y),routes(Pairs)).

The function routes can be exercised by its use in a top level goal such as:
:- Z = routes([(a,b),(b,c),(b,d),(d,e)])
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The goal will succeed with the single solution,
Z = [(a,c),(a,d),(a,e),(b,e),(a,b),(b,c),(b,d),(d,e)]

6.2 Foundations of Computer Science Exercise 6 -

Primes

This exercise exploits the higher-order programming capabilities of PrologPF
to simulate lazy execution for the de�nition of in�nite lists. A function
primes is de�ned using a sieve algorithm to return an in�nite list of primes.
This function is used in the simple de�nition of a relation prime(P) which
succeeds for prime P, and can be used as a generator for primes within a
relational goal.

6.2.1 In�nite lists

A carefully designed PrologPF term can be used to represent an in�nite list.
The term can be a compound term item(X,Xf) where X is the value to be
found at the head of the list, and Xf is a function which can be called to
return the tail of the list. The tail of the in�nite list will itself be a compound
term of the same structure.

Thus, for example, the in�nite list of the natural numbers can be represented
by the PrologPF term:

item(1, lambda([],item(2,lambda([],item(3,...)))))

This term can be constructed by the function makeints:

fun makeints(N) = item(N, lambda([], makeints(N+1))).

6.2.2 Head, tail and nth

As with the usual Prolog-style lists, functions such as head and tail can be
created which extract the components of the in�nite lists:

fun head(item(I,_)) = I.

fun tail(item(_,Xf)) = Xf @ [].

The tail function uses the explicit application operator @ to evaluate the
function representing the tail of the list. With the example of the term



158 CHAPTER 6. CASE STUDIES

representing the in�nite list of integers given above, tail will evaluate:
lambda([],item(2,lambda(..))) @ [],

returning the term: item(2,lambda(..)).

An additional utility function common in the use of lists is nth, with nth(S,N)
returning the Nth element of a list S:

fun nth(S,1) = head(S);

nth(S,N) = nth(tail(S),N-1).

The de�nition of nth illustrates the use of head and tail to abstract the
de�nition of the term used to represent the in�nite list. The function nth

can be used in a curried form, where nth(S) represents a function which
when applied to an integer will return the element of the list S indexed by
that integer.

6.2.3 Filters

The sieve algorithm used to produce the in�nite list of primes requires a
higher-order function filters which, given a selection function and an in-
�nite list, returns the list containing those elements for which the selection
function is true.

An example of a selection function, and that used in primes, is notdiv,
returning true if the �rst argument is not an exact divisor of the second:

fun notdiv(X,Y) = if (Y mod X =\= 0) then true else false.

The function uses the Prolog library relation =n= and the Prolog arithmetic
function mod, as an alternative to de�ning these as PrologPF functions for
a simpler boolean de�nition of notdiv.

The function filters applies the selection function given as the �rst argu-
ment in the condition of an if-then-else expression. The condition is inter-
preted as a relational goal, and filters exploits the PrologPF treatment of
the function call F @ [X] in this position as the goal (F @ [X]) = true.

fun filters(F, item(X,Xf)) =

if (F @ [X])

then item(X,lambda([], filters(F, Xf @ [])))

else filters(F, Xf @ []).

The function illustrates the use of higher-order variables to represent func-
tions, the explicit application of those functions using the operator @, and
the creation of nameless functions using lambda.
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6.2.4 Primes

Given the de�nition of the term used to represent an in�nite list, and the util-
ity functions de�ned above, the de�nition of the function primes is straight-
forward:

fun primes(item(X,Xf)) =

item(X, lambda([], primes(filters(notdiv(X), Xf @ [])))).

Given an in�nite list of integers starting with a prime, the function will
return the in�nite list beginning with that number, followed by the in�nite
list of the application of primes to the list having �ltered out all the elements
divisible by the �rst prime. The encapsulation of the tail of the list within
the lambda expression serves to delay the evaluation of the tail, avoiding an
in�nite loop.

The functional de�nition and creation of in�nite lists in PrologPF has a
natural use within relations. Firstly, a relation next prime can be de�ned
which succeeds for each element in a list:

next_prime(Primes,P) :- P = head(Primes).

next_prime(Primes,P) :- next_prime(tail(Primes),P).

Finally, the relation prime(P) can be de�ned which succeeds for each prime
integer P, and provides a generator for the primes:

prime(P) :- next_prime(primes(makeints(2)), P).

A top level goal :- prime(P) provides an in�nite sequence of solutions P=2,
P=3, P=5,....

6.3 Prolog Technology Theorem Prover

The Prolog Technology Theorem Prover (PTTP) developed by Mark Stickel
[70] improves upon the incomplete semantics of Prolog by:

1. Using a sound uni�cation algorithm with an occurs check.

2. Permitting general logical formulas to be used in clauses, rather than
just the Horn clauses accepted by Prolog.

3. Replacing the unsound depth-�rst search with an iterative deepening
search.
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PTTP also retains information on which formulas where used for each infer-
ence so that the proof can be printed. The theorem prover transforms the
assigned problem into a suitable Prolog program, which is then compiled
and executed using a standard Prolog compiler. PTTP is approximately
1500 lines of Prolog code, including comments, divided into the following
parts:

1. The code to transform the general assigned problem into a suitable
Prolog program.

2. The utility relations used by that program to ensure its sound exe-
cution, for example the uni�cation algorithm and various list utility
predicates.

3. The clauses representing the sample problems.

The sample problems used in the case study result in Prolog programs of
400 to 500 lines of Prolog code, including the needed utilities.

6.3.1 Chang and Lee example 2

As an example of the execution of the Prolog Technology Theorem Prover,
the �rst sample problem is taken from [21]:

p(e,X,X).

p(X,e,X).

p(X,X,e).

p(a,b,c).

p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W).

p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W).

query :- p(k(X),X,k(X)).

A Prolog term representing this problem is transformed into a Prolog pro-
gram which is run producing the proof in Figure 6.3.

The Prolog program representing the transformed problem contains a small
number of relations using cut, which can be replaced with PrologPF func-
tions. For example, the relation identical member can be replaced with a
function:

identical_member(X,[Y|_]) :-

X == Y,

!. % note presence of cut

identical_member(X,[_|L]) :-

identical_member(X,L).
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Goal# Wff# Wff Instance

----- ---- ------------

[0] 7 query :- [1].

[1] 5 p(b,a,c) :- [2] , [9] , [10].

[2] 6 p(c,a,b) :- [3] , [4] , [8].

[3] 3 p(c,c,e).

[4] 5 p(c,b,a) :- [5] , [6] , [7].

[5] 4 p(a,b,c).

[6] 3 p(b,b,e).

[7] 2 p(a,e,a).

[8] 1 p(e,b,b).

[9] 3 p(a,a,e).

[10] 2 p(c,e,c).

Figure 6.3: Solution for Chang and Lee example 2.

The equivalent function in PrologPF which avoids the use of cut is as follows:

fun identical_member(X,[]) = false;

identical_member(X,[Y|L]) =

if (X == Y)

then true

else identical_member(X,L).

The compiled PrologPF version of the Chang Lee example completes on a
single cpu with the PrologPF partitioning depth limit set to 1 (i.e. a single
partition) in 2187 milliseconds. The execution on the distributed PrologPF
system with a suitable depth limit L = 23 for parallel execution produces
the runtimes of the graph in Figure 6.4.

The problem is su�ciently small to limit the runtime to a minimum of about
500 milliseconds. A graphical representation of the search tree is given in
Appendix B.3.

6.3.2 Overbeek example 4

Another example, provided by Overbeek [37], provides a much greater search
space and potential for much improved parallel speedup when compiled with
PrologPF. The example problem provided by Overbeek has a single cpu
runtime on the processors used by the distributed PrologPF system of over
�ve hours:

p(e(X,e(e(Y,e(Z,X)),e(Z,Y)))).

p(Y) :- p(e(X,Y)), p(X).

query :- p(e(e(e(a,e(b,c)),c),e(b,a))).
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Figure 6.4: Runtimes for Chang Lee example 2 for G = 1 : : : 30 and L = 23.

Compilation and execution proceeds in the same manner as for the Chang
and Lee example. The graph given in Figure 6.5 shows the improvement in
runtime as processors are added to the group used to execute the problem.

The improvement is clari�ed with the speedup graph in Figure 6.6 which
plots the speedup ratio against the single cpu case for groups of path pro-
cessors up to a maximum group size of 42.

The speedup graph shows linear speedup throughout the range of group sizes
available. For some values of G, such as 18 and 27, the speedup is greater
than the increase in the number of path processors. This phenomenon is a
result of the single-solution requirements of the code produced by PTTP. In
a sequential execution, the �rst solution found will be that furthest to the left
in the depth-�rst, left-to-right search tree. Also, the search tree to the left
of that solution will be fully search before the solution is discovered. In the
distributed execution of PrologPF, the search tree is partitioned between the
available path processors and the �rst solution found will be that furthest to
the left within the subtree assigned to that path processor. The partitioning
may result in a solution appearing very early in the subtree assigned to one
of the path processors, such that it is found very quickly. The situation is
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Figure 6.5: Runtimes for Overbeek example 4 for G = 1 : : : 42 and L = 130.

illustrated in the simpli�ed diagram in Figure 6.7.

In the single-cpu case, the subtrees labelled A and B in the �gure will be
searched �rst, taking at least 520ms, and then the solution X will be discov-
ered after at least 2ms in the subtree labelled C. If the problem is divided
between three path processors, then oracles leading to A and D will be al-
located to path processor 0, oracles B and D to processor 1, and oracle C
to processor 2. Path processor 2 will discover the solution X after the par-
titioning time (20ms) followed by the search to the solution in subtree C,
taking approximately 52ms. In this simple example, the shallow positioning
of the solution in subtree C gives a speedup for the single-solution case of
approximately 520=52, i.e. 10, with only 3 path processors. Note that for
the all-solutions case, the subtrees A,B,C,D and E, would all have to be fully
searched such that the bene�t of one or more shallow solutions will not be
obtained. The one-solution requirement of the Prolog Technology Theorem
Prover means that with fortuitous partitioning greater than linear speedup
can be obtained.
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Figure 6.6: Speedup for Overbeek example 4 for G = 1 : : : 42 and L = 130.

6.4 Conclusions

PrologPF provides support for functional programming comparable to that
of a typeless ML, in which some programs have a more convenient expression
than their Prolog equivalents. The deterministic reduction of functional
expressions permits the expression of many algorithms that would otherwise
suggest the use of cut in Prolog.

The syntax for functional de�nition and evaluation in PrologPF is consis-
tent with the standard Prolog syntax for the relational procedures, such
that functions and relations can be mixed in a program without conict of
programming styles. Data structures, such as lists and compound terms,
are common to the relational and functional components of PrologPF.

The combined functional and logic support in PrologPF, with the relational
procedures compatible with standard Prolog [35], allow a straightforward
conversion of substantial Prolog programs to equivalent PrologPF programs
suitable for execution on the Delphi Machine. In the case of the largest
program tested, the Prolog Technology Theorem Prover, a speedup of 40
times using 42 processors was achieved.
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Figure 6.7: Greater than linear speedup for single-solution problems.

6.5 Summary

The problem of �nding the transitive closure of a relation provides a suitable
exercise for functional programming, with the relation de�ned as a set of arcs
between nodes of a graph. Prolog terms can be used to represent the arcs
(i.e. the tuple (a,b) to represent the arc a! b), and the set of arcs stored in
a Prolog list. The functions necessary to transform this list into a complete
list representing the transitive closure can be implemented in PrologPF in as
straightforward a manner as in Standard ML [55]. Functions and terms are
typeless in PrologPF, consistent with the typeless environment of Prolog.
Potential bene�ts of a polymorphic type inferencing system as found in ML
have not been provided in PrologPF.

The higher-order programming capabilities of PrologPF include the de�ni-
tion of nameless functions using lambda expressions, and the ability to pass
functions as arguments and return them as results. These capabilities can
be demonstrated in the use of lazy evaluation in the implementation of in�-
nite lists. The terms used to represent the lists contain lambda expressions,
and higher-order functions head and tail are used to extract the elements
of the list. A function primes can be written to return the in�nite list of
primes. The example given shows the integration of the functional support
with a relation prime(P) which succeeds for any prime, P. The relation can
be used with P an integer, or a P a variable which will be instantiated with
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a sequence of primes.

