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Abstract

Let G be a simple simply connected algebraic group defined over an algebraically closed

field K and V an irreducible module defined over K on which G acts. Let E denote

the set of vectors in V which are eigenvectors for some non-central semisimple element

of G and some eigenvalue in K∗. We prove, with a short list of possible exceptions, that

the dimension of E is strictly less than the dimension of V provided dim V > dim G + 2

and that there is equality otherwise. In particular, by considering only the eigenvalue

1, it follows that the closure of the union of fixed point spaces of non-central semisimple

elements has dimension strictly less than the dimension of V provided dim V > dim G+2,

with a short list of possible exceptions.

In the majority of cases we consider modules for which dim V > dim G + 2 where we

perform an analysis of weights. In many of these cases we prove that, for any non-central

semisimple element and any eigenvalue, the codimension of the eigenspace exceeds dim G.

In more difficult cases, when dim V is only slightly larger than dimG + 2, we subdivide

the analysis according to the type of the centraliser of the semisimple element. Here we

prove for each type a slightly weaker inequality which still suffices to establish the main

result. Finally, for the relatively few modules satisfying dimV 6 dim G+2, an immediate

observation yields the result for dimV < dim B where B is a Borel subgroup of G, while

in other cases we argue directly.
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Chapter 1

Introduction

A very powerful way of approaching groups is through their actions. Actions give an

insight into the structure of a group by representing it as a group of matrices. We shall be

concerned with actions of algebraic groups on vector spaces, both defined over the same

algebraically closed field. We study the building blocks of the theory, namely, irreducible

actions of simple algebraic groups. We assume that simple algebraic groups are simply

connected since this version of the group acts on all of its modules, whereas versions in

other isogeny classes do not.

Let G be a simple simply connected algebraic group defined over an algebraically

closed field K of characteristic p > 0 and let V be an irreducible G-module also defined

over K. In representation theory, important invariants in actions for each group element

are eigenvectors and eigenvalues. The eigenspaces with eigenvalue 1 are of interest since

they are the fixed point spaces CV (g) = {v ∈ V | gv = v} for each g ∈ G. A recent

survey article of Zalesski [29] discusses a number of problems on eigenvalues of elements

in representations of algebraic groups and finite Chevalley groups. He points out that the

usual method of studying eigenspaces is through the theory of weights of representations

of algebraic groups, particularly in relation to semisimple elements.

In this thesis, we consider the question of how likely it is that a vector chosen at random

from V will be an eigenvector for some semisimple element of G. We quickly see that we

should restrict our attention to non-central semisimple elements since central elements
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act as scalars. We consider the set E of vectors in V which are eigenvectors for some

non-central semisimple element of G and some eigenvalue in K∗. Our aim is to precisely

determine when the dimension of its closure is strictly less than dim V . We show, for all

but a short list of possible exceptions, that there is a clear dichotomy: the dimension of E

is strictly less than V whenever dim V > dim G + 2, otherwise we have equality. In order

to establish this result we show in most cases that the codimension of the eigenspace of

any non-central semisimple element and any eigenvalue exceeds dim G. In the remaining

cases we require an analysis of the centraliser types of semisimple elements.

Fix a non-central semisimple element s ∈ G and an eigenvalue γ ∈ K∗. We shall

explain the principal method used to calculate a lower bound for the codimension of the

corresponding eigenspace Vγ(s) = {v ∈ V | sv = γv}. Since s is non-central, we deduce

from the structure theory of centralisers of semisimple elements that there is a root α in

the root system of G such that α(s) 6= 1. Each irreducible G-module can be decomposed

as a direct sum of weight spaces. Each weight appears in a weight string for the root α

and two weights are adjacent in such a string if they differ by α. Thus the weight spaces

corresponding to two adjacent weights in a weight string for α cannot both lie in the

eigenspace. We shall introduce this later as the adjacency principle in Section 4.2.

As an application of our main result we make a contribution to the study of regular

orbits. By restricting our main result above to 1-eigenspaces we deduce that the set of

vectors whose stabilisers contain no non-central semisimple element is dense in G whenever

dim V > dim G + 2 except for some possible exceptions. Thus if it can be shown that at

least one of these vectors has a stabiliser containing no non-trivial unipotent element, it

would follow that such a vector has stabiliser contained in Z(G). Such a vector would lie

in a regular orbit when we pass from the action of G to that of G/M , where M 6 Z(G)

is the kernel of the action of G on V .

One of the motivations for considering regular orbits is the work on base size in the

theory of permutation groups by Burness, Liebeck, Shalev, Guralnick, Saxl, et al. Let G

be a primitive permutation group on a set Ω. We call a subset B ⊂ Ω a base for G if the

pointwise stabiliser of B in G is trivial, i.e.,
⋂

α∈B Gα = 1. Denote by b(G) = b(G, Ω) the
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minimal size of a base of G. By the O’Nan-Scott theorem [17] G is either almost simple,

affine or lies in one of four other classes. If G is affine then G 6 AGL(V ) where V is a

finite-dimensional vector space of order pn with p prime and n ∈ N. If we interpret V

as the group of translations we may write G = V ⋊ H, where H = G0 is an irreducible

subgroup of GL(V ) and V ∼= (Cp)
n is an elementary abelian regular normal subgroup of

G. Consider the action of H on V and let b(H) denote the minimal size of a base for this

action. We have b(G) = 1 + b(H) and so b(G) = 2 if and only if there is a single vector

in V whose stabiliser in H is trivial, i.e., if and only if H has a regular orbit in its action

on V .

Layout This thesis is organised as follows. In Chapter 2 we assemble the background

results required and state the main theorem of this thesis. The next two chapters reflect

the dichotomy of the main theorem. In Chapter 3 we state and prove results for small

modules of dimension less than or equal to dimG + 2 and in Chapter 4 we provide tech-

niques for large modules, i.e., modules of dimension exceeding dim G + 2. In Chapters 5,

6, 7 and 8 we consider the possible p-restricted irreducible modules for groups of types

An, Bn, Cn and Dn respectively. In Chapter 9 we consider such modules for groups of

exceptional type. In Chapter 10 we examine tensor products with twists of p-restricted

irreducible modules for groups of all types thereby completing the investigation. In Chap-

ter 11 we close with a review of the progress we have made and open questions that have

arisen. In Appendix A we provide tables containing sets of weights for a specific action

as detailed in Lemma 5.13 in Chapter 5.
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Chapter 2

Preliminaries and statement of main

theorem

In this chapter, we define terms and recall key results from the representation theory of

algebraic groups. We shall establish the background to the material addressed in the

chapters to follow. We shall finish the chapter by stating the main theorem of this thesis.

2.1 Representation theory

We refer the reader to [1, Chapter 1], [27], [13] and [19] for full details of the theory below.

Let G be a simple simply connected algebraic group over an algebraically closed field of

characteristic p > 0. Let T be a maximal torus of rank n and B ⊃ T be a Borel subgroup.

Denote by Φ the root system of G with respect to T , and Φ+, Φ− and Π = {α1, . . . , αn} the

positive, negative and simple roots determined by the choice of B. We can analogously

denote the coroot system by Φ∨ and denote by α∨ ∈ Φ∨ the coroot corresponding to

α ∈ Φ. Let ( , ) denote the associated symmetric bilinear form. By setting ‖α‖ = (α, α)
1

2

to be the root length of each α ∈ Φ it can be shown that for each Φ either all roots

have the same length, or there are two root lengths and Φ is partitioned into two sets;

one set denoted ΦL contains long roots and the other denoted ΦS contains short roots.
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If all roots in Φ are of the same length then we shall regard all roots as short. Each

simple algebraic group has an associated connected Dynkin diagram and we shall use

the standard Bourbaki labelling adopted by Humphreys in [13, p.58]. Let U denote the

unipotent radical of B; there is a semidirect product decomposition B = UT . We denote

by B− the opposite Borel subgroup of G with B ∩B− = T and U− denotes the unipotent

radical of B−. The one-dimensional connected unipotent proper subgroups of U and U−

correspond to elements of Φ and are called root subgroups; these are denoted Xα where

α ∈ Φ and we have U =
∏

α∈Φ+ Xα.

Let X = X(T ) be the character group of G and Y = Y (T ) be the cocharacter group

of G, both with respect to T and let Gm be the one-dimensional multiplicative group

isomorphic to GL1(K). For χ ∈ X and γ ∈ Y since χ ◦ γ ∈ Hom(Gm, Gm) ∼= Z, we

have (χ ◦ γ)(λ) = λn for some n ∈ Z and for all λ ∈ Gm; set 〈χ, γ〉 = n. In this way we

can define a non-degenerate map X × Y → Z by (χ, γ) 7→ 〈χ, γ〉. Let W be the Weyl

group with respect to T . The Weyl group acts transitively on roots of the same length

in Φ; indeed, W acts faithfully on the lattices X and Y . It is generated by elements wα

for α ∈ Φ. It is not too hard to show that W is generated by {wαi
}αi∈Π and that it is a

Coxeter group. Each wαi
acts on X as follows: wαi

(χ) = χ − 〈χ, α∨
i 〉αi for each χ ∈ X.

Indeed, we have 〈χ, α∨〉 = 2 (χ,α)
(α,α)

.

We shall assume from the outset that all representations of G considered are both

finite-dimensional and rational. Let V be a finite-dimensional G-module over K with

corresponding rational representation ρ : G → GL(V ). Considering V as a T -module,

V is diagonalisable in the sense that V =
⊕

λ∈X Vλ where Vλ = {v ∈ V | ρ(t)v =

λ(t)v for all t ∈ T}. We say that λ is a weight of the representation ρ whenever Vλ 6= 0

and we call Vλ the weight space. The multiplicity of λ in ρ is defined to be dim Vλ =: mλ.

Since dim Vλ = dim Vwλ for all w ∈ W , weights in the same Weyl group orbit have the

same multiplicity. Let {ω1, . . . , ωn} be the basis of ZΦ dual to Π∨ with respect to 〈 , 〉, i.e.,

〈ωi, α
∨
j 〉 = δij for 1 6 i, j 6 n. We call {ω1, . . . , ωn} the fundamental weights and since

G is simply connected, this is a Z-basis of X. We say that a weight λ ∈ X is dominant

if 〈λ, α∨
i 〉 > 0 for all i, i.e., λ is a non-negative linear combination of the fundamental
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weights. We denote the set of dominant weights by X+. From above we can see that W

acts on X via wαi
(ωj) = ωj − δijαi and in fact each W -orbit contains a unique dominant

weight. The set of weights of V is a union of W -orbits. We can define a partial ordering

6 on X whereby λ 6 λ′ if and only if λ′ − λ is a non-negative linear combination of

simple roots. A dominant weight λ ∈ X+ is said to be p-restricted if 0 6 〈λ, α∨
i 〉 < p for

all i ∈ [1, n]. For convenience we shall use the notation 〈ω, α〉 for 〈ω, α∨〉 in subsequent

chapters.

We shall write each fundamental weight as a linear combination of the simple roots

with coefficients in Q+: see [13, p.69]. In order to save space we shall denote a weight

ω =
∑

aiαi by its coefficients ai, i.e., we shall write ω = a1a2 . . . an.

The following theorem makes it clear that we may study irreducible representations

via their highest weight representations.

Theorem 2.1 (Chevalley). Let G be a semisimple algebraic group over K. Then the

following hold.

(i) Every irreducible rational G-module V has a unique highest weight λ ∈ X+ with re-

spect to the partial ordering on X+. In particular the weight space Vλ has multiplicity

1 and if Vµ 6= 0 then µ 6 λ.

(ii) Two irreducible modules with the same highest weight λ are isomorphic.

(iii) For every λ ∈ X+ there exists an irreducible G-module of highest weight λ.

We may thus denote an irreducible G-module with highest weight λ by L(λ) without

confusion.

2.1.1 Duality

If the G-module L(λ) of highest weight λ is irreducible then the dual module L(λ)∗ =

Hom(L(λ), K) is again an irreducible G-module. It is not too hard to work out that L(λ)∗

has highest weight −w0.λ where w0 ∈ W is the longest word in the Weyl group and is
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the unique element mapping the positive roots to the negative roots, i.e., w0(Φ
+) = Φ−.

By Chevalley’s theorem we have L(λ)∗ ∼= L(−w0.λ). Now −w0 = id on X when Φ

is of type Bn, Cn, Dn (n even), E7, E8, F4 and G2; in particular, in these cases, an

irreducible G-module is self-dual. In the other cases w0 induces a graph automorphism

of the corresponding Dynkin diagrams. Thus, for example, if the root system is of type

An, the modules L(a1ω1 + · · · + anωn) and L(anω1 + · · · + a1ωn) are dual to each other.

It will suffice to consider one of each dual pair since our calculations will be identical in

both cases.

2.1.2 Theorems of Lang and Steinberg

Steinberg proved the following fundamental dichotomy.

Theorem 2.2 (Steinberg, [26]). Let G be a simple linear algebraic group and σ : G → G

an endomorphism. Then precisely one of the following holds:

(i) σ is an automorphism of algebraic groups;

(ii) the group Gσ = {g ∈ G | σ(g) = g} of fixed points is finite.

In case (ii) of Theorem 2.2 the endomorphism σ is called a Frobenius map of G. The

group Gσ is a finite group of Lie type.

Given a rational representation ρ : G → GL(V ) and the standard Frobenius map F

relative to p (as defined in [1, §1.17]), we can “twist” by the rth power of F to obtain a

new representation ρ◦F r : G → GL(V ). We shall write V (r) for the associated G-module.

Theorem 2.3 (Steinberg, [26]). Let G be a simply connected semisimple algebraic group

over Fp and λ ∈ X+. Write λ = λ0 + pλ1 + p2λ2 + . . . + prλr, the p-adic expansion of λ,

where each λi is p-restricted and dominant. Then

L(λ) ∼= L(λ0) ⊗ L(λ1)
(1) ⊗ . . . ⊗ L(λr)

(r).
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This theorem allows the study of weights of irreducible rational representations of

simple algebraic groups over an algebraically closed field of characteristic p to be reduced

to the study of p-restricted weights of such representations. It does not, however, allow

us to focus exclusively on p-restricted highest weights λ, since L(λ) may have dominant

weights lying below λ in the partial ordering which are not p-restricted.

If Φ has two root lengths, let X(T )S denote the set of weights λ ∈ X(T ) such that

〈λ, α〉 = 0 for all long roots α ∈ Φ. Thus the weights in X(T )S are Z-linear combinations

of fundamental weights corresponding to short simple roots, i.e., the set of weights with

short support. We analogously define X(T )L.

In Chapters 6 and 7 we shall make use of the following refinement of Theorem 2.3.

Theorem 2.4 (Steinberg, [25]). Let p = 2 if G is of type Bn, Cn or F4 and p = 3 if G

is of type G2. If λ ∈ X(T ) is a dominant weight then λ = µ + ν for unique dominant

weights µ ∈ X(T )L and ν ∈ X(T )S and L(λ) ∼= L(µ) ⊗ L(ν).

We now state the important Lang-Steinberg theorem [1, §1.17] which shall be required

in the next chapter.

Theorem 2.5. Let G be a connected algebraic group over K = Fp. If F : G → G is

a surjective homomorphism such that GF is finite then the map L : G → G defined by

L(g) = g−1F (g) is surjective.

2.2 Premet’s theorem

We begin this section with a definition. Assume that the characteristic of K is positive.

A rational K-representation ρ of G is called infinitesimally irreducible if its differential

dρ defines an irreducible representation of the Lie algebra g.

It has been proven by Curtis in [7] that a rational representation ρ is infinitesimally

irreducible if and only if its highest weight λ is p-restricted.

Let e(Φ) denote the maximum of the squares of the ratios of the lengths of the roots

in Φ, so e(Φ) is 2 if Φ is of type Bn, Cn or F4, 3 if Φ is of type G2 and 1 otherwise.
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Theorem 2.6 (Premet, [20]). Suppose that p > e(Φ). Then the set of weights of an

infinitesimally irreducible representation ρ of G with highest weight λ coincides with the

set of weights of an irreducible complex representation ρC of g with the same highest

weight.

Consequently, the set of weights of the irreducible module L(λ) is the union of the

Weyl group orbits of dominant weights µ with µ 6 λ provided that p > e(Φ).

The theorem proved a conjecture of I.D. Suprunenko who had shown that the result

holds for groups of type Al, l > 1 and for a few other special cases.

The cases in which p 6 e(Φ) certainly need to be excluded. There are numerous

counterexamples as we shall see later in Theorem 2.7. The theorem tells us that, provided

p > e(Φ), the weights of L(λ) are the same as the weights of the irreducible representation

with highest weight λ of a Lie algebra of the same type as G.

Let G be a simple algebraic group of simply connected type over Fp. Lübeck has

determined (using computational methods) all irreducible G-modules parameterised by

p-restricted highest weights in defining characteristic of dimension bounded by a given

integer M ; details are given in [19]. He details for groups of small rank (An, 2 6 n 6 20;

Bn, 2 6 n 6 11; Cn, 3 6 n 6 11; Dn, 4 6 n 6 11) not only the parameterising highest

weights and the dimensions of the modules, but also the multiplicities of the dominant

weights lower than the highest weight in the partial ordering. For these groups of small

rank the bound is given explicitly in Table 1 of [19] and for groups of large rank, M = n3

8
if

G is of type An and M = n3 otherwise. The information is accessible on Lübeck’s website

[18]. This explicit information about highest weight modules of bounded dimension in all

characteristics is crucial to our work for groups of small rank and the value of M in each

case is usually more than sufficient for our requirements.

Lübeck’s paper is an extension of work by Gilkey and Seitz in [9] where they considered

the exceptional types of Lie algebras and algebraic groups.

For almost all primes p, the weight multiplicities and the dimension of an irreducible

module for an algebraic group defined over a field of characteristic p > 0 are the same

as those of the corresponding simple algebraic group in characteristic 0. This will allow
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us to state our results for characteristic 0 rather than solely for the modular case when

p > 0. We note that in characteristic 0 the well-known formula of Freudenthal [13, §22.3]

can be used to compute weight multiplicities.

Consider the action of G on L(λ) for some λ ∈ X+. Fix α ∈ Φ, and take some

µ ∈ Π(λ) where Π(λ) denotes the multiset of weights of L(λ). The weights in Π(λ) of the

form µ + iα, i ∈ Z form a string µ − rα, . . . , µ, . . . , µ + qα called the α-string through µ.

The Weyl group element wα reverses the string and r − q = 〈µ, α〉. We call such a string

a weight string and we refer the reader to [13, §21.3] for more details. A weight string of

length k is one consisting of k weights. We say that Π(λ) is saturated if for all µ ∈ Π(λ)

and α ∈ Φ the weight µ − iα ∈ Π(λ) for each i between 0 and 〈µ, α〉. In the cases where

the conclusion of Premet’s theorem does not hold, the weight strings that are present are

not necessarily saturated. The weights that are not present lie in the Weyl group orbit of

a dominant weight which is not present for a certain characteristic. As an example, for

type Bn the Weyl group orbit of the weight ω2 for the module L(ω3) is not present when

the characteristic of K is 2.

At times we shall employ a generalisation of the notion of a weight string. Given

two or more orthogonal roots, we take the union of their weight strings; each connected

component of the resulting graph is called a weight net. For example, if (G, λ) = (A5, ω3)

then the following is a 2 × 2 weight net; horizontally there are α1-strings and vertically

α4-strings. Note that we have omitted a factor of 1
5

on each coefficient.

2 -1 1 3 -3 -1 1 3

2 -1 1 -2 -3 -1 1 -2

More briefly, rather than state each weight in the weight net above, we use the notation

· -1 1 ·. In general, we shall use dots to stand for any integers that make an expression a

weight in Π(λ).
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2.3 Zalesski’s theorem

A recent expository paper of Zalesski provides more precise information in the cases where

the conclusion of Premet’s theorem does not hold.

Theorem 2.7 (Zalesski, [29]). Let G be a simple algebraic group defined over a field

of characteristic p and φ a tensor indecomposable p-restricted G-module. Let µ be the

highest weight of φ. Then the weights of φ are the same as the weights of an irreducible

representation of a complex Lie algebra of the same type as G unless one of the following

holds:

(i) p = 2 and G is of type Bn;

(ii) p = 2, G is of type Cn and µ = ωn;

(iii) p = 2, G is of type G2 and µ = ω1;

(iv) p = 3, G is of type G2 and µ = ω2 or 2ω2;

(v) p = 2, G is of type F4 and µ = ω1, ω2 or ω1 + ω2.

The proof uses the tables of Gilkey and Seitz in [9] for the exceptional types. For type

Cn with p = 2, Zalesski views weights with short support in Cn as weights inside Dn. We

see that if G is of type Bn for p = 2 there is no improvement on Premet’s theorem. We

shall make use of (ii) above in Section 7.2.

The next theorem due to Seitz tells us precisely which modules are tensor indecom-

posable.

Theorem 2.8 (Seitz, [23]). Let V be a finite-dimensional vector space defined over an

algebraically closed field of characteristic p and X a simple closed connected irreducible

subgroup of SL(V ). Then V can be expressed as the tensor product V = V1 ⊗ V2 of two

non-trivial p-restricted X-modules if and only if V is a p-restricted X-module and the

following conditions hold:
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(i) X has type Bn, Cn, F4 or G2 with p = 2, 2, 2, 3 respectively;

(ii) V1, V2 may be arranged such that Vi has highest weight λi with λ = λ1 + λ2 and λ1

(respectively λ2) has support on those fundamental dominant weights corresponding

to short (respectively long) roots.

So, for type Cn with p = 2 all 2-restricted tensor decomposable modules have the form

L(ν) ⊗ L(ωn) where ν ∈ X(T )S is a 2-restricted dominant weight with short support.

2.4 Centralisers of semisimple elements

An algebraic group G acts naturally on itself by conjugation via Intx : G → G, y 7→

xyx−1. Denote the differential of this map by Adx; this is an automorphism of the

Lie algebra Lie(G) = g. The map Ad : G → Aut g ⊂ GL(g) is called the adjoint

representation of G. It can be shown that Ad : GL(n,K) → GL(n2, K) is a morphism

of algebraic groups. In fact Adx is conjugation by x when G is a closed subgroup of

GL(n,K). For a ∈ g and x ∈ G recall the following definitions:

CG(a) = {g ∈ G | Ad g.a = a},

Cg(a) = {b ∈ g | [b, a] = 0},

CG(x) = {g ∈ G | xgx−1 = g}, and

Cg(x) = {b ∈ g | Ad x.b = b}.

The global and infinitesimal centralisers of elements in the Lie algebra are related, specif-

ically the inclusion Lie(CG(a)) ⊂ Cg(a) for a ∈ g always holds and there is equality in the

case that a is a semisimple element.

As we shall see later, it will be important to consider centralisers in the algebraic

group of semisimple elements. The most suitable references for this theory are [14, §2]

and [1, §3.5].

Since we are assuming that our group G is simply connected, by a result of Steinberg

[26, §8] we see that the centraliser in G of any semisimple element is connected.

12



Proposition 2.9. Let G be a simply connected simple algebraic group, s a semisimple

element and T a maximal torus of G containing s. Then CG(s) = 〈T,Xα | α(s) = 1〉.

Thus, up to conjugation, there are only finitely many different centralisers of semisim-

ple elements in G. Moreover CG(s) is reductive with root system Φs = {α ∈ Φ | α(s) = 1}

and Weyl group Ws = 〈wα | α ∈ Φs〉.

Recall that a prime p is said to be bad for G if p divides a coefficient ai of some root

α ∈ Φ where α =
∑

αi∈Π aiαi is expressed as a linear combination of simple roots. We say

that a prime p is good for G whenever it is not bad. It is easy to see that for types Bn,

Cn and Dn the prime p = 2 is bad, for types G2, F4, E6 and E7 the primes p = 2, 3 are

bad and for type E8 the primes p = 2, 3, 5 are bad. There are no bad primes for type An.

Deriziotis [8] found an elegant characterisation of centralisers of semisimple elements.

The possible Dynkin diagrams of the semisimple part of the centraliser of a semisimple

element are, except for a subset of the bad primes, given precisely by the possible sub-

diagrams of the extended Dynkin diagram of G (which is formed from Π̃ = Π ∪ {−α0},

where α0 is the highest root). There are bad primes for which some of these semisim-

ple centralisers do not occur; a precise method for determining these is given in work

of Hartley and Kuzucuoğlu [11]. The possible diagrams correspond to all root systems

Ψ ⊂ Φ which have a basis which is conjugate under the Weyl group to a proper subset

of Π̃. For example, when G is of type An, taking subdiagrams of the extended Dynkin

diagram we see that centralisers of semisimple elements are of type An1
· · ·Anr

Tl where

n1 > · · · > nr > 0 and l +
∑

ni = n. We reserve the letter X to denote the type of the

root system of the centraliser of a semisimple element. So if n = rank T and s is regular,

i.e., dim CG(s) = n, which is the least possible dimension, we say that X = ∅.

We remark that it is necessary to distinguish between the two possible subsystems

consisting of two single non-adjacent nodes of the extended Dynkin diagram of types

Bn and Dn: the subsystem D2 formed from nodes corresponding to αn−1 and αn (or,

alternatively α1 and −α0) and the subsystem A2
1 as before. We make the distinction

between the subsystems A3 and D3 in types Bn and Dn whenever necessary. Also for

type Bn we denote a subsystem of rank one by either A1 or B1 in order to distinguish
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between long roots whereby Φs = {±αi} for some i 6= n or short roots {±αn}. Similarly

for type Cn a subsystem of rank one is denoted by either A1 or C1 in order to distinguish

between short roots whereby Φs = {±αi} for some i 6= n or long roots {±αn}.

2.5 Lie algebras and a result on nilpotent orbits

We shall consider the adjoint representation in the next chapter and therefore we need to

recall relevant material from the theory of Lie algebras and state part of a result about

nilpotent orbits in good characteristic due to Premet.

The following material is contained in [2] and [12]. Let Lie(G) = g be the Lie algebra

of the simple algebraic group G. Recall the Cartan decomposition

g = Cg(T ) ⊕
∑

α∈Φ

gα,

where Cg(T ) is a Cartan subalgebra and gα = {x ∈ g | Ad t(x) = α(t)x, t ∈ T}. Using the

same notation as in [2, Chapter 3] we let {hα, α ∈ Π; eα, α ∈ Φ} denote the Chevalley

basis for g where hα ∈ Cg(T ), [hα, eβ] = Aα,βeβ and Aα,β = 2(α,β)
(α,α)

; each element eβ is the

root vector corresponding to the root β.

Assume that g admits a non-degenerate G-invariant trace form and that p is a good

prime for the root system Φ of G. In [21, Theorem A], Premet states that for any

nilpotent element n ∈ g there exists a one-parameter subgroup λ ∈ Hom(Gm, G) such

that λ(c).n = c2n, i.e., there is a λ such that n lies in its 2-weight space g(λ, 2) = {x ∈

g | Ad λ(c).x = c2x for all c ∈ K∗}.

2.6 Main theorem

We shall henceforth set

E =
⋃

s∈Gss\Z

⋃

γ∈K∗

Vγ(s),
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where Vγ(s) = {v ∈ V | sv = γv}, Gss denotes the set of semisimple elements in G and

Z = Z(G) denotes the centre of G. We shall list all modules up to duality. This thesis

will be concerned with proving the theorem below.

Main Theorem Let G be a simple simply connected algebraic group acting on an

irreducible G-module V . If dim V 6 dim G + 2 then

dim E = dim V,

with the following possible exceptions:

G V n

An L(3ω1) 2 (p > 3)
L(ω3) 7

Bn L(ω1 + ω2) 2 (p = 5)
L(ω6) 6

Cn L(ω2) [3,∞)
L(ωn) [5, 6] (p = 2)
L(ω3) 3 (p 6= 2)

Dn L(ω7) 7

and if dim V > dim G + 2 then

dim E < dim V,

with the following possible exceptions:

G V n G V n

An L(ω3) 8 Cn L(ω3) 4 (p = 3)
L(ω4) 7 L(ω4) 4 (p 6= 2)
L(2ω2) 3 (p > 2) L(ω1) ⊗ L(ω1)

(q) [3,∞)
Bn L(2ω1) [2,∞) (p > 2) Dn L(2ω1) [4,∞) (p > 2)

L(ω1) ⊗ L(ω1)
(q) [2,∞) L(ω7) 8

L(ω8) 8
L(ω1) ⊗ L(ω1)

(q) [4,∞)

The Main Theorem follows from the results in Chapter 3 if dimV 6 dim G + 2, and

Theorems 5.1, 6.1, 7.1, 8.1 and 10.1 and Lemmas 9.1, 9.2 and 9.3 if dim V > dim G + 2.
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The proof will be split depending on the dimension of the irreducible G-module, the type

of the algebraic group involved and whether the irreducible module on which it acts is

parameterised by a p-restricted highest weight or not. In Chapter 3 we deal exclusively

with modules of dimension at most dimG + 2; in all later chapters we consider larger

modules. In Chapters 5-8 we take in turn G to be one of the classical types An, Bn, Cn

and Dn and in Chapter 9 we consider together the exceptional types E6, E7, E8, F4 and

G2. In these chapters we assume that each irreducible G-module is parameterised by a

p-restricted highest weight. In Chapter 10 we deal with the remaining modules for all

types of simple algebraic groups. These modules are parameterised by highest weights

that are not p-restricted; however by Steinberg’s tensor product theorem 2.3 they are

tensor products of modules with p-restricted highest weights together with a twist.

Since the fixed point spaces CV (s) are precisely the 1-eigenspaces V1(s) we have, by

inclusion,

dim
⋃

s∈Gss\Z

CV (s) 6 dim
⋃

s∈Gss\Z

⋃

γ∈K∗

Vγ(s)

and hence we obtain the following corollary.

Corollary 2.10. If G and V are as before and dim V > dim G + 2 then there exists a

vector v ∈ V such that StabG\Z(v) ⊂ Gu with the same possible exceptions as above, where

Gu denotes the set of unipotent elements in G.

We remark that if dim V < dim G then, by the orbit-stabiliser theorem, any vector

must have a non-trivial stabiliser in G, and so must lie in the fixed point space of some

element of G. Thus if one wished to show that there exists a regular orbit in the action

of G on V one must assume that dim V > dim G.
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Chapter 3

Small modules

In this chapter we shall consider small modules, i.e., irreducible p-restricted G-modules of

dimension at most dim G+2 where G is a simple simply connected algebraic group defined

over an algebraically closed field. We prove general results for modules V of dimension

less than the dimension of a Borel subgroup B of G and for adjoint modules. The only

modules with dimension dim G + 1 are (G, λ) = (A1, 3ω1) with p > 3, (A3, ω1 + ω2)

with p = 3 and (An, ω1 + qω1) for n > 1. The modules with dimension dim G + 2 are

(G, λ) = (A1, 4ω1) with p > 3, (A2, 3ω1) with p > 3 and (B2, ω1 + ω2) with p = 5. We

may therefore focus on modules with dimension strictly between dim B and dim G + 2.

3.1 General results

We shall begin by considering modules of dimension less than a Borel subgroup of G.

Lemma 3.1. Let G be a simple simply connected algebraic group, B a Borel subgroup

of G and V an irreducible G-module. If dim V < dim B then
⋃

s∈Gss\Z
CV (s) = V , and

moreover E = V .

Proof. By the orbit-stabiliser theorem, for any vector v ∈ V we have

dim StabG(v) = dim G − dim G.v > dim G − dim V > dim G − dim B = dim U
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where U = Ru(B). Thus it is not possible for StabG(v) to be conjugate to a subgroup of

U.Z. It follows that the stabiliser in G of any vector contains a non-central semisimple

element and hence each vector lies in the fixed point space of a non-central semisimple

element. Thus we have
⋃

s∈Gss\Z
CV (s) = V , whence E = V .

It clearly follows that the conclusion of our Main Theorem holds for G-modules V

satisfying dim V < dim B since E = V .

The next proposition focuses on the adjoint action of an algebraic group on its asso-

ciated Lie algebra by conjugation. We provide a complete list of the adjoint modules for

each type in the table below.

Type Module n Type Module

An L(2ω1) 1 (p 6= 2) E6 L(ω2)
L(ω1 + ωn) [2,∞) E7 L(ω1)

Bn L(2ω2) 2 (p 6= 2) E8 L(ω8)
L(ω2) [3,∞) F4 L(ω1)

Cn L(2ω1) [3,∞) (p 6= 2) G2 L(ω2)
Dn L(ω2) [4,∞)

Proposition 3.2. Let G be a simple simply connected algebraic group acting on its irre-

ducible adjoint module V . Then E is dense in V , and moreover when p is good for G we

have E = V .

Proof. We begin without any conditions on the characteristic of the field p. Let a be a

regular semisimple element of g. The set of such elements is dense in g. Let T ′ be a

maximal torus with a ∈ Lie(T ′). Recall from Section 2.4 that global and infinitesimal

centralisers coincide for semisimple elements, so

Lie(T ′) = Cg(a) = Lie(CG(a)),

whence CG(a)◦ = T ′. Taking s ∈ T ′ \Z we see that a is fixed by a non-central semisimple

element. Thus all regular semisimple elements of g lie in the fixed point space in g of

some s ∈ Gss \Z. Hence, by passing to the quotient of g if necessary, E is dense in V . We
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note that the adjoint modules for F4 with p = 2 and for G2 with p = 3 are small modules

having dimension 26 and 7, respectively.

Assume from now on that p is good for G and let v ∈ g. The Lie subalgebra 〈v〉 ⊂ g

is soluble, so lies in a maximal soluble subalgebra which we may take to be b = Lie(B)

by applying an element of G. Let the Jordan decomposition of v be v = t + n where t is

semisimple, n is nilpotent and [t, n] = 0. We may assume without loss of generality that

t ∈ t = Lie(T ) since any semisimple element of b lies in a Cartan subalgebra of b, all of

which lie in the same G-orbit. Hence we may write t =
∑

α∈Π λαhα with each λα ∈ K.

Define Ψ = {β ∈ Φ | [t, eβ] = 0} so that β ∈ Ψ if and only if

0 =
∑

α∈Π

λα[hα, eβ] =
∑

α∈Π

λαAα,β.

It is clear that Aα,β1+β2
= Aα,β1

+ Aα,β2
so Ψ is a closed subsystem of Φ. Also n may be

written as a linear combination of those eβ with β ∈ Ψ since [t, n] = 0.

We take the two cases Ψ ( Φ and Ψ = Φ separately. In the former case we take a

maximal subsystem Ψ′ ⊂ Φ containing Ψ. Up to conjugacy we may assume that Ψ′ is

obtained by removing at least one node from the extended Dynkin diagram of Φ. Recall

from Section 2.4 that Ψ′ is the root system of the centraliser of a semisimple element

s ∈ G. We have that s is non-central by the assumption on Ψ and s.v = s.t + s.n = v,

i.e., v ∈ CV (s) = V1(s) so v ∈ E.

Thus we are left with the case Ψ = Φ; here t ∈ Z(g) since t commutes with t and

each root vector. Since the irreducible module is V = g/Z(g) by passing to this quotient

of g we see that v is nilpotent. As remarked in Section 2.5, we know that there is a

one-parameter subgroup λ : K∗ → G such that for all c ∈ K∗ we have λ(c).v = c2v.

Therefore, choose c ∈ K∗ such that s = λ(c) is non-central, then v ∈ Vc2(s) so v ∈ E.

We remark that if p is a bad prime for G then we need not have E = V . We may take

for example G = C2(K) with p = 2. The corresponding Lie algebra g of type C2 consists
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of all 4 × 4 matrices T satisfying T tA + AT = 0 where

A =

(

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)

.

Consider the matrix

v =

(

0 0 0 1
0 1 1 0
0 0 1 0
0 0 0 0

)

;

it is straightforward to check that v ∈ g. If MvM−1 = λv for some

M =

(

a b c d
e f g h
i j k l
m n p q

)

∈ G

and λ ∈ K∗ then

Mv =

(

0 b b+c a
0 f f+g e
0 j j+k i
0 n n+p m

)

= λ

( m n p q
e+i f+j g+k h+l
i j k l
0 0 0 0

)

= λvM.

Thus we must have λ = 1 and a = q 6= 0, f = k 6= 0 and d, g ∈ K; all other entries of M

are zero. Since

M ∈ C2(K) = {X ∈ GL4(K) | X tJX = J},

where J =
(

0 K2

−K2 0

)

and K2 = ( 0 1
1 0 ) we have

J =

(

a 0 0 0
0 f 0 0
0 g f 0
d 0 0 a

)(

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)(

a 0 0 d
0 f g 0
0 0 f 0
0 0 0 a

)

=

(

0 0 0 a2

0 0 f2 0
0 −f2 0 0

−a2 0 0

)

.

Therefore a2 = f 2 = 1, i.e., a = f = 1 and M is unipotent, hence there is no non-central

semisimple element of G for which v is an eigenvector, i.e., v /∈ E.