The Prolog Technology Theorem Prover is a Prolog program which can
transform the predicate calculus representation of a logic program into an
equivalent Prolog program avoiding some incomplete aspects of Prolog's ex-
ecution. Depth-�rst search is replaced with breadth-�rst, and an explicit
occurs check is embedded in the code. The procedures in the program con-
taining cut are replaced with equivalent functions, and the resulting program
compiled with the PrologPF compiler for a speedup in execution of up to
40 times on the Cambridge laboratory's 42 workstations.



Chapter 7

Kappa: a simpli�ed parallel

logic processing primitive

This chapter gives an analysis of the implementation of the breadth-�rst
partitioning scheduling strategy without using oracles. The oracle-based
strategy �rst proposed by Clocksin and Alshawi in [28] and used in PrologPF
for comparison with DelphiKS1 in Chapter 3 is compared with a simpli�ed
technique using a special proposition kappa.

The novel partitioning proposition kappa is suitable for use with any stan-
dard Prolog compiler. While the technique has much in common with the
breadth-�rst partitioning strategy of PrologPF, kappa can be implemented
without the use of oracles. The limitations of the new primitive are com-
pared with the strategy improvements potentially available through the im-
proved exploitation of oracles.

7.1 Background

Chapter 3 reviews in detail the breadth-�rst partitioning strategy using
oracles to de�ne the root of each subtree to be allocated to an available
path processor.

In the �rst phase of execution, the search is bounded by a selected depth
limit L. The open branches found at this limit are recorded as a count S of
oracles, each representing the sequence of clauses used to arrive at the point
in the search at which the depth limit was reached. An oracle stack is used to
accumulate the open oracles during this �rst oracle discovery phase. While

1the previous implementation of the Delphi Machine, documented in [49, 66].

167
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the search in the initial phase is bounded by L, the standard Prolog depth-
�rst left-to-right search is used, and the S open oracles form an ordered list
in the order of discovery. Figure 7.1 shows an example subtree traversed
during the depth-limited initial phase, with the resultant oracle stack as a
data structure representing the paths in the reduced tree.

The oracles in the oracle stack can be allocated to a number of path proces-
sors whose role is to follow each assigned oracle to recreate the environment
required at the root of the associated subtree at depth L, and then to con-
tinue the search of that subtree.

The breadth-�rst partitioning strategy used by PrologPF proceeds in the
two phases of oracle discovery and subsequent subtree search. While the
model supports the use of a single control processor for the execution of
the �rst phase and then the allocation and communication of the oracles,
a distributed model is used in PrologPF in which all the path processors
execute the �rst phase and create a local copy of the oracle stack. The path
processors then use the parameters G and N representing the processor
group size and the unique processor number respectively to select disjoint
subsets of oracles from the oracle stack.

7.2 Breadth-�rst partitioning without oracles

If the two phases of the breadth-�rst partitioning algorithm are interleaved,
it is possible to create a similar one-time partitioning strategy without the
use of oracles. PrologPF completes the �rst oracle discovery phase before
assigning the open oracles to the available path processors. In practice the
oracle assignment function is �xed before the start of execution, such that
the assignment can be performed independently on each path processor.
However, with reference to Figure 7.1, on discovery of the �rst open oracle
at the depth limit L the Prolog stacks and heap contain the environment
necessary for the continued search of the subtree labelled A in the �gure.
This is the environment recreated when the oracle is followed during the
second phase of BFP. With a suitable �ltering function applied at the depth
limit L, the subtrees can be selected and searched by the path processors
as the open branches at L are discovered. The principles of this strategy
without oracles are as follows:

� The phases equivalent to the initial oracle discovery and subsequent
subtree search in PrologPF are interleaved.

� Execution proceeds without maintenance of the current oracle, instead
exploiting the environment constructed during the search beneath the
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Figure 7.1: Use of oracles in breadth-�rst partitioning.
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depth limit.

� Each path processor executes the search from the root of the search
tree, with the following assigned parameters:

G: The number of path processors in the group.

N : The unique processor number of the given path processor.

L: The selected depth limit.

� The search is generally limited to the depth set by L, with a count ac-
cumulating the number of times this depth limit is reached during the
depth-�rst left-to-right search. This count is equivalent to the oracle
number in the ordered stack resulting from the �rst phase of BFP. The
point in the search tree at which an open branch is discovered at the
depth limit L is called a port. Each time the count is incremented, the
selection function is applied to determine whether the search should
continue with the subtree beneath the port, or whether the port should
be skipped.

� A suitable selection function will ensure that all ports are selected by
the combined group of path processors, and no port is selected more
than once. As with the BFP algorithm in PrologPF, a good selection
function would allocate the work beneath the ports evenly. In the
absence of a work estimation function, an equal number of ports can
be allocated to each path processor.

Figure 7.2 shows a search tree during the execution of a scheduling strategy
similar to BFP without using oracles. The ports are identi�ed at the depth
limit L, and the selection function at a given path processor is illustrated.

The path processor executes the search bounded by the depth limit until a
port is accepted by the selection function, at which point the search contin-
ues with the subtree beneath that port. On completion of that subtree, the
search continues bounded by the depth limit and the selection function.

7.3 The gate proposition k gate

The selection function described in Section 7.2 can be represented by a
proposition tested each time a subgoal is called or executed. If the current
depth is not that of the depth limit, then the proposition succeeds. If the
depth limit has been reached, then the proposition fails unless the current
port is assigned to the given path processor.
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Figure 7.2: Search tree partitioning without oracles.

One suitable function which will evenly allocate the ports to the available
path processors is:

(port number mod G) = N

The selection of the ports modulo G means that the path processors search
the subtree beneath every Gth port, beginning with the Nth. Thus with
G path processors, allocated values of N from 0 to G� 1, all ports will be
uniquely allocated.

A pseudo-Prolog proposition providing the port selection behaviour using
this function is k gate, given below:

k_gate :- current_depth <> L.

k_gate :- current_depth = L,

increment port_number,

(port_number mod G) = N.

The proposition accesses global values for the current depth, the assigned
depth limit L, and port number, the number of ports found so far. k gate

has the side-e�ect of incrementing port number each time the depth limit
is reached. port number is initially 0.
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7.4 kappa

kappa is the proposition representing the parallel partitioning primitive in-
serted into the user program. In the absence of an existing global system
value representing the search depth, kappa can accumulate a depth value
and call k gate to determine success or failure. depth is initially 0.

kappa :- increment depth, k_gate.

kappa :- decrement depth, fail.

In the example of the member/factorial program given in Section 3.7 the
user code can be modi�ed to use kappa as follows:

member(X,[X|_]).

member(X,[_|Y]) :- kappa, member(X,Y).

fact(1,1).

fact(N,F) :- kappa, N > 1,

kappa, N1 is N - 1,

kappa, fact(N1,F1),

kappa, F is N * F1.

:- kappa, member(X,[4,3,2,1]), kappa, fact(X, F).

Preceding every goal with a call to the proposition kappa can be achieved
automatically through the use of the utility relation term expansion/2 pro-
vided with many Prolog implementations [16]. If kappa is only used at
selected positions in the program, then similar behaviour is achieved with
a new meaning for the depth value used in the selection algorithm. In this
case, the depth value is taken to mean the depth of the calls to kappa, which
is no longer equal to the current depth in the AND-OR search tree.

Many implementations of Prolog provide a mechanism to incorporate C code
into procedure de�nitions. This capability permits e�cient implementation
of the kappa primitive, integrating the function of k gate, resulting in the
�nal de�nition of kappa given in Table 7.1.

7.5 Kappa at every subgoal versus selective use

If the special proposition kappa is inserted before every subgoal in the user
program, the global depth value updated by the frequent calls to kappa

is equal to the current depth of the search into the AND-OR tree of the
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kappa :- if ((++depth == L) && ((++port_number mod G) == N))

then succeed

else fail.

kappa :- --depth, fail.

Table 7.1: De�nition of parallelisation primitive kappa.

original program. With the example of the member/factorial example
program given in Chapter 3, Figure 3.21, the selection function provided
by kappa can be viewed as a horizontal boundary with ports at a constant
AND-OR depth. The situation is illustrated in Figure 7.3

Function

root

A B C D Selection

Figure 7.3: Search tree for member/fact program with horizontal selection
function.

However, kappa can be more selectively added to a user program for sim-
ilar bene�ts without the overhead of a call to the proposition before every
original subgoal.
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An example of the selective use of kappa in the member/factorial program
is:

member(X,[X|_]).

member(X,[_|Y]) :- member(X,Y).

fact(1,1).

fact(N,F) :- N > 1,

N1 is N - 1,

kappa, fact(N1,F1),

F is N * F1.

:- member(X,[4,3,2,1]), kappa, fact(X, F).

In the example above, only the fact relation is associated with the kappa

proposition. The depth value maintained by kappa is now purely the depth
into the fact relation, and a diagram representing the search tree is given
in Figure 7.4.

D

root

Selection function

A

B

C

Figure 7.4: Search tree for member/fact program with sloping selection
function.

With selective use of kappa, the programmer (or compiler) would select
those relations known to generate a large number of branches near the root
of the search tree. In the minimal case, kappa might be associated with
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just one relation in the user program, and an appropriately small value of
the depth limit would be used. The member/fact program given above will
partition the work satisfactorily with kappa associated with the relation
fact and a depth limit set at 1. Higher values of the depth limit L will not
improve the partitioning of the problem as the fact relation is deterministic
and partitioning deeper into the fact relation will result in the same number
of ports.

A more general example of the selective use of kappa is given in the proce-
dure findsum below 2.

% L is given list of integers

% S is given sum

% [X|Y] is subset of L summing to S

findsum(L,S,[X|Y]) :- select(L,X,L1),

S1 is S - X,

kappa, findsum(L1,S1,Y).

findsum(_,0,[]).

:- findsum([1,2,3,5,7,11],14, X).

If the depth limit L for the execution of the problem is set at 1, then par-
titioning will take place after selection of the �rst candidate integer for the
sum. For L = 2, partitioning will take place after the selection of two
integers, and so on.

7.6 E�ciency considerations

7.6.1 Sequential computation when depth < L

PrologPF performs the initial pseudo-breadth-�rst search without advan-
tage from the parallel processing available in the distributed system. Two
techniques are available to PrologPF:

1. Perform the initial search in the control processor, and communicate
the discovered oracles to the available path processors.

2. Duplicate the initial search in every path processor, such that an oracle
stack is held locally on every machine. The oracles can be allocated
using a common algorithm ensuring each oracle is allocated to one
path processor, and all oracles are allocated.

2select(L,X,L1) is a library relation with X a value from list L with the remainder of
the list in L1.



176 CHAPTER 7. KAPPA

The implementation used as the subject of this dissertation uses the second
technique, but has been tested with the �rst. The earlier implementation
using oracles, DelphiKS [49, 66], also used both techniques.

The parallel speedup available with the use of kappa is similarly limited by
the sequential search of the tree beneath the depth limit L. However, the
use of kappa requires that the second technique listed above be used. The
interleaving of the depth-limited search with the subsequent subtree search
and the lack of oracles means that each path processor must proceed with
the pseudo-depth-�rst search to create the environment required at each
port before searching an assigned subtree.

The duplicated processing (or equally the sequential processing of the �rst
technique) imposes a limit on the maximum speedup of the problem. For
PrologPF this issue is discussed in Chapter 3, Section 3.6.1. If the depth
limit is set too large, then a large proportion of the total search tree may
reside within the depth limit L, while only the subtrees at depths greater
than L are available for parallel search.

7.6.2 Optimal selection of depth limit L

As with the breadth-�rst partitioning strategy used by PrologPF, the depth
limit L determines the amount of computation done in the initial sequential
phase of execution, and the number of open branches found.

An optimal value of the depth limit will minimise the amount of recompu-
tation performed beneath the depth limit while discovering enough ports to
provide su�ciently �ne granularity of work in the subtrees to balance the
assigned workloads.

The related issue with the BFP strategy is discussed in detail in Chapter
3, Section 3.6. The use of kappa avoids the requirement for oracles by
interleaving the subtree search with the pseudo-breadth-�rst search phase.
Potential optimisations using knowledge of the overall count or distribution
of ports are not available with the use of kappa.

For some small values of the depth limit L, only a small number of ports will
be discovered, perhaps smaller than the number of available path processors.
In this situation the number of ports present at L will place an upper bound
on the possible speedup. As with the breadth-�rst partitioning strategy,
an improvement in speedup may be obtained by iterating through several
increasing values of L until the number of ports discovered is at least some
multiple of the number of available path processors.

An executable binary compiled using either PrologPF or with the kappa
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primitive can report the number of open oracles or ports found without fur-
ther search if:

1. The program reports the number of open oracles or ports found on
completion.

2. The program is assigned a unique processor number higher than the
maximum open oracle or port count. The modulo arithmetic function
used to select would in this case assign no ports or oracles to the
selected path processor.

This technique suggests that optimising the number of open oracles or ports
found S provides an estimate for a reasonable value of the depth limit L.

7.6.3 Oracle data structures imply limit on L

PrologPF with oracle-based breadth-�rst partitioning proceeds in two phases,
building the oracle stack during the initial oracle discovery phase. For a
given depth threshold L a number S of open oracles will be found, to be
recorded in the oracle stack. PrologPF represents an oracle with a list of
integers stored in an array, and the oracle stack is a two-dimensional array.
The earlier implementation of DelphiKS used the number of clauses in each
procedure to compress the clause index into a binary number of a variable
number of bits [49]. A tree representation would also be more compact than
the PrologPF arrays.

The storage of the oracles during the �rst phase of execution in PrologPF
imposes a limit on the number of oracles that can be utilised. This places
constraints on the acceptable values for the depth limit L. Figure 7.5 shows
the increase in the number of open oracles discovered by PrologPF at in-
creasing depth limits in the Pentominoes problem.

The oracles recorded on the oracle stack will each have a length equal to
the selected depth limit. The oracle stack storage requirements for the
Pentominoes program are given in the graph of Figure 7.6.

While the storage requirement of the oracle stack imposes a limit on the
possible values of L, the use of the parallelisation primitive kappa has no
accumulated oracle information as the execution proceeds. Thus the use of
kappa is more tolerant of large values of L.
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Figure 7.5: Count of open oracles for Pentominoes problem for L = 3 : : : 33.
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7.6.4 Total kappa port count versus PrologPF open oracle

count

The oracle-based partitioning algorithm used by PrologPF discovers all the
open oracles at the selected depth limit before the assignment of the asso-
ciated subtrees for search by the available path processors. As a minimum,
the count S of open oracles is known before the allocation.

While PrologPF takes no advantage of this information in its simple �xed
allocation algorithm, the information may be useful for future improvements.

The simple use of kappa searches each discovered subtree as execution
proceeds in one phase, such that the total port count (equivalent to the
PrologPF open oracle count) cannot be known as a given subtree is searched.

If the total port count is deemed essential for a worthwhile improvement in
the port selection algorithm then the execution of a program using kappa can
proceed in two phases. The �rst phase would be completely limited to the
selected depth limit, i.e. the gating proposition would be false. This phase
would return the number of ports found, and the count or other information
made available to the port selection function as execution proceeds as before.
This technique would double the overhead of the sequential component of
the program execution. The times taken for execution of the sequential
component of the Pentominoes problem for the range of depth limits used
in Figure 7.5 are given in Figure 7.7.

The single-cpu execution time of the Pentominoes problem is 445 seconds,
so the sequential execution time is reasonable, particularly for systems with
few available path processors.

7.6.5 Work reassignment on path processor failure

In the event of path processor failure using PrologPF, the work can be
passed to an alternative path processor by redistributing the a�ected oracles.
The newly assigned path processors can e�ciently recreate the environment
needed at each subtree to repeat the search of the failed processor.

The impact of a failed processor may be greater with the simple use of the
kappa primitive, as the reconstruction of the environment at a given port
requires the complete search of the depth-limited subtree to the left of that
port. This is because the port number is obtained from a count of the
number of times the selected depth limit has been reached in the search so
far, and the search is strictly depth-�rst, left-to-right.

The overhead of the processing required to reconstruct the environment at
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Figure 7.7: Sequential execution component of Pentominoes problem for
L = 3 : : : 33.

a given port is bounded by the sequential execution time of the problem
up to the assigned depth limit. The sequential execution times for the
Pentominoes problem at various depth limits is given in Figure 7.7.

7.6.6 Solutions found within the depth limit

For problems with multiple solutions distributed at various depths in the
AND-OR search tree, it is possible to select a depth limit which divides
the solutions into those beneath the depth limit and those in the subtrees
beneath the ports. The search of the tree beneath the depth limit is repeated
by all the path processors, and solutions in this part of the tree will thus be
found and reported by all the path processors.

If the problem requires that duplicate solutions must be avoided, then the
issue caused by the initial search repeated by all the path processors must
be addressed. One technique to ensure unique solutions is to:

1. The path processor tags each solution with the depth at which that
solution was found.

2. The control processor can accept solutions tagged with a depth less
than that of the depth limit only from one path processor. Solutions
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returned by other path processors with depths less than the depth
limit are discarded.

As the depth limit is known to all the path processors and the control pro-
cessor, then a similar technique could be used to ensure that only one path
processor (for example, the path processor assigned the unique processor
number 0) would return solutions below the depth limit to the control pro-
cessor.

7.7 Repeated partitioning

As with the oracle based breadth-�rst partitioning used in PrologPF, the
use of kappa can allocate di�ering workloads to the path processors, such
that some will complete before others and become idle for the remainder of
the computation. The issue for PrologPF is discussed in detail in Chapter
3, Section 3.6.

If many path processors have completed and become idle, but one or a few
are still busy, then it may be worthwhile to redistribute the work from the
busy processors to the idle processors. one mechanism to e�ect this is the
repeated application of a depth limit within the subtree of a busy processor.
The situation is pictorially represented in Figure 7.8.

If it is assumed that other path processors have completed the search of the
subtrees beneath ports A, B and D in Figure 7.8, then path processor N
assigned to port C is still executing. With a suitable extension of the port
selection function, the group of path processors can all be set to search the
subtree beneath port C at depth L, with a new depth limit for kappa of
L0. The usual partitioning can occur at this new depth limit, such that the
work has been assigned to all the previously idle path processors.

A given port in the search tree is uniquely identi�ed by a list of (depth,
port number) tuples. If kappa is associated with every relation in the user
program, such that the depth used for partitioning is equal to the search
depth in the AND-OR tree, then the list of (depth, port number) tuples is
identical to the equivalent oracle used by PrologPF with an assumed depth
increment of 1. In Figure 7.8 the sequence [(L,C), (L0,C1)] can be considered
a compressed form of the oracle leading to port C1.

This repeated use of incremental depth limits with kappa is similar to the ap-
proach of work splitting discussed in Chapter 3, Section 3.6.5 for PrologPF.
However, the overhead in following the list of (depth, port number) tuples
is much greater then the e�cient traversal of an equivalent oracle. For re-
peated use of depth limits with kappa, the left-most portion of each subtree
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Figure 7.8: Repeated use of a depth limit and kappa within a subtree.

at each port in the list must be searched to discover the selected port at
the next depth. For large balanced problems with a high degree of OR-
parallelism and thus a large number of even subtrees at each selected depth,
this overhead may still be acceptable.

An e�cient implementation of a repeated partitioning strategy using both
kappa and oracles is given in Chapter 8.

7.8 Conclusions

The �xed-allocation breadth-�rst partitioning algorithm with oracles used
by PrologPF can be implemented without using oracles with a special par-
allel processing primitive called kappa. The e�cient implementation and
use of kappa requires support for user C programming and access to global
C values in the Prolog system, but requires no modi�cations to the Prolog
compiler or runtime system.

The use of kappa facilitates simple breadth-�rst partitioning of Prolog pro-
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grams with similar performance characteristics and issues as those found
with the oracle-based one-time breadth-�rst partitioning strategy tested
with PrologPF.

Enhancements to the scheduling strategy possible through the availability of
oracles in the PrologPF environment are not transferable to the use of kappa
without oracles. Chapter 8 describes a strategy combining the advantages
of kappa and oracles.

7.9 Summary

The implementation of the breadth-�rst partitioning scheduling strategy
used by PrologPF uses oracles to represent the subtrees still to be explored
at the open branches at the selected depth limit.

The BFP strategy proceeds in two distinct phases:

1. Oracle discovery, in which an oracle stack is built representing all the
open branches at the selected depth limit.

2. Subtree selection and search, in which path processors are allocated
disjoint subsets of the open oracles and search the referenced subtrees.

If these two phases are interleaved, a similar allocation strategy can be
obtained without the use of oracles. The open oracles discovered in BFP
are followed in the second phase to reconstruct the environment pertinent
to the subsequent search of the dependent subtree. Without oracles, the
environment constructed at the point of discovery of the open branch at the
depth limit can be exploited if the subtree is searched immediately. The open
branches at the depth limit are called ports, and a selection function similar
to the oracle allocation function is required in each path processor, such that
each processor skips over the ports allocated to other path processors.

The process of maintaining a global depth value and performing a port selec-
tion function has been integrated into a novel primitive called kappa. Calls
to the special proposition kappa are embedded into the conjunctive subgoals
of the user program, and the proposition has the following characteristics:

1. At depths other then the selected depth limit, kappa is transparent to
the logic of the program, that is it always succeeds.

2. At the depth limit, kappa will succeed at ports allocated to the local
path processor, and fail otherwise.
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If the special proposition kappa is inserted before every subgoal in every
clause, then the depth value maintained is the same as the depth into the
transformed problem OR-only tree used by PrologPF [66]. kappa can be
used selectively in the user program, as a minimum associated with just one
user relation. The depth information is then limited to the depth of the
nested calls of the selected relations.

The optimal distributed execution of programs using kappa is inuenced by
a number of factors:

1. The search of the problem tree at depths less than the selected depth
limit is repeated in every path processor, and is e�ectively a sequen-
tial component of the execution. The time taken for this sequential
component places an upper bound on the speedup available.

2. As with the one-time breadth-�rst partitioning strategy using oracles
(BFP), the simple use of kappa relies upon a reasonable value for the
depth limit at which partitioning takes place. A depth limit which is
too small will not generate su�cient ports to permit an even distri-
bution of the work. A depth limit which is too high will cause a high
proportion of the available work to be executed sequentially, reducing
the parallel speedup.

3. Unlike BFP, the use of kappa imposes no requirements for storage of
oracle information as the depth-limited search progresses. In general,
the use of kappa will accommodate larger values of the depth limit
than BFP.

4. As the subtree search is interleaved with the port discovery process, the
port allocation algorithm cannot use the knowledge of the total number
of ports for any potential improvement in the e�ciency of allocation.
The equivalent information is available to BFP on completion of the
initial oracle discovery phase.

5. The work in the subtree beneath each port may vary widely between
di�erent ports and between di�erent path processors. The use of or-
acles in BFP provides the potential for the e�cient redistribution of
work from a busy processor to idle path processors. Redistribution
of work with the use of kappa without oracles will incur a greater
overhead of the recomputation of the subtree to the left of the current
port.

The special proposition kappa provides the bene�ts of the one-time breadth-
�rst partitioning strategy without the use of oracles. More complex parti-
tioning strategies, such as work-splitting, are e�ectively supported by the
combined use of kappa and oracles. Chapter 8 describes an implementation
of work splitting with oracles and kappa.



Chapter 8

SOK: Splitting with Oracles

and Kappa

This chapter describes the combined use of oracles and kappa. Both tech-
niques are used in the recursive reallocation of work from busy to idle path
processors, referred to as work splitting. The resulting scheduling technique
improves upon the one-time allocation of work used in breadth-�rst par-
titioning by delivering greater speedup and removing the requirement for
accurate selection of a depth limit parameter.

8.1 Background

The use of oracles in the breadth-�rst partitioning one-time scheduling al-
gorithm is discussed in depth in Chapter 3. The alternative parallelisation
primitive kappa is covered in Chapter 7. This section highlights the at-
tributes of the two approaches exploited in a combined technique to provide
e�ective work splitting.

8.1.1 Oracles

In the one-time partitioning provided by the breadth-�rst partitioning strat-
egy described in Chapter 3 and [66], oracles are used to de�ne subtrees for
search by assigned path processors. Each oracle is followed to arrive at
the root of the de�ned subtree, and the depth-�rst left-to-right execution
strategy of standard Prolog is used within the subtree. The breadth-�rst
partitioning strategy generates a complete set of oracles referring to every
subtree with its root at the selected partitioning depth, and the oracles

185
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are allocated to the available path processors such that all the subtrees are
searched.

The current oracle within a path processor is the sequence of clause indexes
leading to the node in the search tree representing the current point in the
depth-�rst left-to-right search. An open oracle leads to a choice point with
further branches leading deeper into the search tree. Generally, the oracles
issued by the depth-�rst partitioning strategy will be open oracles.