If we exclude the adjoint modules, we see from [18] that we need to examine the

following modules V with dim B 6 dim V 6 dim G: for type An the modules L(2ω1) for

n ∈ [2,∞) with p > 2, L(ω3) for n ∈ [5, 7] and L(ω1) for n = 1; for type Bn the module

L(ωn) for n ∈ [5, 6]; for type Cn the modules L(ω2) for n ∈ [3,∞), L(ω3) for n = 3 with

p 6= 2 and L(ωn) for n ∈ [5, 6] with p = 2; for type Dn the module L(ωn) for n = 7. For

the exceptional groups we observe from Lübeck’s tables [18] that there are no irreducible
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modules V with dim B 6 dim V 6 dim G other than the adjoint modules.

3.2 Twisted modules

In the next proposition we exploit the fact that L(ω1) is the natural module for G of type

An to deal with L(ω1) ⊗ L(ω1)
(q) and L(ω1) ⊗ L(ωn)(q). These modules have dimension

dim G+1. Fix a basis of L(ω1) and denote it by v1, . . . , vm where m = n+1 = dim L(ω1) =

dim L(ωn).

Proposition 3.3. Let G be a simple algebraic group of type An with n > 1 acting on

V where we take V to be either L(ω1) ⊗ L(ω1)
(q) or L(ω1) ⊗ L(ωn)(q). Then there is a

non-empty open set in V each of whose vectors has a non-central semisimple element in

its stabiliser; in particular, dim E = dim V .

Proof. We need to treat the two twisted modules in this proposition separately; the action

of SLm(K) is different in each case. For any A ∈ G the action on L(ω1) is given by

A : v 7→ Av, while the action on L(ωn) is given by A : v 7→ (A−1)tv.

The action of A ∈ G on L(ω1)⊗L(ω1)
(q) is given as follows: v⊗w 7→ Av⊗A(q)w, i.e.,

∑

i,j

γijvi ⊗ vj 7→
∑

i,j

γij

(

Avi ⊗ A(q)vj

)

=
∑

i,j,k,l

γijaika
q
jlvk ⊗ vl,

where Avi =
∑

k aikvk and A(q)vj =
∑

l a
q
jlvl. Let Γ = (γij)

m
i,j=1 so the action is given

by Γ 7→ AtΓA(q). In order to show that each Γ has a non-trivial stabiliser it suffices to

show that this is true for all Γ in a non-empty open set. Thus assume that each Γ is

non-singular.

Consider for the moment the map GLm(K) → GLm(K) given by Γ 7→ A−1ΓA(q); this

is the action of GLm(K) on itself by F -conjugation where F is the standard Frobenius

map. Given a non-singular matrix Γ, by the Lang-Steinberg theorem 2.5, there exists

B ∈ GLm(K) such that Γ = B−1F (B) = B−1IF (B). Thus Γ lies in the same F -

conjugacy class as the identity I. The stabiliser of I in the F -conjugation action consists of
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the F -stable non-singular matrices GLm(q). Since the stabiliser of I contains non-central

semisimple elements, so does that of Γ. By replacing F : A 7→ A(q) by the Frobenius map

Fτ where τ : A 7→ (A−1)t we can similarly deal with the relevant map Γ 7→ AtΓA(q). If

we instead consider the action on L(ω1) ⊗ L(ωn)(q) then the stabiliser of I under Fτ is

GUm(q) which contains non-central semisimple elements, though not necessarily lying in

G. By taking elements of the conjugate of GUm(K) which have determinant 1, we see

that the stabiliser of Γ does indeed contain non-central semisimple elements of G.

3.3 Finite orbit modules

Let G be a connected linear algebraic group defined over an algebraically closed field K

of characteristic p > 0 and let V be a finite-dimensional irreducible rational G-module.

We shall say that a module is a finite orbit module if G has only a finite number of orbits

on the set of vectors in V . These are classified in [10, Theorem 1] by Guralnick, Liebeck,

Macpherson and Seitz. A G-module V is called a prehomogeneous space if G has an open

dense orbit on V . It is clear that a finite orbit module is a prehomogeneous space. If G

is simple then, by [10, Corollary 1], the converse is also true. A finite orbit module V

satisfies dim V 6 dim G by the orbit-stabiliser theorem, hence is a small module in our

sense.

We can use existing literature to obtain the number of orbits, orbit representatives

and (useful for our work) the point stabilisers for some of these finite orbit modules.

The irreducible prehomogeneous spaces in characteristic 0 were classified by Sato and

Kimura [22], and were classified for positive characteristic by Chen [3]. Chen found that

nearly all irreducible prehomogeneous spaces in characteristic p > 0 were obtained from

the corresponding vector space in characteristic 0 by reducing modulo p. One of the

exceptions was the GL4(K)-module L(ω1 +ω2) for p = 3 and this 16-dimensional module

was studied in [4], and subsequently [6]. By combining the information in both of these

papers we have representatives for the ten orbits in the action, as well as the structure of

the point stabilisers of these representatives. By inspection, each vector in L(ω1 + ω2) for
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p = 3 is stabilised by a non-central semisimple element in SL4(K).

The spin module L(ω5) for B5 is a finite orbit module. If p 6= 2 then Igusa details

in [15, Proposition 6] the five orbits that occur and the point stabilisers. If p = 2 then

in fact there are six orbits as detailed in [10, Lemma 2.11]. The information provided in

these references allows us to conclude that each vector in the Spin11(K)-module L(ω5) is

stabilised by a non-central semisimple element.

Thus we have:

Lemma 3.4. Let G be a simple simply connected algebraic group and V = L(λ) an

irreducible G-module. If (G, λ) = (A3, ω1 + ω2) with p = 3 or (B5, ω5) then we have

E = V .

We note that the G-module V = L(ω3) for G = An with n ∈ [5, 7] is a finite orbit

module. We shall show that E = V for the cases n = 5 in 3.4 and n = 6 in 3.6; in the

latter case point stabilisers have been determined by Chen, Cohen and Wales so we can

conclude as above. Some of the possible exceptions for small modules listed in the Main

Theorem such as L(ω3) for A7, L(ω3) for C3 with p 6= 2 and L(ω7) for D7 are finite orbit

modules. We have not been able to find information in the literature to assist with these

cases.

3.4 Two specific cases

In this section we shall consider two irreducible G-modules where G is of type An. We

show that both of these modules are the union of eigenspaces of non-central semisimple

elements.

Lemma 3.5. Let G be a simple simply connected algebraic group of type An acting on

the irreducible module V = L(2ω1) for n > 2 with p 6= 2. Then E = V .

Proof. The irreducible module with highest weight 2ω1 is S2N , the symmetric square of
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the natural module N = L(ω1). For any 0 6= x ∈ S2N we may write

x =
m
∑

i,j=1

cijvi ⊗ vj

where m = n + 1, cij = cji for i 6= j and v1, . . . , vm is the standard basis of N . Let

S = StabG(x) and assume that S contains no non-central semisimple element. We may

assume that S ⊂ U.Z by conjugating S. Since dim S2N = 1
2
(n + 1)(n + 2) we have

dim S > 1
2
(n − 1)(n + 2) = dim U − 1 by the orbit-stabiliser theorem. Thus for any

subgroup H of U we have dim(S ∩ H) > dim H − 1. In particular, if we take H = XγXδ

where γ = α2 + · · · + αn and δ = α1 + γ then dim H = 2; we have dim(S ∩ H) > 1 so

that S contains a non-trivial element g = xγ(a)xδ(b) with (a, b) 6= (0, 0). It is clear that

gvi = vi for i < m and gvm = vm + bv1 + av2. Since g ∈ S and g fixes each vi ⊗ vj with

i, j < m we see that g must fix the vector

y =
m−1
∑

i=1

cim (vi ⊗ vm + vm ⊗ vi) + cmmvm ⊗ vm.

By inspecting the coefficients in

gy − y =
m−1
∑

i=1

cim [(av2 + bv1) ⊗ vi + vi ⊗ (av2 + bv1)]

+ cmm[a(v2 ⊗ vm + vm ⊗ v2) + b(v1 ⊗ vm + vm ⊗ v1)

+ a2(v2 ⊗ v2) + ab(v1 ⊗ v2 + v2 ⊗ v1) + b2(v1 ⊗ v1)]

of vk ⊗ vi + vi ⊗ vk for 2 < i < m and k ∈ {1, 2} we see that cim = 0. Analogously by

inspecting the coefficients of vk ⊗ vm + vm ⊗ vk for k ∈ {1, 2} we find cmm = 0. Now

0 ≡ gy − y = 2bc1m(v1 ⊗ v1) + 2ac2m(v2 ⊗ v2) + (ac1m + bc2m)(v1 ⊗ v2 + v2 ⊗ v1)

so that 2bc1m = 2ac2m = ac1m + bc2m = 0 and since (a, b) 6= (0, 0) we have c1m = c2m = 0.

Thus cim = cmi = 0 for 1 6 i 6 m, whence x =
∑m−1

i,j=1 cijvi ⊗ vj. If s = diag(ν, . . . , ν, ν−n)
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for some ν ∈ K∗ with νm 6= 1 then s is a non-central semisimple element with sx = ν2x,

i.e., x is an eigenvector with eigenvalue ν2.

Lemma 3.6. If G = SL6(K) acts on the irreducible module V = L(ω3) then E = V .

Proof. The irreducible module L(ω3) is
∧3 N , the third exterior power of the natural

module. If n = 5 then dim L(ω3) = dim B = 20 = codimU . Take any

0 6= x =
∑

i<j<k

λijkvi ∧ vj ∧ vk ∈
∧3

N

with λijk ∈ K and 1 6 i < j < k 6 6, and set S = StabG(x). Assume that S contains no

non-central semisimple element. We have dim U 6 dim S by the orbit-stabiliser theorem

so we may assume that U 6 S by taking conjugates of S, hence gx = x for any g ∈ U .

Let β1 = α1+· · ·+α5, β2 = α2+· · ·+α5 and β3 = α3+α4+α5, and consider the action

of xβi
(1) for each i on the standard basis; it sends vj 7→ vj for j 6= 6 and v6 7→ v6 + vi.

Thus we find

0 ≡ xβ1
(1)x − x =

∑

26i<j65

(λij6vi ∧ vj ∧ v1)

in which case all coefficients λij6 with 2 6 i < j 6 5 are zero. Similarly, by applying

xβ2
(1) we see that λ1i6 = 0 for 2 < i 6 5 and finally applying xβ3

(1) we see that

λ126 = 0. Now x is an eigenvector with eigenvalue ν3 for the non-central semisimple

element s = diag(ν, ν, ν, ν, ν, ν−5) for ν6 6= 1.

3.5 Type A1

We need to consider the action of SL2(K) on the modules L(ω1), L(3ω1) and L(4ω1).

Lemma 3.7. If G = SL2(K) acts on the irreducible module V = L(ω1) then E = V .

Proof. The module L(ω1) is the natural module N . If n = 1 then dim G = 3 and dim B =

2. Consider 0 6= x = av1 + bv2 ∈ N and let S = StabG(x). Suppose that S contains

no non-central semisimple element then, as before, we can assume that U = Xα1
6 S
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by conjugating S and so moving x within its orbit. Since xα1
(1) sends v1 7→ v1 and

v2 7→ v2 + cv1 and xα1
(c)x − x = 0 we must have b = 0. Then x is an eigenvector with

eigenvalue ν for s = diag(ν, ν−1) ∈ Gss \ Z for ν 6= ±1.

The module L(rω1) for A1 with r > 1 can be viewed as the space of homogeneous

polynomials of degree r in two variables x and y. The action of SL2(K) is given by the

following:




a b

c d



 .(xiyj) = (ax + cy)i(bx + dy)j

extended by linearity.

Lemma 3.8. If G = SL2(K) acts on the irreducible module V = L(rω1) for r ∈ 3, 4 then

dim E = dim V .

Proof. If r = 4, there are five basis vectors x4, x3y, x2y2, xy3 and y4. The semisimple

element s = ( i 0
0 −i ) where i2 = −1 has eigenspace V1(s) = 〈x4, x2y2, y4〉 with eigenvalue 1.

It is clear that the centraliser CG(s) of s is the maximal torus T consisting of diagonal

matrices. Thus applying diagonal matrices preserves the eigenspace as they just scale the

basis elements. We can use the Bruhat decomposition [2, §8.4] to obtain the set of coset

representatives for T . Given such a coset representative g, the eigenspace for gsg−1 is

gV1(s). Each g is either of the form uh or uhẇα1
u′ where

u = ( 1 t
0 1 ) ∈ U, u′ = ( 1 t′

0 1 ) ∈ U, h =
(

µ 0
0 µ−1

)

∈ T and ẇα1
= ( 0 1

−1 0 ) ∈ NG(T ),

and t, t′ ∈ K and µ ∈ K∗. In the second case, by applying uhẇα1
u′ to ax4 + bx2y2 + cy4

we obtain an expression with five parameters a, b, c, t, t′. Thus the closure of the union of

these eigenspaces
⋃

g∼s V1(g) is five-dimensional, hence dim E = dim V .

Analogously, for r = 3 we can reach the same conclusion; here the basis vectors are x3,

x2y, xy2 and y3. Now s has two eigenspaces V−i(s) = 〈x3, y3〉 and Vi(s) = 〈x2y, xy2〉.
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3.6 The action of SL7(K) on L(ω3)

In this section we consider the action of G = SL7(K) on the irreducible module V =

L(ω3). As previously mentioned, this is a finite orbit module. The nine orbits and point

stabilisers for each orbit have been precisely determined in [5, Table 1]. It is clear from

this information that E = V for this module.

We also detail an alternative approach to show that E = V due to Dr. R. Lawther.

This method is based on techniques used in the previous two sections.

Recall in general that Φ = Φ(An) = {ǫi − ǫj | 1 6 i, j 6 n + 1}. Here we shall write

roots in the form i− j rather than ǫi− ǫj, where 1 6 i, j 6 7; assume Φ+ = {i− j | i < j}.

Let v1, . . . , v7 be the standard basis of the natural module of G. Given i, j, k 6 7 with

i 6= j 6= k 6= i, write vijk for the standard basis vector vi ∧ vj ∧ vk of V , so that vijk =

vjki = vkij = −vikj = −vkji = −vjik; we shall write the unordered triple {i, j, k} as simply

ijk. This should not cause confusion, as subscripts will never be unordered triples.

Take v ∈ V ; write v =
∑

i<j<k λijkvijk and set ∆ = ∆(v) = {ijk | λijk 6= 0} (note that

this is well-defined).

We shall show that v ∈ E; we begin with a series of lemmas showing that this conclu-

sion holds under various hypotheses on ∆. Our first two lemmas are elementary.

Lemma 3.9. If |∆| 6 6 then v ∈ E.

Proof. Take λ ∈ K∗ and p1, . . . , p7 ∈ Z, and let s = diag(λp1 , . . . , λp7); then svijk =

λpi+pj+pkvijk. Thus given q ∈ Z we have sv = λqv if and only if pi + pj + pk = q for all

ijk ∈ ∆; this imposes |∆| homogeneous linear conditions on the 8 variables p1, . . . , p7, q,

in addition to the condition p1 + · · · + p7 = 0 which guarantees s ∈ G. Thus provided

|∆| 6 6 there will be a non-zero solution; since Z(G) is finite we may choose λ so that

s /∈ Z(G).

For l 6 7 write ∆l = {ijk | i, j, k 6= l}; given l,m 6 7 write ∆l,m = ∆l ∩ ∆m.

Lemma 3.10. If ∆ ⊆ ∆l for some l 6 7 then v ∈ E.
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Proof. Take λ ∈ K∗ with λ7 6= 1 and let s = diag(λp1 , . . . , λp7) where pl = −6 and pi = 1

if i 6= l; then sv = λ3v and s /∈ Z(G).

In the arguments to follow we shall frequently apply root elements or Weyl group

elements to modify v and hence ∆; for H a subgroup of G rather than repeating the

phrase applying a suitable element of H we shall abbreviate this to applying H.

Lemma 3.11. If |∆ \ ∆6|, |∆ \ ∆7| 6 1 then v ∈ E.

Proof. By Lemma 3.10 it suffices to treat the case where |∆ \ ∆6| = |∆ \ ∆7| = 1. If ∆ \

∆6 = ∆\∆7, there exists i 6 5 such that ∆ ⊆ ∆6,7∪{i67}, and then diag(1, 1, 1, 1, 1, λ, λ−1)v =

v; so we may assume there exist i, j, k, l 6 5 such that ∆ ⊆ ∆6,7 ∪ {ij6, kl7}. If

{i, j} = {k, l}, applying X6−7 we may ensure ij6 /∈ ∆, so that ∆ ⊆ ∆6 and the re-

sult follows by Lemma 3.10; so we may assume that {i, j} 6= {k, l}. Given a 6 5 with

a 6= i, j, applying Xa−6 we may ensure ija /∈ ∆; likewise, given b 6 5 with b 6= k, l,

applying Xb−7 we may ensure that klb /∈ ∆. Now if {i, j} ∩ {k, l} = ∅, take m such

that {i, j, k, l,m} = {1, 2, 3, 4, 5}, then ∆ ⊆ {ikm, ilm, jkm, jlm, ij6, kl7} and the result

follows by Lemma 3.9; so we may assume i = k, j 6= l. Take m,n with m < n such

that {i, j, l,m, n} = {1, 2, 3, 4, 5}, then ∆ ⊆ {jlm, jln, imn, jmn, lmn, ij6, kl7}; applying

Xm−n we may ensure |∆ ∩ {jlm, jln}| 6 1 and the result follows by Lemma 3.9.

Lemma 3.12. If there exist distinct l,m, n 6 5 such that ∆ ⊆ ∆6,7∪{in6, in7 | i 6 5, i 6=

n} ∪ {lm6, lm7}, then v ∈ E.

Proof. Applying 〈w1−2, w2−3, w3−4, w4−5〉 we may assume (l,m, n) = (1, 2, 5). Applying

X6−7 and 〈w6−7〉 we may ensure 127 /∈ ∆; likewise applying X3−4 and 〈w3−4〉 we may

ensure 357 /∈ ∆, and applying X1−2 and 〈w1−2〉 we may ensure 157 /∈ ∆. Suppose

457 ∈ ∆; applying X2−4X6−7 we may ensure 257, 456 /∈ ∆, and applying X1−2X2−3X1−3

we may ensure |∆ ∩ {156, 256, 356}| 6 1. Now, by Lemma 3.11, we may assume 126 ∈ ∆

and there exists i 6 3 with ∆ ∩ {156, 256, 356} = {i56}. If i = 3, applying

X5−6X3−6X2−6X1−6X3−7X2−7X1−7
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we may ensure 125, 123, 235, 135, 345, 245, 145 /∈ ∆, so ∆ ⊆ {124, 134, 234, 126, 356, 457}

and the result follows by Lemma 3.9; if instead i ∈ {1, 2}, applying

X5−6X4−6X3−6X3−7X2−7X1−7

we may ensure 125, 124, 123, 345, 245, 145 /∈ ∆, so ∆ ⊆ {134, 234, 135, 235, 126, i56, 457}

and diag(λ3, λ3, λ−4, λ3, λ3, λ−4, λ−4)v = λ2v. So we may assume 457 /∈ ∆; by Lemma

3.10 we may assume 257 ∈ ∆, else ∆ ⊆ ∆7; now applying X6−7 we may ensure 256 /∈ ∆.

If 356, 456 /∈ ∆ then applying X2−5 we may ensure |∆ ∩ {126, 156}| 6 1 and the result

follows by Lemma 3.11; so we may assume ∆ ∩ {356, 456} 6= ∅, and applying 〈w3−4〉

we may assume 456 ∈ ∆. Now applying X3−4X1−4 we may ensure 356, 156 /∈ ∆. If

126 /∈ ∆ the result follows by Lemma 3.11, so we may assume 126 ∈ ∆; applying

X5−6X4−6X3−6X2−6X1−6 we may ensure 125, 124, 345, 245, 145 /∈ ∆, so ∆ ⊆ {123, 134, 234, 135, 235, 126

and diag(λ3, λ3, λ−4, λ3, λ3, λ−4, λ−4)v = λ2v

Lemma 3.13. If there exist distinct m,n 6 5 such that ∆ ⊆ ∆6,7 ∪ {im6, in6 | i 6 5, i 6=

m,n} ∪ {mn6} ∪ {in7 | i 6 5, i 6= n}, then v ∈ E.

Proof. Applying
∏

i<j65
i,j 6=m,n

Xi−j we may ensure that there exists l 6 5 with l 6= m,n such

that ∆ ∩ {im6 | i 6 5, i 6= m,n} ⊆ {lm6}, and the result follows by Lemma 3.12.

Lemma 3.14. If there exists l 6 5 such that ∆ ∩ {il6, il7 | i 6 5, i 6= l} = ∆ ∩ {i67 | i 6

5} = ∅, then v ∈ E.

Proof. Applying 〈w1−2, w2−3, w3−4, w4−5〉 we may assume l = 5; by Lemma 3.10 we may

assume ∆ * ∆7, and applying 〈w1−2, w2−3, w3−4〉 we may assume 347 ∈ ∆. Now applying

X2−3X1−3X2−4X1−4X2−7X1−7 we may ensure 247, 147, 237, 137, 234, 134 /∈ ∆; if 126, 127 /∈

∆ the result follows by Lemma 3.13 with (m,n) = (3, 4), so we may assume there exists

k ∈ {6, 7} with 12k ∈ ∆. Now applying X4−kX3−k we may ensure 123, 124 /∈ ∆, so

∆ ⊆ {ij5, ij6 | i, j 6 4} ∪ {127, 347} and diag(λ3, λ3, λ3, λ3, λ−4, λ−4, λ−4)v = λ2v.

We may now proceed to our general argument.
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Theorem 3.15. Let G = SL7(K) act on the irreducible module V = L(ω3). Then E = V .

Proof. Recall that U =
∏

α∈Φ+ Xα and let U ′ =
∏

i<6 Xi−6

∏

j<7 Xj−7, so that dim U = 21

and dim U ′ = 11. Suppose StabG(v)◦ is unipotent; applying G we may assume that

StabG(v)◦ ⊆ U . Since dim G = 48 while dim V = 35, we must have dim StabG(v)◦ > 13;

thus dim (StabG(v)◦ ∩ U ′) > 3. From now on we shall assume merely that v ∈ V is such

that dim (StabG(v)◦ ∩ U ′) > 3, and we shall show that this condition implies that v ∈ E;

this will allow us to apply 〈w1−2, w2−3, w3−4, w4−5〉 wherever it is convenient to do so, since

this subgroup of W preserves U ′.

Order the roots of U ′ as

5 − 6 ≺ 4 − 6 ≺ 3 − 6 ≺ 2 − 6 ≺ 1 − 6 ≺ 6 − 7 ≺ 5 − 7 ≺ 4 − 7 ≺ 3 − 7 ≺ 2 − 7 ≺ 1 − 7.

Given u ∈ U ′ we may write u =
∏

xα(tα). If α is the first root in the order given

for which tα 6= 0, we say that u begins with α. Let Γ = {γ ∈ Φ+ | there exists u ∈

StabU ′(v) beginning with γ}.

Observe that if u ∈ U ′ and µ 6= 0, then u and I + µ(u − I) fix the same vectors in

V . Thus for all γ ∈ Γ we may choose gγ ∈ StabU ′(v) such that gγ = xγ(1)
∏

β≻γ xβ(tβ)

for some tβ. Moreover, if γ, γ′ ∈ Γ and γ′ ≻ γ we may replace gγ by gγ − tγ′(gγ′ − I) to

ensure that the projection of gγ on Xγ′ is trivial; we call this adjusting gγ by gγ′ . Taking

successively the γ′ ∈ Γ with γ′ ≻ γ in increasing order, we may obtain a unique element

gγ ∈ xγ(1)
∏

β≻γ
β /∈Γ

Xβ lying in StabU ′(v). It is then clear that

StabU ′(v) =

{

I +
∑

γ∈Γ

tγ(gγ − I) | tγ ∈ K for all γ ∈ Γ

}

;

so dim StabU ′(v) = |Γ|, whence |Γ| > 3.

Thus we may take distinct γ1, γ2, γ3 ∈ Γ; given i 6 3 we shall write simply gi for gγi
.

We shall consider three cases, which between them cover all possibilities:

(I) (γ1, γ2, γ3) = (a − 7, b − 7, c − 7) for distinct a, b, c;
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(II) (γ1, γ2) = (a − 7, b − 6) for distinct a, b, and γ3 is either c − 7 for c 6= a or c − 6 for

c 6= b;

(III) (γ1, γ2, γ3) = (a − 6, b − 6, c − 6) for distinct a, b, c.

In the following we shall write [g, ijk] to mean the condition that the ijk-component

of gv − v is zero.

Suppose that (I) holds. We may assume a < b < c; applying

∏

i<a

Xi−a

∏

j<b
j 6=a

Xj−b

∏

k<c
k 6=a,b

Xk−c

we may assume g1 = xa−7(1), g2 = xb−7(1) and g3 = xc−7(1). Given distinct i, j 6 6, if

i, j 6= a then [g1, ija] which implies that ij7 /∈ ∆, if i, j 6= b then [g2, ijb] which implies

that ij7 /∈ ∆, and if i, j 6= c then [g3, ijc] which implies that ij7 /∈ ∆. Thus ∆ ⊆ ∆7 and

the result follows by Lemma 3.10.

Suppose (II) holds. Applying
∏

i<a Xi−a

∏

j<b Xj−b we may assume g1 = xa−7(1) and

g2 ∈ xb−6(1)
∏

j 6=a Xj−7. Given i 6 5 with i 6= b we have [g2, ib7] which implies that

i67 /∈ ∆.

First suppose c < 6; then according as γ3 = c − 6 or c − 7, either [g3, bc7] or [g3, bc6]

which implies that b67 /∈ ∆, so ∆∩{i67 | i 6 5} = ∅. Given distinct i, j 6 5 with i, j 6= a,

[g1, ija] which implies that ij7 /∈ ∆. Thus, if a = 6 we have ∆ ⊆ ∆7 so the result follows

by Lemma 3.10; we may therefore assume a 6 5, and ∆ ⊆ ∆7 ∪ {ia7 | i 6 5, i 6= a}. Now

given distinct i, j 6 5 with i, j 6= a, b, we have [g2, ijb] which implies that ij6 /∈ ∆; so

∆ ⊆ ∆6 ∪ {ia6, ib6 | i 6 5, i 6= a, b} ∪ {ab6}, and the result follows by Lemma 3.13 with

(m,n) = (b, a).

So we may suppose instead c = 6, so that γ3 = 6 − 7; applying
∏

k<6 Xk−6 we may

assume g3 = x6−7(1). Given distinct i, j 6 5, we have [g3, ij6] which implies that ij7 /∈ ∆;

now given distinct i, j 6 5 with i, j 6= b, we have [g2, ijb] which implies that ij6 /∈ ∆;

so ∆ ⊆ ∆6,7 ∪ {ib6 | i 6 5, i 6= b} ∪ {b67}. Thus if b67 /∈ ∆ we have ∆ ⊆ ∆7 and the

result follows by Lemma 3.10; if instead b67 ∈ ∆, applying
∏

i65
i6=b

Xi−7 we may ensure
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∆ ⊆ ∆6,7 ∪ {b67} and the result follows by Lemma 3.11.

Finally suppose (III) holds. Applying 〈w1−2, w2−3, w3−4, w4−5〉 we may assume (a, b, c) =

(1, 2, 3). We have [g2, 127] which implies that 167 /∈ ∆, while if 2 6 i 6 5 we have

[g1, i17] which implies that i67 /∈ ∆. Thus ∆ ∩ {i67 | i 6 5} = ∅. For p 6 3 write

gp = xp−6(1)
∏

q<7 xq−7(tpq). If there exists p 6 3 with tp6 6= 0, then given distinct i, j 6 5

we have [gp, ij6] which implies that ij7 /∈ ∆, so ∆ ⊆ ∆7 and the result follows by Lemma

3.10. Therefore, we may assume that t16 = t26 = t36 = 0.

First suppose there exist p 6 3 and q ∈ {4, 5} with tpq 6= 0. Applying 〈w1−2, w2−3〉

(and permuting g1, g2, g3 accordingly) and 〈w4−5〉 we may assume t15 6= 0; applying

X4−5X3−5X2−5X1−5 and T we may assume t15 = 1 and t11 = t12 = t13 = t14 = 0, so that

g1 = x1−6(1)x5−7(1); adjusting g2 and g3 by g1 and applying X1−2X1−3 we may assume

t25 = t35 = 0. Now [g1, 123], [g1, 124], [g1, 134], [g1, 235], [g1, 245] and [g1, 345] imply that

236, 246, 346, 237, 247, 347 /∈ ∆.

Now if there exists p′ ∈ {2, 3} with tp′4 6= 0, applying 〈w2−3〉 (and permuting g2, g3

accordingly) we may assume t24 6= 0; applying X3−4X2−4X1−4 and T we may assume

t24 = 1 and t21 = t22 = t23 = 0, so that g2 = x2−6(1)x4−7(1). Now [g2, 123], [g2, 235],

[g2, 134] and [g2, 345] imply that 136, 356, 137, 357 /∈ ∆, and the result follows by Lemma

3.14 with l = 3. So we may assume t24 = t34 = 0. Now applying X1−5X6−7 so as to

preserve g1 we may assume t33 = 0. We then have [g3, 134] and [g3, 345] implying that

146, 456 /∈ ∆, whence [g1, 145] which implies that 147 /∈ ∆. Now if 457 /∈ ∆ the result

follows by Lemma 3.14 with l = 4, so we may assume 457 ∈ ∆; then [g2, 145] which

implies that t21 = 0, [g2, 245] which implies that t22 = 0, [g2, 345] which implies that

t23 = 0, so g2 = x2−6(1); [g3, 145] which implies that t31 = 0 and [g3, 245] which implies

that t32 = 0, so g3 = x3−6(1). Now [g2, 123], [g2, 125], [g2, 235], [g3, 123] and [g3, 235] imply

that 136, 156, 356, 126, 256 /∈ ∆, so ∆ ⊆ ∆6 and the result follows by Lemma 3.10.

Thus we may assume that t14 = t15 = t24 = t25 = t34 = t35 = 0.

Next suppose there exist distinct p, q 6 3 with tpq 6= 0. Applying 〈w1−2, w2−3〉

(and permuting g1, g2, g3 accordingly) we may assume t13 6= 0; applying X2−3X1−3

and T and adjusting g3 by g2 and g1 we may assume t13 = 1 and t11 = t12 = 0,
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so that g1 = x1−6(1)x3−7(1); adjusting g2 by g1 and applying X1−2 we may assume

t23 = 0; applying X1−3X6−7 so as to preserve g1, and adjusting g3 by g1, we may as-

sume t22 = 0. Now [g1, 124], [g1, 125], [g1, 145], [g1, 234], [g1, 235] and [g1, 345] imply that

246, 256, 456, 247, 257, 457 /∈ ∆; now [g2, 124], [g2, 234], [g2, 125] and [g2, 235] imply that

146, 346, 156, 356 /∈ ∆; now [g1, 134] and [g1, 135] imply that 147, 157 /∈ ∆. Thus we

have ∆ ⊆ ∆6,7 ∪ {126, 136, 236, 127, 137, 237, 347, 357}. If 357 /∈ ∆ the result follows by

Lemma 3.14 with l = 5, so we may assume 357 ∈ ∆; but now applying X4−5 we may

ensure 347 /∈ ∆ and the result follows by Lemma 3.14 with l = 4.

Thus we may assume that t12 = t13 = t21 = t23 = t31 = t32 = 0. Applying X6−7

we may assume t33 = 0, so g3 = x3−6(1). Given distinct i, j 6 5 with i, j 6= 3, we have

[g3, ij3] which implies that ij6 /∈ ∆. If there exists p 6 2 with tpp 6= 0, applying 〈w1−2〉

(and permuting g1, g2 accordingly) we may assume t11 6= 0; now [g1, 124], [g1, 125] and

[g1, 145] imply that 247, 257, 457 /∈ ∆; so

∆ ⊆ ∆6,7 ∪ {i36 | i 6 5, i 6= 3} ∪ {i17, i37 | i 6 5, i 6= 1, 3} ∪ {137}.

Applying 〈w6−7〉 the result follows by Lemma 3.13 with (m,n) = (1, 3). Thus we may

assume t11 = t22 = 0, so g1 = x1−6(1) and g2 = x2−6(1). Hence [g2, 123], [g1, 123], [g1, 134]

and [g1, 135] imply that 136, 236, 346, 356 /∈ ∆, so ∆ ⊆ ∆6 and the result follows by

Lemma 3.10.

For type A7 the module L(ω3) remains as the only possible exception to the conclusion

of the Main Theorem for modules of type An with dimension less than dim G.
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Chapter 4

Techniques for large modules

The aim of this chapter is to lay out the main theory which we shall apply in the later

chapters for large modules, i.e., modules V for which dim V > dim G + 2; recall that our

aim is to show that dimE < dim V . Indeed, for the remainder of this thesis we shall be

solely concerned with large modules. We shall prove that if a certain inequality dependent

on the centraliser type of a non-central semisimple element is satisfied for all such types

then the required conclusion holds. We explain the adjacency principle which is used to

obtain lower bounds on the codimension of an eigenspace. We also give criteria which we

use to obtain a relatively short list of modules which require further consideration.

4.1 Analysis of centraliser types

We begin by noting that [12, §26.2] shows that the elements of the finite centre Z =

Z(G) of G are semisimple. We shall require a division of the non-central semisimple

elements according to the type of the centraliser. Let I denote the set of possible types of

centralisers of non-central semisimple elements (see Section 2.4). By Proposition 2.9 and

Deriziotis’ theorem, there are a finite number of types X of centralisers of non-central

semisimple elements formed by taking all possible subdiagrams of the extended Dynkin

34



diagram of G. Thus I is a finite set. For each X ∈ I we set

SX = {s ∈ Gss | CG(s) of type X}

so that Gss \ Z =
⋃

X∈I SX . Hence if we can prove for each X ∈ I that

dim
⋃

s∈SX

⋃

γ∈K∗

Vγ(s) < dim V

then the conclusion of the Main Theorem holds for V .

The next result will be used repeatedly in subsequent chapters. We use the notation

dim X to denote the dimension of the centraliser of a semisimple element with root system

of type X and set codim X = dim G − dim X; also set codim Vγ(t) = dim V − dim Vγ(t)

for any t ∈ T . Also we write a ∼ b if and only if a, b ∈ G are conjugate in G.

We consider the following two conditions. For a fixed centraliser type X ∈ I if the

inequality

codim Vγ(t) > codim X

holds for all t ∈ T ∩ SX and γ ∈ K∗ then we shall say that

(♦) is satisfied for X.

If the inequality

codim Vγ(s) > dim G

holds for all s ∈ Gss \ Z and γ ∈ K∗ then we shall say that

(†) holds.

Certainly if the stronger condition (†) holds then condition (♦) is satisfied for all X ∈ I.

This avoids a case-by-case analysis of centraliser types.

Theorem 4.1. Let G be a simple simply connected algebraic group and let V be an

35



irreducible G-module, both defined over an algebraically closed field K. If (♦) holds for

some X ∈ I, then

dim
⋃

s∈SX

⋃

γ∈K∗

Vγ(s) < dim V.

Proof. Consider the set of weights {λi | 1 6 i 6 l} of the module (ignoring multiplicities)

ordered in some way. The set of all l× l matrices with rows and columns indexed by this

ordered set of weights whose entries are all zeros or ones is clearly finite. Given an element

s ∈ T , we define such a matrix M(s) as follows: for each pair (i, j) with i, j ∈ [1, l], we set

the (i, j)th entry of M(s) to be one if λi(s) = λj(s) and zero otherwise. In other words,

an element s ∈ T has a collection of weight spaces and the possible equality of weights

for this element is determined by the matrix M(s) of which there are only finitely many.

Now take X ∈ I and assume that (♦) holds for X. By the above, given t ∈ T ∩ SX

there are finitely many possibilities for the collection of eigenspaces of t, i.e., there exist

t1, . . . , tm ∈ T ∩ SX such that if t ∈ T ∩ SX then t has the same eigenspaces as some ti.

In particular we have the equality

⋃

s∈SX

⋃

γ∈K∗

Vγ(s) =
m
⋃

i=1

⋃

s∼ti

⋃

γ∈K∗

Vγ(s).

Thus it suffices to show that for all i 6 m we have

dim
⋃

s∼ti

⋃

γ∈K∗

Vγ(s) < dim V.

Now any s ∈ ti
G has the same eigenvalues as ti, and there are only finitely many of these.

Thus by reversing the order of the two unions, we see that it suffices to show that for all

i 6 m and all γ ∈ K∗ we have

dim
⋃

s∼ti

Vγ(s) < dim V.

We claim that in fact for all t ∈ T and γ ∈ K∗ we have
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dim
⋃

s∼t

Vγ(s) 6 dim tG + dim Vγ(t). (⋆)

Assuming that we can prove (⋆), then taking t = ti we have

dim ti
G + dim Vγ(ti) = codim X + dim V − codim Vγ(ti) < dim V

as required.

In order to prove (⋆) we begin by closely following the proof of [16, Proposition 1.14].

Given γ ∈ K∗, set

Yγ = {(g, v) ∈ G × V | gv = γv}.

If πγ, φ : G × V → V are the morphisms defined by

πγ(g, v) = γv, φ(g, v) = gv

then Yγ = {(g, v) ∈ G × V | πγ(g, v) = φ(g, v)}, so Yγ is a closed subvariety of G × V .

Now for t ∈ T define

Yγ,t = {(tg, v) | g ∈ G, v ∈ V, tgv = γv}.

Then Yγ,t is a variety, and the map Yγ,t → tG given by (tg, v) 7→ tg has fibres of dimension

Vγ(t), so

dim Yγ,t = dim tG + dim Vγ(t).

In order to establish (⋆) it therefore suffices to prove

dim
⋃

s∼t

Vγ(s) 6 dim Yγ,t.

Now we have the morphism π : G× V → V defined by π(g, v) = v. If we restrict π to

Yγ,t, we have a morphism whose image is
⋃

s∼t Vγ(s). Let the irreducible components of Yγ,t
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be A1, . . . , Ak. Then for each i, π(Ai) is a closed set containing π(Ai); so
⋃k

i=1 π(Ai) is a

closed set containing
⋃k

i=1 π(Ai) = π
(

⋃k
i=1 Ai

)

= π(Yγ,t), and hence π(Yγ,t) ⊆
⋃k

i=1 π(Ai).

On the other hand, for all i we have π(Ai) ⊆ π(Yγ,t), so π(Ai) ⊆ π(Yγ,t) and hence
⋃k

i=1 π(Ai) ⊆ π(Yγ,t). Thus π(Yγ,t) =
⋃k

i=1 π(Ai).

Now, by [24, Lemma 1.9.1(iii)], since Ai is irreducible so is π(Ai), and dim Ai >

dim π(Ai). Thus

dim Yγ,t = max
16i6k

dim Ai > max
16i6k

dim π(Ai) = dim
k
⋃

i=1

π(Ai) = dim π(Yγ,t) = dim
⋃

s∼t

Vγ(s)

as required to prove (⋆).

We shall prove that for a given G and irreducible module V either (†) holds or (♦)

is satisfied for all X ∈ I with a list of possible exceptions. Given X ∈ I denote by dX
λ

the minimal codimension of Vγ(s) for any s ∈ SX and γ ∈ K∗. We denote codim X =

|Φ(G)| − |Φ(X)| by eX
λ . Clearly our aim when we cannot show (†) holds will be to show

that dX
λ exceeds eX

λ for all X ∈ I.

4.2 Adjacency principle

Recall that our aim for large modules is to show that dimE < dim V . We shall explain

a method which we use to enable us to determine a lower bound for the codimension of

an eigenspace Vγ(s) for any s ∈ Gss \ Z and γ ∈ K∗.

Consider any s ∈ Gss \ Z which we may assume lies in T (by conjugation). Recall in

Proposition 2.9 that CG(s) is generated by root subgroups Xβ such that β(s) = 1 along

with the torus T . For any γ ∈ K∗ the eigenspace Vγ(s) is a sum of weight spaces. Since s

is not central there must be a root α /∈ Φs in which case µ(s) 6= (µ + α)(s) for any weight

µ and so Vγ(s) cannot contain both Vµ and Vµ+α; we shall refer to this as the adjacency

principle in later chapters. It is clear that we can naturally extend the adjacency principle

to the consideration of weight nets.
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The following situation arises fairly often. Suppose that 〈µ, α〉 only takes the values

0 or ±1, so all weight strings are of length 1 or 2. Assume that there are k mutually

orthogonal roots α1, . . . , αk not in Φs. We see that all weight nets that occur are of the

form m1 × · · · × mk where mi ∈ {1, 2} for each i ∈ [1, k]. Therefore, for all weight nets

other than those which are 1× · · · × 1, there exists α ∈ {α1, . . . , αk} such that the weight

net is a disjoint union of α-strings of length 2. Hence at least half of the weights not

orthogonal to each αi for i ∈ [1, k] cannot lie in the eigenspace.

We see that the situation is slightly different for even characteristic. Consider the

weight string µ, µ−α, · · · , µ− kα. If we assume that p = 2 and the weight µ lies in Vγ(s)

then µ − 2jα for j > 0 and 2j 6 k cannot lie in Vγ(s). This follows since α(s) = 1 if and

only if 2jα(s) = 1 for j > 0. Thus the lower bound we obtain on the contribution from

the weight string to the codimension of the eigenspace is at least as great for p = 2 as it

is for p 6= 2.

We shall find it convenient to introduce some notation and terminology for the con-

sideration of weights with a given centraliser type. Define a cluster to be a maximal set

of weights such that the difference between any two is a linear combination of roots in

Φs. The set of weight spaces corresponding to the weights in any cluster all lie in the

same eigenspace. For example, consider SL10(K) acting on L(ω3) with centraliser type

X = A3. If we assume that Φs has simple roots {α1, α2, α3} then there is a cluster of size

6 consisting of the following weights:

7 14 11 8 15 12 9 6 3 7 4 11 8 15 12 9 6 3 7 4 1 8 15 12 9 6 3

-3 4 11 8 15 12 9 6 3 -3 4 1 8 15 12 9 6 3 -3 -6 1 8 15 12 9 6 3

Note that we have omitted a factor of 1
10

on each coefficient. For brevity we shall

denote such a cluster by the string · · · 8 15 12 9 6 3 where the dots stand for any integers

which make the expression a weight in Π(ω3). We define a clique to be a collection of

clusters where any two clusters contain weights which differ by a root not in Φs. We shall

present a clique as a list of clusters in a box. Continuing the example above, the following

is a clique:
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· · · 8 15 12 9 6 3

· · · 8 5 12 9 6 3

· · · 8 5 2 9 6 3

· · · 8 5 2 -1 6 3

· · · 8 5 2 -1 -4 3

· · · 8 5 2 -1 -4 -7

Given a centraliser type X we wish to show that dim
⋃

s∈SX

⋃

γ∈K∗ Vγ(s) < dim V

where SX = {s ∈ Gss | CG(s) of type X}. If s ∈ T then Vγ(s) is a sum of weight spaces

and the set of weights concerned is a union of clusters. By the adjacency principle we see

that at most one cluster in each clique may contribute to the dimension of the eigenspace

Vγ(s) for any s ∈ Gss \ Z and γ ∈ K∗.

Henceforth, unless it is otherwise clear from the context, we shall fix s ∈ Gss \ Z

and γ ∈ K∗ and so consider a specific eigenspace Vγ(s). By the statement a weight µ

lies in the eigenspace Vγ(s) we mean that the weight space Vµ lies in Vγ(s). Since Π(λ)

denotes the multiset of all weights of a G-module V = L(λ) including multiplicities, we

have |Π(λ)| = dim V . We set

Λ = Λ(s, γ) = {µ ∈ Π(λ) | µ(s) 6= γ}

to be the multiset of weights with multiplicities such that the corresponding weight spaces

do not lie in the eigenspace, so |Λ| = codim Vγ(s) and, of course, |Π(λ) \ Λ| = dim Vγ(s).

We shall use repeatedly the following strategy. Firstly, we use weight strings to obtain

a lower bound for |Λ|. We then use this value to determine which possibilities, if any, for

X need to be considered further. For each such centraliser type we arrange the weights

into clusters and then cliques to obtain an improved lower bound for dim V − dim Vγ(s).

In most cases this will exceed eX
λ .

4.3 Criteria for modules

This next proposition will allow us (whenever the conclusion of Premet’s theorem holds)

to list the irreducible modules V for which we cannot immediately conclude that dimE <

dim V , by providing a criterion by which (†) is satisfied. We begin Chapters 5-8 using

this proposition to show in most cases (†) holds and to list the highest weights of modules
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requiring further consideration. These are provided in tables giving the highest weight λ

of the irreducible module and the rank n of the simple algebraic group concerned.

Recall from Chapter 2 we use the convention that if all roots in Φ have the same length

then we shall regard them as having short length.

Proposition 4.2. Let G be a simple simply connected algebraic group with root system Φ

acting on L(λ). Let µ =
∑n

j=1 ajωj 6 λ be a dominant weight and assume that p > e(Φ).

Set Ψ = 〈αi | ai = 0〉 ⊂ Φ and rΨ = |W (Φ) : W (Ψ)| |ΦS\ΨS |
2|ΦS |

. Then |Λ(s, γ)| >
∑

rΨ,

where the sum runs over the dominant weights of L(λ). Moreover, if
∑

rΨ > dim G then

(†) holds.

Proof. For any non-central semisimple element s there is at least one root α /∈ Φs. If Φ

consists of roots with different lengths then we may as well assume that α is short. For,

if all short roots of Φ lie in Φs then all long roots would also lie in Φs.

From the definition of the subsystem Ψ we see that α ∈ Ψ if and only if 〈µ, α〉 = 0,

i.e., µ is orthogonal to α. Thus, the roots that lie in ΦS \ ΨS are the short roots not

orthogonal to µ. The stabiliser of µ in W (Φ) is the parabolic subgroup generated by the

reflections in the simple roots αi for which ai = 0; this is precisely W (Ψ). Hence the Weyl

group orbit W.µ has size |W (Φ) : W (Ψ)|.

We note that for each α′ ∈ ΦS, the number of weights µ′ ∈ W.µ not orthogonal to

α′ is constant. This follows by observing that a weight µ′ is orthogonal to α′ if and only

if wµ′ is orthogonal to wα′ and W acts transitively on the short roots. The number of

pairs (µ′, α′) ∈ W.µ × ΦS with 〈µ′, α′〉 6= 0 is |W (Φ) : W (Ψ)| |ΦS \ ΨS|. Thus, for a fixed

α ∈ ΦS, the number of weights µ′ ∈ W.µ such that 〈µ′, α〉 6= 0 is

|W (Φ) : W (Ψ)|
|ΦS \ ΨS|

|ΦS|
= 2rΨ.

Henceforth we shall fix a short root α /∈ Φs. Recall that the set of weights of L(λ) is a

union of Weyl group orbits and each Weyl group orbit contains a unique dominant weight

(which we use as an orbit representative). We take the weights of L(λ) and arrange them

in α-strings. Each weight occurs in a string of odd or even length.
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In an α-string of odd length 2k + 1 there is precisely one weight orthogonal to α; this

weight occurs in position k + 1. The weights in position t and 2k + 2 − t both lie in the

same Weyl group orbit of a dominant weight (via wα ∈ W ). On the other hand, in an

α-string of even length 2k there are no weights orthogonal to α. The weights in position t

and 2k+1− t both lie in the same Weyl group orbit of a dominant weight. So weights not

orthogonal to α occur in pairs lying in the same Weyl group orbit of a dominant weight.

As stated above, for a dominant weight µ, the number of weights µ′ ∈ W.µ not

orthogonal to α is 2rΨ. Thus, for every dominant weight, the number of weights of L(λ)

not orthogonal to α is
∑

2rΨ, where the sum runs over the dominant weights of L(λ).

In an even string of length 2k, all 2k weights are counted and in an odd string of length

2k + 1, we see that 2k of the 2k + 1 weights are counted in this calculation.

We now apply the adjacency principle to each α-string to obtain a lower bound for the

codimension of the eigenspace. We shall assume that all weights have multiplicity one.

(If an irreducible module has dominant weights with larger multiplicities then the lower

bound for the codimension of the eigenspace may in fact be greater.) For an α-string of

even length 2k the minimal contribution to the codimension of the eigenspace is k since

there are k pairs of weights adjacent in the α-string. Similarly, for an α-string of odd

length 2k + 1 the minimal contribution to the codimension of the eigenspace is k. We

can arrange all but one of the weights into pairs of weights adjacent in the α-string. The

remaining weight may or may not contribute to the codimension of the eigenspace; we

are unable to conclude either way. Thus, for all α-strings, the minimal contribution to

|Λ(s, γ)| is
∑

rΨ, where the sum runs over the dominant weights of L(λ).

In Chapter 10 we shall consider tensor products of irreducible G-modules in order to

complete the proof of the Main Theorem for modules parameterised by highest weights

that are not p-restricted. In this case we require the next proposition which provides a

criterion which we shall use to show that for all but a short list of modules the conclusion

of the Main Theorem holds. For the remaining modules further study is required to show

that either (†) holds or (♦) is satisfied for all X ∈ I.
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Proposition 4.3. Let G be a simple simply connected algebraic group and let V = U ⊗W

where U and W are irreducible G-modules. Suppose that each eigenspace in U of each

non-central semisimple element has codimension at least d. If d dim W > dim G then (†)

holds.

Proof. Given s ∈ Gss \ Z we decompose U and W into eigenspaces for s, i.e., we may

write U =
⊕

σ Uσ(s) and W =
⊕

τ Wτ (s) where we sum over the eigenvalues σ ∈ K∗ and

τ ∈ K∗ of s on U and W respectively. Thus we can write the eigenspace of s on V with

eigenvalue ρ in the form

Vρ(s) =
⊕

(σ,τ)

Uσ(s) ⊗ Wτ (s)

where the sum is over pairs (σ, τ) with στ = ρ.

Fix an eigenvalue ρ ∈ K∗ of s on V . Since by assumption each eigenspace in U has

codimension at least d, for each τ ∈ K∗ we have dim Uρτ−1(s) 6 dim U − d and hence

dim (Uρτ−1(s) ⊗ Wτ (s)) 6 (dim U − d) dim Wτ (s).

By summing over τ we obtain

dim Vρ(s) 6 (dim U − d) dim W = dim V − d dim W,

i.e., codim Vρ(s) > d dim W and the result follows.

In particular, since d > 1, this proposition implies that we need only to consider

modules V where the dimension of both factors U and W is at most that of G.
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Chapter 5

Groups of type An

We are now ready to begin the proof of the Main Theorem. Throughout this chapter we

shall examine the action of non-central semisimple elements in a simple simply connected

algebraic group G of type Φ = An on an irreducible module V = L(λ) parameterised by

a p-restricted weight λ. We shall obtain a list of irreducible modules for which dimE =

dim V is possible and show that (†) holds for all others. For the remaining modules we

further analyse the weights involved. If we are unable to show (†) holds then we find the

possible root system types of centralisers of non-central semisimple elements and use (♦)

to draw the necessary conclusion. Recall that modules are listed up to duality. Thus the

dual of any module considered should be regarded as also being considered.

We shall prove the following result.

Theorem 5.1. Let G be a simple simply connected algebraic group of type An acting on

an irreducible module V = L(λ) where λ is p-restricted. If dim V 6 dim G+2 then E = V

with the possible exceptions of L(3ω1) for n ∈ [1, 2] with p > 3, L(4ω1) for n = 1 with

p > 3, L(ω1 + ω2) for n = p = 3 and L(ω3) for n = 7; if instead dim V > dim G + 2

then dim E < dim V with the possible exceptions of L(ω3) for n = 8, L(ω4) for n = 7 and

L(2ω2) for n = 3 with p > 2.

This theorem is a consequence of the lemmas which follow in later sections.
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5.1 Initial survey

Let µ =
∑n

i=1 aiωi 6 λ be a dominant weight. Recall from Section 2.1.1 that we shall

be considering weights up to duality. We begin by using Proposition 4.2 to derive six

conditions (i)-(vi) on the coefficients ai of µ under which (†) holds assuming that n is

sufficiently large. Indeed, once we have shown for a given weight µ that (†) holds then the

same will be true when we add any positive linear combination of fundamental weights.

The minimal contribution to the codimension of an eigenspace for µ′ = µ +
∑n

i=1 ciωi

where ci > 0 for 1 6 i 6 n with subsystem Ψ′ is at least that for µ with subsystem Ψ as

can be seen by comparing the sizes of the root systems Ψ and Ψ′ and also the orders of

their Weyl groups; the inequality rΨ′ > rΨ holds.

We shall then use these six conditions and Premet’s theorem to determine a short

list of irreducible G-modules requiring further consideration, i.e., those modules for which

more work is required to show that either (†) holds or (♦) is satisfied for all centraliser

types of non-central semisimple elements.

Proposition 5.2. Suppose that µ =
∑n

i=1 aiωi 6 λ is a dominant weight, and that at

least one of the following conditions holds:

(i) n > 6 and aj, ak 6= 0 for some j ∈ [3, n − 3] and k ∈ [j + 2, n];

(ii) n > 5 and aj, ak 6= 0 for some j ∈ [2, n − 3] and k ∈ [j + 2, n − 1];

(iii) n > 10 and ak 6= 0 for some k ∈ [5, n − 4];

(iv) n > 13 and either a4 6= 0 or an−3 6= 0;

(v) n > 7 and a4, an−k 6= 0 for some k ∈ [0, n − 5];

(vi) n > 6 and ak, ak+1 6= 0 for some k ∈ [3, n − 3].

Then (†) holds.

Proof. First assume that both a3 6= 0 and an 6= 0; then the subsystem Ψ = 〈αi | ai = 0〉

is contained in Φ(A2An−4). We find that |W (Φ) : W (Ψ)| > 1
6
(n + 1)n(n − 1)(n − 2) and
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|Φ \ Ψ| > 2(4n − 9). Therefore rΨ > rA2An−4
= 1

6
(n − 1)(n − 2)(4n − 9) which exceeds

dim G = n(n+2) for n > 6 and (†) is satisfied. If we instead assume that both aj 6= 0 and

ak 6= 0 for 3 6 j < k 6 n, k > j + 1 and j 6= n − 2 then Ψ ⊂ Φ(Aj−1Ak−j−1An−k). Since

rAj−1Ak−j−1An−k
> rA2An−4

for such values of j and k we see that condition (i) ensures that

(†) holds.

We treat condition (v) similarly. If both a4 6= 0 and an 6= 0 then Ψ ⊂ Φ(A3An−5) and

so rΨ > rA3An−5
= 1

24
(n − 1)(n − 2)(n − 3)(5n − 16); this exceeds dim G for n > 7. If we

assume that both a4 6= 0 and an−k 6= 0 for k ∈ [0, n − 5] then Ψ ⊂ Φ(A3An−5−kAk) and

since rA3An−5−kAk
> rA3An−5

for k ∈ [0, n − 5] we see that (†) holds.

Next suppose that both a2 6= 0 and an−1 6= 0. Then Ψ ⊂ Φ(A1An−4A1) and so

rΨ > rA1An−4A1
= (n − 1)(n − 2)2 which exceeds dim G for n > 5. If we now assume that

both aj 6= 0 and ak 6= 0 where 1 < j < k < n and k > j +1 then Ψ ⊂ Φ(Aj−1Ak−j−1An−k)

and we can use the fact that rAj−1Ak−j−1An−k
> rA1An−4A1

to conclude that (†) holds here

for n > 5. Thus condition (ii) ensures that (†) holds.

Assume that ak 6= 0 for k ∈ [4, n − 3] so that Ψ ⊂ Φ(Ak−1An−k) and we find that

rΨ > rAk−1An−k
=
(

n−1
k−1

)

. If we take k = 5 then we see rΨ > dim G for n > 10. For

k ∈ [5, n− 4] since rAk−1An−k
> rA4An−5

we see that (†) holds and as such we cannot have

ak 6= 0. If k = 4 we have rΨ > dim G for n > 13. Thus conditions (iii) and (iv) both

ensure that (†) holds.

Finally we treat condition (vi); assume that both ak 6= 0 and ak+1 6= 0 for k ∈ [3, n−3].

Then we have Ψ ⊂ Φ(Ak−1An−k−1) and rΨ > rAk−1An−k−1
= (n−1)!

k!(n−k)!
(nk − k2 + n) which

exceeds dim G for n > 6. This completes the proof of the proposition.

We shall split the initial analysis of weights into three sections according as n > 10,

n ∈ [5, 9] or n ∈ [1, 4].

The modules that have dimension at most dimG + 2 are the following: L(ω1) for

n > 1, L(3ω1) for n ∈ [1, 2] with p > 3, L(4ω1) for n = 1 with p > 3, L(ω1 + ω2) for

n = p = 3, L(ω2) and L(2ω1) (p > 2) for all n, the module L(ω3) for n ∈ [5, 7], and

the adjoint module L(2ω1) for n = 1 with p > 2 and L(ω1 + ωn) for n > 2. Recall from
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Section 3.1 that we need only consider modules with dimension greater than or equal to

dim B, where B is a Borel subgroup of G and those that are not adjoint modules. In type

An, we have dim B = |Φ+(G)|+ rankT = 1
2
n(n + 3) in which case, for n > 2, the natural

module L(ω1) with dimension n + 1 and L(ω2) with dimension 1
2
n(n + 1) are too small.

Lemma 5.3. Suppose that n > 10. If dim V > dim G + 2 then (†) holds except possibly

for the modules with highest weight 3ω1 (p > 3), ω1 +ω2, ω3, ω2 +ωn and 2ω1 +ωn (p > 2)

for n > 10 and ω4, ω1 +ω3, 2ω2 (p > 2), 2ω1 +ω2 (p > 2) and 4ω1 (p > 3) for n ∈ [10, 12].

Proof. Assume that n > 13. By (iv) of Proposition 5.2 any dominant weight µ 6 λ is of

the form µ = µ1 + µ2 where µ1 =
∑3

i=1 aiωi and µ2 =
∑n

i=n−2 aiωi. Set m1 =
∑3

i=1 iai

and m2 =
∑3

i=1 ian+1−i; we shall assume that m1 > m2 since we are considering modules

up to duality. From [13, p.69] we can see that µ1 =
∑3

i=1 aiωi >
∑3

i=1(ai − bi)ωi + ωj

where 0 6 bi 6 ai and j =
∑3

i=1 ibi. The expression
∑3

i=1 biωi − ωj can be written as

a non-negative linear combination of simple roots; the coefficient of each αk is clearly

positive for all k ∈ [1, 3], is (j−k)(n+1) for k ∈ [4, j−1] and is zero otherwise. If m1 > 4

then we can take bi, i = 1, 2, 3 such that 4 6 j 6 6. Thus

µ′ = µ −

(

3
∑

i=1

biωi − ωj

)

< µ 6 λ

is a dominant weight less than the highest weight and if we write µ′ =
∑n

i=1 a′
iωi then

a′
k 6= 0 for some k ∈ [4, 6]. Thus (†) is satisfied by condition (iv), so we may assume that

m1 6 3 and m2 6 3.

Suppose that m1 = 3 so µ1 is one of ω3, ω1 + ω2 or 3ω1. If a3 6= 0 then µ1 = ω3 and,

by condition (i) of Proposition 5.2, we must have m2 = 0 for n > 6. In any case since

3ω1 > ω1 + ω2 > ω3 we can appeal to Premet’s theorem to conclude that m2 = 0. Thus

the three weights ω3, ω1 + ω2 and 3ω1 require further consideration.

Next suppose that m1 = 2 so µ1 is either ω2 or 2ω1. Assume that µ1 = ω2 and m2 = 2,

so either µ2 = ωn−1 or 2ωn. If µ2 = ωn−1 then by condition (ii) of Proposition 5.2 we

see that (†) holds for n > 5 and if µ2 = 2ωn then (†) holds again by condition (ii) since
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ωn−1 < 2ωn. If µ1 = 2ω1 then again (†) holds when m2 = 2 since ω2 < 2ω1. Hence m2 6 1

and the weights that require further consideration are ω2 + ωn and 2ω1 + ωn since, as we

have already mentioned, the modules L(ω2) and L(2ω1) have dimension no larger than

dim G.

Lastly, if m1 = 1 then m2 6 1 in which case the possible weights are ω1 which has

dimension less than dim B and ω1 + ωn which is the adjoint module.

Now assume that 10 6 n 6 12. As above we see from condition (iii) of Proposition

5.2 that any dominant weight µ 6 λ is of the form µ = µ1 +µ2 where µ1 =
∑4

i=1 aiωi and

µ2 =
∑n

i=n−3 aiωi. Set M1 =
∑4

i=1 iai and M2 =
∑4

i=1 ian+1−i. In the same way as before

if M1 > 4 we can take bi for i ∈ [1, 4] with 0 6 bi 6 ai and 5 6 j 6 8 where j =
∑4

i=1 ibi.

Thus

µ′ = µ −

(

4
∑

i=1

biωi − ωj

)

< µ 6 λ

is a dominant weight less than the highest weight with a′
k 6= 0 for k ∈ [5, 8] where

µ′ =
∑n

i=1 a′
iωi. We need to look further at the cases n = 11 with j = 8 and n = 10

with j ∈ [7, 8] since condition (iii) of Proposition 5.2 cannot be used here. Suppose that

n = 11. The only weight for which j = 8 and a′
k = 0 for k ∈ [5, 7] is 2ω4. Here ω8 < 2ω4

and ai = bi for i ∈ [1, 4]. Similarly for n = 10 the only weights for which j ∈ [7, 8] and

a′
k = 0 for k ∈ [5, 6] are 2ω4 and ω3 + ω4; however we do not need to consider the latter

weight by condition (vi) of Proposition 5.2. Indeed, since 2ω4 > ω3 + ω5 we can use (ii)

to conclude that (†) holds for 2ω4. Thus we can assume that M1 6 4 and, by considering

modules up to duality, M2 6 4.

If M1 = 4 then µ is one of ω4, ω1 + ω3, 2ω2, 2ω1 + ω2 or 4ω1. We may assume

that M2 = 0 by condition (v) of Proposition 5.2 and Premet’s theorem since if ν ∈

{ω1+ω3, 2ω2, 2ω1+ω2, 4ω1} then ω4 < ν. Thus the weights requiring further consideration

are ω4, ω1 + ω3, 2ω2, 2ω1 + ω2 and 4ω1. Similarly if M1 = 3 then we may assume that

M2 = 0 by (i) and Premet’s theorem. The weights requiring further consideration here

are ω3, ω1 + ω2 and 3ω1. If M1 = 2 then (ii) implies that M2 6 1. Therefore it remains

to consider the weights ω2 + ωn and 2ω1 + ωn.
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Lemma 5.4. Suppose that dim V > dim G+2. If 5 6 n 6 9 then (†) holds except possibly

for the modules with highest weights ω1 + ω3, 2ω1 + ω3 (p > 2), ω2 + ω3, 2ω1 (p > 2), 3ω1

(p > 3), 4ω1 (p > 3), 2ω2 (p > 2), ω1 + ω2, 2ω1 + ω2 (p > 2), 3ω1 + ω2 (p > 3), 2ω1 + ωn

(p > 2) and ω2 + ωn for n ∈ [5, 9], ω1 + 2ω2 (p > 2) and 5ω1 (p > 5) for n = 5, ω3 for

n ∈ [8, 9], ω4 for n ∈ [7, 9] and ω5 for n = 9.

Proof. Suppose that a3 6= 0 and n > 6. By condition (i) of Proposition 5.2 we can

assume that ak = 0 for k ∈ [5, n] and by condition (vi) of Proposition 5.2 we may

assume that a4 = 0. We can take a3 6 1 by condition (ii) of Proposition 5.2 since

2ω3 > ω2 + ω4. Similarly, we can assume by (ii) that ai 6= 0 for at most two i ∈ [1, 3] as

ω1+ω2+ω3 > ω2+ω4. If a1 6= 0 and a2 = 0 we have a1 6 2 by (ii) since 3ω1+ω3 > ω2+ω4

and if a1 = 0 and a2 6= 0 we have a2 = 1 since 2ω2 + ω3 > ω1 + 2ω3. Thus for n > 6 we

must consider further the weights ω1 + ω3, 2ω1 + ω3 and ω2 + ω3.

Suppose that a3 6= 0 and n = 5. We can only use condition (ii) of Proposition 5.2 in

this case. If at least three coefficients of µ have non-zero coefficients then Ψ is contained

in either Φ(A2) or Φ(A2
1). In the former case we see by (ii) that (†) holds for ω1 +ω2 +ω3

since ω2 + ω4 < ω1 + ω2 + ω3. Similarly for the weight ω3 + ω4 + ω5. In the latter case

(†) holds using the calculation in (ii) of Proposition 5.2 as rA2
1

> rA3
1
. Thus we can

assume that at most two coefficients of µ are non-zero. We can take a3 = 1 by (ii) since

2ω3 > ω2 + ω4. If a1 6= 0 we can take a1 6 2 by (ii) since ω3 + 3ω1 > 2ω3 and if a2 6= 0 we

can take a2 = 1 since 2ω2 + ω3 > ω1 + 2ω3. Therefore for n = 5 we must consider further

the weights ω1 + ω3, 2ω1 + ω3 and ω2 + ω3.

Suppose that a4 6= 0 and n > 7 (otherwise we are in an earlier case). We may assume

that a4 = 1 by (ii) since 2ω4 > ω3+ω5. We may also assume that ak = 0 for k = 3 by (vi),

for k = 2 by (ii) and k ∈ [5, n] by (v) of Proposition 5.2. If a1 6= 0 then Ψ ⊂ Φ(A2An−4)

and as in (i) we find that rΨ > dim G. We note therefore that (†) certainly holds if a4 6= 0

and any other coefficient of µ is non-zero. Hence we need to consider further the weight

ω4 for n ∈ [7, 9].

Suppose that a5 6= 0 and n = 9. We may assume that a5 = 1 by (ii) since 2ω5 > ω4+ω6.

We may assume that ak = 0 for k ∈ [2, 3] by (ii), for k = 4 by (vi) and for k = 1 by
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an argument as in (v) since in this case we have Ψ ⊂ Φ(A3A4). By duality we may also

assume that ak = 0 for k ∈ [6, 9]. Hence we need to consider the weight ω5 for n = 9

further.

Now suppose that a2 6= 0. Assume ak 6= 0 for some k 6= 2. We have dealt with the

cases ak 6= 0 for k ∈ [3, 5] above. Indeed, we may assume by condition (ii) of Proposition

5.2 that if a2 6= 0 then ak = 0 for k ∈ [4, n − 1].

If a1 > 2, a2 = 0 and ak 6= 0 for any k ∈ [3, n − 1] then (†) holds by the previous

paragraph as 2ω1 > ω2. Thus we may assume that a1 = 1 if a2 = 0 and ak 6= 0 for

k ∈ [3, n − 1] whence, up to duality, we are in an earlier case.

Thus we are left to consider weights of the form µ = a1ω1 + a2ω2 + anωn. We quickly

see that an 6 1 by (ii) and Premet’s theorem since ωn−1 < 2ωn. We shall treat the cases

an = 0 and an = 1 separately.

Case I: an = 0. If both a1 6= 0 and a2 6= 0 then we may assume that a1 6 3, a2 6 3

and a1+a2 6 4 by (ii) since 2ω1+2ω2 > ω2+ω4; thus we may assume that we do not have

a1 = a2 = 2. From the analysis above we see that (†) holds for ω1 + ω2 + ω4 so the same

is true for ω1 +3ω2 > ω1 +ω2 +ω4. Note that by the calculation in (i) of Proposition 5.2,

we need to consider further the weight ω1 + 2ω2 only for n = 5 since ω1 + 2ω2 > ω1 + ω4.

The weights ω1 + ω2, 2ω1 + ω2 and 3ω1 + ω2 require further consideration.

If a1 6= 0 and a2 = 0 we may assume that a1 6 5 by (ii) since 6ω1 > ω2 +ω4. We need

only consider 5ω1 for n = 5 by the calculation in (i) since 5ω1 > ω1 + ω4. The weights

3ω1 and 4ω1 require further consideration for n ∈ [5, 9].

If a1 = 0 and a2 6= 0 we may assume that a2 6 2 by (ii) since 3ω2 > ω2 +ω4. However

the modules L(ω2) and L(2ω1) both have dimension less than dimG.

Case II: an = 1. Suppose that an = 1. Then we can assume that at most one of a1

and a2 is non-zero for n > 6 by (i) since ω1 + ω2 + ωn > ω3 + ωn and for n = 5 we find

that rA2
= 48 > 35 = dim G. If µ = a1ω1 +ωn then a1 6 2 since 3ω1 +ωn > ω1 +ω2 +ωn.

If µ = a2ω2 + ωn we can assume that a2 = 1 by the calculation in (ii) since 2ω2 + ωn >

ω1 + ω3 + ωn. Hence further work is needed for the modules with highest weights ω2 + ωn

and 2ω1 + ωn.
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We shall now consider the low rank cases. The modules outstanding from the following

lemma will be considered later in Section 5.5.

Lemma 5.5. Suppose that 1 6 n 6 4. If dim V > dim G+2 then (†) holds except possibly

for the modules with highest weights 5ω1 and 6ω1 for n = 1 with p > 5, 3ω1 for n ∈ [3, 4]

with p > 3, 4ω1 for n ∈ [2, 4] with p > 3, 2ω1 + ω2 for n ∈ [2, 4] with p > 2, 2ω2 (p > 2),

ω1 + ω2 and 2ω1 + ωn (p > 2) for n ∈ [3, 4], ω2 + ω3 and ω1 + ω3 for n = 4, and 3ω1 + ω2

(p > 3) and 2ω1 + 2ω2 (p > 2) for n = 2.

Proof. We calculate the value rΨ for all possible Ψ ⊂ Φ and use Premet’s theorem to

show that (†) holds for all but a small number of weights.

Case I: n = 4. We have dim G = 24 and rΨ = 60, 27, 12, 7, 3 or 1 according as

Ψ = ∅, A1, A2
1, A2, A2A1 or A3. Let µ =

∑4
i=1 aiωi 6 λ be a dominant weight. Since

rA1
> dim G we see that (†) holds if we have ai 6= 0 for more than two i ∈ [1, 4] and

by Premet’s theorem (†) holds for any weight µ′ < µ with more than two coefficients

non-zero.

First let us assume that a3 = a4 = 0. If a1 = 0 also then we may assume that a2 6 2

due to the fact that ω1 + ω2 + ω3 < 3ω2. Thus we must consider further the weight 2ω2.

Similarly if a2 = 0 then a1 6 4; we have

5ω1 > 3ω1 + ω2 > ω1 + 2ω2 > 2ω1 + ω3 > ω2 + ω3

so we find by Premet’s theorem that |Λ| > 1 + 7 + 7 + 12 + 12 = 39. Thus the weights

3ω1 and 4ω1 require further consideration. If both a1 and a2 are non-zero then we may

assume that a1 6 2 and a2 6 1 since (†) is satisfied for both ω1 + 2ω2 and 3ω1 + ω2 as

can be seen from the calculation for 5ω1 above. Thus the weights ω1 + ω2 and 2ω1 + ω2

require further consideration.

Now let us assume that µ = apωp + aqωq where p ∈ {1, 2}, q ∈ {3, 4} and ap > ar > 0.

Let us suppose first that q = 3. If p = 2 we may assume that a2 6 1 from the remark

above since 2ω2 + ω3 > ω1 + ω2 + ω4. If p = 1 we may assume that a1 6 1 since

2ω1 + ω3 > ω2 + ω3 > ω1 + ω4 so that |Λ| > 12 + 12 + 7 = 31, hence (†) holds. Now
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suppose that q = 4. If p = 2 then we may assume that a2 6 1 since 2ω2+ω4 > ω1+ω3+ω4.

If p = 1 then we may assume that a1 + a4 6 3; we have 3ω1 + ω4 > ω1 + ω2 + ω4 and

since 2ω1 + 2ω4 > 2ω1 + ω3 we can use Premet’s theorem and the calculation above for

2ω1 +ω3. Recall that we do not consider the modules L(ω1), L(ω2) and L(2ω1) since they

have dimension smaller than dim G. Note that we shall concern ourselves with L(ω1 +ω3)

rather than L(ω2 + ω4) as we are considering modules up to duality. Thus the weights

requiring further consideration are ω1 + ω3, ω2 + ω3 and 2ω1 + ω4.

Case II: n = 3. We have dim G = 15 and rΨ = 12, 5, 2, or 1 according as Ψ = ∅, A1, A2
1

or A2. Suppose first that a2 = a3 = 0. Since ν < 5ω1 for ν ∈ {3ω1+ω2, ω1+2ω2, 2ω1+ω3}

we may assume that a1 6 4. Thus further consideration is required for the weights 3ω1

and 4ω1. Suppose that µ = a1ω1 + a3ω3 with a1 > a3 > 0. Since ω1 + ω2 + ω3 < 3ω1 + ω3

and ν < 2ω1 + 2ω3 for ν ∈ {ω2 + 2ω3, 2ω1 + ω2, 2ω2} we can assume that a1 6 2 and

a3 = 1. Thus we need to consider further only the weight 2ω1 + ω3 since the module with

highest weight ω1 + ω3 is the adjoint module.

Now suppose that µ =
∑3

i=1 aiωi with a2 6= 0. We may assume that a3 = 0 as (†)

is satisfied if ai 6= 0 for each i ∈ [1, 3]. This is because ν < ω1 + ω2 + ω3 for each

ν ∈ {2ω3, 2ω1, ω2}. Consequently we may assume that a2 6 2 since ω1 +ω2 +ω3 < 3ω2. If

a2 = 2 then a1 = 0 since ν < ω1 + 2ω2 for each ν ∈ {2ω1 + ω3, ω2 + ω3, ω1}. If a2 = 1 then

a1 6 2 since ω1 + 2ω2 < 3ω1 + ω2 and we have just observed that (†) holds for ω1 + 2ω2.