Associated with the scheduling strategy is the concept of poisoned oracles.
If the workload is unevenly balanced among the oracles at the selected depth
limit, one or more open oracles may lead to huge subtrees. Without work
splitting, the long runtime of the path processors assigned to those oracles
will dominate the overall runtime and reduce the parallel speedup. The
assignment of an oracle referring to a very small subtree also reduces the
e�ciency of the parallelisation technique, as the path processor will perform
the redundant computation involved in receiving and following the oracle
without then performing much useful work. The breadth-�rst partitioning
strategy mitigates the problem of poisoned oracles by requiring a parti-
tioning depth at which many open oracles will be generated, such that the
composite workload assigned to each path processor bene�ts from averaging.

Oracles have the following useful properties:

1. An oracle uniquely identi�es a node within the search tree. Dupli-
cate solutions can be recognised from their identical oracles. With the
one-time assignment of work in the depth-�rst partitioning strategy,
duplicate solutions can be found if they appear beneath the selected
depth limit. In this case duplicates can be avoided with the simple
mechanism of limiting those solutions to the path processor given a
unique processor number N = 0. More complex strategies can pro-
vide speculative assignment of work in the knowledge that duplicate
solutions can be recognised.

2. An open oracle can be treated as a reference to its underlying subtree.
Another processor can use the oracle to recreate the environment at the
root of that subtree, and can then independently perform the search
of that subtree.

3. With each path processor following a strict depth-�rst left-to-right
search strategy, an oracle can be considered to divide the search tree
into two parts, to the left and right of that oracle respectively. A
busy processor can return the oracle referring to its current node in
the search tree. The implied left subtree represents the part of the
tree already searched, while the right subtree represents the part of
the tree still to be searched.
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8.1.2 Kappa

The partitioning primitive kappa is described fully in Chapter 7.

The breadth-�rst partitioning strategy generates all the open oracles at a
selected depth in the search tree, and then distributes all the oracles to the
available path processors. The path processors then follow each assigned
oracle to search each associated subtree. To reduce the communications re-
quirements, all the oracles can be generated locally at every path processor,
and each can use the allocation algorithm to select those for local search.

To reduce the overhead of processing the many oracles referring to small sub-
trees, the optimal partitioning depth limit will be that at which the number
of open oracles S considerably exceeds the number of processors in the group
G. Each path processor will be allocated S=G oracles. For example, at the
optimal partitioning depth L = 21 for the pentominoes problem, 848 open
oracles are discovered for allocation to the 30 path processors, so they each
receive 28 or 29 oracles.

The parallelisation primitive kappa provides the same distributed behaviour
as the allocation of the open oracles in the breadth-�rst partitioning strat-
egy, without the requirement to accumulate and store the potentially large
number of open oracles. The bounded-depth phase of BFP is interleaved
with the search of the assigned subtrees as each node which would other-
wise have generated an open oracle is discovered. The recomputation of the
path up to the root of the selected subtree is avoided.

8.2 Work splitting

The combined support for both oracles and kappa provides an e�ective
means to interrupt the work of a busy path processor and assign the re-
maining work to a newly formed group of idle path processors. The general
idea is illustrated in Figure 8.1, in which one path processor is dividing its
work among three others.

This section describes how the parallelisation support has been extended to
facilitate work splitting, and discusses consequent scheduling issues. E�ec-
tive work splitting is dependent upon:

� The ability of a busy path processor to e�ciently communicate a spec-
i�cation of its remaining work to idle path processors.

� The reduction of the remaining work into a number of reasonably
balanced subtasks.
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Figure 8.1: Work splitting.

� The ability of each assigned processor to recreate e�ciently the context
of the allocated subtask such that the work of the interrupted processor
can be continued and ultimately completed.

Oracles provide e�ective support for the �rst and third requirements, while
breadth-�rst partitioning with kappa is su�cient for the second.

8.2.1 At the busy path processor

Each path processor maintains the current oracle referring to its current node
in the search tree. On interruption, the busy path processor communicates
its current oracle and aborts the search of the current subtree. Assuming the
busy path processor has been assigned a current partitioning depth limit L,
the processor continues its search with the next allocated subtree at L. The
point at which work splitting is initiated is described (and implemented)
as an `interruption'. This is to support scheduling strategies in which the
interrupt is generated externally in addition to strategies in which some
internal threshold (such as accumulated choice point count) triggers the
work splitting in the busy path processor.

The situation at the busy path processor is illustrated in Figure 8.2. In the
prototype implementation of the splitting with oracles and kappa (SOK)
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Figure 8.2: Interruption of a busy path processor.

strategy with PrologPF the interruption of the busy path processor causes
it to:

1. Communicate its current oracle to the control processor.

2. Reset its state to the root of the search tree.

3. Continue the partitioning of the search tree at the depth limit L, but
searching to the right of the previous current oracle. Due to the depth
limit L, the busy path processor need only use the �rst L indexes of
the oracle to determine the left bound of the continued search. This
oracle pre�x of length L is called the port oracle.

4. It is possible to interrupt the busy path processor when its current
depth is below the depth limit L, in which case the response to the
interrupt is deferred until the path processor reaches the next port at
L.



190 CHAPTER 8. SOK: SPLITTING WITH ORACLES AND KAPPA

8.2.2 At the idle path processors

A number of idle path processors are formed into a group with a new group
count G0, and new unique processor numbers N 0 = 0 : : : G0 � 1. They are
given the current oracle from the interrupted busy path processor with a
new depth limit L0. The situation is illustrated in Figure 8.3.
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Figure 8.3: Assignment of work to an idle path processor.

On receiving the oracle and the parameters G0, N 0 and L and L0, the path
processor will:

1. Follow the oracle to a depth L to arrive at the root of the subtree
previously partially searched by the interupted busy path processor.

2. Use the breadth-�rst partitioning technique with kappa to arrive at
each allocated port at the new depth limit L0 and search the de�ned
subtree. Throughout this phase, the path processor's search is con-
strained to the right of the remainder of the provided oracle.

Once executing, the previously idle path processors become busy. If inter-
rupted, a path processor in the new group will return its current oracle and
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depth limit L0 and the splitting algorithm will be recursively applied.

8.3 Scheduling

As described above, PrologPF programs with support for splitting with
oracles and kappa enable any busy path processor to be interrupted and the
work divided between any number of idle path processors. These capabilities
provide a foundation for a diverse range of scheduling algorithms. Choices
to be made in the scheduling algorithm include:

� The criteria to determine when one or more busy path processors
should be interrupted to redistribute their remaining work.

� How to determine which busy path processor to interrupt.

� The size of the new group to receive the divided workload.

� The speci�cation of the incremental depth limit L0 for the new group.

� Whether the scheduling decisions should be made locally within the
busy or idle path processors, or whether more e�ective scheduling can
be provided with a control processor.

The importance of e�cient scheduling has been recognised in other OR-
parallel Prolog implementations, such as Aurora [11] and Muse [5]. Butler
and others discuss the issues of scheduling on the ANL-WAM OR-parallel
system in [18]. The implementation of the SOK strategy in PrologPF has not
so far been used to investigate these choices in any depth. A trivial schedul-
ing algorithm was embedded into the control processor running skynet (Ap-
pendix A.4), with the following characteristics for an initial group of 30 path
processors:

� A busy path processor will be interrupted when the number of idle
path processors is � 3. This parameter of SOK is called split g.

� The busy path processor selected for interruption will be that with a
current partitioning depth nearest the root of the problem search tree.
Interruptions occur round-robin for busy path processors at the same
least partitioning depth.

� The work of the interrupted path processor is assigned to 3 previously
idle path processors.
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� Two techniques to arrive at the incremental depth limit were evalu-
ated: �xed and doubling. In the former the recursive depth limit is
incremented by a �xed amount on each splitting of the workload, and
in the latter the incremental depth limit L0 is always double the depth
limit L of the interrupted busy processor.

� Scheduling is managed by a centralised control processor, which re-
ceives the completion messages and generates the interrupts. The in-
terrupted processors communicate their current oracle to the control
processor, which selects the idle processors for work assignment and
dispatches the work.

The one-time partitioning of the BFP strategy is analagous to the SOK
strategy with split g > G, such that no splitting takes place.

8.4 Results

For the performance results of the one-time partitioning BFP strategy in
Chapter 3, the cpu time of the path processors could be used to arrive at
the overall runtime. This removed consideration of the load time of the
processes and the communication time of the solutions. This simpli�cation
was acceptable for a strategy with no scheduling communication after the
intial distribution of the problem. The strategy of splitting with oracles and
kappa (SOK) involves repeated communication during the execution of the
problem, such that overall real runtime is important in the assessment of
the scheduling technique. The runtime for the SOK strategy is measured
from the point at which all the path processors are loaded with the sample
program to the point at which all path processors are idle.

From the benchmarks used to evaluate the BFP strategy, the Pentominoes
problem has been used for comparison with SOK in this section. The SOK
strategy is implemented with three variants of the embedded parallelisation
primitive, illustrated in Figure 8.4:

1. No oracle partitioning: the interpretation of an oracle as dividing
the search tree into two parts is not exploited either above or below
the depth limit. After interruption, a busy path processor must restart
its search from the left-most path in the search tree below the depth
limit to arrive at the next allocated port to then search the referenced
subtree. On receiving the oracle, an idle path processor must fully
search the �rst allocated subtree possibly duplicating work within that
subtree already performed by the interrupted path processor.

2. Oracle partitioning to ports: The oracles returned by an inter-
rupted busy path processor are truncated to length L, such that they
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A: oracle partitioning to port

B: full oracle partitioning
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Figure 8.4: Interpretation of oracle as dividing search tree.

refer to the current port only. On interruption, the busy path proces-
sor has reset its state to the root of the search tree, but can e�ciently
continue its search by ensuring it searches to the right of the oracle
leading to the port assigned to the idle processors. The busy path pro-
cessor thus avoids duplicating the work performed in the shaded zone
A in Figure 8.4, but the idle path processors will possibly duplicate
work already performed in the subtree with its root at B. This partial
use of the interpretation of the oracle as dividing the search tree pro-
vides a more e�cient interrupt handling in the busy path processor,
and provides a mechanism by which one or more of the idle path pro-
cessors could e�ciently divide the remaining work of the busy path
processor at the depth limit L. The implementation tested here only
divides the work of the busy processor within its current subtree.

3. Full oracle partitioning: The full current oracle is returned by a
busy path processor on interruption (\root to X" in Figure 8.4). The
busy path processor searches to the right of that oracle to arrive at
the next allocated port, and the idle processors will search to the right
of that oracle within the subtree, avoiding duplication of work in the
shaded area \B" in Figure 8.4.
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As real runtime has been used for the SOK speedup �gures, the evaluation is
more vulnerable to the load placed on the processors and network by other
users. The results of several runs are averaged to produce the �gures used
in the speedup graphs. The variance was approximately 5%.

8.4.1 Fixed depth increment

Figure 8.5 shows the speedup performance for the SOK strategy with a �xed
depth increment for a range of values of the initial partitioning depth limit
L = 1 : : : 30. The speedups for the BFP strategy is included for comparison.
The �xed depth increment was chosen to be equal to the initial depth limit
selected for the problem.
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Figure 8.5: Pentominoes: splitting with �xed incremental depth limit.

The area labelled \A" in the graph in Figure 8.5 represents the improvement
due to the more e�cient interrupt handling provided in the busy path pro-
cessor by exploiting the interpretation of the oracle as dividing the search
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tree beneath the depth limit L. Following the interruption the path proces-
sor does not then have to redo the work to the left of the oracle leading to
the previous current port. The area labelled \B" in the graph in Figure 8.5
represents the improvement in e�ciency resulting from the exploitation of
the full oracle to avoid duplication of work within the assigned subtree.

The SOK strategy with a �xed incremental partitioning depth consistently
outperforms the one-time partitioning of the BFP strategy. However, with
no oracle partitioning, with the busy path processor resetting to the root
of the search tree on interrupt, and with the simple scheduler implemented
in skynet, the SOK strategy performs badly with large initial values of the
partitioning depth parameter. For example, with an initial depth limit of
30, when 3 path processors have become idle a busy path processor will be
interrupted, and the subtree de�ned by the returned oracle will be parti-
tioned at a depth of 60. At this depth there is generally little work to do
in the Pentominoes problem and those processors will quickly become idle,
triggering the interruption of another busy path processor. As the problem
nears completion, path processors become idle more rapidly than the re-
maining busy processors can respond to interrupts, and the system spends
more time handling interruptions than performing useful work.