Thus we are left to consider further the weights ω1 + ω2, 2ω1 + ω2 and 2ω2.

Case III: n = 2. Here dim G = 8 and we find that r∅ = 3 and rA1
= 1. If µ = a1ω1

then we may assume that a1 6 4 since ν < 5ω1 for each ν ∈ {3ω1 + ω2, ω1 + 2ω2, 2ω1, ω2}.

Thus the weights 3ω1 and 4ω1 require further consideration. Suppose that µ = a1ω1+a2ω2

with a1 > a2 > 0. Then we have a1 6 3 and a2 6 2 with a1 + a2 < 5 since ν < 3ω1 + 2ω2

for each ν ∈ {ω1 + 3ω2, 2ω1 + ω2} and η < 4ω1 + ω2 for each η ∈ {2ω1 + 2ω2, ω1 + ω2}.

We shall need to consider further the weights 2ω1 + ω2, 3ω1 + ω2 and 2ω1 + 2ω2.

Case IV: n = 1. We have dim G = 3; here of course r∅ = 1. By listing the eight

weights for L(7ω1) we see, using the adjacency principle, for any γ ∈ K∗ and s ∈ Gss \ Z

that |Λ| > 4. Thus we need to further investigate the weights kω1 for k ∈ [5, 6] since
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L(kω1) has dimension k + 1.

5.2 Weight string analysis

From the analysis in the previous sections, the remaining p-restricted highest weights λ

for n > 1 appear in Table 5.1. We reference the lemma in which each module is treated

and the conclusion drawn. Although it is not stated explicitly in the table we shall assume

that the characteristic is such that each weight is p-restricted. Thus, for example, we list

3ω1 for n ∈ [3,∞) under the assumption that p > 3. If µ =
∑n

i=1 aiωi then we shall say

that µ has level j where j =
∑n−1

i=1 iai + an. We shall order the weights in the table and

organise the lemmas in the next section according to levels of weights.

It is worthwhile to remark that the dimension of each module above depends on

characteristic; this is not clear from Table 5.1.

We shall now begin a sequence of lemmas working through the possible modules. In

each of the succeeding lemmas, we take s ∈ Gss \ Z and γ ∈ K∗. As detailed in Section

4.1, we aim to show that (†) is satisfied for each s ∈ Gss \Z or else that (♦) holds for each

t ∈ SX ∩ T and X ∈ I. First we consider irreducible modules parameterised by weights

with level 5.

Lemma 5.6. Let G act on an irreducible module V where we take V to be one of L(ω2 +

ω3), L(2ω1 + ω3) (p > 2) and L(3ω1 + ω2) (p > 3) for n ∈ [5, 9] and L(ω1 + 2ω2) (p > 2)

and L(5ω1) (p > 5) for n = 5. Then, in each case, (†) holds.

Proof. In this lemma, the weights concerned are related by the partial ordering

5ω1 > 3ω1 + ω2 > ω1 + 2ω2 > 2ω1 + ω3 > ω2 + ω3 > ω1 + ω4 > ω5.

Consider the module with highest weight ω2+ω3. We find for this module that there are at

least rA1An−3
= 1

2
(n−1)(3n−4) weights not in the eigenspace Vγ(s). Since ω1+ω4 < ω2+ω3,

by Premet’s theorem 2.6 the weights in the Weyl group orbit W.(ω1 +ω4) occur as weights

of L(ω2 + ω3) so we may include their contribution rA2An−4
= 1

6
(n − 1)(n − 2)(4n − 9)
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λ n Lemma λ n Lemma

ω2 + ωn [8,∞) 5.8 (†) 2ω1 + ω2 [5, 12] 5.7 (†)
[5, 7] 5.8 (♦) 4 5.16 (†)

2ω1 + ωn [5,∞) 5.8 (†) 3 5.18 (†)
4 5.17 (†) 2 5.23 (♦)
3 5.18 (♦) 4ω1 [5, 12] 5.7 (†)

ω3 [14,∞) 5.12 (♦) 4 5.16 (♦)
[9, 13] 5.13 (♦) 3 5.18 (♦)

8 5.13 (♦)a 2 5.23 (♦)
ω1 + ω2 [5,∞) 5.14 (♦) ω5 9 5.9 (†)

4 5.17 (♦) ω2 + ω3 [5, 9] 5.6 (†)
3 (p 6= 3) 5.21 (♦) 4 (p 6= 3) 5.15 (†)

3ω1 [5,∞) 5.14 (♦) 4 (p = 3) 5.15 (♦)
4 5.17 (♦) 2ω1 + ω3 [5, 9] 5.6 (†)
3 5.19 (♦) ω1 + 2ω2 5 5.6 (†)

ω4 [11, 12] 5.9 (†) 3ω1 + ω2 [5, 9] 5.6 (†)
[9, 10] 5.9 (♦) 2 (p 6= 3, 5) 5.22 (†)

8 5.10 (♦) 2 (p = 5) 5.22 (♦)
7 5.11 (♦)b 5ω1 5 5.6 (†)

ω1 + ω3 [5, 12] 5.7 (†) 1 5.24 (♦)
4 5.16 (♦) 2ω1 + 2ω2 2 (p 6= 2, 5) 5.22 (†)

2ω2 [6, 12] 5.7 (†) 2 (p = 5) 5.22 (♦)
5 (p 6= 2, 3) 5.7 (†) 6ω1 1 5.24 (♦)
5 (p = 3) 5.7 (♦)

4 5.16 (♦)
3 5.20 (♦)c

Except for: a X = A3
2 and A4A3,

b X = A2
3,

c X = A2
1.

Table 5.1: Possible weights in type An, n > 1

to |Λ|. Thus there are at least rA2An−4
+ rA1An−3

weights not in the eigenspace, which is

greater than dimG for n ∈ [5, 9], as required. The other modules are each above ω2 + ω3

in the partial ordering. Hence, by using Premet’s theorem, (†) holds for these also for

n ∈ [5, 9].

In the next lemma we deal with weights with level 4. We find here that simply counting

weight strings is insufficient to conclude that |Λ| is large enough to satisfy (†). We employ

the information [18] on multiplicities of weights to assist our analysis.

Lemma 5.7. Let G act on the irreducible module V where we take V for n ∈ [5, 12] to
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be one of L(ω1 + ω3), L(2ω2) (p > 2), L(2ω1 + ω2) (p > 2) and L(4ω1) (p > 3). Then in

each case (†) holds unless n = 5 and p = 3 for L(2ω2) in which case (♦) is satisfied for

all X ∈ I.

Proof. We are considering the four irreducible modules with highest weights satisfying

the partial ordering

4ω1 > 2ω1 + ω2 > 2ω2 > ω1 + ω3 > ω4.

We wish to show that for each non-central s ∈ Gss and γ ∈ K∗ the condition (†) holds in

each case. By similar calculations to those above, the module with highest weight ω1 +ω3

for n ∈ [5, 12] has at least rA1An−3
= 1

2
(n − 1)(3n − 4) weights µ ∈ W.(ω1 + ω3) in |Λ|.

Indeed, ω4 < ω1+ω3, so we can employ Premet’s theorem to add an extra rA3An−4
=
(

n−1
3

)

weights from W.ω4 to |Λ|. We see that (†) is satisfied unless n ∈ [5, 6]; we shall return to

these two cases shortly.

Take α /∈ Φs; the module with highest weight 2ω2 for n ∈ [5, 12] has at least n − 1

weights µ ∈ W.(2ω2) in weight strings of the form µ, µ−α, µ−2α, hence at least rA1An−2
=

n−1 weights in Λ. Using Premet’s theorem to include weight strings from the Weyl group

orbits W.ω4 and W.(ω1 + ω3) we are done unless n = 5 since |Λ| >
(

n−1
3

)

+ 1
2
(n− 1)(3n−

4) + (n − 1) satisfies (†). If n = 5 then |Λ| > 4 + 22 + 4 = 30, hence the module L(2ω2)

requires further consideration in this case.

For the highest weight 2ω1+ω2, we need only consider the case n = 5 from the previous

paragraph and Premet’s theorem. By adding together the various values of rΨ as we run

through the subsystems Ψ = A3, A3A1, A2A1 and A4 corresponding to the four dominant

weights 2ω1 +ω2, 2ω2, ω1 +ω3 and ω4 we find that |Λ| > 9+4+22+4 = 39 > 35 = dim G.

For 4ω1 we are done by the previous calculations using Premet’s theorem 2.6.

It remains for us to consider the modules L(ω1 + ω3) for n ∈ [5, 6] and L(2ω2) for

n = 5.

First we turn to the module with highest weight ω1 + ω3 for n = 5; it has dimension

90 for characteristic 2 and 105 otherwise.

In Figure 5.1 on the left we tabulate data about the weights from Lübeck’s tables.
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In the first column we index the Weyl group orbits of dominant weights listed in the

second column; the third column gives the size of each of these orbits. The last columns

give the multiplicities mω of each weight in the orbit depending on the characteristic of

K. On the right we tabulate the weight strings that occur and a lower bound for their

contribution to the codimension of the eigenspace. We denote by l the minimal possible

contribution to the codimension from each weight string for the possible characteristics.

The various contributions are summed and a lower bound for |Λ| is provided in the last

row and column. We shall provide further explanation shortly. A weight labelled µi is

one which lies in the Weyl group orbit of the weight indexed by i.

i ω |W.ω| mω

p 6= 2 p = 2
2 ω1 + ω3 60 1 1
1 ω4 15 3 2

Weight No. of l
strings strings p 6= 2 p = 2

µ2 16
µ2 µ2 16 16 16

µ2 µ1 µ2 6 12 12
µ1 1

µ1 µ1 4 12 8
Lower bound on |Λ| 40 36

Figure 5.1: (λ, n) = (ω1 + ω3, 5)

We give full details of the weight string calculations. We calculate |W (A1A2)| = 12,

|W (A3A1)| = 48 and |W (A5)| = 720. For each µ ∈ W.(ω1 +ω3), there are 8, 8 and 3 roots

α ∈ Φ(A5) such that 〈µ, α〉 = 0, 1 and 2. Similarly there are 14 or 8 roots α ∈ Φ(A5)

according as 〈µ1, α〉 = 0 or 1. Fix some α ∈ Φ(A5). We see that there are
720

12
.8

30
= 16

weights µ ∈ W.(ω1 + ω3) with α-string µ, 16 weights with α-string µ, µ − α and
720

12
.3

30
= 6

weights with α-string µ, µ − α, µ − 2α; these strings are of the form µ2 in the first case,

µ2, µ2 in the second and µ2, µ1, µ2 in the third. There are
720

48
.14

30
= 7 weights µ1 ∈ W.ω4

with 〈µ1, α〉 = 0; six of these occur in the α-strings of length 3 above, leaving just one

with α-string simply µ1. There are
720

48
.8

30
= 4 weights µ1 ∈ W.ω4 with α-string µ1, µ1.

We may assume that α /∈ Φs. There are 16 strings of the form µ2, µ2, i.e., there

are 16 weight strings consisting of two weights both in the Weyl group orbit of ω1 + ω3

which differ by α. Given such a string, the adjacency principle states that the weight

spaces corresponding to both weights cannot both lie in the eigenspace by the choice of

α. Thus for each weight string µ2, µ2 at least one of the two weight spaces cannot lie
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in the eigenspace and there is a contribution to |Λ| of at least dim Vµ2
= mµ2

= 1 for

all characteristics. There are 16 such strings, so the contribution l to |Λ| is at least 16.

Similarly for each of the 4 weight strings of the form µ1, µ1 at least one of the weight

spaces corresponding to these weights cannot lie in the eigenspace. Since dim Vµ1
= 3 or

2 when p 6= 2 or p = 2 the minimal contribution to |Λ| from such weight strings is either

12 if p 6= 2 or 8 if p = 2.

There are 6 weight strings of the form µ2, µ1, µ2, i.e., there are 6 weight strings con-

sisting of three weights µ−2α µ−α µ where the first and third weights lie in W.(ω1 +ω3)

and the second lies in W.ω4. We wish to find the minimal contribution of each such

weight string to |Λ|. For a given weight string we cannot have two weight spaces corre-

sponding to two adjacent weights in the root string (i.e., those differing by a root outside

Φs) both lying in the eigenspace. In order to obtain the maximum possible dimension

of the eigenspace (and so the minimal possible codimension of the eigenspace), for each

weight string we must either have the weight spaces corresponding to both µ− 2α and µ

contained in the eigenspace or else the weight space corresponding to the weight µ − α

in W.ω4 contained in the eigenspace. When p 6= 2 the minimal contribution from the 6

weight strings to |Λ| is 18 in the first case and 12 in the second case; clearly the minimal

contribution occurs in the second case. Suppose that p = 2. If the weight µ − 2α lies

in the eigenspace then the weights µ − α and µ both cannot lie in the eigenspace by the

adjacency principle and the fact that 2α(s) = 1 if and only if α(s) = 1. Thus, for each

weight string of length three, precisely one of the weights µ − 2α, µ − α or µ lies in the

eigenspace. By taking these possibilities in turn, we see that the contribution from the

6 weight strings to |Λ| is 18, 12 or 18, repectively. Thus the minimal contribution to |Λ|

occurs when the weight µ − α in each of the 6 weight strings lies in the eigenspace.

The weight spaces with weight string of the form µ2 may or may not lie in the

eigenspace. So we cannot draw a conclusion regarding the contribution to |Λ|. The

same holds for the weight strings of the form µ1.

We present this information in Figure 5.1 and adding together the minimal contribu-

tions l from the various weight strings we find that we have |Λ| > 36 or |Λ| > 40 according
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as p = 2 or p 6= 2. In either case we have |Λ| > dim G.

We carry out analogous calculations for the module with highest weight ω1 + ω3 for

n = 6. We see in Figure 5.2 that |Λ| > dim G for all p, so in this case we are done.

i ω |W.ω| mω

p 6= 2 p = 2
2 ω1 + ω3 105 1 1
1 ω4 35 3 2

Weight No. of l
strings strings p 6= 2 p = 2

µ2 35
µ2 µ2 25 25 25

µ2 µ1 µ2 10 20 20
µ1 5

µ1 µ1 10 30 20
Lower bound on |Λ| 75 65

Figure 5.2: (λ, n) = (ω1 + ω3, 6)

Now we consider 2ω2 for n = 5. Note that we do not consider p = 2 here since we

are assuming that highest weights are p-restricted. We perform similar calculations to

those above and display the results in the right-hand table in Figure 5.3. We find that

|Λ| > dim G except in characteristic 3.

i ω |W.ω| mω

p 6= 2, 3 p = 3
3 2ω2 15 1 1
2 ω1 + ω3 60 1 1
1 ω4 15 2 1

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ3 7
µ3 µ2 µ3 4 4 4

µ2 12
µ2 µ2 16 16 16

µ2 µ1 µ2 6 12 6
µ1 1

µ1 µ1 4 8 4
Lower bound on |Λ| 40 30

Figure 5.3: (λ, n) = (2ω2, 5)

From the fourth and fifth columns in the left-hand table in Figure 5.3 we note that

when p 6= 2, 3 the added information that mω4
= 2 allows us to conclude that |Λ| > 40;

yet we must argue further for p = 3 when mω4
= 1.

If p = 3, we show in Figure 5.3 that (♦) is satisfied unless X = ∅ since e∅
2ω2

= 30. If

X = ∅ then, by listing the 90 weights for this module, we can arrange some of these into

cliques (as given below) in order to show that (†) is satisfied. Note that we have omitted

a factor of 1
3

on each coefficient.

4 2 6 4 2 1 5 6 4 2 4 8 6 4 2 1 2 3 4 2 -2 2 6 4 2
4 2 3 4 2 1 5 3 4 2 4 5 6 4 2 1 -1 3 4 2 -2 2 3 4 2
4 2 3 1 2 1 5 3 1 2 4 5 3 4 2 1 -1 0 4 2 -2 2 3 1 2
4 2 3 1 -1 1 5 3 1 -1 4 5 3 1 2 1 -1 0 1 2 -2 2 3 1 -1

4 5 3 1 -1
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By taking these cliques and the corresponding cliques obtained by reversing the order

of the coefficients and changing signs, we see that d∅
2ω2

> 2(4+4.3) = 32 > 30 = e∅
2ω2

.

The next lemma differs from previous ones as the highest weights of the irreducible

modules concerned depend on the rank n. As usual we calculate the minimum contribution

to the codimension of the eigenspace for each weight string. If some of the weights have

multiplicity greater than one (as indicated in Lübeck’s tables for n 6 20), then the

corresponding contribution may in fact be greater.

Lemma 5.8. Let G act on one of the irreducible modules L(ω2 + ωn) and L(2ω1 + ωn)

(p > 2) both for n ∈ [5,∞). Then (†) holds for both modules, unless n ∈ [5, 7] for

L(ω2 + ωn), in which case (♦) is satisfied for all X ∈ I.

Proof. Consider the module with highest weight ω2 + ωn for general n. As displayed in

the bottom table in Figure 5.4, we have |Λ| > 1
2
(3n2 − 7n + 6), (note that by Premet’s

theorem we know that each weight in W.ω1 has multiplicity at least one). This is larger

than dim G for n > 11. Thus we need only consider the possibilities n ∈ [5, 10] and we

may use the information about multiplicities in the tables to calculate better lower bounds

for the codimension.

i ω |W.ω| mω

all p, n > 21 p ∤ n 6 20 p | n 6 20

2 ω2 + ωn
1

2
(n + 1)n(n − 1) 1 1 1

1 ω1 n + 1 > 1 n − 1 n − 2

Weight No. of l
strings strings all p, n > 21 p ∤ n 6 20 p | n 6 20

µ2
1

2
(n − 1)(n2 − 5n + 8)

µ2 µ2
3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2)

µ2 µ1 µ2 n − 1 n − 1 2(n − 1) 2(n − 1)
µ1 µ1 1 1 n − 1 n − 2

Lower bound on |Λ| 1

2
(3n2 − 7n + 6) 3

2
n(n − 1) 1

2
(3n2 − 3n − 2)

Figure 5.4: λ = ω2 + ωn for n > 5

Certainly for all p we have |Λ| > 1
2
(3n2 − 3n − 2) and (†) is satisfied for n > 8.

Furthermore, for n ∈ [6, 7] since |Φ(G)| < |Λ| in these cases (♦) is satisfied for all X ∈ I.

If n = 5 and p 6= 5 then |Λ| > 30 and X = ∅ is the only centraliser type requiring further

consideration. The same is true for n = p = 5 since |Λ| > 29 here.
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We use the fact that there are certainly two orthogonal roots not in Φs; take roots

α1, α5 and compute the 66 weights for this module explicitly. We provide weight nets

below. Note that we have omitted a factor of 1
6

on each coefficient.

1 × 2 and 2 × 1 nets: · 10 9 8 ·, · 4 9 2 ·, · -2 3 8 ·, · 4 -3 2 ·, · -2 3 -4 ·, · -8 -3 2 ·, · -2 -9 -4 ·, · -8 -9 -10 ·

2 × 2 nets: · 4 9 8 ·, · 4 3 8 ·, · 4 3 -4 ·, · 4 -3 -4 ·, · -8 -3 -4 ·, · -8 -9 -4 ·

These weight nets do not involve any weights from W.ω1. We give below the weight

nets that do involve such weights (which we embolden):

5 4 3 2 -5 5 4 3 2 1 5 4 3 2 7
-1 4 3 2 -5 -1 4 3 2 1 -1 4 3 2 7

5 -2 -3 -4 -5 5 -2 -3 -4 1
-1 -2 -3 -4 -5 -1 -2 -3 -4 1

-7 -2 -3 -4 -5 -7 -2 -3 -4 1

5 -2 -3 2 1
-1 -2 -3 2 -5 -1 -2 -3 2 1 -1 -2 -3 2 7

-7 -2 -3 2 1

5 -2 3 2 1
-1 -2 3 2 -5 -1 -2 3 2 1 -1 -2 3 2 7

-7 -2 3 2 1

So we see that when p 6= 2, 5 we have |Λ| > 6 + 6 + 4 + 4 + 8 + 2.6 = 40, when p = 2

we have |Λ| > 42 (the increase derives from the 3 × 2 and 2 × 3 weight nets) and when

p = 5 we have |Λ| > 5 + 5 + 3 + 3 + 8 + 2.6 = 36; in any case |Λ| exceeds dim G, so we

are done.

Since ω2 + ωn < 2ω1 + ωn and the value of mω1
for L(2ω1 + ωn) is at least the

corresponding value of mω1
for L(ω2 +ωn) when n 6 20, we can use Premet’s theorem 2.6

and the calculation of the number of weight strings in Figure 5.4 to conclude for n > 8

that (†) holds for L(2ω1+ωn). In fact we see in Figure 5.5 that (†) also holds for n ∈ [5, 7].

5.3 Centraliser analysis for L(ω4) and L(ω5)

In this section we examine the irreducible modules with highest weight ω4 for n ∈ [7, 12]

and ω5 for n = 9. For convenience we shall introduce some notation for weights in the

Weyl group orbit of a fundamental weight.

Notation Consider a fundamental weight ωk with 1 6 k 6 n written as a sum of simple

roots. If we write a fundamental weight as a string of the coefficients in such a sum
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i ω |W.ω| mω

all p, n + 2 > 23 2 6= p ∤ n + 2 6 22 2 6= p | n + 2 6 22
3 2ω1 + ωn (n + 1)n 1 1 1
2 ω2 + ωn

1

2
(n + 1)n(n − 1) 1 1 1

1 ω1 n + 1 > 1 n n − 1

Weight No. of l
strings strings all p, n + 2 > 23 2 6= p ∤ n + 2 6 22 2 6= p | n + 2 6 22

µ3 (n − 1)(n − 2)
µ3 µ3 n − 1 n − 1 n − 1 n − 1

µ3 µ2 µ3 n − 1 n − 1 n − 1 n − 1
µ3 µ1 µ1 µ3 1 2 n + 1 n

µ2
1

2
(n − 1)(n − 2)(n − 3)

µ2 µ2
3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2) 3

2
(n − 1)(n − 2)

µ2 µ1 µ2 n − 1 n − 1 2(n − 1) 2(n − 1)

Lower bound on |Λ| 1

2
(3n2 − 3n + 4) n

2
(3n + 1) 1

2
(3n2 + n − 2)

Figure 5.5: λ = 2ω1 + ωn for n > 5

and imagine a zero coefficient on either end of this expression we see that we can encode

a fundamental weight by an ordered string of plus signs and minus signs depending on

whether the difference between successive coefficients is positive or negative. Thus ωk can

be written as k plus signs and n − k + 1 minus signs. The effect of the Weyl group is

to permute the signs in the string, so all weights in the Weyl group orbit of ωk can be

written as all possible strings of plus and minus signs as described.

We can see when two different weights in W.ωk differ by a root precisely if they have

k − 1 plus signs in the same position. Suppose we have two weights which (when written

in plus-minus notation) are identical except the first has a plus in the ith position and

the second in the jth position, then, assuming i < j, the difference between the first and

second weights is αi + · · · + αj−1. So, if two weights in different clusters have k − 1 plus

signs in the same position, then at most one of the clusters of weight spaces can lie in

Π(V ) \ Λ, provided the difference between the weightsis a linear combination of roots

outside Φs.

Later we shall compare sizes of clusters of weights in cliques; in this case it is helpful

to write a cluster as a string of plus and minus signs partitioned by bars and concluded

with a colon to indicate the centraliser type. Thus the bar is used to separate non-trivial

simple systems in X and the colon signifies that the signs which follow lie in positions

unaffected by reflection in any root in X. For example, if the centraliser type is A2A1
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then + + −| + − : −−− denotes a cluster consisting of six weights lying in W.ω3 with n = 7,

i.e., the cluster consists of the weights ++−+−−−−, +−++−−−−, −+++−−−−, ++−−+−−−,

+−+−+−−− and −++−+−−−. As a shorthand we shall underline a string of plus and minus

signs in a cluster to denote all clusters which occur containing all possible arrangements

of the underlined symbols. For instance, if X = A2 we shall use + + − : + −−−− to denote

the five clusters with exactly one plus sign in the last five positions.

In the next lemma, we shall employ the following strategy. Suppose that G is of type

An acting on the G-module L(λ). The initial lower bound for |Λ| may be such that (♦)

is satisfied for all but a few subsystems X ∈ I of low rank but does not exceed dim G (so

we cannot immediately conclude that (†) holds). We can certainly assume that there are

two orthogonal roots outside of Φs for the remaining subsystems. We make the general

observation that either X = An−1 or there are two orthogonal roots outside Φs. If we

can show that d
An−1

λ > dim G and subsequently show that |Λ| > dim G by taking two

orthogonal roots outside Φs, then we can conclude that (†) holds.

Lemma 5.9. Let G act on the irreducible module V = L(ωk) for k ∈ [4, 5]. Then for

k = 4 when n ∈ [11, 12] and for k = 5 when n = 9 the condition (†) holds, otherwise (♦)

is satisfied for all X ∈ I.

Proof. Consider the module with highest weight ωk in An. We may assume that there

is a root α /∈ Φs so there are rAk−1An−k
=
(

n−1
k−1

)

weights µ ∈ W.ωk with weight string of

the form µ, µ − α. By the adjacency principle we see that each weight string of length

2 contains at least one weight space that cannot lie in the eigenspace Vγ(s) for each

k ∈ [4, 5].

Consider the Weyl group orbit of ω4; it has size
(

n+1
4

)

. For n = 12 we have |Λ| >
(

11
3

)

= 165. Since |Φ(G)| = 156 we see that (♦) is satisfied for all centraliser types and

the result holds. We wish to show that (†) holds, so we need to show that it holds both

when X = A11 and when there are two orthogonal roots outside Φs. (It is clear that the

only centraliser type where there are not two orthogonal roots outside Φs is X = A11.)

Suppose that X = A11 with simple roots α1, . . . , α11; there are two clusters, the first
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containing weights whose last sign is plus and the second containing those whose last sign

is minus; so the clusters sizes are
(

12
3

)

= 220 and
(

12
4

)

= 495, whence dA11

ω4
> 220 > dim G.

We can therefore assume that there are at least two orthogonal roots lying outside Φs;

take them to be α1 and α12. In particular, for n = 12, we have

ω4 = 9 18 27 36 32 28 24 20 16 12 8 4,

omitting a factor of 1
13

on each coefficient. As described above we can write this as a

string of four plus signs followed by nine minus signs and we obtain all possible strings

as the Weyl group interchanges plus signs and minus signs. Thus we find that we have

a convenient combinatorial approach to counting the number of weights orthogonal to α1

and α12, i.e., those weights which begin and end with either two plus signs or two minus

signs. Firstly we see that there are
(

11
2

)

+
(

11
4

)

weights orthogonal to α1: those having two

plus signs and those having two minus signs at the beginning of the string. Hence all other

weights are in pairs differing by α1, giving codimension |Λ| > 1
2
(715 − 385) = 165. (Of

course this agrees with our calculation above.) Then we see that there are 1 + 2
(

9
2

)

+
(

9
4

)

weights orthogonal to α1 and α12. All other weights occur in pairs differing by α1 or α12,

so, by the adjacency principle, |Λ| > 1
2
(715 − 199) = 258 > dim G.

The case n = 11 follows similarly. We have |Λ| >
(

10
3

)

= 120, hence we are done if

|Φ(X)| > 12 by (♦). Suppose that X = A10 with simple roots α1, . . . , α10; there are two

clusters, the first containing weights whose last sign is plus and the second containing

those whose last sign is minus; so the clusters sizes are
(

11
3

)

= 165 and
(

11
4

)

= 330, whence

dA10

ω4
> 165 > dim G.

Thus assume that there are two orthogonal roots lying outside Φs; take them to be

α1 and α11. We can now write ω4 as a string of four plus signs followed by eight minus

signs. We calculate that there are
(

10
2

)

+
(

10
4

)

weights in W.ω4 orthogonal to α1 giving

codimension |Λ| > 1
2
(495− 255) = 120 and there are 1 + 2

(

8
2

)

+
(

8
4

)

weights orthogonal to

α1 and α11. All other weights occur in pairs differing by α1 or α11, so, by the adjacency

principle, |Λ| > 1
2
(495 − 127) = 184 > dim G.
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For n = 10 we have |Λ| >
(

9
3

)

= 84 and we have the result when |Φ(X)| > 26 using

(♦). Thus there will certainly be two orthogonal roots not in Φs, namely α1 and α10.

There are 1 + 2
(

7
2

)

+
(

7
4

)

weights in W.ω4 orthogonal to both α1 and α10, all other weights

occurring in pairs differing by α1 or α10, hence |Λ| > 1
2
(330 − 78) = 126 > dim G. We

conclude that (♦) is satisfied for all X ∈ I.

For n = 9 we have |Φ(G)| = 90. From our initial calculation above we have |Λ| > 56

and (♦) shows that we may take two orthogonal roots α1, α9 not in Φs. This improves

our lower bound of the codimension of the eigenspace since there are 1 + 2
(

6
2

)

+
(

6
4

)

= 46

weights in W.ω4 orthogonal to both α1 and α9; we find that |Λ| > 1
2

((

10
4

)

− 46
)

= 82. As

a consequence, we may assume that there are three orthogonal roots outside Φs; taking

the third to be α5 we obtain |Λ| > 1
2

((

10
4

)

− (1 + 3
(

4
2

)

+ 3)
)

= 94, whence (♦) is satisfied

for all X ∈ I.

Now consider the module with highest weight ω5 when n = 9. We show that (†) holds.

We have |Λ| > 70 and so we are done if |Φ(X)| > 20 using (♦). Suppose that X = A8

with simple roots α1, . . . , α8; there are two clusters, the first containing weights whose

last sign is plus and the second containing those whose last sign is minus; so both clusters

have size
(

9
4

)

= 126, whence dA8

ω5
> 126 > dim G.

Thus assume there are two orthogonal roots lying outside of the centraliser, take α1

and α9. We view weights in W.ω5 as ordered strings of five plus signs and five minus

signs. We count
(

6
1

)

+2
(

6
3

)

+
(

6
5

)

weights orthogonal to both α1 and α9, so |Λ| > 100. The

conclusion follows since dim G = 99.

It remains for us to consider L(ω4) when n ∈ [7, 8]. Note that dimL(ω4) = |W.ω4| = 70

or 126 according to whether n = 7 or 8.

Lemma 5.10. Let G act on the irreducible module V = L(ω4) for n = 8. Then (♦) holds.

Proof. Consider L(ω4) with n = 8. We know that |Λ| > rA3A4
=
(

7
3

)

= 35 and we are

done for all types of centralisers satisfying |Φ(X)| > 37. For the remaining types, there

will always be two orthogonal roots not lying in Φs. Assume that α1 and α3 are two

orthogonal roots outside Φs. Since there are 26 weights orthogonal to them both, we have
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|Λ| > 1
2
(126 − 26) = 50. Repeating this procedure we are done for |Φ(X)| > 22 by (♦),

and for the remaining possibilities for X there are three orthogonal roots not in Φs, which

we may take to be α1, α3 and α5. There are 12 weights orthogonal to these roots, so

|Λ| > 57. Repeating this, we may take four orthogonal roots not in Φs and can improve

the lower bound to |Λ|. Indeed, we find that |Λ| > 60 and consequently we are done

if |Φ(X)| > 12. This leaves eleven centraliser types each requiring individual attention.

They are X = ∅, A1, A2
1, A3

1, A4
1, A2, A2A1, A2A

2
1, A2A

3
1, A2

2 and A3.

For each type we arrange the weights into clusters and then form cliques. As described

in Section 4.2, in each clique the weight spaces corresponding to the weights constituting

at most one cluster can lie in the eigenspace. For each clique, the lower bound l for the

contribution to |Λ| is therefore the sum of all the cluster sizes except the largest. The

tables below show clusters arranged in cliques and calculate the minimal contribution l

of each clique to |Λ|. Note that we do not provide all clusters in the tables that follow,

only a selection. For each centraliser type X we find from the table that the codimension

exceeds eX
ω4

.

X = A3

Clique Cluster size l Clique Cluster size l

+ + +− : + −−−− 4 16 + + −− : −− + + − 6 12

+ + −− : ++ −−− 6 18 + −−− : + + + −− 4 8

+ + −− : − + + −− 6 12

For X = A3, we see that dA3

ω4
> 66 > 60 = eA3

ω4
.

X = A2
2

Clique Cluster size l Clique Cluster size l

+ + −| + −− : + −− 9 18 + + −| + +− : −−− 9 27

+ −−| + −− : + + − 9 18 + −−| + +− : + −− 9

For X = A2
2, we see that d

A2
2

ω4 > 63 > 60 = e
A2

2
ω4 .

X = A2A3
1

Clique Cluster size l Clique Cluster size l

+ + −| + −| + −| − − : 12 24 + −−| + −| + +| − − : 6 6

+ + −| + −| − −| + − : 12 + −−| − −| + +| + − : 6

+ + −| − −| + −| + − : 12 + −−| + −| − −| + + : 6 6

+ −−| + +| + −| − − : 6 6 + −−| − −| + −| + + : 6

+ −−| + +| − −| + − : 6
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If X = A2A
3
1 there is a cluster of weights +−−|+−|+−|+− : of size 24. If the weights in this

cluster lie in Π(V ) \Λ, then none of the 72 weights in the table above can lie in Π(V ) \Λ.

On the other hand, if this cluster lies in Λ then d
A2A3

1
ω4 > 24 + 42 = 66 > 60 = e

A2A3
1

ω4 .

X = A2A2
1

Clique Cluster size l Clique Cluster size l

+ + −| + −| + − : −− 12 24 + + −| + +| − − : −− 3 6

+ −−| + −| + − : + − 12 + −−| + +| − − : + − 3

+ + −| + −| − − : + − 6 6 + + −| − −| + + : −− 3 6

+ + −| − −| + − : + − 6 6 + −−| − −| + + : + − 3

+ −−|+ + | + − : −− 6 6 −−−| + −| + + : + − 2 2

+ −−|+ − | − − : + + 6 6 −−−| + +| + − : + − 2 2

For X = A2A
2
1, we see that d

A2A2
1

ω4 > 64 > 62 = e
A2A2

1
ω4 .

X = A2A1

Clique Cluster size l Clique Cluster size l

+ + −| + − : + −−− 6 18 + + −| + + : −−−− 3 12

+ −−| − − : + + + − 3 9 + −−| + + : + −−− 3

+ −−| + − : −+ + − 6 12 + −−| + − : ++ −− 6 12

+ + −| − − : ++ −− 3 6

For X = A2A1, we see that dA2A1

ω4
> 69 > 64 = eA2A1

ω4
.

X = A2

Clique Cluster size l

+ + − : + + −−−− 3 36

+ −− : + + + −−− 3 48

For X = A2, we see that dA2

ω4
> 84 > 66 = eA2

ω4
.

X = A4
1

Clique Cluster size l Clique Cluster size l

+ − | + −| + −| + − : − 16 32 + − | + −| + +|−− : − 4 8

+ − | + −| + −| − − : + 8 + − | + −| − −| + + : − 4 8

+ + |+ − | + −| − − : − 4 8 + + |+ − | − −| − − : + 2 4

+−| + +|+ − | − − : − 4 8

For X = A4
1, we see that d

A4
1

ω4 > 68 > 64 = e
A4

1
ω4 .
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X = A3
1

Clique Cluster size l Clique Cluster size l

+ − | + −| + − : + −− 8 16 + − | − −| − − : + + + 2 4

+ + | + −| + − : −−− 4 8 + + | + −| − − : + −− 2 4

+ − | + −| − − : + + − 4 8 + + | − −| + − : + −− 2 4

+ − | − −| + − : + + − 4 8 + − | + +| − − : + −− 2 4

−− | + −| + − : + + − 4 8 −− | + +| + − : + −− 2 4

For X = A3
1, we see that d

A3
1

ω4 > 68 > 66 = e
A3

1
ω4 .

X = A2
1

Clique Cluster size l Clique Cluster size l

+ − | + − : + + −−− 4 32 −− | + − : + + + −− 2 16

+ − | − − : + + + −− 2 16 + + | + − : + −−−− 2 8

For X = A2
1, we see that d

A2
1

ω4 > 72 > 68 = e
A2

1
ω4 .

X = A1 (and X = ∅)

Clique Cluster size l Clique Cluster size l

+− : ++ + −−−− 2 24 ++ : + + −−−−− 1 8

+− : − + + + −−− 2 16 −− : + + + + −−− 1 8

+− : −− ++ + −− 2 8

It is clear that the lower bounds for dX
ω4

calculated in the table above are the same

whether X = ∅ or A1; in both cases we find dX
ω4

> 74 which exceeds both e∅
ω4

= 72 and

eA1

ω4
= 70.

Finally in this section we consider the module L(ω4) with n = 7.

Lemma 5.11. Let G act on the irreducible module V = L(ω4) for n = 7. Then (♦) is

satisfied for each X ∈ I \ {A2
3}.

Proof. We have dim L(ω4) = 70 for n = 7 and we can use the exact same iterative process

as we did for n = 8 to show that we are done provided that |Φ(X)| > 24. There are

seventeen centraliser types remaining to be investigated. They are (with eX
ω4

given in

brackets) as follows: ∅, A1, A2
1, A3

1, A4
1, A2, A2A1, A2A

2
1, A2

2, A2
2A1, A3, A3A1, A3A

2
1,

A3A2, A2
3, A4 and A4A1.
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X = A4A1

Clique Cluster size l Clique Cluster size l

+ + + + −| − − : − 5 15 + + −−−| + + : − 10 10

+ + + −−| + − : − 20 + + −−−| + − : + 20

+ + + −−| − − : + 10 + −−−−| + + : + 5

In the table above we arrange the clusters into cliques and we see that dA4A1

ω4
> 25. If

the 20 weights in the cluster ++−−−|+− : + are in Π(V )\Λ then dA4A1

ω4
> 45 > 34 = eA4A1

ω4
.

For, we exclude the weights in the clusters + + + −−| + − : −, + + + −−| − − : +, + + −−−| + + : −

and +−−−−|+ + : + from the eigenspace since these clusters all contain at least one weight

differing in precisely two positions from at least one of the weights in + + − − −| + − : +. If

we do not have the weights in + +−−−|+− : + then the table above shows that dA4A1

ω4
> 35.

If X = A4 the clusters that occur are easy to see from those given above. There

are two cliques (corresponding to the left and right hand sides of the table) which both

guarantee a contribution of at least 25 to |Λ|, hence dA4

ω4
> 50 > 36 = eA4

ω4
.

X = A3A2

Clique Cluster size l Clique Cluster size l

+ + −− | + +− : − 18 18 + + + + | − −− : − 1 5

+ + −− | + −− : + 18 + + + − | + −− : − 12

+ −−− | + ++ : − 4 5 + + + − | − −− : + 4

+ −−− | + +− : + 12

−−−− | + ++ : + 1

From the arrangement of clusters into cliques in the table above, we have dA3A2

ω4
> 28.

If the weights in the cluster ++−−|++− : − are in Π(V )\Λ then the clusters +++−|+−− : −,

+−−−|+++ : − and +−−−|++− : + do not contribute to the eigenspace, hence dA3A2

ω4
> 47 >

38 = eA3A2

ω4
. We can conclude similarly for the weights in ++−− |+−− : +. If neither cluster

of size 18 contributes to the eigenspace, then dA3A2

ω4
> 46.

X = A3A2
1

Clique Cluster size l Clique Cluster size l

+ + + + | − −| − − : 1 9 + + −− | + −| + − : 24 14

+ + + − | + −| − − : 8 + + −− | − −| + + : 6

+ + + − | − −| + − : 8 + −−− | + −| + + : 8

+ + −− | + +| − − : 6 6 −−−− | + +| + + : 1

+ −−− | + +| + − : 8
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If the weights in the cluster of size 24 lie in Π(V )\Λ then, by excluding other clusters,

we find d
A3A2

1
ω4 > 44 > 40 = e

A3A2
1

ω4 . Otherwise, as can be seen from the table above,

d
A3A2

1
ω4 > 45.

X = A3A1

Clique Cluster size l Clique Cluster size l

+ + + + | − − : −− 1 9 + + −− | + − : + − 12 26

+ + + − | + − : −− 8 + + −− | + − : − + 12

+ + + − | − − : + − 4 + + −− | − − : + + 6

+ + + − | − − : − + 4 + −−− | + − : + + 8

+ + −− | + + : −− 6 8 −−−− | + + : + + 1

+ −−− | + + : + − 4

+ −−− | + + : − + 4

From the table we see that dA3A1

ω4
> 43 > 42 = eA3A1

ω4
.

X = A3

Clique Cluster size l Clique Cluster size l

+ + ++ : −−−− 1 13 + −−− : + + + − 4 13

+ + +− : + −−− 4 −−−− : + + + + 1

+ + −− : ++ −− 6 12

+ + −− : −+ + − 6 12

From the table we see that dA3

ω4
> 50 > 44 = eA3

ω4
.

X = A2
2
A1

Clique Cluster size l Clique Cluster size l

+ + +| + −− | − − : 3 3 + −−| + + + | − − : 3 2

+ + +| − − − | + − : 2 −−−| + + + | + − : 2

+ + −| + + − | − − : 9 27 + + −| − −− | + + : 3 3

+ + −| + −− | + − : 18 + −−| + −− | + + : 9

+ −−| + + − | + − : 18 −−−| + + − | + + : 3

If we assume in turn that the weights in the clusters of size 18 are in Π(V ) \ Λ, we

obtain d
A2

2
A1

ω4 > 46 > 42 = e
A2

2
A1

ω4 for each. If these two clusters do not contribute to the

eigenspace then we have d
A2

2
A1

ω4 > 43 as required.

X = A2
2

Clique Cluster size l Clique Cluster size l

+ + +| + −− : −− 3 21 + −−| + +− : + − 9 21

+ + −| + +− : −− 9 + −−| + +− : − + 9

+ + −| + −− : + − 9 + −−| + −− : + + 9

+ + −| + −− : − + 9 −−−| + +− : + + 3

+ −−| + ++ : −− 3 2 + + +| − −− : + − 1 1

−−−| + ++ : + − 1
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From the table we see that d
A2

2
ω4 > 45 > 44 = e

A2
2

ω4 .

X = A2A2
1

Clique Cluster size l Clique Cluster size l

+ + +| + −| − − : − 2 3 + + −| + −| − − : + 6 6

+ + +| − −| + − : − 2 + + −| − −| + − : + 6

+ + +| − −| − − : + 1 + + −| − −| + + : − 3 3

+ + −| + +| − − : − 3 3 + −−| − −| + + : + 3

+ −−| + +| − − : + 3 + + −| + −| + − : − 12 24

−−−| + +| + + : − 1 3 + −−| + +| + − : − 6

−−−| + +| + − : + 2 + −−| + −| + + : − 6

−−−| + −| + + : + 2 + −−| + −| + − : + 12

If either of the clusters of size 12 are in Π(V )\Λ, we see that d
A2A2

1
ω4 > 49 > 46 = e

A2A2
1

ω4 .

Therefore, assuming that these weights are in Λ we have that the minimum contribution

of the largest clique above becomes 30. Thus d
A2A2

1
ω4 > 48.

X = A2A1

Clique Cluster size l Clique Cluster size l

+ + +| + − : −−− 2 3 + −−| + + : + −− 3 6

+ + +| − − : + −− 1 + −−| + − : + + − 6 15

+ + −| + + : −−− 3 15 + −−| − − : + + + 3

+ + −| + − : + −− 6 −−−| + + : + + − 1 3

+ + −| − − : + + − 3 6 −−−| + − : + + + 2

From the table above we have dA2A1

ω4
> 48 = eA2A1

ω4
. If the weights in the cluster

+++|+− : −−− are in Π(V )\Λ, then none of the clusters ++−|+− : + −− can lie in Π(V )\Λ,

so dA2A1

ω4
> 51. Otherwise dA2A1

ω4
> 49 and we are done.

X = A2

Clique Cluster size l Clique Cluster size l

+ + + : + −−−− 1 4 + −− : + + + −− 3 6

+ + − : ++ −−− 3 9 + −− : + − + + − 3 6

+ + − : − + + −− 3 6 + −− : −+ + + − 3 9

+ + − : −− + + − 3 6 −−− : + + + + − 1 4

From the table, by arranging the clusters into cliques, we have dA2

ω4
> 50 = eA2

ω4
. We

can improve the codimension by 3 by observing that at most two of the 10 clusters from

+ − − : + + + −− correspond to weights lying in Π(V ) \ Λ. (In the table we were assuming

that at most three such clusters were contributing to the eigenspace dimension.) If we

assume without loss that the weights in the cluster + − − : + + + − − lie in Π(V ) \ Λ, this
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forces all clusters but those of the form + −− : + −−+ + to lie outside the eigenspace. But

only one of the clusters in + −− : + −−+ + can contribute to the eigenspace.

X = A4
1

Clique Cluster size l Clique Cluster size l

+ + | + −| + −| − − : 4 12 −− | + +| + −| + − : 4 8

+ − | + +| + −| − − : 4 −− | + −| + +| + − : 4

+ − | + −| + +| − − : 4 −− | + −| + −| + + : 4

+ − | + −| + −| + − : 16 + + | + +| − −| − − : 1

+ + | + −| − −| + − : 4 8 + + | − −| + +| − − : 1

+ − | + +| − −| + − : 4 + + | − −| − −| + + : 1

+ − | + −| − −| + + : 4 −− | + +| + +| − − : 1

+ + | − −| + −| + − : 4 8 −− | + +| − −| + + : 1

+ − | − −| + +| + − : 4 −− | − −| + +| + + : 1

+ − | − −| + −| + + : 4

If the cluster of size 16 lies in Π(V ) \ Λ, then all clusters with size greater than one

cannot be in Π(V ) \ Λ, so d
A4

1
ω4 > 48 = e

A4
1

ω4 . We are done, unless the six weight spaces

corresponding to the remaining six clusters are in Π(V ) \ Λ. However, this implies that

2α4(s) = 2α6(s) = 1, i.e., α4(s) = α6(s) = −1 for s ∈ SA4
1
, so α4 + α5 + α6 ∈ Φs and

X 6= A4
1. Now using the table above and assuming that the cluster of size 16 does not

contribute to the dimension of the eigenspace, we have d
A4

1
ω4 > 48 and we improve the value

of the codimension by at least one using the previous observation about the six weights

constituting the clusters of size one.

X = A3
1

Clique Cluster size l Clique Cluster size l

+ + | + −| + − : −− 4 20 + − | + −| − − : + + 4 8

+ − | + +| + − : −− 4 + − | − −| + − : + + 4

+ − | + −| + + : −− 4 −− | + −| + − : + + 4

+ − | + −| + − : + − 8 −− | + +| + − : + − 2 2

+ − | + −| + − : − + 8 −− | + −| + + : + − 2

+ + | + −| − − : + − 2 2 −− | + +| + − : − + 2 2

+ − | + +| − − : + − 2 −− | + −| + + : − + 2

+ + | + −| − − : − + 2 2 + + | + +| − − : −− 1

+ − | + +| − − : − + 2 + + | − −| + + : −− 1

+ + | − −| + − : + − 2 2 + + | − −| − − : + + 1

+ − | − −| + + : + − 2 −− | + +| + + : −− 1

+ + | − −| + − : − + 2 2 −− | + +| − − : + + 1

+ − | − −| + + : − + 2 −− | − −| + + : + + 1
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From the table above, we see that d
A3

1
ω4 > 40. By similar arguments as for the case

X = A4
1 we are done if any one of the clusters of sizes 8 or 4 contribute to the dimension

of the eigenspace. Hence, assuming that none of these contribute, it is easy to show

d
A3

1
ω4 > 51 > 50 = e

A3
1

ω4 .

X = A2
1

Clique Cluster size l Clique Cluster size l

+ + | + + : −−−− 1 7 −− | + + : + + −− 1 4

+ + | + − : + −−− 2 + − | − − : + + + − 2 6

+ − | + + : + −−− 2 6 −− | + − : + + + − 2 7

+ − | + − : + + −− 4 16 −− | − − : + + + + 1

+ + | − − : + + −− 1 4

From the table above we see that d
A2

1
ω4 > 50. Suppose that the two clusters in the clique

+ − | + − : + + −− lie in Π(V ) \ Λ; otherwise we are done since e
A2

1
ω4 = 52. Then the cliques

+ + |+− : + −−− and +− |+ + : + −−− do not contribute to the dimension of the eigenspace,

so d
A2

1
ω4 > 53.

If X = A1, we may separate the weights occurring into three types: there are
(

6
2

)

= 15

weights of the form ++ : + + −−−− ,
(

6
3

)

= 20 pairs of weights in clusters of the form

+− : + + + −−− and
(

6
2

)

= 15 weights of the form −− : + + + + −− . We wish to find an upper

bound for the dimension of the eigenspace. The first and third types can have at most

three weights lying in Π(V ) \ Λ. The second type can contribute at most eight weights

(from four clusters) to the dimension of the eigenspace. In particular, assume by using

the Weyl group that the cluster +− : +++−−− contributes to the eigenspace, in which case

it rules out any cluster with two plus signs in the third, fourth and fifth positions. (If

we have +− : −−−+ + + also, then this rules out all of the remaining weights of the second

type, so only two clusters contribute in this case.) From the remaining weights suppose

without loss of generality that the cluster +− : +−−++− also contributes to the eigenspace.

This rules out all but four clusters and we can have at most the weights of two of these

lying in Π(V ) \Λ, i.e., we either have the two clusters +− : −+−+−+ and +− : −−+−+ + or

+− : −−+ +−+ and +− : −+−−+ + contributing to the eigenspace. Hence there are at most

eight weights in Π(V ) \ Λ and dA1

ω4
> 62 > 54 = eA1

ω4
.
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Finally, suppose that X = ∅. In order to conclude that (♦) holds we shall show that

|Π(ω4) \ Λ| < 14 since e∅
ω4

= 56. Indeed, we see from the 14 cliques below of size 5 that

|Π(V ) \ Λ| 6 14.
+ + + + − − − − + + − − + + − − + − + − + − + − + + + − − + − − + − + + − + − − + − − + + + − − + + − + − − + −

+ + + − + − − − + + − − + − + − + − + − + − − + + + + − − − − + + − + + − − + − + − − + + − − + + + − + − − − +

+ + − + + − − − + + − − − + + − + − + − − − + + + + − − − + − + + − + − − + + − + − − + − + − + + + − − − − + +

+ − + + + − − − + − − − + + + − + − − − + − + + + − + − − + − + + − − + − + + − + − − − + + − + + − − + − − + +

− + + + + − − − − + − − + + + − − − + − + − + + − + + − − + − + − − + + − + + − − − − + + + − + − + − + − − + +

− − − − + + + + − − + + − − + + − + − + − + − + − − − + + − + + − + − − + − + + − + + − − − + + − − + − + + − +

− − − + − + + + − − + + − + − + − + − + − + + − − − − + + + + − − + − − + + − + − + + − − + + − − − + − + + + −

− − + − − + + + − − + + + − − + − + − + + + − − − − + + + − + − − + − + + − − + − + + − + − + − − − + + + + − −

− + − − − + + + − + + + − − − + − + + + − + − − − + − + + − + − − + + − + − − + − + + + − − + − − + + − + + − −

+ − − − − + + + + − + + − − − + + + − + − + − − + − − + + − + − + + − − + − − + + + + − − − + − + − + − + + − −

Suppose without loss of generality that + + + + − − − − is in Π(V ) \ Λ. This rules out

16 weights which have three plus signs in any of the first four positions, i.e., the weights

+ + + − + −−− . We shall consider separately the two cases that the weight − − − − + + + +

either lies in or not in the eigenspace.

Suppose first that − − − − + + + + lies in Π(V ) \ Λ. As before, this rules out 16 more

weights, namely + −−− + + + − . There are 36 weights remaining, all being of the form

+ + −− + + −− . Suppose without loss that ++−−++−− lies in Π(V )\Λ. This rules out the

8 weights + + − − + − + − and + − + − + + − −. Looking at the cliques above, we must have

the weight −−+ + + +−− in Π(V ) \Λ which rules out −−+ +−−+ + whence + +−−−−+ + is

ruled out also. There are now 6 cliques (the 1st, 2nd, 7th, 8th, 9th and 14th reading left-

to-right above) with one weight present in Π(V ) \Λ and there are two weights remaining

in each of the other 8 cliques. The 6 weights that we are assuming are present in Π(V )\Λ

are invariant under H = 〈wα1
, wα3

, wα5
, wα7

〉 which has a single orbit on the remaining

weights. Therefore by applying a suitable element of H we may assume that +−+−+−+−

lies in Π(V ) \ Λ. This determines which weights in the other seven pairs may lie in

Π(V ) \Λ. Thus we may have the following configuration of 14 weights lying in Π(V ) \Λ.

+ + + + − − − − + + − − + + − − + + − − − − + + + − + − + − + − + − + − − + − + + − − + − + + − + − − + + − − +

− − − − + + + + − − + + − − + + − − + + + + − − − + − + − + − + − + − + + − + − − + + − + − − + − + + − − + + −

Suppose that s = diag(λ1, . . . , λ8) ∈ S∅∩T . Since the pairs ++−−++−− and ++−−−−++,

+−+−+−+− and +−+−−+−+, and −++−+−−+ and −++−−++− are in Π(V )\Λ we have

(α5 + 2α6 + α7)(s) = (α5 + α7)(s) = (α5 − α7)(s) = 1.
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Thus 2α6(s) = 2α7(s) = 1 implying that α6(s) = α7(s) = −1 since by assumption

α6(s) 6= 1. It follows that the root α6 + α7 ∈ Φs, hence the configuration of weights is

not possible. It follows that if a given weight is present in Π(V ) \ Λ, then its antipodal

weight where plus and minus signs are interchanged cannot lie in Π(V ) \ Λ.

Now we are assuming that −−−−++++ lies in Λ. If no weight in Π(V )\Λ has two plus

signs in two of the first four positions, i.e., all weights + + −− + + −− are in Λ then the 4th,

5th, 7th, 9th, 10th and 13th cliques above are ruled out, so there are at most 8 weights

in Π(V ) \ Λ. Thus we may assume that we must have at least one weight of this form,

take + + −− + + −− . This rules out 13 weights −− + + −− + + , + + −− + − + − , + − −− + + + −

and + − + − + + −−.

Suppose we have no weight of the form + − −− + − ++. Then there are only two weights

not ruled out in each of the 4th, 8th and 10th cliques above. Consider the 8th clique. We

are done if we have no weights in this clique in Π(V ) \ Λ so assume that we have one of

them. If −−−+−+ + + is in Π(V ) \Λ then the two weights in the 10th clique cannot be in

Π(V ) \Λ. Similarly, if −−+−−+ + + is in Π(V ) \Λ then the two weights in the 4th clique

cannot be in Π(V ) \ Λ. We may assume therefore, since H preserves the weights already

in Π(V ) \ Λ and has only one orbit on the remaining weights, that + − − − − + + + lies in

Π(V ) \ Λ. The following 26 weights are not ruled out from lying in Π(V ) \ Λ.

− + − − + − + + − + + − − + + − − + + − − − + + − − + + + − + −

− − + + + + − − − − + − + + + − − − + + − + + − − − + − + − + +

+ − + − + − + −

If no weights of the form + − + − + − + − lie in Π(V ) \ Λ then there are at most 12

weights in Π(V ) \ Λ: 3 from the three weights we are assuming are present, at most 2

from the 2nd column, at most 2 from both sets of weights in the 3rd column above, at

most 1 from both sets of weights in the 4th column and at most 1 from the 5th column.

Therefore we must have at least one of these 8 weights present in Π(V )\Λ. The subgroup

J = 〈wα3
, wα7

〉 preserves the set of weights already in Π(V ) \ Λ and has an orbit of size

2 on the remaining weights. Thus we may assume by applying appropriate elements of J

that either + − + − + − + − or − + + − + − + − lies in Π(V ) \ Λ. In the former case, there are

20 weights remaining that have not been ruled out from being in Π(V ) \ Λ. In the 4th
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clique above only the weight −++−−+−+ remains which we may assume lies in Π(V ) \Λ,

but this means that no weight in the 13th clique can lie in Π(V ) \ Λ. The latter case is

slightly more difficult. There are 17 weights remaining which can be rearranged in eight

cliques as follows.
+ − + − + − − + + − − + + − + − − + − + − + + − − + + − − + − + − + − + + − − + − − + + − − + + − − + + + + − −

+ − − + + − − + − − − + + + + − − − + + − + + − − + − + − + − + − + − + − − + + − − − + + − + + − − + + + − − +

− − + + − + − +

− − + − + + − +

− − − + + + − +

Hence, assuming that + + + +−−−−, + +−−+ +−−, +−−−−+ + + and −+ +−+−+− lie in

Π(V ) \Λ together with one weight from each of the above eight cliques, we are done.

We are unable to show that d
A2

3
ω4 > 33 here. The clusters are shown in the table below.

It may be the case that the clusters of size 36 and both of size 1 lie in Π(V ) \Λ, in which

case we can only conclude that d
A2

3
ω4 = 32 and 2α4(s) = 1 whence α4(s) = −1. The set

SA2
3

consists of matrices s = diag(a, a, a, a, b, b, b, b) for a, b ∈ K∗ with a4b4 = 1 and, as

just mentioned, it may be the case that a = −b.

X = A2
3

Cluster Cluster size

+ + + + | − − −− : 1

+ + + − | + −−− : 16

+ + −− | + + −− : 36

+ −−− | + + + − : 16

−−−− | + + + + : 1

5.4 Centraliser analysis for L(ω3)

In this section we shall consider the modules L(ω3) for n > 8, L(ω1 + ω2) for n > 5 and

L(3ω1) for n > 5.

First, suppose that the largest rank of a component in the root subsystem X ∈ I is at

least n−k+1 where n > 2k−2. We claim that there are at most k−1 orthogonal roots not

in Φs. The possible centraliser types are determined by taking subsystems of the extended

Dynkin diagram. Suppose that the root subsystem of largest rank in X is An−k+1 where

X contains the simple roots αi+1, . . . , αn−j for 0 6 i 6 k − 1 and j = k − i − 1. Then
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either αi /∈ Φs for i > 1 or αn−j+1 /∈ Φs for j > 1. A maximal set of orthogonal roots not

in Φs is

αi αn−j+1

αi−1 + αi + αi+1 αn−j + αn−j+1 + αn−j+2

...
...

α1 + · · · + αi + · · · + α2i−1 αn−2j+2 + · · · + αn−j+1 + · · · + αn

There are i + j = k − 1 such roots.

Lemma 5.12. Let G act on the irreducible module L(ω3) for n > 14. Then (♦) holds for

each X ∈ I.

Proof. For a given n, each weight in the Weyl group orbit of ω3 can be written as an

ordered string of 3 plus signs and n − 2 minus signs; there are
(

n+1
3

)

such weights. The

number of weights in W.ω3 orthogonal to α1 is n−1+
(

n−1
3

)

so that |Λ| > 1
2
(n−1)(n−2).

There are two orthogonal roots outside Φs provided X 6= An−1. If X = An−1 with

simple roots α1, . . . , αn−1 then there are two clusters, the first containing weights whose

last sign is plus and the second containing those whose last sign is minus; so the cluster

sizes are
(

n
2

)

and
(

n
3

)

, whence dAn−1

ω3
>
(

n
2

)

> 2n = eAn−1

ω3
. Therefore, in this case, (♦)

holds for n > 6. There are 2(n − 3) +
(

n−3
3

)

weights orthogonal to both α1 and α3 so we

obtain an improved lower bound for |Λ|; we have |Λ| > n2 − 5n + 8.

There are three orthogonal roots not in Φs provided X 6= An−2 or a root subsystem

properly containing it. However, eAn−2

ω3
= 2(2n − 1) so (♦) holds in this case for n > 8.

Taking pairs of weights differing by α1, α3 or α5 we find that |Λ| > 1
2
(3n2 − 21n + 50).

There are four orthogonal roots not in Φs provided X 6= An−3 or a root subsystem

properly containing it. However, eAn−3

ω3
= 6(n− 1) so (♦) holds in this case for n > 9. We

now find that |Λ| > 2(n2 − 9n + 28) by considering orthogonal roots α1, α3, α5 and α7.

We may take five orthogonal roots outside Φs provided X 6= An−4 or a root subsystem
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properly containing it. Since eAn−4

ω3
= 4(2n−3) we find that (♦) holds for n > 10. There are

5(n−9)+
(

n−9
3

)

weights orthogonal to α1, α3, α5, α7 and α9 so that |Λ| > 5
2
(n2−11n+42)

which exceeds dim G for n > 16.

We may take a sixth orthogonal root outside the centraliser since eAn−5

ω3
= 10(n−2) so

that (♦) is satisfied for X = An−5 for n > 11 or a root subsystem properly containing it.

Thus assuming that the six orthogonal roots α1, α3, α5, α7, α9 and α11 are not in Φs we

find that |Λ| > 1
2

[(

15
3

)

− 6.3 − 1
]

= 218 or 1
2

[(

16
3

)

− 6.4 − 4
]

= 266 according as n = 14

or 15. Thus (♦) holds for all X ∈ I when n ∈ [14, 15].

We next consider L(ω3) for n ∈ [8, 13]. Here we shall be forced to consider in detail

the weights in W.ω3 for many different centraliser types.

Lemma 5.13. Let G act on the irreducible module L(ω3) for n ∈ [8, 13]. Then (♦) holds

for each X ∈ I when n ∈ [9, 13] and for each X ∈ I \ {A3
2, A4A3} when n = 8.

Proof. If n ∈ [12, 13] then, from the previous lemma, we can take six orthogonal roots

not in Φs. We see that |Λ| > 1
2

[(

13
3

)

− 6
]

= 140 for n = 12 and |Λ| > 1
2

[(

14
3

)

− 6.2
]

= 176

for n = 13. Thus (♦) holds provided |Φ(X)| > 16 or 6 according as n = 12 or 13.

If n = 10 or 11 we may take five orthogonal roots outside Φs in which case |Λ| >

1
2

[(

11
3

)

− 5
]

= 80 if n = 10 or 1
2

[(

12
3

)

− 10
]

= 105 if n = 11. Thus (♦) holds if |Φ(X)| >

110 − 80 = 30 for n = 10 or if |Φ(X)| > 132 − 105 = 27 for n = 11.

Similarly for n = 9 we may take four orthogonal roots α1, α3, α5 and α7 not in Φs.

The module has dimension
(

10
3

)

= 120 and there are 8 weights orthogonal to the four

roots. Thus |Λ| > 56 and (♦) holds provided |Φ(X)| > 90 − 56 = 34.

If n = 8 we wish to take four orthogonal roots not in Φs. We require (♦) to hold

for X = A5 and root subsystems properly containing it. We can take three orthogonal

roots, say α1, α3 and α5 to show that |Λ| > 1
2

[(

9
3

)

− 10
]

= 37 so (♦) holds provided

|Φ(X)| > 72 − 37 = 35. Therefore we need only consider X = A5 and A5A1, else |Φ(X)|

is large enough. If X = A5 then the two cliques + + + − −− : − − − , + + − − −− : + −− and

+−−−−− : + + − , −−−−−− : +++ show that dA5

ω3
> 58 > 42 = eA5

ω3
. If X = A5A1 then we may

again form two cliques indicated in the table below to show that dA5A1

ω3
> 42 > 40 = eA5A1

ω3
.
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(λ, n, X) = (ω3, 8, A5A1)

Cliques Cluster size l Cliques Cluster size l

+ + + −−− | − − : − 20 35 + −−−−− | + + : − 6 7

+ + −−−− | + − : − 30 + −−−−− | + − : + 12

+ + −−−− | − − : + 15 −−−−−− | + + : + 1

Finally we may also take α7 /∈ Φs and we see that |Λ| > 1
2
(84 − 4) = 40 whence (♦)

holds if |Φ(X)| > 72 − 40 = 32. There are 25 centraliser types to consider.

The following table lists the centraliser types requiring consideration for L(ω3) with

n ∈ [8, 13].

n Centraliser types
13 ∅, A1, A2

1, A3
1, A2

12 ∅, A1, A2
1, A3

1, A4
1, A5

1, A6
1; A2, A2A1, A2A

2
1, A2A

3
1, A2A

4
1, A2A

5
1, A2

2,
A2

2A1, A2
2A

2
1; A3, A3A1, A3A

2
1

11 ∅, A1, A2
1, A3

1, A4
1, A5

1, A6
1; A2, A2A1, A2A

2
1, A2A

3
1, A2A

4
1, A2

2, A2
2A1,

A2
2A

2
1, A2

2A
3
1, A3

2, A3
2A1, A4

2; A3, A3A1, A3A
2
1, A3A

3
1, A3A

4
1, A3A2, A3A2A1,

A3A2A
2
1, A3A

2
2, A3A

2
2A1, A2

3, A2
3A1; A4, A4A1, A4A

2
1, A4A

3
1, A4A2

10 ∅, A1, A2
1, A3

1, A4
1, A5

1; A2, A2A1, A2A
2
1, A2A

3
1, A2A

4
1, A2

2, A2
2A1,

A2
2A

2
1, A3

2, A3
2A1; A3, A3A1, A3A

2
1, A3A

3
1, A3A2, A3A2A1, A3A2A

2
1,

A3A
2
2, A2

3, A2
3A1, A2

3A2; A4, A4A1, A4A
2
1, A4A

3
1, A4A2, A4A2A1; A5

9 ∅, A1, A2
1, A3

1, A4
1, A5

1; A2, A2A1, A2A
2
1, A2A

3
1, A2

2, A2
2A1, A2

2A
2
1, A3

2;
A3, A3A1, A3A

2
1, A3A

3
1, A3A2, A3A2A1, A3A

2
2, A2

3, A2
3A1; A4, A4A1,

A4A
2
1, A4A2, A4A2A1, A4A3; A5, A5A1, A5A

2
1

8 ∅, A1, A2
1, A3

1, A4
1; A2, A2A1, A2A

2
1, A2A

3
1, A2

2, A2
2A1, A3

2; A3, A3A1,
A3A

2
1, A3A2, A3A2A1, A2

3; A4, A4A1,A4A
2
1, A4A2, A4A3; A5, A5A1

Table 5.2: Centraliser types requiring consideration for L(ω3) with n ∈ [8, 13]

We shall now consider the five centraliser types remaining for n = 13.

Suppose X = A2 with simple roots α1 and α2. There is a contribution of at least 30 to

|Λ| from the clique + + − : + −−−−−−−−−−. There can be at most five clusters with one

plus sign in the first three positions present in Π(V )\Λ, for example +−− : ++−−−−−−−−−,

+−− : −−++−−−−−−−, +−− : −−−−++−−−−−, +−− : −−−−−−++−−− and +−− : −−−−−−−−++−.

The remaining clusters of this form therefore contribute at least 150 to |Λ| so in total we

have dA2

ω3
> 180 > 176 = eA2

ω3
.

Suppose X = A3
1 with simple roots α1, α3 and α5. Consider cliques with one plus sign

in the first six positions. Assuming that it is in one of the first two positions there can be
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at most four cliques of this form lying in Π(V ) \Λ, for example +− |−−|−− : + +−−−−−− ,

+ − | − −| − − : − − + + − − − − , + − | − −| − − : − − − − + + −− and + − | − −| − − : − − − − − − ++.

The same is true taking the plus sign in the 3rd and 5th position so there are at least
[(

8
2

)

− 4
]

.2.3 = 144 weights in |Λ|. The cliques + − | + −| − − : + −−−−−−− ,

+−|−−|+− : + −−−−−−− and −−|+−|+− : + −−−−−−− contribute 7.4.3 = 84 to |Λ|, hence

(♦) holds since d
A3

1
ω3 > 228 > 176 = e

A3
1

ω3 .

Suppose X = A2
1 with simple roots α1 and α3; we have e

A2
1

ω3 = 178. Consider the

clusters with one plus sign in one of the first two positions and none in the 3rd and 4th

position. There can be at most five clusters lying in |Λ| since there are at most five distinct

weights of this form which do not have two plus signs in the same position. For example

we could take +− |−− : + +−−−−−−−− , +− |−− : −−+ +−−−−−− , +− |−− : −−−−+ +−−−− ,

+−|−− : −−−−−−++−− and +−|−− : −−−−−−−−++. Thus there are at least 80 weights in

|Λ| which we can double by considering clusters with one plus sign in one of the 3rd and

4th positions and none in the 1st and 2nd positions. The clique +− |+− : + −−−−−−−−−

contributes a further 36 weights to |Λ|. Thus we have d
A2

1
ω3 > 196 > 178 = e

A2
1

ω3 .

Suppose X = A1 with simple root α1. There can be at most six cliques with one

plus sign in the first two positions and two plus signs in the remaining positions lying in

Π(V ) \ Λ. There are 66 cliques in total of this form so |Λ| > 60.2 = 120. The collections

of cliques −− : + −− + + −−−−−−− , −− : + −−− + + −−−−−− and −− : + −−−− + + −−−−−

show that there are at least a further 3.7 + 4.6 + 5.5 = 70 weights in |Λ|. Thus we have

dA1

ω3
> 190 > 180 = eA1

ω3
.

Suppose X = ∅. The following table shows that d∅
ω3

> 197 > 182 = e∅
ω3

. We shall use

the notation + −− + + −−−−−−−−− to denote the three cliques +−− + + −−−−−−−−− ,

−+− + + −−−−−−−−− and −−+ + + −−−−−−−−− . The same notation is employed for

the other collections of cliques.

(λ, n, X) = (ω3, 13, ∅)

Collection of cliques Cluster size l Collection of cliques Cluster size l

+ −− + + −−−−−−−−− 1 27 + −−−−− + + −−−−−− 1 36

+ −−− + + −−−−−−−− 1 32 + −−−−−− + + −−−−− 1 35

+ −−−− + + −−−−−−− 1 35 + −−−−−−− + + −−−− 1 32
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The remaining cases for n ∈ [9, 12] are similar, and Appendix A contains the details

for n = 12. If n = 8 we can show that (♦) holds for all X ∈ I \ {A3
2, A4A3}; the argument

for X = ∅ is particularly involved. If X is either A3
2 or A4A3 then it is possible that

dX
ω3

= eX
ω3

. In the former case the clusters are given in the table below. It is possible for

the cluster of size 27 and the three clusters of size 1 to lie inside the eigenspace so that

d
A3

2
ω3 = 54 = e

A3
2

ω3 .

(λ, n, X) = (ω3, 8, A3
2
)

Clusters Cluster size Clusters Cluster size

+ + +| − − − | − −− : 1 + −−| − −− | + + − : 9

+ + −| + −− | − −− : 9 −−−| + + + | − − − : 1

+ + −| − −− | + −− : 9 −−−| + + − | + −− : 9

+ −−| + + − | − −− : 9 −−−| + −− | + + − : 9

+ −−| + −− | + −− : 27 −−−| − −− | + + + : 1

In the latter case there are just four clusters +++−−|−−−− :, ++−−−|+−−− :, +−−−−|++−− :

and −−−−−| + + + − : of size 10, 40, 30 and 4, respectively. The second and fourth cluster

may lie inside the eigenspace, ruling out the other clusters by the adjacency principle, so

dA4A3

ω3
= 40 = eA4A3

ω3
.

We complete this section by considering both L(ω1 + ω2) and L(3ω1) for n ∈ [5,∞).

Lemma 5.14. Let G act on the irreducible modules L(ω1 + ω2) and L(3ω1) (p > 3) for

n ∈ [5,∞). Then (♦) holds for each X ∈ I.

Proof. The result follows for both modules for n ∈ [9,∞) by Premet’s theorem and the

previous lemmas since ω3 < ω1 + ω2 < 3ω1.

Throughout this lemma for convenience we shall omit a factor of 1
n+1

on the coefficients

of weights. From Lübeck’s tables [18] we find that mω3
= 1 or 2 according as p = 3 or

p 6= 3.

Consider L(ω1 + ω2) for n = 8. Recall the calculation above for L(ω3) which shows

that we can take four roots outside Φs. We may use this if p 6= 3 for L(ω1 + ω2) to

conclude that |Λ| > 80 so (♦) is satisfied. If p = 3 we see from Figure 5.6 that |Λ| > 36.

Therefore we may assume that there are two orthogonal roots not in Φs, say α1 and α8.
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i ω |W.ω| mω

p 6= 3 p = 3
2 ω1 + ω2 n(n + 1) 1 1

1 ω3

`

n+1

3

´

2 1

Weight No. of l
strings strings p 6= 3 p = 3

µ2 (n − 1)(n − 2)
µ2 µ2 n n n

µ2 µ1 µ2 n − 1 2(n − 1) n − 1
µ1 (n − 1)(n − 2)(n − 3)

µ1 µ1
1

2
(n − 1)(n − 2) (n − 1)(n − 2) 1

2
(n − 1)(n − 2)

Lower bound on |Λ| n2 1

2
n(n + 1)

Figure 5.6: λ = ω1 + ω2 for n ∈ [3, 20]

The arrangements of weights below (with a factor of 1
9

omitted on each coefficient) and

the same arrangements with signs negated and coefficients reversed show that |Λ| > 44.