With small values for the initial partitioning depth, the use of the same
parameter to provide the incremental partitioning depth results in ine�cient
partitioning as at each recursive step only a small number of ports are found
at the new partitioning depth. The worst case is for L = 1 where splitting
will occur at L = 1 and then L = 2 and L = 3 and so on. In e�ect,
the system must split the work of a busy processor several times before an
e�cient partitioning is achieved.

8.4.2 Doubling depth increment

Figure 8.6 shows the speedup ratios achieved with the SOK strategy with
the incremental depth limit recursively set to double each previous value.
The speedups of the one-time partitioning strategy BFP are included for
comparison.

The area labelled \A" in Figure 8.6 represents the improvement of the more
e�cient interrupt handling provided by the search to the right of the port
oracle in the busy path processor. This improvement matches that found
with the �xed depth limit incrementing technique. As with the �xed tech-
nique, the area labelled \B" shows the bene�t gained from interpreting the
full oracle as denoting the area of the search tree already searched.
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Figure 8.6: Pentominoes: splitting with depth limit doubling.

The technique of recursively using depth-limited search, with the depth
limit doubling on each work assignment, was �rst suggested by Alshawi
and Moran in [6]. The use of an initial depth limit of 1, and doubling this
parameter on each splitting step, provides the most interesting behaviour.
With the de�nition used for the initial query for the problem compiled with
prologpf, the initial depth limit of 1 will result in only 1 port at that depth.
Thus the program initially executes on one machine, but quickly causes all
30 machines in the test con�guration to become busy through recursive
splitting.

The graph in Figure 8.7 compares the performance of the �xed incremental
depth technique with doubling. These results are from using the paralleli-
sation primitive with support for the interpretation of the full oracle as a
division of the search tree. The results for the two approaches are simi-
lar, but the doubling technique has the considerable advantage of e�ective
speedup with an initial depth limit set to 1. The extended parallelisation
primitive with the SOK protocol provides improved speedup over the one-
time partitioning of BFP for all values of the initial depth limit L, and the
SOK approach is much less dependent upon an optimal selection of L.
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Figure 8.7: Pentominoes: �xed depth increment versus doubling.

The results show previously in this section compare the speedups achieved
for a range of values of the initial depth limit L. Finally, the graph in
Figure 8.8 compares the performance of the SOK strategy with doubling
versus the one-time partitioning of BFP for a range of processor group sizes
G = 1 : : : 30. The SOK strategy with doubling provides greater speedup for
all processor group sizes, does not have the performance variation of BFP.

8.5 Conclusions

The combined use of oracles to de�ne each subtree for distributed search and
kappa to provide partitioning leads to an e�ective parallelisation technique
with better performance than can be achieved with one-time partitioning
even with an optimal initial value of the BFP depth limit.
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Figure 8.8: Pentominoes: full oracles and kappa versus one-time partition-
ing.

The extended capabilities of following an oracle and constraining the subtree
search to the right of an oracle can be e�ciently implemented with a simple
primitive embedded in the user program1.

The design of a system which permits any running processor to be inter-
rupted and the workload e�ciently split between a number of waiting idle
processors provides a general platform for a variety of scheduling techniques.
The trivial scheduling algorithm implemented in the control processor run-
ning skynet was su�cient to deliver the improved performance discussed in
this chapter.

Recursive splitting of the workload, and the interpretation of oracles as
dividing a tree into two parts provide an opportunity for the investigation
of a new range of scheduling strategies.

1The code for the primitive as a 'C' macro is given in Appendix C.
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8.6 Summary

Oracles can be used to:

� Uniquely identify a node or solution within the search tree.

� De�ne a subtree and associated context for search by another proces-
sor.

� Divide a subtree into two parts.

The current oracle de�nes the current position of a path processor within
an assigned subtree. If an oracle leads to an intermediate node within the
problem seach tree, it is called an open oracle. Scheduling strategies can
su�er from the assignment of poisoned oracles, which can be those leading
to huge subtrees or very small subtrees.

The partitioning primitive kappa described in Chapter 7 provides an e�ective
means of dividing the search amongst multiple processors. The communi-
cation and recomputation overheads associated with the oracles providing
an equivalent breadth-�rst partitioning strategy (BFP) are avoided by local
traversal of the depth-limited subtree.

Support for oracles and kappa can be combined such that a path processor
can follow an oracle to a certain depth, and then partition the workload of
the subtree beyond that depth. If, on interruption, a busy path processor
returns its current oracle, this support means that:

1. The current state of a busy path processor can be e�ciently commu-
nicated to a control processor or directly to idle path processors.

2. A group of idle path processors, on receipt of the oracle, can quickly
recreate the state of the interrupted processor and partition the re-
maining work across the new group.

The new approach described in this chapter addresses each of the following
issues:

� Small poisoned oracles: fundamental to the use of kappa for breadth-
�rst partitioning is the generation of a large number of ports at each
incremental depth limit, such that a path processor will rapidly process
the ports with small subtrees and move on without requiring further
communication with a control processor or further interruption of busy
processors.



200 CHAPTER 8. SOK: SPLITTING WITH ORACLES AND KAPPA

� Large poisoned oracles: the interruption and splitting of the work
of busy path processors means that the SOK technique is not vulner-
able to the unequal distribution of work that a�ects BFP.

� Selection of an appropriate depth limit: the SOK strategy is ef-
fective with an initial depth limit of 1, such that initially only one path
processor receives work with the others idle, and splitting repeatedly
occurs until the work is allocated to all available path processors.

� Low communications requirements: to minimise the communi-
cation overhead the frequency of communication and the quantity of
data transferred on each split must be kept to a minimum. Splitting
with oracles and kappa reduces the frequency of communication by as-
signing multiple subtrees for search (at the incremental depth limit) on
each assignment. The oracle and the parameters of the breadth-�rst
partitioning phase provide a very compact means of communicating
the work required.

� Recovery from path processor failure: the work assigned to a
path processor is de�ned by the oracle and partitioning parameters.
The information can be communicated to an alternative processor for
the search to be repeated. Annotation of solutions with the associ-
ated current oracle provides a simple mechanism to avoid duplicates.
The ease of recovery from processor failure using oracles extends the
utility of the SOK strategy for large networks of general purpose work-
stations.

� Control processor requirements: the SOK strategy described above
suggests the use of a control processor to initiate the work and pro-
vide global control for scheduling. The splitting technique described
uses information local to the interrupted busy processor such that dis-
tributed or hierarchical control could equally be implemented, leaving
the control processor to provide the user interface and startup and
terminate execution.

The general support for work splitting and assignment permits a wide range
of scheduling strategies. The simple strategy implemented for this evaluation
interrupts the busy processor nearest the root of the search tree whenever
a small number of path processors become idle. This simple scheduler was
su�cient to produce signi�cant improvement in parallel performance of the
Pentominoes benchmark.
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Conclusions

Programs compiled with the PrologPF compiler can exploit the processing
power available in a LAN or WAN of general purpose workstations, without
requiring programmer annotations to the code to guide the parallelisation.

The breadth-�rst partitioning strategy minimises the communication nec-
essary for distributed execution, such that the technique is optimised for
systems with many processors but signi�cant communications delay, such
as the Internet. The combined use of oracles and the partitioning primitive
kappa introduces communication during the execution to e�ect a dynamic
redistribution of the workload. The use of oracles provides an e�cient means
of recovery from path processor failure, supporting the use of the technique
in a widely distributed system. The single systems image provided by the
combination of the PrologPF compiler and the skynet control system trans-
form a generally idle network of workstations into a usable super-computer.

PrologPF provides e�ective speedup for large1 problems containing su�-
cient OR-parallelism. For smaller problems, the runtime taken to generate
su�cient oracles for distribution to the available path processors will dom-
inate the overall runtime. Given a large problem, the speedup achieved
by PrologPF is determined by the evenness of the balance of the workload
assigned to the path processors.

The implementation of the oracle support in PrologPF imposes a 9% to 16%
overhead on the execution of the compiled program on a single cpu. This
overhead may be acceptable for the use of the compiled binaries in both a
single-cpu and distributed environment, or the support for oracles can be
more e�ciently implemented in the virtual machine rather than the source
transformation technique used with prologpf.

1In this context, large implies a single-cpu runtime greater than a few seconds.
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The initial phase of the breadth-�rst partitioning strategy produces a num-
ber of open oracles at the selected depth. The distribution of work beneath
these oracles can be quanti�ed with the simulation of a subsequent execu-
tion of the problem with the number of path processors G set to the number
of open oracles S discovered at the depth limit L in an earlier execution
with G = 1. An analysis of some commonly available Prolog benchmark
programs shows that many of those oracles will refer to small subtrees, with
a sparse distribution of oracles referring to large subtrees representing most
of the available work. To achieve e�ective partitioning of the search tree,
the depth limit at which open oracles are found must generate a su�cient
number of oracles referring to large subtrees, such that all path processors
can expect to receive a number of these sizeable oracles. The general issue
for oracle-based scheduling strategies such as the breadth-�rst partitioning
is that of the poisoned oracle. For any strategy without subsequent work
splitting, a poisoned oracle is likely to be an oracle which refers to a very
large subtree, such that the uninterrupted sequential search of that subtree
dominates the overall parallel runtime. For other strategies used with ora-
cles requiring communication, such as the automatic partitioning strategy of
DelphiKS, a poisoned oracle is that referring to a very small or nil subtree.

An e�ective work estimation function could lead to better balancing of the
work assignment to the path processors. The generally sparse and random
distribution of the large oracles means that work estimation based upon
the arithmetic mean of the oracle neighbours will not succeed. Partially
searching the subtree but limiting the number of choice-points traversed
similarly relies upon a limited measure of workload beneath certain oracles
being used as an estimate for others.

The breadth-�rst partitioning strategy tested with PrologPF succeeds be-
cause a large number of oracles can be e�ciently generated and allocated,
and the process of following an assigned oracle within a path processor is
very e�cient. The set of oracles assigned to a given path processor will
typically include many referring to very small subtrees, but the within the
set a few will refer to larger subtrees, providing su�cient work for e�ective
partitioning.

The meta-logical predicate cut2 used in sequential Prolog programs to prune
the search tree does not have an e�cient implementation in a distributed
OR-parallel environment. The propagation of a cut in the search tree of
one path processor requires the communication to the other path processors
searching a�ected subtrees. A program containing a small procedure with
cut may encounter that predicate thousands of times each second. PrologPF
provides a useful programming system for logic programs that in Prolog

2Written \!" in Prolog.
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would contain cut by supporting deterministic execution through the use of
higher-order functional programming, explicit negation through the use of
boolean functions, and permitting cut in deterministic relational procedures.

The implementation of higher-order functions in PrologPF has been achieved
while maintaining upwards compatibility with standard Prolog. A consistent
syntax is possible for the combined styles, permitting reduction of functional
terms as arguments to relations and requiring relational goals as conditions
in functions. Allowing the de�nition of functions and relations of the same
name but di�erent arities within the same PrologPF program facilitates the
straightforward mapping of existing deterministic library relations into new
functions. All function calls in PrologPF appear in arguments to relations.
Function failure can be supported as an exception propagated to the outer-
most call in the argument term and treated as uni�cation failure leading to
the failure of the underlying relational subgoal.

PrologPF produces e�cient compiled code, with the compiler built upon
the wamcc Prolog to C compiler [30]. E�cient support for oracles can be
provided though the use of simple primitives, o kbuild and o kfollow, au-
tomatically embedded in the user program by a pre-processing pass of the
compiler. The de�nition of the primitives permits their inline implementa-
tion as C macros, and the source is given in Appendix C.

For the simple one-time breadth-�rst partitioning scheduling algorithm tested
with PrologPF, an equivalent behaviour can be achieved through the use of
a novel primitive kappa. The primitive, embedded as a proposition in the
user program, performs dynamic pruning resulting in the same partitioning
of the search as PrologPF but without the intermediate use of oracles. The
absence of oracles means that basic re�nements to the technique available
to a future development of PrologPF may not be feasible with kappa. Im-
plemented as a two-line C macro, kappa can be used implement the BFP
strategy with most standard Prolog compilers.

The use of oracles can be combined with the partitioning primitive kappa

to support scheduling strategies using the recursive reassignment of work
from busy to idle path processors. While most OR-parallel Prolog systems
assume a work assignment rate of many thousands of times per second, the
partitioning techniques discussed in this dissertation are e�ective with work
reassignment occurring orders of magnitude less frequently.

The use of oracles as the fundamental mechanism to communicate work for
distributed execution provides an e�cient means of recovery from processor
failure. The work can be reassigned to an alternative processor without the
other path processors in the group being a�ected and with a minimal impact
on the total execution time.
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9.1 Future work

The scheduling strategy used in PrologPF assumes the work beneath the
discovered open oracles is randomly distributed, and no attempt is made
to associate a work estimate with each oracle. If an e�ective estimation
technique could be found, then the e�ectiveness of the one-time allocation
of work would be greatly improved.

In PrologPF, the parallelisation of the user program is limited to the logical
component. Functional reduction within a speci�c subgoal is executed se-
quentially. Further research may lead to an e�ective method for extending
the use of oracles to parallelise functional execution.

PrologPF supports the use of failure as an uncatchable exception within a
functional reduction, which is propagated to the top level function call and
leads to failure of the underlying subgoal. More exible support might be
provided through the general provision of exception support in the functions,
uni�ed with the exception support of standard Prolog.



Appendix A

System description

A.1 System overview

The sofware components of the PrologPF system are:

� The PrologPF compiler

� The Skynet control processor

� The Skyhub group controller

� The ppc path processor control daemon

� The compiled user program

A diagram of the systems architecture is given in Figure A.1.

After compilation of the user program with the PrologPF compiler, the exe-
cutable binary is made available to every path processor. A set of commands
are provided on the control processor to establish communication between
the control processor and the selected number of path processors, via the
intermediate Skyhub processors. The control processor can then initiate and
control the execution of the user program on every selected path processor,
accumulate statistics, and display the collected results.

The Skynet system is general, such that its use is not limited to prologpf

executables and any program can be launched on the distributed processors
with the results (on 'standard output') returned to the control processor.
The prologpf executables have the unique property that the same object
program on each processor still results in each processor performing a frac-
tion of the total work, with the sum of the parts producing the same results
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Figure A.1: System communications architecture

as the same object program executing on a single cpu. Non-prologpf ex-
ecutables run normally to completion on every machine, so nominally the
same results are produced by all. However, Skynet provides some useful sup-
port for non-prologpf executables in the distributed system for host-speci�c
programs such as ps to return the running processes and cpu utilisation or
even hostname to return the list of hostnames.

A.2 The Prolog compiler: wamcc

PrologPF is built upon the excellent Prolog to C compiler wamcc developed
by Daniel Diaz at INREA [30]. The wamcc is written in Prolog, as a series
of modules named wamcc0.pl through to wamcc8.pl.

Starting with a user program foo.pl, the compilation with wamcc proceeds
as follows:

wamcc -c foo.pl

gcc -c foo.c

gcc -s -o foo -lwamcc

The �rst compilation step creates two C source �les, foo.c and foo.usr.
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The main C �le foo.c has de�nitions to include the �le foo.usr and a num-
ber of header �les with utility functions and macros. The �le foo.c is valid
C, but closely resembles WAM code [73], with each instruction de�ned as a
C macro. Each Prolog procedure translates into a preamble and postamble
wrapper of C code enveloping the C macros de�ning the WAM instructions.

After wamcc has produced the C code, this program can be compiled and
linked with the standard system C compiler to produce an executable bi-
nary. Precompiled library functions are supplied via the library libwamcc.a
referenced in the �nal linking step.

A.3 The PrologPF Compiler: prologpf

The PrologPF compiler extends wamcc with recognition of functional terms
and the generation of the appropriate C code. The extension to the wamcc
compiler is predominantly in the additional Prolog modules wamcc ocode,
wamcc kcode and wamcc fcode. Support in C for the management of oracles
has been added to the libwamcc.a library. Compilation of a user PrologPF
program is similar to the process with wamcc:

prologpf -ocode -fcode -ppf -c bah.pl

gcc -c bah.c

gcc -s -o bah -lwamcc

As with wamcc, the prologpf compilation step produces a C �le for subse-
quent compilation with the system C compiler. The additional ags have
the following meanings:

-ocode: Produce code with embedded 'C' oracle support suitable for dis-
tributed execution with the one-time partitioning BFP strategy de-
scribed in Chapter 3.

-ocode pl: As with -ocode except that Prolog procedures and data struc-
tures are used to provide the oracle support. This can increase run-
times by a factor of four, but provides a exible development environ-
ment to experiment with a given problem.

-fcode: Recognise function de�nitions and functional argument terms and
produce appropriate code.

-kcode: Produce code with embedded support for oracles and partitioning
with kappa, supporting work splitting and reassignment as in the SOK
strategy described in Chapter 8. -ocode, -ocode pl and -kcode are
mutually exclusive.
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-ppf: Produce an intermediate bah.ppf �le showing the additional em-
bedded predicates for the distributed and functional support.

PrologPF programs compiled with the -ocode ag accept three additional
command line arguments: the path processor group count G, the unique
processor number N , and the partitioning depth limit L. For example, the
command bah 12 5 27 will execute the program bah for processor number
5 assumed to be within a group of 12 path processors, with a partitioning
depth limit of 27.

The -kcode ag produces an executable which produces a behaviour which
is an extension of that for -ocode. If the command-line arguments G, N and
L are speci�ed the executable uses the one-time BFP strategy. Otherwise
the executable implements the SOK strategy described in Chapter 8, with
a toplevel which waits until the arguments of the SOK strategy are received
(G, N , L, L0, Oracle) and performs the speci�ed search and on completion
waits for further work. If interrupted, the executable will return its current
oracle and continue.

If the -ocode, -ocode pl and the -kcode ags are omitted, the executable
binary executes normally on a single cpu and contains no oracle management
overhead, and cannot be run on a distributed system. With the -ocode or
-kcode ag set, the program is still suitable for standalone execution on a
single cpu simply by specifying a path processor group count G = 1, unique
processor number N = 0, and the depth limit should be L = 1, for example
bah 1 0 1.

If the -fcode ag is omitted, the function de�nitions and function appli-
cation terms are treated as standard Prolog facts and compound argument
terms respectively, and no functional reduction support is included.

The command prologpf -c bah.pl, specifying no functional or distributed
support, produces the same compilable C source as wamcc -c bah.pl.

A.4 The Network System: skynet, skyhub and ppc

The general approach to executing PrologPF programs in parallel on a dis-
tributed network of workstations is to launch the same compiled binary on
each workstation, with the �rst argument G set to the common group size
and the unique processor number N ranging from 0 : : : G � 1. The user
selected depth limit L is added as the third argument passed to every path
processor.

The daemon ppc runs continuously on every path processor, waiting for
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commands over a TCP/IP socket connection with the control processor.
The command start prog instructs the daemon to fork an execution of the
user program with the assigned parameters. ppc remains connected via Unix
pipes to the user program while it executes, accepting statistics and results
from the user process and forwarding them to the control processor. Other
commands from the control processor instruct ppc to interrupt or terminate
the execution of the user process.

The control processor executes the program skynet, which communicates
with the ppc daemon on each path processor, coordinates the execution of
the multiple copies of the user program, and provides an interface for the
user. A typical display seen by the user is illustrated in Figure A.2.

The window labelled \Skynet Control" is the command-line interface to
skynet, providing commands such as sky connect to establish connection
with a ppc daemon, and sky bfp to initiate the breadth-�rst partitioning
strategy on all the selected path processors.

The window labelled \Status" accumulates runtime information as the dis-
tributed execution of the user program progresses. In particular, the running
�eld indicates the number of path processors currently executing the user
program, and completed shows the number of path processors which have
completed their search and become idle.

The \Solutions" window simply displays solutions as they are returned from
the path processors. The \Incoming" window displays the complete log of
all communications from all the path processors. In the example shown,
the solution returned by the user program is the atom found, to reduce
the volume of information accumulated in the \Solutions" window. The
voluminous solution is recorded in the \Incoming" log.

The \Skynet" window is a graphical display of the status of each of the
available path processors. Each button is displayed in one of �ve colours:

Grey: Path processor not yet contacted. A user click on the button will
cause skynet to connect to the path processor ppc and change the
button to yellow, or red if the connection fails.

Yellow: skynet connected to ppc. A user click will disconnect skynet

from the path processor ppc and change the button back to grey.

Blue: The user program implementing the SOK strategy is loaded and idle
on the path processor. Programs executing the one-time partitioning
BFP strategy never display as blue.

Green: Path processor is currently busy with user process. A user click
will send a command to the path processor ppc to kill the user process.
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Figure A.2: Skynet control processor user interface.
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A program using the SOK strategy will cause the button to change
to blue on completion, then back to green when work is reassigned
to the path processor. The button will change back to yellow when
con�rmation of the child exit is received.

Red: Path processor unavailable.

The BFP strategy is initiated with the command sky bfp (for all solutions)
or sky bfp one (for one solution), as in:

sky bfp <host list> <prog name> L
The count of hosts in host list provides the value of G for the strategy, and
unique processor numbers 0 : : : G � 1 are used for N . The SOK strategy
implemented with prologpf uses an initial depth limit of 1 and doubling to
provide the incremental depth limit, so the user need not specify L, and the
strategy is initiated with the sky kappa command:

sky kappa <host list> <prog name>

When the user issues the sky bfp command or the sky bfp one command in
the \Skynet Control" window, the buttons of the selected path processors
will change from yellow to green and the user processes start execution.
A path processor running the SOK strategy which is interrupted causes
the associated button in the \Skynet" window to briey change its text to
white. With the one-time BFP strategy, the buttons return to yellow as
the path processors complete their assigned work and the user program is
exitted. With the SOK strategy, the buttons turn blue as path processors
complete each assigned piece of work, and back to green when executing a
new workload. With the SOK strategy skynet will send a command to all
user programs to exit when there is no further work to be executed, and the
buttons will turn yellow together as each user program exits.

sky net provides a facility to open a console to any host in the network,
providing a �ltered version of the \Incoming" window and a command in-
terface to ppc such that the progress of an individual path processor can be
monitored and controlled.

The process skyhub provides a transparent multiplexing function between
skynet and the many ppc daemons. The primary requirement for the
skyhub process was to overcome the 64 socket-connection limit of the DEC-
station 3100's used for the research, although in fact never more than 42
were available. The skyhub process has facilities for the local storage and
manipulation of variables by the controlling skynet, for a possible future
hierarchical implementation of a control system.



Appendix B

Benchmarks

This appendix gives the source code of the benchmark programs used to
evaluate the distributed performance of PrologPF. Graphical representations
of the search trees are included for each benchmark.

B.1 Queens

The Queens benchmark places N queens on an N by N chessboard, such
that no pair of queens are on the same horizontal, vertical or diagonal.

:- main([f_utils,o_kutils]).

% get_solutions(N,S) succeeds if S is a solution for

% the placement of N queens on an NxN chessboard.

get_solutions(Board_size, Soln) :- solve(Board_size, [], Soln).

% solve(N, Initial, Final) succeeds if Final is a solution

% to the NxN queens problem and Final is an extension of

% the partial solution in Initial.

solve(Bs, [square(Bs, Y) | L], [square(Bs, Y) | L]).

solve(Board_size, Initial, Final) :-

newsquare(Initial, Next, Board_size),

solve(Board_size, [Next | Initial], Final).

212
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Figure B.1: 8 Queens: search tree.

% newsquare(Initial, Square, N) acts as a generator for

% 'safe' squares in the next column to those already

% allocated in the partial solution in Initial.

newsquare([square(I,J) | Rest], square(X, Y), Boardsize) :-

I < Boardsize, X is I + 1, snint(Y, Boardsize),

notthreatened(I, J, X, Y), safe(X, Y, Rest).

newsquare([], square(1, X), Boardsize) :- snint(X, Boardsize).

% snint(X,N) acts as generator for X = N down to 1.

snint(X, X).

snint(N, NPlusOneOrMore) :- M is NPlusOneOrMore - 1, M > 0,

snint(N,M).

% notthreatened(I,J,X,Y) succeeds if a queen on square (I,J)

% does not attack square (X,Y).

notthreatened(I, J, X, Y) :- I \== X, J \== Y,

U1 is I - J, V1 is X - Y, U1 \== V1,

U2 is I + J, V2 is X + Y, U2 \== V2, !.
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Figure B.2: 10 Queens: search tree.

% safe(X,Y,Initial) succeeds if square (X,Y) is not attacked

% by any queens in the partial solution Initial.

safe(X, Y, []) :- !.

safe(X, Y, [square(I, J) | L]) :-

notthreatened(I, J, X, Y), safe(X, Y, L).

% o_query is called by the PrologPF system to obtain the

% solutions.

o_query :- get_solutions(8,X), o_ksoln(X). % or 10 for 10-queens

% o_kloop is a top-level system predicate which responds to

% the commands from the control processor.