15 21 18 15 12 9 6 3 6 3 18 15 12 9 6 3 6 3 9 15 12 9 6 3 6 3 0 15 12 9 6 3 6 3 9 6 12 9 6 3 6 3 0 6 12 9 6 3

6 21 18 15 12 9 6 3 -3 3 18 15 12 9 6 3 -3 3 9 15 12 9 6 3 -3 3 0 15 12 9 6 3 -3 3 9 6 12 9 6 3 -3 3 0 6 12 9 6 3

-3 12 9 6 3 0 -3 3 6 12 9 6 3 0 -3 3 15 12 9 6 3 0 -3 3

-3 12 9 6 3 0 -3 -6 6 12 9 6 3 0 -3 -6 15 12 9 6 3 0 -3 -6

-3 3 9 6 3 0 -3 3 6 3 9 6 3 0 -3 3 6 3 9 6 3 9 6 3

-3 3 9 6 3 0 -3 -6 6 3 9 6 3 0 -3 -6 -3 3 9 6 3 9 6 3

6 3 0 -3 3 0 6 3 6 3 0 6 3 0 6 3 6 3 0 -3 -6 9 6 3 6 3 0 -3 3 9 6 3 6 3 0 -3 12 9 6 3 6 3 0 6 3 9 6 3

-3 3 0 -3 3 0 6 3 -3 3 0 6 3 0 6 3 -3 3 0 -3 -6 9 6 3 -3 3 0 -3 3 9 6 3 -3 3 0 -3 12 9 6 3 -3 3 0 6 3 9 6 3

6 3 9 6 3 0 6 3 -3 -6 9 6 3 0 -3 3 -3 3 0 6 3 0 -3 3 6 3 0 6 3 0 -3 3

-3 3 9 6 3 0 6 3 -3 -6 9 6 3 0 -3 -6 -3 3 0 6 3 0 -3 -6 6 3 0 6 3 0 -3 -6

Thus (♦) is satisfied for X = A5 and larger subsystems of A8 and we may assume

that there are four orthogonal roots, which we take to be α1, α3, α6 and α8, not in

Φs. We obtain the following weight nets with their contribution to |Λ| given in brackets:

· 3 · 6 3 0 -3 3 (2), · 21 18 15 12 9 6 3 (1), · 12 · 15 12 9 6 3 (3), · 3 · 15 12 9 6 3 (3), · 12 9 6 3 · 6 3 (3),

· 12 9 6 12 9 6 3 (1), -3 -6 · 15 12 9 6 3 (1), · 12 9 6 3 0 -3 · (3), · 3 · 6 3 · 6 3 (4), · 3 0 -3 12 9 6 3 (1),

-3 -6 · 6 12 9 6 3 (1), · 3 0 -3 3 · 6 3 (2), -3 -6 -9 6 3 · 6 3 (1), · 3 0 -3 -6 · 6 3 (3), · 3 · 6 3 0 -3 · (4),

-3 -6 · 6 3 · 6 3 (2), -3 -6 · -3 12 9 6 3 (1) and -3 -6 · -3 3 · 6 3 (2).

Taking these weight nets together with the nets obtained by negating signs and reversing

coefficients we have |Λ| > 76, so (♦) is satisfied for each X ∈ I.

Consider L(ω1 +ω2) for n = 7. From Figure 5.6 and (♦) we can assume that there are

two orthogonal roots not in Φs; we may take these to be α1 and α7. We provide weight

nets below with weights in W.ω3 italicised since these have multiplicity 2 when p 6= 3.

Note that we omit a factor of 1
8

on each coefficient.
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1 × 2 nets: · 18 15 12 9 6 3, · 2 15 12 9 6 3, · 2 -1 12 9 6 3, · 2 -1 -4 9 6 3, · 2 -1 -4 -7 6 3,

· 2 7 12 9 6 3, · 2 7 4 9 6 3, · 2 7 4 1 6 3, · 2 -1 4 9 6 3, · 2 -1 -4 1 6 3, · 2 -1 4 1 6 3

2 × 2 nets: · 2 7 4 1 -2 ·, · 2 -1 4 1 -2 ·

1 × 3 nets: · 10 15 12 9 6 3, · 10 7 12 9 6 3, · 10 7 4 9 6 3, · 10 7 4 1 6 3

2 × 3 nets: · 10 7 4 1 -2 ·

We remark that the 1 × 3 and 2 × 3 weight nets consist of strings of the form µ2 µ1

µ2. Taking these weight nets together with the corresponding ones with weights negated

and coefficients reversed we have |Λ| > 74, 76 or 44 according as p 6= 2, 3, p = 2 or

p = 3. Hence we may assume that p = 3. We see that (♦) holds for X = A4 and larger

subsystems of A7 so we may assume that α1, α3, α5 and α7 do not lie in Φs. The weight

nets (up to negation and reversing coefficients) together with their contribution to the

codimension of the eigenspace in brackets are as follows:

· 18 15 12 9 6 3 (1), -3 -6 · 12 9 6 3 (1), · 10 · 12 9 6 3 (3), · 10 7 4 · 6 3 (3), · 2 · 12 9 6 3 (3),

· 10 7 4 1 -2 · (3), · 2 -1 -4 · 6 3 (3), -3 -6 · 4 · 6 3 (3), · 2 · 4 · 6 3 (4) and · 2 · 4 1 -2 · (4).

Thus |Λ| > 56 and (♦) holds unless X = ∅. If X = ∅ then we can arrange the weights

into cliques to show that d∅
ω1+ω2

> 58 > 56 = e∅
ω1+ω2

; we use the eight cliques given

below together with the counterparts of the first four which are obtained by reversing the

coefficients and negating.
13 18 15 12 9 6 3, 5 18 15 12 9 6 3, . . . , 5 10 7 4 1 -2 -5 13 10 7 12 9 6 3, . . . , 13 10 7 4 1 -2 -5

5 2 15 12 9 6 3, . . . , 5 2 7 4 1 -2 -5 -3 10 15 12 9 6 3, . . . , -3 10 7 4 1 -2 -5

-3 2 7 4 9 6 3, -3 -6 7 4 9 6 3, -3 -6 -1 4 9 6 3, -3 -6 -1 -4 9 6 3, -3 -6 -1 -4 1 -2 3

-3 -6 -9 4 9 6 3, . . . , -3 -6 -9 4 1 -2 -5 5 2 -1 -4 1 6 3, . . . , -3 -6 -9 -12 -7 -2 3

-3 2 -1 -4 1 -2 -5, . . . , -3 -6 -9 -12 1 -2 -5

Consider L(ω1 + ω2) for n = 6. From Figure 5.6 and using condition (♦), as before,

we can assume that there are two orthogonal roots not in Φs; take these to be α1 and α6.

We provide weight nets below with weights in W.ω3 italicised. Note that we omit a factor

of 1
7

on each coefficient.
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1 × 2 nets: · 15 12 9 6 3, · 1 12 9 6 3 , · 1 -2 9 6 3, · 1 -2 -5 6 3, · 1 5 9 6 3, · 1 5 2 6 3, · 1 -2 2 6 3

2 × 2 nets: · 1 5 2 -1 ·, · 1 -2 2 -1 ·

1 × 3 nets: · 8 12 9 6 3 , · 8 5 9 6 3, · 8 5 2 6 3

2 × 3 net: · 8 5 2 -1 ·

Using these weight nets together with the corresponding ones with weights negated

and coefficients reversed (although note that the net · 1 -2 2 -1 · is its own counterpart)

we have |Λ| > 52, 54 or 32 according as p 6= 2, 3, p = 2 or p = 3. Hence we may assume

that p = 3. We see that (♦) holds for X = A4 and larger subsystems of A6 so we may

assume that α1, α3 and α6 do not lie in Φs. The weight nets are as follows.

2 × 1 × 1, 1 × 2 × 1, 1 × 1 × 2 nets: · 15 12 9 6 3, -3 -6 · -5 6 3, -3 -6 -9 -12 -1 ·,

· 1 -2 -5 6 3, -3 -6 · 9 6 3, -3 -6 -9 -12 -15 ·

1 × 2 × 2, 2 × 1 × 2, 2 × 2 × 1 nets: -3 -6 · -5 -1 ·, · 1 -2 -5 -1 ·, · 1 · 2 6 3

3 × 1 × 1, 1 × 3 × 1, 1 × 1 × 3 nets: · 8 5 2 6 3, -3 -6 · 2 6 3, -3 -6 -9 -12 -8 ·

1 × 2 × 3, . . . , 3 × 2 × 1 nets: -3 -6 · -5 -8 ·, -3 -6 · 2 -1 ·, · 1 -2 -5 -8 ·, · 1 · 9 6 3, · 8 5 2 -1 ·, · 8 · 9 6 3

2 × 2 × 2 net: · 1 · 2 -1 ·

Thus |Λ| > 37 and (♦) holds unless X = ∅, A1 or A2
1.

Suppose that X = A2
1 with simple roots α1 and α6. From the table below, by arranging

clusters into cliques, we have d
A2

1

ω1+ω2
> 39 > 38 = e

A2
1

ω1+ω2
.

(λ, n, X) = (ω1 + ω2, 6, A2
1
)

Cliques Cluster size l Cliques Cluster size l

· 15 12 9 6 3 2 11 · 1 -2 -5 -8 · 6 11

· 8 12 9 6 3 3 -3 -6 -2 -5 -8 · 3

· 8 5 9 6 3 3 -3 -6 -9 -5 -8 · 3

· 8 5 2 6 3 3 -3 -6 -9 -12 -8 · 3

· 8 5 2 -1 · 6 -3 -6 -9 -12 -15 · 2

· 1 12 9 6 3 2 6 · 1 -2 -5 -1 · 4 6

· 1 5 9 6 3 2 -3 -6 -2 -5 -1 · 2

· 1 5 2 6 3 2 -3 -6 -9 -5 -1 · 2

· 1 5 2 -1 · 4 -3 -6 -9 -12 -1 · 2

· 1 -2 9 6 3 2 4 -3 -6 -2 2 6 3 1 1

· 1 -2 2 6 3 2 -3 -6 -9 2 6 3 1

· 1 -2 2 -1 · 4

If X = A1 with simple root α1 then dA1

ω1+ω2
> 41 > 40 = eA1

ω1+ω2
from the table below.
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(λ, n, X) = (ω1 + ω2, 6, A1)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

· 15 12 9 6 3 2 14 · 1 12 9 6 3 2 2 · 1 5 2 -1 -4 2 2

· 8 12 9 6 3 3 · 1 5 9 6 3 2 · 1 -2 2 -1 -4 2

· 8 5 9 6 3 3 · 1 5 2 -1 3 2 2 · 1 -2 -5 -8 3 2 3

· 8 5 2 6 3 3 · 1 -2 2 -1 3 2 -3 -6 -2 -5 -8 3 1

· 8 5 2 -1 3 3 · 1 -2 -5 -8 -4 2 2 -3 -6 -9 -5 -8 3 1

· 8 5 2 -1 -4 3 · 1 -2 -5 -8 -11 2 -3 -6 -9 -12 -8 3 1

· 1 5 2 6 3 2 8 -3 -6 -2 2 6 3 1 4 -3 -6 -2 -5 -8 -4 1 4

· 1 -2 2 6 3 2 -3 -6 -9 2 6 3 1 -3 -6 -9 -5 -8 -4 1

· 1 -2 -5 6 3 2 -3 -6 -9 -5 6 3 1 -3 -6 -9 -12 -8 -4 1

· 1 -2 -5 -1 3 2 -3 -6 -9 -5 -1 3 1 -3 -6 -9 -12 -15 -4 1

· 1 -2 -5 -1 -4 2 -3 -6 -9 -5 -1 -4 1 -3 -6 -9 -12 -15 -11 1

If X = ∅ then we see that d∅
ω1+ω2

> 43 > 42 = e∅
ω1+ω2

from the cliques below, together

with the counterparts of the first three cliques given (obtained by reversing the coefficients

and negating).
11 15 12 9 6 3, 4 15 12 9 6 3, . . . , 4 8 5 2 -1 -4 11 8 12 9 6 3, . . . , 11 8 5 2 -1 -4 -3 8 12 9 6 3, . . . , -3 8 5 2 -1 -4

4 1 5 9 6 3, -3 1 5 9 6 3, . . . , -3 -6 -2 2 -1 -4 -3 -6 -9 2 6 3, . . . , -3 -6 -9 -5 -1 -4 4 1 -2 9 6 3, -3 1 -2 9 6 3

4 1 -2 -5 6 3, . . . , -3 -6 -2 -5 6 3 4 1 12 9 6 3, -3 1 12 9 6 3 4 1 5 2 6 3, . . . , -3 -6 5 2 6 3

Finally, consider L(ω1 +ω2) for n = 5. We repeat the same procedure as above. From

Figure 5.6 and (♦) we can take α1, α5 /∈ Φs. We provide weight nets below with weights

in W.ω3 italicised. We have omitted a factor of 1
6

on each coefficient.

1 × 2 nets: · 12 9 6 3, · 0 9 6 3 , · 0 -3 6 3, · 0 3 6 3 2 × 2 net: · 0 3 0 ·

1 × 3 nets: · 6 9 6 3 , · 6 3 6 3 2 × 3 net: · 6 3 0 ·

Using these weight nets together with the corresponding ones with weights negated

and coefficients reversed we have |Λ| > 34, 36 or 22 according as p 6= 2, 3, p = 2 or p = 3.

Thus (♦) is satisfied if p 6= 3 and we may assume that p = 3. We see that (♦) holds for

X = A3 and larger subsystems of A5 so we may assume that α1, α3 and α5 do not lie in

Φs. The weight nets are as follows.

1 × 1 × 2, 1 × 2 × 1, 2 × 1 × 1 nets: -3 -6 -9 -12 ·, -3 -6 · 6 3, · 12 9 6 3

1 × 2 × 3, . . . , 3 × 2 × 1 nets: -3 -6 · -6 ·, -3 -6 · 0 ·, · 0 -3 -6 ·, · 0 · 6 3, · 6 3 0 ·, · 6 · 6 3

2 × 2 × 2 net: · 0 · 0 ·

Thus |Λ| > 25 and (♦) holds unless X = ∅, A1 or A2
1.
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Suppose that X = A2
1 with simple roots α1 and α5. From the table below, by arranging

clusters into cliques, we have d
A2

1

ω1+ω2
> 30 > 28 = e

A2
1

ω1+ω2
.

(λ, n, X) = (ω1 + ω2, 5, A2
1
)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

· 12 9 6 3 2 5 -3 -6 -3 -6 · 3 5 · 6 3 0 · 6 14

· 6 9 6 3 3 -3 -6 -9 -6 · 3 · 0 3 0 · 4

· 6 3 6 3 3 -3 -6 -9 -12 · 2 · 0 -3 0 · 4

· 0 9 6 3 2 2 -3 -6 -3 0 · 2 2 · 0 -3 -6 · 6

· 0 3 6 3 2 -3 -6 -9 0 · 2

· 0 -3 6 3 2 1 -3 -6 3 6 3 1 1

-3 -6 -3 6 3 1 -3 -6 3 0 · 2

If X = A1 with simple root α1 then dA1

ω1+ω2
> 29 > 28 = eA1

ω1+ω2
from the table below.

(λ, n, X) = (ω1 + ω2, 5, A1)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

· 12 9 6 3 2 11 · 0 -3 -6 -3 2 4 · 0 3 6 3 2 4

· 6 9 6 3 3 -3 -6 -3 -6 -3 1 -3 -6 3 6 3 1

· 6 3 6 3 3 -3 -6 -9 -6 -3 1 -3 -6 -3 6 3 1

· 6 3 0 3 3 -3 -6 -9 -12 -3 1 -3 -6 -3 0 3 1

· 6 3 0 -3 3 -3 -6 -9 -12 -9 1 -3 -6 -3 0 -3 1

· 0 -3 -6 -9 2 2 · 0 -3 6 3 2 4 · 0 9 6 3 2 4

-3 -6 -3 -6 -9 1 · 0 -3 0 3 2 · 0 3 0 3 2

-3 -6 -9 -6 -9 1 · 0 -3 0 -3 2 · 0 3 0 -3 2

If X = ∅ then d∅
ω1+ω2

> 32 > 30 = e∅
ω1+ω2

from the cliques below.

9 12 9 6 3, 3 12 9 6 3, . . . , 3 6 3 0 -3 3 0 -3 -6 -3, -3 0 -3 -6 -3, . . . , -3 -6 -9 -12 -9

9 6 9 6 3, . . . , 9 6 3 0 -3 3 0 -3 -6 -9, . . . , -3 -6 -9 -6 -9 3 0 9 6 3, . . . , 3 0 3 0 -3 3 0 -3 0 -3, . . . , -3 -6 -9 0 -3

-3 6 9 6 3, . . . , -3 0 3 0 -3 3 0 -3 0 3, . . . , -3 -6 -9 -6 3 3 0 -3 6 3, . . . , -3 -6 -3 6 3

The lemma follows for L(3ω1) with n ∈ [5, 8] by Premet’s theorem.

5.5 Groups of low rank

In this section we shall consider in turn the groups of type An for n ∈ [1, 4]. The

calculations for each irreducible G-module are similar to those when we considered groups
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of higher rank, so we can withhold the full details of calculations for most of them. It will

suffice to exhibit the results of the calculations in tables. As in the previous section, on

the left hand side are tables with information on each module pertaining to weight orbits

and multiplicities. This information is taken from [18]. On the right hand side are tables

detailing the weight strings that occur and their number. From this we can calculate a

lower bound for the codimension of the eigenspace.

5.5.1 Case I: n = 4

We begin with the module with highest weight ω2 + ω3; we shall give full details of the

calculations performed.

Lemma 5.15. Let G be as above acting on the irreducible module L(ω2 + ω3). Then (†)

holds when p 6= 3 and (♦) is satisfied for all X ∈ I when p = 3.

Proof. From Lübeck’s tables we see that there are three orbits on weights, with dominant

weights ω2 + ω3, ω1 + ω4 and 0; we label these orbits with i = 2, 1, 0 respectively.

Given µ ∈ W.(ω2 +ω3), we have 〈µ, α〉 = 0, 1 and 2 for four roots α in each case. Since

|W.(ω2 + ω3)| = |W (A4)|

|W (A2
1
)|

= 30, we see that given α ∈ Φ(A4) there are 30.4
20

= 6 weights

µ ∈ W.(ω2 +ω3) orthogonal to α, there are 6 weights with weight string µ, µ−α and there

are 6 weights with weight string µ, µ − α, µ − 2α. Given µ′ ∈ W.(ω1 + ω4), we calculate

that 〈µ′, α〉 = 0 and 〈µ′, α〉 = 1 for 6 roots α in each case, and 〈µ′, α〉 = 2 for 1 root

α. We have |W.(ω1 + ω4)| = |W (A4)|
|W (A2)|

= 20. Given α ∈ Φ(A4) there are 20.6
20

= 6 weights

µ′ ∈ W.(ω1 +ω4) orthogonal to α, there are 6 weights µ′ ∈ W.(ω1 +ω4) with weight string

µ1, µ1−α and there is 1 weight µ′ ∈ W.(ω1 +ω4) with weight string µ′, µ′−α, µ′−2α. We

note that the weights in W.(ω1 +ω4) orthogonal to α are contained in the weight string of

length three when 〈µ, α〉 = 2. Taking multiplicities into account, from each weight string

we find the minimal value of |Λ| (or equivalently, the maximum value of Π(ω2 +ω3)\ |Λ|).

The calculations detailed are displayed in Figure 5.7.

When p 6= 3 we find that (†) holds. If p = 3 then |Λ| > 19 and we see that (♦) is

satisfied unless X = ∅. The five cliques given, together with their negative counterparts,
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i ω |W.ω| mω

p 6= 2, 3 p = 2 p = 3
2 ω2 + ω3 30 1 1 1
1 ω1 + ω4 20 2 2 1
0 0 1 5 4 1

Weight No. of l
strings strings p 6= 2, 3 p = 2 p = 3

µ2 6
µ2 µ2 6 6 6 6

µ2 µ1 µ2 6 12 12 6
µ1 µ1 6 12 12 6

µ1 µ0 µ1 1 4 4 1
Lower bound on |Λ| 34 34 19

Figure 5.7: λ = ω2 + ω3

show that d∅
ω2+ω3

> 2.12 = 24 > 20 = e∅
ω2+ω3

.

1 2 2 1 0 1 1 1 1 0 1 1 1 1 0 1 1 2 1 1
1 1 2 1 0 0 1 1 1 0 1 0 1 0 0 1 1 2 1 0
1 1 1 1 0 0 0 1 1 0 0 0 1 0 -1 0 1 1 0 0
1 1 1 0 0 1 0 0

In the next lemma we deal with irreducible modules parameterised by highest weights

with level 4. We shall see that in low rank cases it is often necessary to list all of the

weights that occur for a given module.

Lemma 5.16. If G acts on L(2ω1 + ω2) (p > 2) then (†) holds, and if it acts on L(4ω1)

(p > 3), L(ω1 + ω3) or L(2ω2) (p > 2) then (♦) is satisfied for all X ∈ I.

Proof. The calculations involving weight strings for L(2ω1 +ω2) and L(4ω1) are contained

in Figures 5.8 and 5.9.

i ω |W (ω)| mω

p 6= 2
4 2ω1 + ω2 20 1
3 2ω2 10 1
2 ω1 + ω3 30 2
1 ω4 5 3

Weight No. of l
strings strings p 6= 2

µ4 6
µ4 µ4 3 3

µ4 µ3 µ4 1 1
µ4 µ2 µ2 µ4 3 9

µ3 3
µ3 µ2 µ3 3 6

µ2 3
µ2 µ2 6 12

µ2 µ1 µ2 3 9
µ1 µ1 1 3

Lower bound on |Λ| 43

Figure 5.8: λ = 2ω1 + ω2

From the Figures we see that (†) is satisfied for L(2ω1 + ω2) and (♦) holds for all

X ∈ I for L(4ω1).
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i ω |W.ω| mω

p 6= 2, 3
5 4ω1 5 1
4 2ω1 + ω2 20 1
3 2ω2 10 1
2 ω1 + ω3 30 1
1 ω4 5 1

Weight No. of l
strings strings p 6= 2, 3

µ5 3
µ5 µ4 µ3 µ4 µ5 1 2

µ4 6
µ4 µ4 3 3

µ4 µ2 µ2 µ4 3 6
µ3 3

µ3 µ2 µ3 3 3
µ2 3

µ2 µ2 6 6
µ2 µ1 µ2 3 3

µ1 µ1 1 1
Lower bound on |Λ| 24

Figure 5.9: λ = 4ω1

Now consider L(ω1 + ω3) and L(2ω2); the usual calculations involving weight strings

are contained in Figures 5.10 and 5.11. We note that although ω1 + ω3 < 2ω2 it will not

suffice to consider only ω1 +ω3 and use Premet’s theorem. The multiplicity of each weight

in W.(ω4) for L(ω1 + ω3) is higher than that for L(2ω2).

i ω |W.ω| mω

p 6= 2 p = 2
2 ω1 + ω3 30 1 1
1 ω4 5 3 2

Weight No. of l
strings strings p 6= 2 p = 2

µ2 6
µ2 µ2 9 9 9

µ2 µ1 µ2 3 6 6
µ1 µ1 1 3 2

Lower bound on |Λ| 18 17

Figure 5.10: λ = ω1 + ω3

i ω |W.ω| mω

p 6= 2, 3 p = 3
3 2ω2 10 1 1
2 ω1 + ω3 30 1 1
1 ω4 5 2 1

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ3 4
µ3 µ2 µ3 3 3 3

µ2 3
µ2 µ2 9 9 9

µ2 µ1 µ2 3 6 3
µ1 µ1 1 2 1

Lower bound on |Λ| 20 16

Figure 5.11: λ = 2ω2

Let us consider the module L(2ω2); we first assume p = 3. We see that |Λ| > 16 and

(♦) is satisfied if |Φ(X)| > 20 − 16 = 4, so the centraliser types requiring consideration

are X = ∅, A1 or A2
1. The weight nets for X = A2

1 are given in Figure 5.12.

Suppose X = A2
1 with simple roots α1, α4; we have e

A2
1

2ω2
= 16. The weight net dia-

gram (Figure 5.12) displays the clusters of weights. The weights in italics and bold lie
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6 12 8 4

4̄ 8̄ 12 6̄ 4̄ 8̄ 7̄ 6̄ 4̄ 8̄ 7̄ 1̄ 4̄ 8̄ 2̄ 6̄ 4̄ 8̄ 2̄ 1̄ 4̄ 8̄ 2̄ 4

6 7 8 4 6 7 3 1̄ 6 7 3 4
1 7 8 4 1 7 3 1̄ 1 7 3 4

1 3̄ 7̄ 6 1 3̄ 7̄ 1̄ 1 3̄ 3 1̄ 1 3̄ 3 4 1 3̄ 2̄ 6̄ 1 3̄ 2̄ 1̄ 1 3̄ 2̄ 4
4̄ 3̄ 7̄ 6̄ 4̄ 3̄ 7̄ 1̄ 4̄ 3̄ 3 1̄ 4̄ 3̄ 3 4 4̄ 3̄ 2̄ 6̄ 4̄ 3̄ 2̄ 1̄ 4̄ 3̄ 2̄ 4

6 2 8 4 6 2 3 1 6 2 3 4 6 2 2̄ 6̄ 6 2 2̄ 1̄ 6 2 2̄ 4

1 2 8 4 1 2 3 1̄ 1 2 3 4 1 2 2̄ 6̄ 1 2 2̄ 1̄ 1 2 2̄ 4
4̄ 2 8 4 4̄ 2 3 1̄ 4̄ 2 3 4 4̄ 2 2̄ 6̄ 4̄ 2 2̄ 1̄ 4̄ 2 2̄ 4

Figure 5.12: Weight nets for λ = 2ω2 and X = A2

1

in W.(2ω2) and W.ω4 respectively, and we set x = −x for a coefficient x of a weight.

Suppose we have any weight in the cluster · 2 -2 · in Π(V ) \ Λ, then the clusters

· -3 -2 ·, · 2 3 ·, · 7 3 ·, · -3 -7 ·

lie in Λ by the adjacency principle, hence d
A2

1

2ω2
> 20. So assume that this is not the case.

Suppose we have a weight from the cluster · 2 3 · in Π(V ) \Λ. Then we cannot have any

weight in the clusters · -3 3 ·, · 2 8 ·, · 7 3 · in Π(V ) \ Λ, so d
A2

1

2ω2
> 9 + 11 = 20. Hence,

we must have the cluster · 2 3 · in Λ and by symmetry, the cluster · -3 -2 · must lie in Λ.

We have now eliminated three clusters of size 9, 6 and 6, so we are done.

Suppose X = A1 with simple root α4; we have eA1

2ω2
= 18. We can have at most one of

the clusters in Π(V ) \ Λ from each of the following cliques:

1 -3 -7 · 1 2 -2 · 6 7 3 · 6 2 3 · -4 2 3 · 1 2 3 · 6 7 8 4
-4 -3 -7 · 1 -3 -2 · 1 7 3 · 6 2 -2 · -4 2 -2 · 1 -3 3 · 1 7 8 4
-4 -8 -7 · -4 -3 -2 · -4 -3 3 · 1 2 8 4

If we ignore any weights in W.(2ω2) we obtain dA1

2ω2
> 4 + 6 + 2 + 1 + 1 + 4 + 2 = 20

and we are done.

Suppose that X = ∅; we have e∅
2ω2

= 20. We can form the following seven cliques:

6 7 8 4 6 2 3 4 -4 2 3 4 1 2 3 4 1 2 -2 4 -4 -8 -2 -1 1 2 -2 -6
1 7 8 4 6 2 3 -1 -4 2 3 -1 1 2 3 -1 1 -3 -2 4 -4 -8 -7 -1 1 -3 -2 -6
1 2 8 4 6 2 -2 -1 -4 2 -2 -1 1 2 -2 -1 -4 -3 -2 4 -4 -8 -7 -6 -4 -3 -2 -6

1 -3 -2 -1

-4 -3 -2 -1

We can see from the weight net above that the 12 remaining weights in the orbit of

ω1 + ω3 (those of the form · -3 -7 ·, · 7 3 · and · -3 3 ·) can be taken in pairs, with each

weight in a pair differing by a root. Here at least one of the two weights in each pair of

weights is in Λ implying that d∅
2ω2

> 22.

When p 6= 2, 3, the 5 weights in the orbit W.(ω4) have multiplicity 2 and we know

that |Λ| > 20 whence the only centraliser type requiring further consideration is X = ∅.
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Clearly the same calculation as above for characteristic 3 deals with this possibility.

Finally, consider the module L(ω1+ω3). We find that |Λ| > 18 or 17 according as p 6= 2

or p = 2. The condition (♦) is satisfied unless X = ∅ or A1 for all characteristics. We

can use the exact same analysis as above for both of these possibilities since we avoided

using weights from the orbit W.(2ω2).

The next lemma deals with weights with level 3 and will complete the investigation

for groups of type A4.

Lemma 5.17. If G acts on L(2ω1+ω4) (p > 2) then (†) holds, and if it acts on L(ω1+ω2)

or L(3ω1) (p > 3) then (♦) is satisfied for all X ∈ I.

Proof. We perform the usual calculations for these modules. Considering weight strings

for L(ω1 + ω2) we obtain Figure 5.13.

i ω |W.ω| mω

p 6= 3 p = 3
2 ω1 + ω2 20 1 1
1 ω3 10 2 1

Weight No. of l
strings strings p 6= 3 p = 3

µ2 6
µ2 µ2 4 4 4

µ2 µ1 µ2 3 6 3
µ1 1

µ1 µ1 3 6 3
Lower bound on |Λ| 16 10

Figure 5.13: λ = ω1 + ω2

When p = 3, (♦) is satisfied provided that |Φ(X)| > 20 − 10 = 10 and so we

need to consider the centraliser types X = ∅, A1, A2
1, A2 and A2A1; when p 6= 3

only the first three of these possibilities need to be examined. Indeed, it will suf-

fice to consider the case p = 3. We shall omit a factor of 1
5

on each coefficient of a

weight. First suppose that X = A2A1 with simple roots α1, α3 and α4; there are four

clusters in this case. We list these with cluster size in brackets after each of them:

· 9 6 3 (2), · 4 · · (9), · -1 · · (12) and -3 -6 · · (7).

Assuming that the largest cluster · -1 · · is in Π(V )\Λ means that dA2A1

ω1+ω2
> 16 by the ad-

jacency principle; this exceeds eA2A1

ω1+ω2
= 12. Otherwise, applying the adjacency principle

to the clusters · 9 6 3 and · 4 · · we see that dA2A1

ω1+ω2
> 12 + 2 = 14, so (♦) is satisfied.
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If X = A2 with simple roots α3 and α4 then the clusters are

7 9 6 3 (1), 2 9 6 3 (1), 7 4 · · (3), 2 4 · · (3), -3 4 · · (3),

2 -1 · · (6), -3 -1 · · (6) and -3 -6 · · (7).

We can form three cliques with the clusters of size one, the clusters of sizes six and seven

and two of the clusters of size three. Hence dA2

ω1+ω2
> 1 + 12 + 3 = 16 > 14 = eA2

ω1+ω2
.

If X = A2
1 with simple roots α1 and α4 then e

A2
1

ω1+ω2
= 16 and there are nine clusters

· 9 6 3 (2), · 4 6 3 (3), · 4 1 · (6), · -1 6 3 (2), · -1 1 · (4),

· -1 -4 · (6), -3 -6 1 · (2), -3 -6 -4 · (3) and -3 -6 -9 · (2).

If the cluster · 4 1 · lies in Π(V ) \ Λ then the clusters

· 9 6 3, · 4 6 3, · -1 1 · and · -1 -4 ·

contribute to the codimension of the eigenspace. The remaining four clusters form two

cliques so we have d
A2

1

ω1+ω2
> 19. Thus we may assume that · 4 1 · lies in Λ and we may

assume the same for · -1 -4 · and we have d
A2

1

ω1+ω2
> 18 by forming cliques with six of the

remaining clusters, namely · 9 6 3 and · 4 6 3, · -1 6 3 and · -1 1 · and finally -3 -6 -4 ·

and -3 -6 -9 ·.

If X = A1 with Φs = {±α4} then the following cliques show that dA1

ω1+ω2
> 19 > 18 =

eA1

ω1+ω2
.

Clique Cluster size l Clique Cluster size l

7 9 6 3 1 2 2 4 6 3 1 1

7 4 6 3 1 -3 4 6 3 1

7 4 1 · 2 2 -1 6 3 1 1

2 9 6 3 1 3 -3 -1 6 3 1

2 4 1 · 2 2 -1 -4 · 3 8

-3 4 1 · 2 -3 -1 -4 · 3

2 -1 1 · 2 4 -3 -6 -4 · 3

-3 -1 1 · 2 -3 -6 -9 · 2

-3 -6 1 · 2

Similarly, if X = ∅ then the following cliques show that d∅
ω1+ω2

> 22 > 20 = e∅
ω1+ω2

.

7 4 6 3 7 9 6 3 -3 -1 1 3 2 -1 -4 3 2 -1 -4 -7 7 4 1 3 -3 4 6 3 -3 -1 6 3
2 4 6 3 2 9 6 3 -3 -1 1 -2 -3 -1 -4 3 -3 -1 -4 -7 7 4 1 -2 -3 4 1 3 -3 -6 1 3
2 -1 6 3 2 4 1 3 -3 -1 -4 -2 -3 -6 -4 3 -3 -6 -4 -7 2 -1 -4 -2 -3 4 1 -2 -3 -6 1 -2
2 -1 1 3 2 4 1 -2 -3 -6 -4 -2 -3 -6 -9 -2 -3 -6 -9 -7
2 -1 1 -2

Now we shall consider the module L(3ω1); the calculations are shown in Figure 5.14.
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i ω |W.ω| mω

p 6= 2, 3
3 3ω1 5 1
2 ω1 + ω2 20 1
1 ω3 10 1

Weight No. of l
strings strings p 6= 2, 3

µ3 3
µ3 µ2 µ2 µ3 1 2

µ2 6
µ2 µ2 3 3

µ2 µ1 µ2 3 3
µ1 1

µ1 µ1 3 3
Lower bound on |Λ| 11

Figure 5.14: λ = 3ω1

If the centraliser type satisfies 9 < |Φ(X)| then we are done; otherwise the centraliser

types requiring further consideration are the same as for L(ω1 + ω2) when p = 3. Since

ω1 + ω2 < 3ω1, the same analysis for L(ω1 + ω2) when p = 3 above deals with all the

centraliser types requiring consideration.

Finally, considering L(2ω1 + ω4) we see in Figure 5.15 that (†) holds for all character-

istics.

i ω |W.ω| mω

p 6= 2, 3 p = 3
3 2ω1 + ω4 20 1 1
2 ω2 + ω4 30 1 1
1 ω1 5 4 3

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ3 6
µ3 µ3 3 3 3

µ3 µ2 µ3 3 3 3
µ3 µ1 µ1 µ3 1 5 4

µ2 3
µ2 µ2 9 9 9

µ2 µ1 µ2 3 6 6
Lower bound on |Λ| 26 25

Figure 5.15: λ = 2ω1 + ω4

5.5.2 Case II: n = 3

There are six modules to consider here. We shall start with the four modules of highest

dimension.

Lemma 5.18. If G acts on L(2ω1+ω2) (p > 2) then (†) holds, and if it acts on L(2ω1+ω3)

(p > 2) or L(4ω1) (p > 3) then (♦) is satisfied for each X ∈ I.

Proof. It suffices to perform calculations involving weight strings. These are detailed for

each module in Figures 5.16-5.18. Considering L(2ω1 +ω2) we see that |Λ| > dim G so (†)
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is satisfied and considering L(2ω1 + ω3) and L(4ω1) we see in each case that |Λ| > |Φ(G)|

so that (♦) is satisfied for all centraliser types.

i ω |W.ω| mω

p 6= 2, 5 p = 5
3 2ω1 + ω3 12 1 1
2 ω2 + ω3 12 1 1
1 ω1 4 3 2

Weight No. of l
strings strings p 6= 2, 5 p = 5

µ3 2
µ3 µ3 2 2 2

µ3 µ2 µ3 2 2 2
µ3 µ1 µ1 µ3 1 4 3

µ2 µ2 3 3 3
µ2 µ1 µ2 2 4 4
Lower bound on |Λ| 15 14

Figure 5.16: λ = 2ω1 + ω3

i ω W.ω mω

p 6= 2, 3
4 4ω1 4 1
3 2ω1 + ω2 12 1
2 2ω2 6 1
1 ω1 + ω3 12 1
0 0 1 1

Weight No. of l
strings strings p 6= 2, 3

µ4 2
µ4 µ3 µ2 µ3 µ4 1 2

µ3 2
µ3 µ3 2 2

µ3 µ1 µ1 µ3 2 4
µ2 1

µ2 µ1 µ2 2 2
µ1 µ1 2 2

µ1 µ0 µ1 1 1
Lower bound on |Λ| 13

Figure 5.17: λ = 4ω1

i ω |W.ω| mω

p 6= 2
3 2ω1 + ω2 12 1
2 2ω2 6 1
1 ω1 + ω3 12 2
0 0 1 3

Weight No. of l
strings strings p 6= 2

µ3 2
µ3 µ3 2 2

µ3 µ2 µ3 1 1
µ3 µ1 µ1 µ3 2 6

µ2 1
µ2 µ1 µ2 2 4

µ1 µ1 2 4
µ1 µ0 µ1 1 3
Lower bound on |Λ| 20

Figure 5.18: λ = 2ω1 + ω2

Lemma 5.19. If G acts on the irreducible module L(3ω1) (p > 3) then (♦) is satisfied

for all X ∈ I.