:- o_kloop.

B.2 Pentominoes

The Pentominoes benchmark places twelve geometric shapes on a twenty by
three board.
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Figure B.3: Pentominoes: search tree.

:- main([f_utils,o_kutils]).

% solution(H) succeeds if H is a solution to the problem.

solution(H) :- initial_state(Si),

can_reach(Si,Sf),

final_state(Sf),

Sf = state(_,_,H).

% initial_state(S) builds the term S representing the initial

% state of the problem, using gen_board to build each

% column of the 20x3 board.

initial_state(state(Board,[1,2,3,4,5,6,7,8,9,10,11,12],[])) :-

gen_board(20,Board), !.

gen_board(0,[]) :- !.

gen_board(N,[no_piece,no_piece,no_piece,border|T]) :-

N > 0,

I is (N - 1),

gen_board(I,T).
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% final_state(S) succeeds if S indicates all pieces have been

% placed.

final_state(state(_,[],_)) :- !.

% can_reach(S1,S2) succeeds if the second state of play

% represented by S2 can be reached from state S1.

can_reach(S1,S2) :- trans(S1,S), S = S2.

can_reach(S1,S2) :- trans(S1,S), can_reach(S,S2).

% trans(S1,S2) succeeds if state S2 can be reached from

% state S1 through the valid placement of one of the

% remaining pieces.

trans(State,New_State) :-

State = state(Board,Pieces,History),

del(Piece,Pieces,New_Pieces),

pent(Piece,Orientation,Pattern),

play_pent(Board,Pattern,New_Board),

New_State = state(New_Board,New_Pieces,

[[Piece,Orientation] | History]).

% del(X,L1,L2) succeeds if list L2 is equal to list

% L1 with the removal of an element equal to X. It

% is used as a generator for elements of L1 (pieces).

del(X,[X|Y],Y).

del(X,[Y|Z], [Y|Z1]) :- del(X,Z,Z1).

% play_pent fits the pattern represented by a pentomino

% of a given orientation onto the board, and generates

% the remaining new board.

play_pent(Board,Pattern,New_Board) :-

match(Board,Pattern,Board1),

trim(Board1,New_Board), !.

% trim(B1, B2) succeeds if board B2 is the pattern

% representing the remaining clear squares on the

% board excluding the pieces and border of the board B1.

trim([],[]) :- !.

trim([border|T],Board) :- trim(T,Board).
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trim([piece|T],Board) :- trim(T,Board).

trim(Board,Board) :- Board = [no_piece|_].

% match succeeds of the pattern representing a selected

% piece can be placed on the board.

match(Board,[],Board) :- !.

match([piece|Tb],[dnm|Tp],[piece|Tnb]) :-

match(Tb,Tp,Tnb).

match([piece|Tb],[op|Tp],[piece|Tnb]) :-

match(Tb,Tp,Tnb).

match([no_piece|Tb],[np|Tp],[piece|Tnb]) :-

match(Tb,Tp,Tnb).

match([no_piece|Tb],[dnm|Tp],[no_piece|Tnb]) :-

match(Tb,Tp,Tnb).

match([border|Tb],[dnm|Tp],[border|Tnb]) :-

match(Tb,Tp,Tnb).

% the following terms represent the patterns of all 12

% pentominoes in each orientation.

pent(1,1,[np,np,np,dnm,np,dnm,np]).

pent(1,2,[np,op,np,dnm,np,np,np]).

pent(1,3,[np,np,dnm,dnm,np,dnm,dnm,dnm,np,np]).

pent(1,4,[np,np,dnm,dnm,dnm,np,dnm,dnm,np,np]).

pent(2,1,[np,op,dnm,np,np,np,dnm,dnm,np]).

pent(3,1,[np,np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(3,2,[np,np,np,dnm,np,dnm,dnm,dnm,np]).

pent(3,3,[np,dnm,op,op,np,dnm,np,np,np]).

pent(3,4,[np,op,op,dnm,np,op,op,dnm,np,np,np]).

pent(4,1,[np,op,dnm,op,np,op,dnm,np,np,np]).

pent(4,2,[np,op,op,dnm,np,np,np,dnm,np]).

pent(4,3,[np,dnm,np,np,np,dnm,dnm,dnm,np]).

pent(4,4,[np,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(5,1,[np,np,dnm,np,np,np]).

pent(5,2,[np,np,dnm,dnm,np,np,dnm,dnm,np]).

pent(5,3,[np,np,op,dnm,np,np,np]).

pent(5,4,[np,np,dnm,dnm,np,np,dnm,dnm,dnm,np]).

pent(5,5,[np,np,np,dnm,np,np]).
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pent(5,6,[np,np,np,dnm,dnm,np,np]).

pent(5,7,[np,dnm,dnm,dnm,np,np,dnm,dnm,np,np]).

pent(5,8,[np,dnm,dnm,np,np,dnm,dnm,np,np]).

pent(6,1,[np,dnm,op,np,np,dnm,np,np]).

pent(6,2,[np,op,op,dnm,np,np,op,dnm,dnm,np,np]).

pent(6,3,[np,np,op,dnm,dnm,np,np,dnm,dnm,dnm,np]).

pent(6,4,[np,np,dnm,np,np,dnm,dnm,np]).

pent(7,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,np,np]).

pent(7,2,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np]).

pent(7,3,[np,np,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(7,4,[np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(8,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np,dnm,dnm,np]).

pent(8,2,[np,dnm,dnm,dnm,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(8,3,[np,dnm,dnm,dnm,np,dnm,dnm,np,np,dnm,dnm,dnm,np]).

pent(8,4,[np,dnm,dnm,np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(9,1,[np,np,op,dnm,dnm,np,np,dnm,dnm,np]).

pent(9,2,[np,dnm,np,np,np,dnm,dnm,np]).

pent(9,3,[np,op,op,dnm,np,np,np,dnm,dnm,np]).

pent(9,4,[np,np,dnm,np,np,dnm,dnm,dnm,np]).

pent(9,5,[np,op,dnm,np,np,op,dnm,dnm,np,np]).

pent(9,6,[np,op,dnm,op,np,np,dnm,np,np]).

pent(9,7,[np,op,dnm,np,np,np,dnm,dnm,dnm,np]).

pent(9,8,[np,op,dnm,np,np,np,dnm,np]).

pent(10,1,[np,np,dnm,op,np,dnm,dnm,np,np]).

pent(10,2,[np,np,op,dnm,dnm,np,op,dnm,dnm,np,np]).

pent(10,3,[np,op,op,dnm,np,np,np,dnm,dnm,dnm,np]).

pent(10,4,[np,dnm,np,np,np,dnm,np]).

pent(11,1,[np,dnm,dnm,dnm,np,dnm,dnm,np,np,dnm,dnm,np]).

pent(11,2,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np,dnm,dnm,dnm,np]).

pent(11,3,[np,dnm,dnm,dnm,np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(11,4,[np,dnm,dnm,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(12,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,

dnm,np,dnm,dnm,dnm,np]).

query :- solution(X), o_ksoln(X).

:- o_kloop.
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B.3 Prolog Technology Theorem Prover

The Prolog Technology Theorem Prover is a Prolog program of approx-
imately 1500 lines. Sample problems are provided as Prolog compound
terms, and passed to PTTP for translation into sound Prolog programs for
compilation and execution. The source for PTTP, developed by Mark Stickel
[70], is the commercial property of SRI1. The sample problems, taken from
Chang and Lee [21] and Overbeek [37], are listed below.

B.3.1 Chang and Lee Example 2
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Figure B.4: Chang and Lee Example 2: search tree.

p(e,X,X)

p(X,e,X)

p(X,X,e)

p(a,b,c)

p(U,Z,W) :- p(X,Y,U) , p(Y,Z,V) , p(X,V,W)

p(X,V,W) :- p(X,Y,U) , p(Y,Z,V) , p(U,Z,W)

(query :- p(b,a,c))
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Figure B.5: Overbeek Example 4: search tree.

B.3.2 Overbeek Example 4

p(e(X,e(e(Y,e(Z,X)),e(Z,Y))))

p(Y) :- p(e(X,Y)), p(X)

query :- p(e(e(e(a,e(b,c)),c),e(b,a)))

1Arti�cial Intelligence Center, SRI International, Menlo Park, California 94025.



Appendix C

Source code for the

parallelisation primitive

This appendix gives the source code for the simple parallelisation primitive
supporting oracles and kappa.

To embed the parallelisation support, each user clause is modi�ed to include
a special goal o kbuild(N) where N is the index of the clause in the current
procedure. This example program is transformed as follows:

a(X) :- b(X), c(X).

a(X) :- d(X).

a(z).

b(X) :- c(X).

b(b).

c(z).

This program becomes:

a(X) :- o_kbuild(1),b(X), c(X).

a(X) :- o_kbuild(2),d(X).

a(z) :- o_kbuild(3).

b(X) :- o_kbuild(1),c(X).

b(b) :- o_kbuild(2).

c(z) :- o_kbuild(1).

221
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The primitive o kbuild is implemented as a 'C' macro and treated as a goal
by a stub Prolog procedure:

o_kbuild(N) :- pragma_c(o_kbuild1).

o_kbuild(_) :- pragma_c(o_kbuild2).

The 'C' macros de�ning o kbuild1 and o kbuild2 are as follows:

#define MAXORC 10000 /* maximum length of oracle */

static int defer = 0; /* flag to defer interrupt handling */

static int skip = 0; /* flag to skip prev port on interrupt */

static int orc[MAXORC]; /* array to hold orc as it is built */

static int b_depth; /* current BUILD or-depth */

static int orc_l0; /* depth limit L0 */

static int orc_l; /* depth limit L */

static int orc_g; /* group count G */

static int orc_n; /* unique processor number N */

static int orc_s; /* count of ports S */

static int orc_length; /* length of oracle to follow */

#define o_kbuild1

{ int index;

++b_depth;

Deref(A(0),word,tag,adr)

index = UnTag_INT(word); /* index := argument to o_kbuild */

if (b_depth <= orc_l0) { if (index != orc[b_depth]) fail;}

else { if (b_depth <= orc_length)

{ if (index < orc[b_depth]) fail;

if (index > orc[b_depth]) orc_length = 0;

}

orc[b_depth] = index;

if (b_depth == orc_l) /* if at partitioning depth...*/

{ if (skip) { skip = 0; fail; }

orc_s++;

if (orc_s % orc_g != orc_n) fail;

if (defer) { defer = 0; send_oracle(); fail; }

}

}

}
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#define o_kbuild2 /* called on backtracking through o_kbuild */

{

b_depth--;

fail;

}

Similar parallelisation primitives which exploit more complex transforma-
tions of the user program are possible (for example see Chapter 3). Also
the primitive described above could equally be implemented wholly as a 'C'
macro without the use of the stub Prolog procedure. The most e�cient
implementation might use a modi�ed abstract machine. However, the im-
plementation described above is portable to any Prolog compiler supporting
embedded 'C' code, and the simple de�nition seems to produce an acceptable
overhead of approximately 10%.



Bibliography

[1] A��t-Kaci, H. The WAM: A (real) tutorial. Tech. rep., Digital Paris
Research Laboratory, Jan. 1990.

[2] A��t-Kaci, H., Lincoln, P., and Nasr, R. Le Fun: Logic, equations
and functions. In Proc. IEEE Intl. Symposium on Logic Programming,
San Francisco, pp. 17{23. 1987.

[3] Ali, K. OR-parallel execution of Prolog on BC-machine. In Proceedings
of the Fifth intl. conf. and symposium Logic Programming, eds. R. A.
Kowalski and K. A. Bowen, pp. 1531{1545. MIT Press, 1988.

[4] Ali, K., Karlsson, R., and Mudambi, S. Performance of Muse on
the BBN buttery TC2000. In Parallel Execution of Logic Programs,
eds. A. Beaumont and G. Gupta, pp. 104{119. Springer-Verlag, 1991.

[5] Ali, K. A. M. OR-parallel execution of Prolog on a multi-sequential
machine. International Journal of Parallel Programming, 15(3),
pp. 189{214, 1987.

[6] Alshawi, H. and Moran, D. B. The Delphi model and some prelimi-
nary experiments. In Proceedings of the Fifth intl. conf. and symposium
Logic Programming, eds. R. A. Kowalski and K. A. Bowen, pp. 1578{
1589. MIT Press, 1988.

[7] Appel, A. Compiling with Continuations. Cambridge University Press,
1992.

[8] Apt, K. R., de Bakker, J. W., and Rutten, J. J. M. M., eds.
Logic Programming Languages: Constraints, Functions, and Objects.
MIT Press, 1993.

[9] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, 1984.

[10] Barham, P. R. Distributed DelPhi parallel Prolog. Computer Science
Tripos Part II Project, Computer Laboratory, University of Cambridge.

224



BIBLIOGRAPHY 225

[11] Beaumont, A. Scheduling strategies and speculative work. In Parallel
Execution of Logic Programs, eds. A. Beaumont and G. Gupta, pp.
120{131. Springer-Verlag, 1991.

[12] Bellia, M. and Levi, G. The relationship between logic and func-
tional languages: a survey. Journal of Logic Programming, 3, pp. 217{
236, 1986.

[13] Bonnier, S. A formal basis for Horn Clause logic with external
polymorphic functions. Tech. Rep. 276, Dept. of Computer Science,
Link�oping University, Sweden, 1992.

[14] Bonnier, S. and Maluszy�nsk, J. Towards a clean amalgamation of
logic programs with external procedures. In Proceedings of the 5th Intl.
Conf. and Symposium on Logic Programming, eds. R. Kowalski and
K. A. Bowen, vol. 1, pp. 311{326. MIT Press, 1988. Re. S-Uni�cation.

[15] Bosco, P. G., Giovannetti, E., and Moiso, C. Narrowing vs.
SLD-Resolution. Theoretical Computer Science, 59, pp. 3{23, 1988.

[16] Bowen, D. L., Byrd, L., Pereira, F. C. N., Pereira, L. M., and

Warren, D. H. D. SICStus Prolog User's manual. Swedish Institute
of Computer Science, Apr. 1994.

[17] Briat, J., Favre, M., Geyer, C., and de Kergommeaux, J. C.

OPERA: OR-parallel Prolog system on supernode. In Kacsuk and Wise
[48].

[18] Butler, R., Disz, T., Lusk, E., Olson, R., Overbeek, R., and
Stevens, R. Scheduling OR-parallelism: an Argonne perspective. In
Proceedings of the Fifth intl. conf. and symposium Logic Programming,
eds. R. A. Kowalski and K. A. Bowen, pp. 1590{1605. MIT Press, 1988.

[19] Cecchi, C., Sartini, D., and Aiello, L. Evaluating logic programs
via set-valued functions. In Proceedings of the 4th Intl. Conf. on Logic
Programming, ed. J. Lassez, vol. 1, pp. 428{455. MIT Press, 1987.

[20] Chakravarty, M. M. T. and Lock, H. C. R. The implementation
of lazy narrowing. In Proc. 3rd Intl. Symposium Programming Language
Implementation and Logic Programming, pp. 123{134. Springer-Verlag,
1991.

[21] Chang, C. and Lee, R. Symbolic logic and mechanical theorem prov-
ing. Academic Press, 1973.

[22] Cheong, P. H. and Fribourg, L. Implementation of narrowing:
The Prolog-based approach. In Apt et al. [8].



226 BIBLIOGRAPHY

[23] Clark, K. and Gregory, S. A relational language for parallel pro-
gramming. Tech. rep., Dept. of Computer Science, Imperial College,
London, 1981.

[24] Clark, K. and Gregory, S. PARLOG: Parallel programming in
logic. Tech. Rep. 84/4, Dept. of Computer Science, Imperial College,
London, 1984.

[25] Clocksin, W. F. Principles of the DelPhi parallel inference machine.
Computer Journal, 30(5), pp. 386{392, 1987.

[26] Clocksin, W. F. The DelPhi multiprocessor inference machine. In
Proc. 4th U.K. Conf. on Logic Programming, ed. K. Broda, pp. 189{198.
Springer-Verlag, 1992.

[27] Clocksin, W. F. Clause and E�ect, Prolog for the Working Program-
mer. Springer-Verlag, 1997.

[28] Clocksin, W. F. and Alshawi, H. A method of e�ciently execut-
ing Horn Clause using multiple processors. Tech. Rep. CCSC-3, SRI
International (Cambridge Computer Science Centre), 1987.

[29] Clocksin, W. F. and Mellish, C. S. Programming in Prolog, 3rd
Edition. Springer-Verlag, 1987.

[30] Codognet, P. and Diaz, D. wamcc: Compiling Prolog to C. Tech.
rep., INRIA-Rocquencourt, France, 1995.

[31] Conery, J. and Kibler, D. Parallel interpretation of logic programs.
Proc. ACM Conference on Functional Programming Languages and
Computer Architecture, pp. 163{170, 1981.

[32] Cuhna, J., Medeiros, P., Carvalhosa, M., and Pereira, L.

Delta Prolog: a distributed logic programming language and its imple-
mentation on distributed memory multiprocessors. In Kacsuk and Wise
[48].

[33] Curry, H. B. Grundlagen der kombinatorischen Logik. American
Journal of Mathematics, 52, pp. 509{536, 789{834, 1930.

[34] Delgado-Rannauro, S. A. OR-parallel logic computation models. In
Kacsuk and Wise [48].

[35] Deransart, P., Ed-Dbali, A., and Cervoni, L. Prolog: The Stan-
dard. Springer, 1996.

[36] Dincbas, M. and van Hentenryk, P. Extended uni�cation algo-
rithms for the integration of functional programming into logic program-
ming. Journal of Logic Programming, 4, pp. 199{227, 1987.



BIBLIOGRAPHY 227

[37] Disz, T., Lusk, E., and Overbeek, R. Experiments with OR-parallel
logic programs. In Proceedings of the 4th Intl. Conf. on Logic Program-
ming, ed. J. Lassez, vol. 2, pp. 576{600. MIT Press, 1987.

[38] Fribourg, L. SLOG: A logic programming language interpreter based
on clausal superposition and rewriting. In Proc. IEEE Intl. Symposium
on Logic Programming, pp. 172{184. IEEE Computer Soc. Press, 1985.

[39] Genesereth, M. R. and Nilsson, N. J. Logical Foundations of
Arti�cal Intelligence. Morgan Kaufman, 1986.

[40] Gupta, G. and Santos Costa, V. Cuts and side-e�ects in and-
or parallel Prolog. Tech. rep., Lab. for Logic and Databases, Dept. of
Computer Science, New Mexico State University, USA, 1992.

[41] Hanus, M. The integration of functions into logic programming: from
theory to practice. Journal of Logic Programming, 19,20, pp. 583{628,
1994.

[42] Hanus, M., Antoy, S., Kucken, H., and L�opez-Fraguas, F.

Curry, an integrated functional logic language. Tech. rep., RWTH
Aachen, Germany, 1997.

[43] Henderon, F., Conway, T., Somogyi, Z., and Ross, P. The
Mercury Language Reference Manual. University of Melbourne, 1995.

[44] Hindley, J. R. and Seldin, J. P. Introduction to Combinators and
�-Calculus. Cambridge University Press, 1986.

[45] Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall,
1985.

[46] Hullot, J. M. Canonical forms and uni�cation. In Proc. of the Fifth
Conference on Automated Deduction, Les Arcs, France, vol. 87, pp.
318{334. Springer-Verlag, Jul. 1980.

[47] Josephson, A. and Dershowitz, N. An implementation of narrow-
ing. Journal of Logic Programming, pp. 57{77, 1989.

[48] Kacsuk, P. and Wise, M., eds. Implementations of Distributed Pro-
log. Wiley, 1992.

[49] Klein, C. S. Exploiting OR-Parallelism in Prolog using Multiple Se-
quential Machines. Ph.D. thesis, Computer Laboratory, Cambridge
University, England, February 1991. Reprinted as Technical Report
No. 216.

[50] Lloyd, J. Foundations of Logic Programming. Springer-Verlag, 1984.



228 BIBLIOGRAPHY

[51] Lloyd, J. W. Combining functional and logic programming languages.
In Proc. 1994 Intl. Logic Programming Symposium. 1994.

[52] Lusk, E., Warren, D. H. D., Haridi, S., et al. The Aurora OR-
parallel Prolog system. New Generation Computing, 7, pp. 243{271,
1990.

[53] Maluszy�nski, J., Bonnier, S., Boye, J., Klu�zniak, F.,

K�agedal, A., and Nilsson, U. Logic programs with external pro-
cedures. In Apt et al. [8]. Re. S-Uni�cation.

[54] Masuzawa, H., Kumon, K., Itashiki, A., Satoh, K., and Sohma,

Y. Kabu Wake parallel inference mechanism and its evaluation. Proc.
Fifth Generation Computer Conference, pp. 955{962, 1986.

[55] Milner, R., Tofte, M., and Harper, R. The De�nition of Stan-
dard ML. MIT Press, 1990.

[56] Moreno-Navarro, J. J. and Rodriguez-Artalejo, M. Logic pro-
gramming with functions and predicates: The language Babel. Journal
of Logic Programming, 12, pp. 191{223, 1992.

[57] Naish, L. Adding equations to NU-Prolog. In Proceedings of the
3rd Intl. Symposium Programming Language Implementation and Logic
Programming, eds. J. Maluszy�nski and M. Wirsing, pp. 15{26. Springer-
Verlag, Aug. 1991.

[58] Naish, L. Higher-order logic programming in Prolog. Tech. Rep. 96/2,
Dept. of Computer Science, University of Melbourne, Australia, 1996.

[59] Newmarch, J. D. Logic Programming: Prolog and Stream Parallel
Languages. Prentice Hall, 1990.

[60] Paulson, L. C. ML Exercise Sheets, Part 1A CST and Mathematics
with Computer Science. Tech. rep., Computer Laboratory, Cambridge
University, England, 1988.

[61] Paulson, L. C. ML for the Working Programmer. Cambridge Uni-
versity Press, 1991.

[62] Paulson, L. C. and Smith, A. W. Logic programming, functional
programming, and inductive de�nitions. In Extensions of Logic Pro-
gramming, ed. P. Schroeder-Heister, LNAI 475, pp. 283{310. Springer,
1991.

[63] Reddy, U. S. Transformation of logic programs into functional pro-
grams. In Proc. IEEE Intl. Symposium on Logic Programming, pp.
187{196. 1984.



BIBLIOGRAPHY 229

[64] Reddy, U. S. Narrowing as the operational semantics of functional
languages. In Proc. IEEE Intl. Symposium on Logic Programming,
Boston, pp. 138{151. 1985.

[65] R�ety, P., Kirchner, C., Kirchner, H., and Lescanne, P. NAR-
ROWER: a new algorithm for uni�cation and its application to Logic
Programming. In Proc. 1st Conference on Rewriting Techniques and
Applications, vol. 202, pp. 141{157. Springer-Verlag, 1985.

[66] Saraswat, S. Performance Evaluation of the Delphi Machine. Ph.D.
thesis, Computer Laboratory, Cambridge University, England, Dec.
1995. Reprinted as Technical Report No. 385.

[67] Sch�onfinkel, M. �Uber die Bausteine der mathematischen Logik.
Mathematische Annalen, 92, pp. 305{316, 1924.

[68] Shapiro, E. A subset of Concurrent Prolog and its interpreter. In
Concurrent Prolog: Collected Papers, ed. E. Shapiro. MIT Press, 1987.

[69] Somogyi, Z., Henderson, F. J., and Conway, T. C. Mercury,
an e�cient purely declarative logic programming language. Tech. rep.,
Dept. of Computer Science, University of Melbourne, Australia, 1995.

[70] Stickel, M. A Prolog technology theorem prover: Implementation by
an extended Prolog compiler. J. Auto. Reas., 4(4), pp. 353{380, 1988.

[71] Tick, E. Parallel Logic Programming. MIT Press, 1991.

[72] Tinker, P. and Lindstrom, G. A performance-oriented design for
OR-parallel logic programming. In Proceedings of the 4th Intl. Conf.
on Logic Programming, ed. J. Lassez, vol. 2, pp. 601{615. MIT Press,
1987.

[73] Warren, D. H. D. An abstract Prolog instruction set. Tech. Rep.
TN-309, SRI International, Menlo Park, CA, 1983.

[74] Warren, D. H. D. The SRI model for OR-parallel execution of Pro-
log - abstract design and implementation issues. In Proc. Symposium
on Logic Programming. IEEE Computer Society Press, Los Alamitos,
California, 1987.

[75] Wise, M. Prolog Multiprocessors. Prentice Hall International, 1986.

[76] Wrench, K. L. A Distributed AND-OR Parallel Prolog Network.
Ph.D. thesis, Computer Laboratory, University of Cambridge, Dec.
1990. Available in summary form as Technical Report No. 212.