Proof. From Figure 5.19 we see that |Λ| > 7 for p 6= 2, 3.

If |Φ(X)| > 5 then (♦) is satisfied so X = ∅, A1, A2
1 are the centraliser types requiring

further consideration. First consider the case X = A2
1 and note that e

A2
1

3ω1
= 8. There are
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i ω |W.ω| mω

p 6= 2, 3
3 3ω1 4 1
2 ω1 + ω2 12 1
1 ω3 4 1

Weight No. of l
strings strings p 6= 2, 3

µ3 2
µ3 µ2 µ2 µ3 1 2

µ2 2
µ2 µ2 2 2

µ2 µ1 µ2 2 2
µ1 µ1 1 1

Lower bound on |Λ| 7

Figure 5.19: λ = 3ω1

four clusters of the form · 6 3 (4), · 2 · (6), · -2 · (6) and -3 -6 · (4), where the number in

brackets indicates the size of the cluster and we omit a factor of 1
4

on each coefficient. If

a cluster of size 6 is in Π(V ) \ Λ then the adjacency principle shows that d
A2

1

3ω1
> 10. So

no cluster of size 6 can be present and we are done.

If X = A1 with simple root α3 then there are 10 clusters. Note that eA1

3ω1
= 10. If

the cluster of size 4 is in Π(V ) \ Λ then both clusters of size 3 must be in Λ and the

other clusters can be arranged in cliques as shown below so dA1

3ω1
> 11. Assuming that the

cluster of size 4 is in Λ, the clusters of size 3 form a clique and together with the other

cliques we find dA1

3ω1
> 12.
-3 -6 3 1 -2 3 -3 -2 3 1 6 3 9 6 3 5 2 3
-3 -6 -1 1 -2 -1 -3 -2 -1 5 2 -1
-3 -6 -5 1 -2 -5 -3 -2 -5 -3 6 3 5 6 3
-3 -6 -9 1 2 3

3 2 3 1 2 -1
-3 2 -1

If X = ∅ the following cliques show that d∅
3ω1

> 15 > 12 = e∅
3ω1

.

9 6 3 1 6 3 1 2 3 1 -2 3 1 -2 -5
5 6 3 -3 6 3 1 2 -1 -3 -2 3 -3 -2 -5
5 2 3 -3 2 3 1 -2 -1 -3 -6 3 -3 -6 -5
5 2 -1 -3 2 -1 -3 -2 -1 -3 -6 -1 -3 -6 -9

The final two irreducible modules have dimensions very close to dim G and detailed

consideration of the weights is required.

Lemma 5.20. If G acts on the irreducible module V = L(2ω2) (p > 2) then (♦) is

satisfied for all X ∈ I \ {A2
1}.

Proof. As detailed in Figure 5.20, when p 6= 2, 3 we have |Λ| > 8 and when p = 3 we have

|Λ| > 7. In both cases, (♦) holds unless the centraliser types are X = ∅, A1 or A2
1.
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i ω |W.ω| mω

p 6= 2, 3 p = 3
2 2ω2 6 1 1
1 ω1 + ω3 12 1 1
0 0 1 2 1

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ2 2
µ2 µ1 µ2 2 2 2

µ1 µ1 4 4 4
µ1 µ0 µ1 1 2 1
Lower bound on |Λ| 8 7

Figure 5.20: λ = 2ω2

First suppose that X = ∅ in which case e∅
2ω2

= 12. Suppose for any characteristic

that the weight 0 is in the eigenspace. This rules out any root lying in the eigenspace,

i.e., the twelve weights in W.(ω1 + ω3). If any of the remaining six weights are in Λ then

we are done. So let us assume that the weights

1 2 1, -1 -2 -1, 1 0 1, -1 0 -1, 1 0 -1 and -1 0 1

are also in the eigenspace. However, this is not possible since X = ∅ so α1 + α2 /∈ Φs.

Thus the weight 0 cannot lie in the eigenspace. We arrange all of the other weights in

cliques as shown below.

1 2 1 -1 0 1 1 0 1 1 0 0 0 1 1 0 0 -1 0 -1 -1
1 1 1 -1 -1 0 0 0 1 1 0 -1 0 1 0 -1 0 -1 -1 -1 -1
1 1 0 0 -1 0 -1 0 0 -1 -2 -1

When p 6= 2, 3 this shows that d∅
2ω2

> 13. When p = 3 we need to argue further

as d∅
2ω2

> 12. We shall show that all weights in the fifth clique lie in Λ, raising the

codimension by one as required. If the weight 0 1 0 is in Π(V ) \ Λ, then we cannot have

any weight in the sixth clique in Π(V ) \ Λ, so d∅
2ω2

> 13. Similarly if the weight -1 0 0

is in Π(V ) \ Λ, then we cannot have any weight in the second clique. If the weight 0 1 1

is in Π(V ) \ Λ then considering the first clique the weights 1 2 1 and 1 1 1 cannot lie in

Π(V ) \ Λ. If the weight 1 1 0 is in Λ then we are done, and if it is not then it rules out

both weights in the fourth clique.

Now suppose that X = A1 with simple root α1; note that eA1

2ω2
= 10. Arrange the

weights into clusters as shown with weights of W.(2ω2) given in italics and the zero weight

given in bold.

1 2 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 -1 0 -1 0 0 -1 -1 -1 -2 -1
0 1 1 0 1 0 0 0 1 0 0 0 0 0 -1 -1 -1 0 -1 -1 -1

-1 0 1 -1 0 0 -1 0 -1

First suppose that the weights in the fifth cluster are in Π(V ) \ Λ for all possible
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characteristics. Then none of the other clusters containing weights in W.(ω1 + ω3) can

be in Π(V ) \ Λ. Thus dA1

2ω2
> 14 and we can assume that the fifth cluster does not lie in

Π(V ) \ Λ. When p 6= 2, 3 suppose that the weights in the fourth cluster are in Π(V ) \ Λ.

This means that the second and seventh clusters cannot be in Π(V )\Λ. We can have one

of the first and third clusters and one of the sixth and eighth clusters lying in Π(V ) \ Λ.

Thus dA1

2ω2
> 4+2+2+1+2 = 11 as required. Using the same analysis when p = 3 we only

obtain dA1

2ω2
> 10. However, we cannot have both the third and sixth clusters in Π(V )\Λ.

Therefore for all p we may assume that the fourth cluster is in Λ (and by symmetry we

may assume the same for the sixth cluster). The first, second and third clusters form a

clique as do the seventh, eighth and ninth. Thus dA1

2ω2
> 15 or 16 depending on whether

p = 3 or p 6= 2, 3.

Suppose in the previous Lemma that X = A2
1 with simple roots α1, α3. There are five

cliques: · 2 · and · -2 · each containing one weight, · 1 · and · -1 · with four weights each

and · 0 · containing nine weights. If we can show that the weights in the largest clique

are in Λ then we are done as e
A2

1

2ω2
= 8 here. If the clique · 0 · lies in Π(V ) \ Λ then both

cliques of size four are in Λ. We are done unless both 1 2 1 and -1 -2 -1 lie in Π(V ) \ Λ

which would imply that 2α2(s) = 1, i.e., α2(s) = −1 for any s ∈ SA2
1
. Thus for scalar

multiples λs of the diagonal matrix s = diag(1, 1,−1,−1) we have dim Vγ(s) = 11 or 12

depending on whether p = 3 or p 6= 2, 3. In this case our methods are insufficient.

Lemma 5.21. If G acts on the irreducible module L(ω1 + ω2) for p 6= 3 then (♦) holds

for all X ∈ I.

Proof. From Figure 5.21 we see that (♦) is satisfied provided |Φ(X)| > 3.

i ω |W.ω| mω

p 6= 3 p = 3
2 ω1 + ω2 12 1 1
1 ω3 4 2 1

Weight No. of l
strings strings p 6= 3 p = 3

µ2 2
µ2 µ2 3 3 3

µ2 µ1 µ2 2 4 2
µ1 µ1 1 2 1

Lower bound on |Λ| 9 6

Figure 5.21: λ = ω1 + ω2

96



Considering the case X = ∅ we obtain the following cliques (with weights in W.ω3

written in italics and a factor of 1
4

omitted).

1 2 3 5 6 3 5 2 3 -3 2 3 -3 2 -1 1 -2 -5 1 -2 3
1 2 -1 1 6 3 5 2 -1 -3 -2 3 -3 -2 -5 -3 -6 -5 -3 -6 -1
1 -2 -1
-3 -2 -1

Thus d∅
ω1+ω2

> 12 = e∅
ω1+ω2

. Suppose that 123 is in Π(V ) \ Λ. This excludes any

weight in the second and fourth clique so d∅
ω1+ω2

> 14. Repeating for the other weights

in W.ω3 we reach the same conclusion and if we assume that all weights in the first clique

are in Λ we are done.

When X = A1 with simple root α4 we arrange the weights into clusters. There are

three clusters containing weights in W.ω3. Assuming that each of these in turn lies in

Π(V ) \Λ we find that dA1

ω1+ω2
> 12 > 10 = eA1

ω1+ω2
as required. If none of these clusters lie

in Π(V ) \ Λ we reach the same conclusion.

We note that L(ω1 + ω2) for n = p = 3 is a small module since it has dimension 16.

5.5.3 Case III: n = 2

There are five irreducible modules in this subsection. The main difficulty occurs when

the dimension of the module being considered is close to that of G.

Lemma 5.22. If G acts on the irreducible modules L(2ω1 +2ω2) (p > 2) and L(3ω1 +ω2)

(p > 3) then, for both modules, (†) holds for p 6= 5 and (♦) is satisfied for each X ∈ I

otherwise.

Proof. For these modules it suffices just to perform the initial calculations (as shown in

the Figures 5.22 and 5.23) to show that (†) holds, or that (♦) holds for all X ∈ I.

i ω |W.ω| mω

p 6= 2, 5 p = 5
4 2ω1 + 2ω2 6 1 1
3 3ω1 3 1 1
2 3ω2 3 1 1
1 ω1 + ω2 6 2 1
0 0 1 3 1

Weight No. of l
strings strings p 6= 2, 5 p = 5

µ4 µ3 µ4 1 1 1
µ4 µ2 µ4 1 1 1

µ4 µ1 µ0 µ1 µ4 1 4 2
µ3 µ1 µ1 µ3 1 3 2
µ2 µ1 µ1 µ2 1 3 2
Lower bound on |Λ| 12 8

Figure 5.22: λ = 2ω1 + 2ω2
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i ω |W.ω| mω

p 6= 3, 5 p = 5
4 3ω1 + ω2 6 1 1
3 ω1 + 2ω2 6 1 1
2 2ω1 3 2 1
1 ω2 3 2 1

Weight No. of l
strings strings p 6= 3, 5 p = 5
µ4 µ4 1 1 1

µ4 µ3 µ3 µ4 1 2 2
µ4 µ2 µ1 µ2 µ4 1 4 2

µ3 µ2 µ3 1 2 1
µ3 µ1 µ1 µ3 1 3 2
Lower bound on |Λ| 12 8

Figure 5.23: λ = 3ω1 + ω2

Lemma 5.23. If G acts on the irreducible modules L(2ω1 + ω2) (p > 2) and L(4ω1)

(p > 3) then in both cases (♦) is satisfied for all X ∈ I.

Proof. From Figures 5.24 and 5.25 we see for both modules that we only need to deal

with the possibility that the centraliser has type X = ∅. This can be done easily.

i ω |W.ω| mω

p 6= 2
3 2ω1 + ω2 6 1
2 2ω2 3 1
1 ω1 3 2

Weight No. of l
strings strings p 6= 2
µ3 µ3 1 1

µ3 µ2 µ3 1 1
µ3 µ1 µ1 µ3 1 2

µ2 µ1 µ2 1 1
Lower bound on |Λ| 5

Figure 5.24: λ = 2ω1 + ω2

i ω |W.ω| mω

p 6= 2, 3
4 4ω1 3 1
3 2ω1 + ω2 6 1
2 2ω2 3 1
1 ω1 3 1

Weight No. of l
strings strings p 6= 2, 3

µ4 1
µ4 µ3 µ2 µ3 µ4 1 2

µ3 µ3 1 1
µ3 µ1 µ1 µ3 1 2

µ2 µ1 µ2 1 1
Lower bound on |Λ| 6

Figure 5.25: λ = 4ω1

We are unable to draw the same conclusion about the action of SL3(K) on L(3ω1).

Here the dimension of the module may be the same as the dimension of the closure of the

set of vectors which are eigenvectors for some non-central semisimple element of G and

some eigenvalue.

5.5.4 Case IV: n = 1

It is relatively straightforward in this case to describe the weights which occur; for details

see [13, §7.2]. The SL2(K)-module L(mω1) with m ∈ [0, p − 1] has dimension m + 1
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and weights mω1, (m − 2)ω1, . . . ,−mω1. We see from Lemma 5.5 that we need only be

concerned with modules having dimensions 6 and 7.

Lemma 5.24. If G = SL2(K) acts on the irreducible modules L(rω1) for r ∈ [5, 6] with

p > 5 then (♦) is satisfied for all X ∈ I.

Proof. Consider the module L(6ω1). The weights are 6ω1, 4ω1, 2ω1, 0, −2ω1, −4ω1 and

−6ω1. By the adjacency principle we have, for any γ ∈ K∗ and s ∈ Gss \ Z, that |Λ| > 3

and so (♦) is satisfied for all X ∈ I. The same is true for the module L(5ω1).
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Chapter 6

Groups of type Bn

In this chapter we shall assume that G is a simple simply connected algebraic group of

type Bn with n > 2 defined over an algebraically closed field K and V = L(λ) is an

irreducible G-module with p-restricted highest weight λ. It will be sensible to treat the

cases p 6= 2 and p = 2 separately since the conclusion of Premet’s theorem does not hold

in the latter case.

We shall prove the following result.

Theorem 6.1. Let G = Spin2n+1(K) act on V = L(λ). If dim V 6 dim G + 2 then

dim E = dim V with the possible exceptions of L(ω1 + ω2) for n = 2 with p = 5 and

L(ωn) for n ∈ [5, 6]; if instead dim V > dim G + 2 then dim E < dim V with the possible

exception of L(2ω1) for n > 2 with p 6= 2.

This theorem is a consequence of the results to follow in later sections.

6.1 Initial survey

Assume that p 6= 2. We shall deal with the case p = 2 later in Section 6.2. Consider

µ 6 λ where µ =
∑n

i=1 aiωi is a dominant weight. We shall begin by obtaining conditions

on the coefficients ai in order to show that (†) is satisfied for n large enough. This will

allow us later to list modules which will require further consideration. Recall that there is
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a short root outside the root system of the centraliser of a non-central semisimple element

and in calculations to follow we shall be considering short roots only: see Section 4.3.

It is useful to note that for 1 < k 6= n we have ωk−1 < ωk; this is clear since each

fundamental weight is of the form ωi = α1 + 2α2 + · · · + (i − 1)αi−1 + i (αi + · · · + αn)

for i ∈ [1, n − 1]. Also we have ωn−1 < 2ωn since ωn = 1
2
(α1 + 2α2 + · · · + nαn). In this

section and the next, to avoid any confusion, we shall occasionally use the notation Λλ

rather than just Λ to emphasise that we are considering the module L(λ).

Proposition 6.2. Suppose that µ =
∑n

i=1 aiωi 6 λ is a dominant weight, and at least

one of the following conditions holds:

(i) n > 6 and ak 6= 0 for some k ∈ [4, n − 1];

(ii) n > 9 and an 6= 0;

(iii) n > 5 and ai, an 6= 0 for some i ∈ [1, 3];

(iv) n = 5 and ai, a4 6= 0 for some i ∈ [1, 3];

(v) n > 5 and ai, a3 6= 0 for some i ∈ [1, 2].

Then (†) holds.

Proof. We shall use Proposition 4.2 repeatedly. Suppose ak 6= 0 for some k ∈ [4, n − 1].

Then Ψ = 〈αi | ai = 0〉 is contained in Φ(Ak−1Bn−k) and

rΨ > rAk−1Bn−k
=

1

2

2nn!

k! 2n−k(n − k)!

2n − 2(n − k)

2n
= 2k−1

(

n

k

)

k

n
.

We have rA3Bn−4
= 4

3
(n − 1)(n − 2)(n − 3) > n(2n + 1) = dim G for n > 6, hence (†)

holds. Since rAk−1Bn−k
> rA3Bn−4

for k ∈ [4, n − 1], we see that condition (i) ensures that

(†) holds.

Similarly for condition (ii). If an 6= 0 then rΨ > rAn−1
= 2n−1 > dim G for n > 9.

Suppose that both a1 6= 0 and an 6= 0. Then rΨ > rAn−2
= 2n−1n which exceeds dim G

for n > 5. It is clear that rA2An−4
> rA1An−3

> rAn−2
for n > 5 so we may not have both

ai 6= 0 for i ∈ [1, 3] and an 6= 0. Thus condition (iii) ensures that (†) holds.
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For condition (iv) we need to calculate rA2B1
= 128 and rA2

1
B1

= 192 for n = 5; these

both exceed dim B5(K) = 55.

Suppose that both a2 6= 0 and a3 6= 0. Then (†) holds for n > 5 since then we have

rA1Bn−3
= 6(n − 1)(n − 2) > dim G. The same holds if both a1 6= 0 and a3 6= 0.

The modules of dimension at most dim G + 2 are L(ω1) and L(ωn) for n ∈ [2, 6], the

adjoint modules L(ω2) for n > 3 and L(2ω2) for n = 2 6= p, and L(ω1 + ω2) for n = 2

with p = 5. The only modules with dimensions strictly between dim B = n(n + 1) and

dim G + 2 are L(ωn) for n ∈ [5, 6] and L(ω1 + ω2) for n = 2 with p = 5.

Lemma 6.3. Suppose that dim V > dim G + 2. If n > 2 then (†) holds except possibly

for the modules L(2ω1) (p > 2), L(ω1 + ω2) and L(3ω1) (p > 3) for n ∈ [2,∞), L(ω3) for

n ∈ [4,∞), L(ωn) for n ∈ [7, 8], L(2ωn) (p > 2) for n ∈ [3, 4], L(ω1 + ω3) for n = 3, and

L(ω1 + 2ω2) (p > 2), L(3ω2) (p > 3) and L(4ω2) (p > 3) for n = 2.

Proof. We shall split the following analysis of weights into five parts according as n > 6

or n = 5, 4, 3 or 2.

Case I: n > 6. By conditions (i), (ii) and (iii) of Proposition 6.2 we may assume that

µ =
∑3

i=1 aiωi if n > 6 or µ = anωn if n ∈ [6, 8] since otherwise (†) holds. Moreover, in the

latter case, we may assume that an = 1 because 2ωn > ωn−1 and (†) holds for L(ωn−1).

The spin module L(ω6) for n = 6 has dimension 64; this is less than dimB6(K) = 78 so

we need only to consider further the spin modules L(ωn) for n ∈ [7, 8]. So we may assume

that µ =
∑3

i=1 aiωi for n > 6. Set m =
∑3

i=1 iai. We follow a similar argument to Lemma

5.3. If m > 4 then we claim that we can find bi with 0 6 bi 6 ai for each i ∈ [1, 3] such

that

µ′ = µ −

(

3
∑

i=1

biωi − ωj

)

< µ 6 λ,

where j =
∑3

i=1 ibi and 4 6 j 6 6. Now if m > 4 we need only consider the following

seven weights: 4ω1, 2ω1 + ω2, ω1 + ω3, 2ω2 (m = 4); ω1 + 2ω2, ω2 + ω3 (m = 5); and 2ω3

(m = 6). This is because all other weights have coefficients that are at least that of one of

these seven weights, hence if we can find bi for each of the seven, we can do the same for
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any other. In fact, if n > 6, since the seven weights µ with m ∈ [4, 6] each satisfy µ > ωm

we can take ai = bi and j = m, whence the claim follows. If n = 6, the claim follows as

before but if m = 6 we must use the partial ordering 2ω3 > 2ω6 > ω5.

Let us take for example the weight 2ω1 + 3ω3. If n > 6 then, since 2ω3 > ω6, we have

2ω1 + 3ω3 > 2ω1 + ω3 + ω6; here j = 6, b1 = a1 = 2, b2 = a2 = 0 and b3 = 1 < 3 = a3. If

n = 6 then 2ω1 + 3ω3 > 2ω1 + ω3 + ω5; the only difference here is that we take j = 5.

We may assume that m 6 3 since otherwise the claim above shows that we can find a

weight µ′ < µ such that a′
j 6= 0 and j ∈ [4, 6] for n > 6 or j ∈ [4, 5] for n = 6; hence, by

Premet’s theorem and condition (i) of Proposition 6.2, (†) holds. Thus for n > 6 we need

to consider further the irreducible modules with highest weights 2ω1, ω3, ω1 +ω2 and 3ω1.

Case II: n = 5. If a4 6= 0 then (†) holds since ω4 > ω3 and, applying Premet’s theorem,

we have |Λω4
| > rA3B1

+ rA2B2
= 32 + 24 = 56. Similarly, if a5 6= 0 then (†) holds since

2ω5 > ω4 and the dimension of the spin module L(ω5) is smaller than dim G. Thus we

may assume that µ =
∑3

i=1 aiωi. Suppose that at least two ai for i ∈ [1, 3] are non-zero.

By condition (v) of Proposition 6.2 we may assume that µ = a1ω1 + a2ω2 since (†) holds

otherwise. Since 2ω1 + ω2 > ω1 + ω3 and ω1 + 2ω2 > ω2 + ω3 and (†) holds for both

ω1 + ω3 and ω2 + ω3 (as we previously noted), we need only investigate further the case

a1 = a2 = 1.

Assume that only one ai is non-zero for i ∈ [1, 3]. If a1 6= 0 we may assume that a1 6 3

since 4ω1 > 2ω1 + ω2. The condition (†) holds if a2 6= 0 since 2ω2 > ω1 + ω3 and L(ω2) is

the adjoint module. Similarly if a3 6= 0 we may assume that a3 = 1 since 2ω3 > ω2 + ω3.

Thus we must consider further the irreducible modules with highest weights ω1 +ω2, 2ω1,

3ω1 and ω3.

Case III: n = 4. Assume that at least three coefficients of µ are non-zero. Since the

smallest rΨ in this case occurs for Ψ = B1 and rB1
= 72, we see that (†) holds. Suppose

that precisely two ai for i ∈ [1, 4] are non-zero. If both a1 6= 0 and a3 6= 0 then (†) holds

since ω1 + ω3 > ω1 + ω2 and rA1B1
+ rB2

= 36 + 12 = 48. The same holds true if both

a1 6= 0 and a4 6= 0 since ω1 + ω4 > ω4 and rA2
+ rA3

= 32 + 8 = 40, and hence if both

a2 6= 0 and a3 6= 0 since ω2 + ω3 > ω1 + 2ω4. Since rA2
1

= 48 we cannot have both a2 6= 0
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and a4 6= 0 and hence we cannot have both a3 6= 0 and a4 6= 0 since ω3 + ω4 > ω2 + ω4.

Finally, if both a1 6= 0 and a2 6= 0 then (†) holds if a1 + a2 > 2 since 2ω1 + ω2 > ω1 + ω3

and ω1 + 2ω2 > ω2 + ω3.

Assume now that only one coefficient of µ is non-zero. If a1 6= 0 then we may assume

that a1 6 3 since 4ω1 > 2ω1 + ω2. If a2 6= 0 then (†) holds since 2ω2 > ω1 + ω3 and

L(ω2) is the adjoint module which we do not consider by assumption. If a3 6= 0 we may

assume that a3 = 1 since 2ω3 > ω1 + ω3. Similarly, if a4 6= 0 we may assume that a4 = 2

since 3ω4 > ω3 + ω4 and the spin module L(ω4) only has dimension 16. Thus further

investigation is required for the irreducible modules with highest weights 2ω1, ω3, ω1 +ω2,

3ω1 and 2ω4.

Case IV: n = 3. Since r∅ = 24 we can assume that at most two ai for i ∈ [1, 3] are non-

zero. By performing quick calculations we have rA1
= 12, rB1

= 8 and rA1B1
= rA2

= 4.

Consider the case that precisely two coefficients of µ are non-zero. We see that (†) holds

if both a2 and a3 are non-zero since ω2 + ω3 > ω1 + ω3. If a1 and a2 are non-zero

then the partial ordering ω1 + 2ω2 > 2ω1 + ω2 > 2ω2 > ω1 + 2ω3 shows that (†) holds

unless a1 = a2 = 1. Similarly, if a1 and a3 are non-zero then the partial orderings

ω1 + 2ω3 > ω1 + ω2 > 2ω3 and 2ω1 + ω3 > ω2 + ω3 together show that (†) holds unless

a1 = a3 = 1. Now assume that only one coefficient of µ is non-zero. If a1 6= 0 then we

may assume that a1 6 3 since 4ω1 > 2ω1 + ω2 and we saw previously that (†) holds for

2ω1 +ω2. Similarly, if a2 6= 0 then (†) holds since 2ω2 > ω1 +2ω3 and L(ω2) is the adjoint

module, and if a3 6= 0 then we may assume that a3 = 2 since 3ω3 > ω2 + ω3 and the spin

module L(ω3) has dimension less than G. Thus we need to consider further the weights

ω1 + ω2, ω1 + ω3, 2ω1, 3ω1 and 2ω3.

Case V: n = 2. We calculate r∅ = 4, rA1
= 2 and rB1

= 1. Assume that both a1 and

a2 are non-zero. Since 2ω1 + ω2 > 3ω2 > ω1 + ω2 > ω2 and ω1 + 3ω2 > 2ω1 + ω2 > 3ω2 >

ω1 + ω2 > ω2, we need only consider further the weights with a1 = 1 and a2 6 2. Assume

that a1 6= 0 and a2 = 0. We may take a1 6 3 since 4ω1 > 2ω1 + 2ω2; this follows from

the partial ordering for 2ω1 +ω2 just given together with Premet’s theorem. Assume now

that a1 = 0 and a2 6= 0. We may take a2 6 4 since 5ω2 > ω1 + 3ω2. Thus we need to
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consider further the weights ω1 + ω2, ω1 + 2ω2, 2ω1, 3ω1, 3ω2 and 4ω2 for n = 2.

6.2 Even characteristic

In this section we deal with the case p = 2.

Lemma 6.4. Let G = Spin2n+1(K) act on V = L(λ) for p = 2 and dim V > dim G + 2.

Then (†) holds with the possible exceptions of L(ω3) for n ∈ [4,∞), L(ω1 +ω2) for n > 2,

L(ωn) for n ∈ [7, 8], L(ω4) for n = 5 and L(ω1 + ω3) for n = 3.

Proof. We write the 2-restricted highest weight λ =
∑n

i=1 aiωi with ai ∈ {0, 1} for all

i ∈ [1, n]. We shall treat ωn differently from the other fundamental weights since ωi =

α1 +2α2 + · · ·+(i−1)αi−1 +i (αi + · · · + αn) for i < n and ωn = 1
2
(α1 + 2α2 + · · · + nαn).

We shall assume in turn that the number of non-zero ai is one, then two, and then three

or more.

Suppose that only one of the ai is non-zero; we may assume that i > 3 as otherwise

the module has dimension at most dimG. We have |W.ωi| = 2i
(

n
i

)

.

The weights of the module L(ωn) are precisely the 2n weights in W.ωn. Since this is

true for all p we may refer back to the consideration of this module in the previous section

where we see that we need to further examine L(ωn) for n ∈ [7, 8].

Henceforth we may assume that i < n. We see that 〈ωi, α〉 = 0 or ±2 for short

roots α ∈ Φ. Moreover, 〈ωi, α〉 = 2 for i such α. Therefore, for a fixed short root

α there are σi weights µ ∈ W.ωi with weight string containing the weights µ µ + 2α

(but possibly not µ + α), where σi = 2i−1
(

n−1
i−1

)

. Now if 4 6 i 6 n − 1 then, since

σi > σ4 = 23
(

n−1
3

)

> n(2n + 1) = dim G for n > 6, it remains for us to consider L(ω4) for

n = 5 as well as L(ω3) for n > 4.

Next suppose that precisely two coefficients ai of λ are non-zero. Consider the module

L(ωi + ωj) where

|W.(ωi + ωj)| =
2jn!

i!(j − i)!(n − j)!
.

Assume that 1 6 i < j 6 n − 1 so that 〈ωi + ωj, α〉 = 0,±2 or ±4 for short roots α ∈ Φ.
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Moreover, 〈ωi + ωj, α〉 = 2 for j − i short roots and 〈ωi + ωj, α〉 = 4 for i short roots.

Thus, for a given α there are τij weights µ ∈ W.(ωi + ωj) with weight string containing

the weights µ µ + 2α or µ µ + 4α where

τij =
|W.(ωi + ωj)|(j − i + i)

2n
=

2j−1j(n − 1) · · · (n − j + 1)

i!(j − i)!
.

As usual we take α /∈ Φs and subsequently apply the adjacency principle. We may do

this since p = 2 whence 2kα(s) = 1 if and only if α(s) = 1.

Assume that (i, j) 6= (1, 2). It is clear that τij > τ13 = τ23 = 6(n − 1)(n − 2). Since

this exceeds dim G for n > 5, the modules L(ω1 + ω3) and L(ω2 + ω3) for n = 4 as well as

L(ω1 + ω2) for n > 3 require further consideration.

Now take j = n in which case 〈ωi +ωn, α〉 = ±1 or ±3. We concentrate on the former

case since then we may apply the adjacency principle. There are n− i short roots α such

that 〈ωi + ωn, α〉 = 1. Thus, for a given short root α there are θi weights µ ∈ W.(ωi + ωn)

with weight string containing µ µ + α where θi = 2n−1
(

n−1
i

)

. Now θi > θ1 = 2n−1(n − 1)

for i ∈ [1, n − 2] which exceeds dim G for n > 5. If i = n − 1 we conclude for n > 5 by

applying Proposition 4.3. Therefore it remains to consider ω1 + ωn for n ∈ [2, 4]. Both

θ2 = 2n−2(n− 1)(n− 2) and θ3 = 2n−2

3
(n− 1)(n− 2)(n− 3) exceed dim G for n > 5 so we

must later deal with L(ω2 + ωn) for n ∈ [3, 4] and L(ω3 + ω4) for n = 4.

We can deal with the modules L(ωi + ωj) for n = 4 with (i, j) 6= (1, 2) and L(ω2 + ω3)

for n = 3 by referring to Lübeck’s tables [18]. First assume that n = 4. Consider

L(ω1 + ω4) where we see that there are no dominant weights below ω1 + ω4 in the partial

ordering appearing with multiplicity zero, i.e., the conclusion of Premet’s theorem holds.

Since ω1 + ω4 > ω4 and we calculate rA2
= 32 and rA3

= 8 we conclude that (†) holds for

this module. Indeed, by the same reasoning the same conclusion holds for the modules

L(ω3 + ω4) and L(ω2 + ω4); we only need to calculate that rA2
1

= 48. We see from

the tables that the conclusion of Premet’s theorem holds for neither L(ω1 + ω3) nor

L(ω2 + ω3). We see that ω1 + ω3 > 2ω4 and m2ω4
6= 0 for L(ω1 + ω3) from the tables and

we calculate |W.(ω1 + ω3)| = 96 and |W.(2ω4)| = 16. There are three short roots α for
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which 〈ω1+ω3, α〉 = 2 or 4 and we have 〈2ω4, α〉 = 2 for all the positive short roots. Thus,

for a given α, there are 96.3
8

= 36 weights µ ∈ W.(ω1 + ω3) with weight string containing

µ µ+2α or µ µ+4α. Similarly there are 16.4
8

= 8 weights ν ∈ W.(2ω4) with weight string

containing ν ν +2α. Thus |Λ| > 44 whence (†) holds. In an exactly analogous way we can

handle L(ω2 + ω3) by using the Weyl group orbit of ω1 + 2ω4 which occurs with non-zero

multiplicity in this module.

Assume now that n = 3 and consider the module L(ω2 +ω3). From Lübeck’s tables we

find that the conclusion of Premet’s theorem holds for this module. Since ω2+ω3 > ω1+ω3

and rA1
= 12 we have |Λ| > 24 > dim G, so (†) holds.

Suppose that three coefficients of λ are non-zero and that n > 4. Assume first that

an = 0. Then 〈λ, α〉 = ±2,±4 or ±6 for short roots α and, as before, we are only

interested in the first two of these possibilities. For a fixed α the minimum number

of weights µ ∈ W.λ such that 〈µ, α〉 = 2 or 4 occurs for λ = ω1 + ω2 + ω3; this is

23(n − 1)(n − 2) which exceeds dim G for n > 4. We notice that the Weyl group orbit of

a dominant weight increases in size as more of its coefficients (when written as a Z-linear

combination of fundamental weights) are non-zero. It follows, therefore, that (†) holds

for all dominant weights λ ∈ X(T ) with three or more coefficients ai non-zero for i 6= n.

Assume instead that an = 1, so λ = ωi + ωj + ωn where 1 6 i < j 6 n − 1. Then

〈λ, α〉 = ±1,±3 or ±5 for short roots α and we can only apply the adjacency principle

in the first of these possibilities. The minimum number of µ ∈ W.λ with weight string

µ µ + α occurs for either λ = ω1 + ωn−1 + ωn or ωn−2 + ωn−1 + ωn; this is 2n−1(n − 1)

which exceeds dim G for n > 5. Therefore (†) holds for all weights λ with three or more

coefficients ai non-zero including an 6= 0 provided n > 5.

It remains to consider the irreducible modules L(ω1 + ω2 + ω3 + ω4), L(ω1 + ω2 + ω4),

L(ω1 + ω3 + ω4) and L(ω2 + ω3 + ω4) all for n = 4 and L(ω1 + ω2 + ω3) for n = 3.

Consider L(ω1 + ω2 + ω3 + ω4) for n = 4. We have 〈ω1 + ω2 + ω3 + ω4, α〉 = 1 for

one short root only, namely α4. For α = α4 there are 244!
2.4

= 48 weights µ ∈ W.
(
∑4

i=1 ωi

)

with weight string µ µ + α. Thus (†) holds for this module since |Λ| > 48 > 36 = dim G.

Recall that, by Theorem 2.4, the remaining four modules are tensor decomposable and
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are of the form L(ν)⊗L(ωn) where ν ∈ X(T )L. For L(ωn) we find that 〈ωn, α〉 = 1 for all

positive short roots α. Thus, if we fix a short root α and take this to lie outside Φs then

all weights occur in pairs differing by α, i.e., we have |Λωn
| > 2n−1. (We shall study this

module further in Lemma 6.7.) We appeal to Proposition 4.3 for the remaining modules.

From Lübeck’s tables [18] we find that dimL(ω1 + ω3) = 246 and dimL(ω2 + ω3) = 784

for n = 4, and dim L(ω1 +ω2) = 64 or 160 according as n = 3 or 4. Thus, for each module

we have |Λωn
| dim L(ν) > dim G, whence (†) holds.

6.3 Weight string analysis

We list in Table 6.1 the weights which require further consideration following Lemmas 6.3

and 6.4.

λ n Lemma

2ω1 [2,∞) (p 6= 2) -
ω3 [4,∞) 6.5 (♦)

ω1 + ω2 [6,∞) 6.5 (♦)
[3, 5] 6.5 (†) p 6= 3, (♦) p = 3

2 (p 6= 5) 6.5 (♦)
3ω1 [6,∞) (p > 3) 6.5 (♦)

[2, 5] (p > 3) 6.5 (♦)
ωn [7, 8] 6.7 (♦)
ω4 5 (p = 2) 6.6 (♦)
2ωn 4 (p 6= 2) 6.9 (†)

3 (p 6= 2) 6.9 (♦)
ω1 + ω3 3 6.8 (†) p 6= 7, (♦) p = 7
ω1 + 2ω2 2 (p 6= 2) 6.8 (†) p 6= 2, 3, (♦) p = 3

3ω2 2 (p > 3) 6.8 (♦)
4ω2 2 (p > 3) 6.8 (†)

Table 6.1: Possible weights in type Bn for n > 2

We begin by considering the modules L(ω3) for n > 4 and L(ω1 + ω2) and L(3ω1) for

n > 2.

Recall from [2, p.47] that for the root system of type Bn we have Φ = ΦS ∪ΦL where

ΦL = {±ǫi±ǫj | 1 6 i < j 6 n} consists of 2n(n−1) long roots and ΦS = {±ǫi | 1 6 i 6 n}
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consists of 2n short roots. Let αi = ǫi − ǫi+1 for i ∈ [1, n − 1] and αn = ǫn be the simple

roots. Therefore we have ωi =
∑i

k=1 ǫk for i < n and ωn = 1
2

∑n
k=1 ǫk. We shall need this

for the next lemma.

Lemma 6.5. Let G act on the irreducible module V where we take V to be one of L(ω3)

for n > 4, L(ω1 + ω2) for n > 2, or L(3ω1) for n > 2 with p > 3. Then (♦) is satisfied

for all X ∈ I unless V = L(ω1 + ω2) for n ∈ [3, 5] with p 6= 3 in which case (†) holds or

for n = 2 with p = 5 in which case the module is small.

Proof. If p = 2 then the conclusion of Premet’s theorem does not hold. For L(ω3) we

see from Lübeck’s tables that when n 6 11 we have mω2
= 0. The tables also show that

mω1
6= 0; in order to conclude that this is true for n > 11 we can adapt the arguments

in Section 2.4 of [29]. Zalesski’s technique involves rewriting weights in Cn as weights in

Dn and shows in Lemma 12 of his paper that for a dominant weight µ =
∑n

i=1 aiωi in Cn,

provided an = 0, two dominant weights λ < µ in Cn remain dominant when considered in

Dn and the partial ordering is preserved. Then, since the conclusion of Premet’s theorem

holds for groups of type Dn in characteristic 2, he concludes that λ appears with non-zero

multiplicity in Π(µ) in Cn. We rewrite the weights ω1 and ω3 in Bn as weights in Dn and

apply the theory in Section 2.4 in order to conclude that each weight in the Weyl group

orbit of ω1 appears with non-zero multiplicity in Π(ω3) in Bn. Analogously, for L(ω1 +ω2)

with p = 2 we can conclude that both mω3
and mω1

are non-zero.

Consider the module L(ω3) for n > 4. The usual calculations are detailed in Figure

6.1.

Assume that p 6= 2. We see from Figure 6.1 that for n > 4 we have |Λ| > 2(n − 1)2.

We may assume that there are two orthogonal roots (α short and β long) not in Φs since

(♦) holds for both X = Bn−1 (eBn−1

ω3
= 4n − 2) and Dn (eDn

ω3
= 2n). It is straightforward

to check that 〈ω3, α〉 = 0 or ±2 and 〈ω3, β〉 = 0, ±1 or ±2. We note that for a root

system of type Bn there are 2n.2(n− 1)(n− 2) orthogonal pairs of roots α short, β long.

We have 〈ω3, α〉 = 2 and 〈ω3, β〉 = 2 for 3 pairs of roots α, β with (α, β) = 0.

In more detail, the 3 pairs of orthogonal long and short roots are ǫi and ǫj + ǫk with
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i ω |W.ω| mω

n 6 11, p 6= 2 n > 12, p 6= 2 p = 2

3 ω3
4

3
n(n − 1)(n − 2) 1 1 1

2 ω2 2n(n − 1) 1 1 0
1 ω1 2n n − 1 1 > 1
0 0 1 n 1 0

Weight No. of l
strings strings n 6 11, p 6= 2 n > 12, p 6= 2 p = 2

µ3
4

3
(n − 1)(n − 2)(n − 3)

µ3 µ2 µ3 2(n − 1)(n − 2) 2(n − 1)(n − 2) 2(n − 1)(n − 2) 2(n − 1)(n − 2)
µ2 µ1 µ2 2(n − 1) 4(n − 1) 2(n − 1)
µ1 µ0 µ1 1 n 1 1

Lower bound on |Λ| 2n2 − n 2n2 − 4n + 3 2n2 − 6n + 5

Figure 6.1: λ = ω3 for n > 4

i, j, k ∈ [1, 3], j < k and i 6= j 6= k 6= i. There are 4n(n − 1)(n − 2) triples (µ; α, β) with

〈µ, α〉 = 〈µ, β〉 = 2 for orthogonal roots α ∈ ΦS, β ∈ ΦL and µ ∈ W.ω3. For a given pair

α, β there is 1 weight µ ∈ W.ω3 such that 〈µ, α〉 = 〈µ, β〉 = 2. Thus there is a 3 × 3

weight net.

We have 〈ω3, α〉 = 0 and 〈ω3, β〉 = 2 for 6(n − 3) pairs of roots α, β with (α, β) = 0.

These pairs of orthogonal long and short roots are ǫi + ǫj with 1 6 i < j 6 3 and ±ǫk

with k ∈ [4, n]. There are 8n(n − 1)(n − 2)(n − 3) triples (µ; α, β) with 〈µ, α〉 = 0 and

〈µ, β〉 = 2 for orthogonal roots α ∈ ΦS, β ∈ ΦL and µ ∈ W.ω3. For a given pair α, β

there are 2(n − 3) weights µ ∈ W.ω3 such that 〈µ, α〉 = 0 and 〈µ, β〉 = 2. Thus there are

2(n − 3) weight nets of size 1 × 3; it is easy to check that these take the form µ3 µ1 µ3.

Similarly we calculate that there are 4(n− 3) weight nets of size 3× 2, 4(n− 3)(n− 4)

weight nets of size 1× 2 and 2 + 2(n− 3)(n− 4) weight nets of size 3× 1 (which take the

form µ3 µ2 µ3 as indicated by Figure 6.1). We need not consider weights µ ∈ W.ω3 with

〈µ, α〉 = 〈µ, β〉 = 0 since there is no contribution to |Λ| from 1 × 1 weight nets. So from

weight nets containing µ ∈ W.ω3 we find that

|Λ| > 4 + 2(n − 3) + 4(n − 3) + 4(n − 3)(n − 4) + 2 + 2(n − 3)(n − 4) = 6n2 − 28n + 36.

Now we consider the remaining weight nets for L(ω3), i.e., those containing no weights

from W.ω3. As before, we can check that 〈ω2, α〉 = 0 or ±2 and 〈ω2, β〉 = 0, ±1 or ±2. It

is not possible to find pairs of orthogonal roots α and β with 〈ω2, α〉 = 〈ω2, β〉 = 2. We
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find that there are two 3× 2 and 2(n− 3) weight nets of size 3× 1. All other weight nets

and strings are included in those found previously.

In summary, the weight nets are provided below.

µ3 µ2 µ3 µ3 µ3 µ2 µ3 µ3 µ3 µ2 µ3 µ2 µ1 µ2

µ1 µ0 µ1 µ2 µ1 µ2 µ3 µ2 µ3 µ3 µ2 µ1 µ2

µ3 µ2 µ3 µ3

1 2(n − 3) 4(n − 3) 4(n − 3)(n − 4) 2(n2 − 7n + 13) 2

Since all weights have multiplicity at least one we find |Λ| > 6n2 − 28n + 42 > 2n2 =

|Φ(G)| for n > 5. We are therefore left to consider L(ω3) for n = 4; here we know that

mω1
= 3 and m0 = 4, so using the weight nets above we have |Λ| > 38 > 32 = |Φ(B4)|.

Thus (♦) is satisfied for all X ∈ I provided p 6= 2.

Assume now that p = 2. From Figure 6.1 we see that |Λ| > 2n2 − 6n + 5. If X = Dn

then (♦) is satisfied for n > 4. If X = Bn−1 then (♦) is satisfied provided n > 5. For

n = 4 when X = B3 there are three clusters. They are 1 · · ·, 0 · · · and −1 · · · of sizes

14, 20 and 14 respectively. Since eB3

ω3
= 14 we see the (♦) is satisfied for B3. Therefore

we can assume that there are two orthogonal roots, one long and one short, not in Φs.

Using the weight nets described above for p 6= 2 and the fact that α(s) = 1 if and only if

2α(s) = 1 we see that |Λ| > 6n2 − 32n + 49. This exceeds |Φ(G)| for n > 6.

We are left to consider L(ω3) for n ∈ [4, 5] with p = 2. From Lübeck’s tables we

see that mω1
= 2 in both cases. Using the weight nets above we see that if n = 5 then

|Λ| > 46 so that (♦) is satisfied provided |Φ(G)| > 4, and if n = 4 then |Λ| > 22 so that

(♦) is satisfied provided |Φ(G)| > 10. Thus, if n = 5 we are left to consider X = ∅, A1,

B1, A2
1, A1B1 and D2 and if n = 4 we are left with X = ∅, A1, A2

1, D2, D2A1, A2, B1,

B1A1, B1D2, B1A2, B2 and B2A1. We shall provide the clusters and cliques for the six

remaining cases when n = 5; we omit the calculations for n = 4.

Let X = A2
1 with simple roots α1 and α3. By using the cliques tabulated below

together with the negative counterparts of the cliques in the second column we have

d
A2

1
ω3 > 48 > 46 = e

A2
1

ω3 .
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(λ, n, X) = (ω3, 5, A2
1
)

Cliques Cluster size l Cliques Cluster size l

· 1 1 1 1 4 16 · 1 · 2 1 4 4

0 0 · 1 1 4 · 1 · 1 1 4

0 0 0 0 1 2 · 1 · 0 1 4 4

0 0 0 0 -1 2 · 1 · 0 -1 4

0 0 · -1 -1 4 1 2 · 3 3 2 2

· -1 -1 -1 -1 4 · 1 2 3 3 2

· 0 · 1 1 4 4 1 2 2 2 3 1 3

· 0 · -1 -1 4 1 2 2 2 1 1

· 0 0 0 1 2 2 1 2 2 1 1 1

· 0 0 0 -1 2 1 2 1 1 1 1

Let X = A1B1 with simple roots α1 and α5. By using the cliques tabulated below

together with the negative counterparts of the cliques in the second column we have

dA1B1

ω3
> 48 > 46 = eA1B1

ω3
.

(λ, n, X) = (ω3, 5, A1B1)

Cliques Cluster size l Cliques Cluster size l

· 1 1 1 1 2 16 · 1 1 0 · 4 4

0 0 1 1 1 1 · 1 0 0 · 4

0 0 0 1 1 1 1 2 2 2 · 2 6

0 0 0 0 · 2 · 1 2 2 · 4

0 0 0 -1 -1 1 · 1 1 2 · 4

0 0 -1 -1 -1 1 1 2 3 3 3 1 2

· -1 -1 -1 -1 2 1 2 2 3 3 1

· 0 1 1 1 2 8 · 1 2 3 3 2

· 0 0 1 1 2

· 0 0 0 · 4

· 0 0 -1 -1 2

· 0 -1 -1 -1 2

Let X = D2 with simple root α1 and the longest root α0. By using the cliques tabulated

below together with the negative counterparts of the cliques in the second column we have

dD2

ω3
> 48 > 46 = eD2

ω3
. Note that we provide a representative weight from each cluster.
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(λ, n, X) = (ω3, 5, D2)

Cliques Cluster size l Cliques Cluster size l

1 1 1 1 1 8 24 1 0 1 1 1 2 4

0 0 1 1 1 4 1 0 0 1 1 2

0 0 0 1 1 4 1 0 0 0 1 2

0 0 0 0 1 4 1 1 1 0 1 4 4

0 0 0 0 -1 4 1 1 0 0 1 4

0 0 0 -1 -1 4 1 1 1 0 -1 4 4

0 0 -1 -1 -1 4 1 1 0 0 -1 4

Let X = B1 with simple root α5. By using the cliques tabulated below together

with the negative counterparts of the cliques in the second and third columns we have

dB1

ω3
> 50 > 48 = eB1

ω3
.

(λ, n, X) = (ω3, 5, B1)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

1 1 1 1 1 2 16 1 1 1 0 · 2 4 1 2 3 3 3 1 3

0 1 1 1 1 2 1 1 0 0 · 2 1 2 2 3 3 1

0 0 1 1 1 2 1 0 0 0 · 2 1 1 2 3 3 1

0 0 0 1 1 2 1 1 1 2 · 2 4 0 1 2 3 3 1

0 0 0 0 · 4 0 1 1 2 · 2 1 2 2 1 1 1 2

0 0 0 -1 -1 2 0 0 1 2 · 2 1 1 2 1 1 1

0 0 -1 -1 -1 2 1 2 2 2 · 2 4 0 1 2 1 1 1

0 -1 -1 -1 -1 2 1 1 2 2 · 2

-1 -1 -1 -1 -1 2 0 1 2 2 · 2

Let X = A1 with simple root α1. By using the cliques tabulated below together

with the negative counterparts of the cliques in the first and second columns we have

dA1

ω3
> 50 > 48 = eA1

ω3
.

(λ, n, X) = (ω3, 5, A1)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

1 2 3 3 3 1 2 · 0 1 1 1 2 4 · 1 1 1 1 4 16

1 2 2 3 3 1 · 0 0 1 1 2 · 0 1 1 1 2

· 1 2 3 3 2 · 0 0 0 1 2 · 0 0 1 1 2

1 2 2 2 3 1 3 · 1 1 0 1 2 2 · 0 0 0 1 2

· 1 2 3 3 2 · 1 0 0 1 2 · 0 0 0 -1 2

· 1 1 2 3 2 · 1 1 0 -1 2 2 · 0 0 -1 -1 2

· 1 1 2 1 2 2 · 1 0 0 -1 2 · 0 -1 -1 -1 2

· 1 0 1 1 2 · -1 -1 -1 -1 4

· 1 2 2 1 2 2

· 1 2 1 1 2
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Let X = ∅; by using the cliques tabulated below together with their negative coun-

terparts we have d∅
ω3

> 52 > 50 = e∅
ω3

.

(λ, n, X) = (ω3, 5, ∅)

Cliques Cluster size l Cliques Cluster size l Cliques Cluster size l

1 1 1 1 1 2 8 1 2 2 2 1 1 2 1 2 3 3 3 1 3

0 1 1 1 1 2 1 2 2 1 1 1 1 2 2 3 3 1

0 0 1 1 1 2 1 2 1 1 1 1 1 1 2 3 3 1

0 0 0 1 1 2 1 0 1 1 1 1 2 0 1 2 3 3 1

0 0 0 0 1 2 1 0 0 1 1 1 1 1 1 2 1 1 2

1 2 2 2 3 1 2 1 0 0 0 1 1 0 1 1 2 1 1

1 1 2 2 3 1 1 1 1 2 3 1 2 0 0 1 2 1 1

0 1 2 2 3 1 0 1 1 2 3 1 1 1 1 0 -1 1 2

1 1 1 0 1 1 2 0 0 1 2 3 1 0 1 1 0 -1 1

0 1 1 0 1 1 1 1 2 2 1 1 1 0 0 1 0 -1 1

0 0 1 0 1 1 0 1 2 2 1 1

Suppose that n > 6. Using the work for L(ω3) above together with Premet’s theorem,

we can conclude for L(ω1 + ω2) for all p and L(3ω1) for p 6= 2 that (♦) is satisfied for all

X ∈ I.

Consider L(ω1 +ω2) for n 6 5. If n ∈ [4, 5] then Figure 6.2 shows that (†) holds unless

p = 3 when (♦) is satisfied for each X ∈ I.

i ω |W.ω| mω

p 6= 2, 3, p 6= 5 = n p = 3 p = 5 = n p = 2
5 ω1 + ω2 4n(n − 1) 1 1 1 1
4 ω3

4

3
n(n − 1)(n − 2) 2 1 2 2

3 2ω1 2n 1 1 1 0
2 ω2 2n(n − 1) 2 1 2 0
1 ω1 2n 2n − 1 n 8 2n − 2
0 0 1 2n − 1 n − 1 8 0

Weight No. of l
strings strings p 6= 2, 3, p 6= 5 = n p = 3 p = 5 = n p = 2

µ5 4(n − 1)(n − 2)
µ5 µ3 µ5 2(n − 1) 2(n − 1) 2(n − 1) 2(n − 1) 2(n − 1)

µ5 µ2 µ1 µ2 µ5 2(n − 1) 8(n − 1) 4(n − 1) 8(n − 1) 4(n − 1)
µ4

4

3
(n − 1)(n − 2)(n − 3)

µ4 µ2 µ4 2(n − 1)(n − 2) 4(n − 1)(n − 2) 2(n − 1)(n − 2) 4(n − 1)(n − 2) 4(n − 1)(n − 2)
µ3 µ1 µ0 µ1 µ3 1 2n + 1 n + 1 2n 2n − 2

Lower bound on |Λ| 4n2 − 1 2n2 + n − 1 4n2 − 2 4n(n − 1)

Figure 6.2: λ = ω1 + ω2 for n ∈ [4, 5]

If n = 3 then Figure 6.3 shows that (†) holds unless p = 3 in which case (♦) is satisfied

for each X ∈ I.
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i ω |W.ω| mω

p 6= 2, 3 p = 3 p = 2
5 ω1 + ω2 24 1 1 1
4 2ω3 8 2 1 2
3 2ω1 6 1 1 0
2 ω2 12 2 1 0
1 ω1 6 5 2 4
0 0 1 5 1 0

Weight No. of l
strings strings p 6= 2, 3 p = 3 p = 2

µ5 8
µ5 µ3 µ5 4 4 4 4

µ5 µ2 µ1 µ2 µ5 4 16 8 8
µ4 µ2 µ4 4 8 4 8

µ3 µ1 µ0 µ1 µ3 1 7 3 4
Lower bound on |Λ| 35 19 24

Figure 6.3: (λ, n) = (ω1 + ω2, 3)

If n = 2 then Figure 6.4 shows that (♦) is satisfied for each X ∈ I other than X = ∅

for p 6= 2, 5, and A1 and B1 for p = 5.

i ω |W.ω| mω

p 6= 5 p = 5
2 ω1 + ω2 8 1 1
1 ω2 4 2 1

Weight No. of l
strings strings p 6= 2, 5 p = 5 p = 2
µ2 µ2 2 2 2 2

µ2 µ1 µ1 µ2 2 6 4 8
Lower bound on |Λ| 8 6 10

Figure 6.4: (λ, n) = (ω1 + ω2, 2)

If X = ∅ and p 6= 5 then the following cliques show that d∅
ω1+ω2

> 9 in which case (♦)

holds. Note that the weights in W.ω2 have multiplicity 2 and are 1
2

1, 1
2

0, -1
2

0 and -1
2

-1.
1

2
1 1

2
-1 3

2
2 1

2
2 - 3

2
-1

1

2
0 - 1

2
-1 3

2
1 - 1

2
1 - 3

2
-2

- 1

2
0 - 1

2
-2

If p = 5 then the module is small since it has dimension dimG+2. Indeed, we can see

for X ∈ {∅, A1, B1} there are possible configurations of weights such that dX
ω1+ω2

= eX
ω1+ω2

.

Now consider L(3ω1) for n ∈ [3, 5]. From Figure 6.5 below we see that we may take

two orthogonal roots (α short and β long) not in Φs. If n = 3 the Weyl group orbit

W.(2ω3) is present in place of W.ω3 and 2n + 3 is not a prime.

We see that 〈3ω1, α〉 can take the value 0 or ±6 and 〈3ω1, β〉 can take the value 0

or ±3. Similarly we can have 〈ω1 + ω2, α〉 = 0, ±2 or ±4 and 〈ω1 + ω2, β〉 = 0, ±1,

±2 or ±3 though for a fixed pair α, β there are some pairs of these values that are not

possible. It is sufficient to only consider the weight nets formed from weights in W.(3ω1)

and W.(ω1 + ω2); these are detailed below and the number of each such is given.
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i ω |W.ω| mω

p 6= 2, 3, 2n + 3 p = 2n + 3
6 3ω1 2n 1 1
5 ω1 + ω2 4n(n − 1) 1 1
4 ω3 (2ω3) 4

3
n(n − 1)(n − 2) 1 1

3 2ω1 2n 1 1
2 ω2 2n(n − 1) 1 1
1 ω1 2n n n − 1
0 0 1 n n − 1

Weight No. of l
strings strings p 6= 2, 3, 2n + 3 p = 2n + 3

µ6 2(n − 1)
µ6 µ3 µ1 µ0 µ1 µ3 µ6 1 n + 2 n + 1

µ5 4(n − 1)(n − 2)
µ5 µ3 µ5 2(n − 1) 2(n − 1) 2(n − 1)

µ5 µ2 µ1 µ2 µ5 2(n − 1) 4(n − 1) 4(n − 1)
µ4

4

3
(n − 1)(n − 2)(n − 3)

µ4 µ2 µ4 12 24 24
Lower bound on |Λ| 2n2 + n 2n2 + n − 1

Figure 6.5: λ = 3ω1 for n ∈ [3, 5]

µ6 µ6 µ3 µ1 µ0 µ1 µ3 µ6 µ5 µ5 µ2 µ1 µ2 µ5 µ5 µ2 µ1 µ2 µ5 µ5 µ3 µ5 µ5 µ3 µ5 µ5 µ5

µ5 µ1 µ5 µ2 µ1 µ2 µ5 µ4 µ2 µ4 µ4 µ5

µ6 µ1 µ5 µ3 µ5 µ5

µ5

2 1 2 2 2(n − 3) 2 2(n − 3) 4(n − 3) 4(n − 3)

Therefore |Λ| > 19n− 20 for p 6= 2, 3 or 2n + 3 and |Λ| > 19n− 25 for p = 2n + 3. In

either case (♦) is satisfied for all X ∈ I for n ∈ [3, 5].

If n = 2 then we show in Figure 6.6 that (♦) holds for all X ∈ I.

i ω |W.ω| mω

p 6= 2, 3, 7 p = 7
5 3ω1 4 1 1
4 ω1 + 2ω2 8 1 1
3 2ω1 4 1 1
2 2ω2 4 1 1
1 ω1 4 2 1
0 0 1 2 1

Weight No. of l
strings strings p 6= 2, 3, 7 p = 7

µ5 2
µ5 µ3 µ1 µ0 µ1 µ3 µ5 1 4 3

µ4 µ3 µ4 2 2 2
µ4 µ2 µ1 µ2 µ4 2 4 4

Lower bound on |Λ| 10 9

Figure 6.6: (λ, n) = (3ω1, 2)

We note that we are unable to draw conclusions for L(ω1 + ω2) and L(3ω1) with

n ∈ [4, 5] by appealing to Premet’s theorem since the multiplicities of weights in W.ω1

and 0 in L(ω1 + ω2) and L(3ω1) are not always greater than those for the corresponding

weights in L(ω3). Indeed, using the multiplicities given for W.ω1 and 0 in L(ω1 + ω2) and

L(3ω1) and calculating the codimension of the eigenspace as above for L(ω3) does not
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suffice either.

In the next lemma we consider a module that requires treatment for p = 2 only.

Lemma 6.6. Let G act on the irreducible module V = L(ω4) for n = 5 with p = 2. Then

(♦) holds for all X ∈ I.

Proof. We can use Lübeck’s tables [18] to see that the conclusion of Premet’s theorem

does not hold for this module, in particular, we have mω3
= mω1

= 0. In Figure 6.7 we

carry out the usual calculations to identify the weight strings for V and find that |Λ| > 48.

i ω |W.ω| mω

p = 2
4 ω4 80 1
3 ω3 80 0
2 ω2 40 2
1 ω1 10 0
0 0 1 4

Weight No. of l
strings strings p = 2

µ4 16
µ4 µ3 µ4 32 32
µ3 µ2 µ3 24
µ2 µ1 µ2 8 16
µ1 µ0 µ1 1
Lower bound on |Λ| 48

Figure 6.7: (λ, n) = (ω4, 5)

Thus we may certainly take two orthogonal roots, one short and one long, outside Φs.

Set x = 〈ω4, α〉 and y = 〈ω4, β〉. Then x can take the values 0 or ±2 and y can take

the values 0, ±1 or ±2. The weight strings of length three for y = 2 are of the form µ4

µ2 µ4. There are 12 pairs of roots with (x, y) = (2, 2), 24 with (x, y) = (2, 1), 24 with

(x, y) = (2, 0), 12 with (x, y) = (0, 2) and 24 with (x, y) = (0, 0). There are 240 pairs

of mutually orthogonal short and long roots in Φ. Thus, for a fixed pair α, β there are

80.12
240

= 4 weights µ ∈ W.ω4 with (x, y) = (2, 2). Taking the horizontal differences between

weights to be α and vertical β we see, therefore, that there are four 3 × 3 weight nets.

However, since the weights in W.ω3 do not appear for p = 2 we shall instead consider

these four nets as 2× 3 weight nets with a difference 2α between two adjacent horizontal

weights. Analogously, we find eight 2 × 2, eight 2 × 1 and four 1 × 3 weight nets. There

are eight 1 × 1 weight nets but these do not contribute to |Λ|. By considering weights in

W.ω2 we find two 2 × 2 and eight 1 × 2 weight nets. There is one 1 × 3 weight net of the

form µ2 µ0 µ2. Therefore we have |Λ| > 4.5 + 8.2 + 8.1 + 4.2 + 2.4 + 1.4 + 8.2 = 80, so

(♦) holds.
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We have not been able to draw any useful conclusions about the irreducible module

L(2ω1) with p 6= 2. The main difficulty is that dimL(2ω1) is only slightly larger than

dim G and most µ ∈ Π(2ω1) satisfy 〈µ, α〉 = 0 for a given short root α /∈ Φs. Thus most

weights lie in strings of length 1, so we can only show that |Λ| > 2n.

We next consider the spin module L(ωn) for n ∈ [7, 8]. We may label weights in W.ωn

by strings consisting of n plus and minus signs. This is done by considering the coefficients

of a weight µ ∈ W.ωn, imagining a zero coefficient preceding the original coefficients of µ

and then placing a plus sign in position i of the string if the (i + 1)st coefficient is larger

than the ith coefficient for i ∈ [0, n−1]; otherwise there is a minus sign. This simplifies the

task of determining whether the difference between two weights is a root and to determine

clusters. Two weights differ by αi+· · ·+αj for j < n if they are identical except a plus and

minus sign have been interchanged in the ith and (j + 1)st positions. Two weights differ

by αn if they are identical except one has a plus sign in the nth position of the string and

the other has a minus sign. It is clear, therefore, that if we compare two weights with one

having two plus signs and the other having two minus signs in the ith and jth positions

(otherwise identical) then they differ by the root αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn. (Note

that an analogous method for labelling weights in W.ωn is available for types Cn when

p = 2 and Dn.)

Lemma 6.7. Let G act on the irreducible module L(ωn) for n ∈ [7, 8]. If n ∈ [7, 8] then

(♦) is satisfied for all X ∈ I.

Proof. It is clear that 〈ωn, α〉 = 1 for each of the n positive short roots α. Since |W (Bn) :

W (An)| = 2n there are 2nn pairs (µ, α) for µ ∈ W.ωn and α ∈ ΦS with weight string

of the form µ µ − α. Thus, for a fixed short root α there are 2n−1 weight strings of the

form µ µ − α, i.e., all weights of L(ωn) appear in pairs differing by α. By the adjacency

principle we have |Λ| > 2n−1.

First assume n = 8; then we have |Λ| > 128, so (♦) holds unless X = ∅. Indeed, if

X = ∅ then we see that d∅
ω8

> 129 > 128 = e∅
ω8

by considering the clique below formed

from two pairs of weights with weights in a pair differing by α8. Note that we have omitted
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a factor of 1
2
.

1 2 3 4 5 4 3 4, 1 2 3 4 5 4 3 2 and -1 0 1 2 3 2 1 2, -1 0 1 2 3 2 1 0

Now assume n = 7; then we have |Λ| > 64. Since |Φ(B7)| = 98, the condition (♦)

holds for all X ∈ I satisfying |Φ(X)| > 34. It remains to go through a list of 72 centraliser

types listed below. The calculations are routine.

Centraliser types
∅, A1, A2

1, A3
1, D2, D2A1, D2A

2
1, B1, B1A1, B1A

2
1, B1A

3
1, B1A

2
1D2, B1A1D2, D2B1,

A2, A2A1, A2A
2
1, A2D2, A2D2A1, A2B1, A2B1A1, A2B1D2, A3, A3A1, A3D2, A3A2,

A3B1, A3B1A1, A3B1D2, A2
2, A2

2B1, A3D3, D3, D3A1, D3A
2
1, D3B1, D3A1B1, D3A2,

D3A2B1, A4, A4A1, A4D2, A5, A5B1, D4, D4A1, D4B1, D4A1B1, D4A2, B2, B2A1,
B2A

2
1, B2D2, B2D2A1, B2A2, B2A2A1, B2A2D2, B2A3, B2D3, B2D3A1, B2A4, B2D4,

B3, B3A1, B3A
2
1, B3D2, B3D2A1, B3A2, B3A3, B3D3, B4, B4A1

Table 6.2: Centraliser types requiring consideration for L(ω7) with n = 7

We remark that since all weights in W.ωn appear in pairs differing by a fixed short

root there is no benefit to taking further roots not in Φs and forming weight nets as we

have done in previous lemmas.

We shall now deal with the remaining modules which all have low rank.

Lemma 6.8. Let G act on the irreducible module V where we take V to be one of L(3ω2)

(p > 3), L(4ω2) (p > 3) or L(ω1 + 2ω2) (p 6= 2) with n = 2, or L(ω1 + ω3) with n = 3.

Then (†) holds for L(4ω2) with n = 2, L(ω1 + 2ω2) with n = 2 and p 6= 2, 3 and for

L(ω1 + ω3) with n = 3 and p 6= 7; otherwise (♦) is satisfied for all X ∈ I.

Proof. Consider the modules L(3ω2) and L(4ω2) for n = 2. In Figure 6.8 we show that

(†) holds and in Figure 6.9 we show that (♦) is satisfied for each X ∈ I since |Φ(B2)| = 8.

We consider the module L(ω1 + 2ω2) for n = 2 in Figure 6.10 below. We see that (†)

holds if p 6= 2, 3 and that (♦) is always satisfied if p = 3.

Next we consider the module L(ω1 + ω3) for n = 3. We see in Figure 6.11 that (†)

holds if p 6= 2, 7 and that (♦) is always satisfied if p = 7 since |Φ(B3)| = 18.
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i ω |W.ω| mω

p 6= 2, 3
5 4ω2 4 1
4 ω1 + 2ω2 8 1
3 2ω1 4 1
2 2ω2 4 2
1 ω1 4 2
0 0 1 3

Weight No. of l
strings strings p 6= 2, 3

µ5 µ4 µ3 µ4 µ5 2 4
µ4 µ2 µ1 µ2 µ4 2 8
µ3 µ1 µ0 µ1 µ3 1 4

Lower bound on |Λ| 16

Figure 6.8: (λ, n) = (4ω2, 2)

i ω |W.ω| mω

p 6= 2, 3
3 3ω2 4 1
2 ω1 + ω2 8 1
1 ω2 4 2

Weight No. of l
strings strings p 6= 2, 3

µ3 µ2 µ2 µ3 2 4
µ2 µ1 µ1 µ2 2 6
Lower bound on |Λ| 10

Figure 6.9: (λ, n) = (3ω2, 2)

i ω |W.ω| mω

p 6= 2, 3 p = 3
4 ω1 + 2ω2 8 1 1
3 2ω1 4 1 1
2 2ω2 4 2 1
1 ω1 4 3 2
0 0 1 3 1

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ4 µ3 µ4 2 2 2
µ4 µ2 µ1 µ2 µ4 2 8 4
µ3 µ1 µ0 µ1 µ3 1 5 3

Lower bound on |Λ| 15 9

Figure 6.10: (λ, n) = (ω1 + 2ω2, 2)

i ω |W.ω| mω

p 6= 7 p = 7
2 ω1 + ω3 24 1 1
1 ω3 8 3 2

Weight No. of l
strings strings p 6= 2, 7 p = 7 p = 2
µ2 µ2 8 8 8 8

µ2 µ1 µ1 µ2 4 16 12 20
Lower bound on |Λ| 24 20 28

Figure 6.11: (λ, n) = (ω1 + ω3, 3)

Lemma 6.9. Let G act on the irreducible module L(2ωn) (p 6= 2) for n ∈ [3, 4]. If n = 4

then (†) holds and if n = 3 then (♦) holds for all X ∈ I.

Proof. If n = 4 then Figure 6.12 shows that (†) certainly holds since dim G = 36.

If n = 3 then (♦) holds provided |Φ(X)| > 3. Therefore we need to consider separately

the possibilities X = ∅, A1 or B1.

We first note that W.ω1 consists of the short roots and W.ω2 the long roots hence it

is easy to identify in which Weyl group orbit a particular weight lies.

Suppose that X = ∅. If 000 ∈ Π(V ) \ Λ then no root lies in the eigenspace, i.e.,

Φ(B3) ⊂ Λ. Since there are 18 roots, 6 of which have multiplicity two (the short

roots), we have d∅
2ω3

> 24 > 18 = e∅
2ω3

. Now assume that 000 ∈ Λ. Suppose that

a long root lies in Π(V ) \ Λ, without loss of generality take 100. Then the weights
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i ω |W.ω| mω

p 6= 2
4 2ω4 16 1
3 ω3 32 1
2 ω2 24 2
1 ω1 8 3
0 0 1 6

Weight No. of l
strings strings p 6= 2

µ4 µ3 µ4 8 8
µ3 µ2 µ3 12 24
µ2 µ1 µ2 6 18
µ1 µ0 µ1 1 6
Lower bound on |Λ| 56

Figure 6.12: (λ, n) = (2ω4, 4)

i ω |W.ω| mω

p 6= 2
3 2ω3 8 1
2 ω2 12 1
1 ω1 6 2
0 0 1 3

Weight No. of l
strings strings p 6= 2

µ3 µ2 µ3 4 4
µ2 µ1 µ2 4 8
µ1 µ0 µ1 1 3
Lower bound on |Λ| 15

Figure 6.13: (λ, n) = (2ω3, 3)

1 1 2, 1 1 1, 1 0 1, 1 1 0, 1 0 -1, 0 -1 0, 0 -1 -1 and 0 -1 -2

lie in Λ. We can arrange some of the remaining weights into the following three cliques:

1 2 2, 0 1 2, 0 1 1; 0 0 -1, -1 -1 -1, -1 -1 -2; and 1 2 3, 0 0 1.

Thus we have d∅
2ω3

> 3 + 10 + 6 = 19. We now suppose that a short root lies in

Π(V ) \ Λ, without loss take this to be 0 0 1. Then the following weights lie in Λ:

1 2 3, 1 1 2, 0 1 2, 1 1 1, 1 0 1, 0 1 1, -1 0 1, 0 -1 0, 0 -1 -1, -1 -1 0, -1 -1 -1, -1 -2 -1;

so d∅
2ω3

> 3 + 16 = 19.

Suppose that X = B1 with short root α3. The weights in Π(2ω3) can be arranged into

nine clusters as follows.

1 2 3 1 1 2 0 1 2 1 0 1 0 0 1 -1 0 1 0 -1 0 -1 -1 0 -1 -2 -1
1 2 2 1 1 1 0 1 1 1 0 0 0 0 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -2 -2
1 2 1 1 1 0 0 1 0 1 0 -1 0 0 -1 -1 0 -1 0 -1 -2 -1 -1 -2 -1 -2 -3

By reading from left to right, the 2nd, 3rd, 7th and 8th clusters have size 4 and the

5th cluster has size 7. If the 5th cluster lies in Λ then dB1

2ω2
> 28 since all other clusters

contain roots. Assume therefore that the 5th cluster lies in Π(V ) \ Λ. The 1st, 2nd and

3rd and the 7th, 8th and 9th clusters form two cliques so dB1

2ω2
> 7 + 14 = 21. Thus (♦)

holds.

Suppose that X = A1 with long root α1; here eA1

2ω3
= 16. Consider the following seven

clusters.

1 1 2 1 1 1 1 0 1 1 0 0 1 0 -1 0 -1 -1 0 -1 -2
0 1 2 0 1 1 0 0 1 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -2

-1 0 1 -1 0 0 -1 0 -1
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Assume that 000 ∈ Π(V ) \ Λ. Then all clusters above not containing 000 lie in Λ,

whence dA1

2ω3
> 20 and we are done. Instead let us assume that 000 ∈ Λ; we can form

three cliques from the 1st, 2nd and 3rd clusters and the 5th, 6th and 7th clusters. Thus

dA1

2ω3
> 5 + 6 + 6 = 17.

122



Chapter 7

Groups of type Cn

In this chapter we shall assume that G is a simple simply connected algebraic group of

type Cn defined over an algebraically closed field K and V = L(λ) is an irreducible G-

module with p-restricted highest weight λ. As in the previous chapter, it will be sensible

to treat the cases p 6= 2 and p = 2 separately since the conclusion of Premet’s theorem

does not hold in the latter case. We may assume that n > 3 since we studied B2(K) in

the previous chapter and B2(K) ∼= C2(K).

We shall prove the following result.

Theorem 7.1. Let G = Sp2n(K) act on V = L(λ). If dim V 6 dim G + 2 then dim E =

dim V with the possible exceptions of L(ω2) for n ∈ [3,∞), L(ωn) for n ∈ [5, 6] and p = 2,

and L(ω3) for n = 3 and p 6= 2; if instead dim V > dim G + 2 then dim E < dim V with

the possible exceptions of L(ω4) with n = 4 and p 6= 2, and L(ω3) with n = 4 and p = 3.

This theorem is a consequence of the results to follow in later sections.

7.1 Initial survey

Assume throughout this section that p 6= 2. Consider µ 6 λ where µ =
∑n

i=1 aiωi is a

dominant weight. We shall begin by obtaining conditions on the coefficients ai in order

to show that (†) is satisfied for n large enough. This will allow us later to list modules
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which will require further consideration. Recall that we may assume that there is a short

root outside the root system of the centraliser of a non-central semisimple element and in

calculations to follow we shall be considering short roots only: see Section 4.3.

It is useful to note that ωk−2 < ωk for k > 3; this is clear since each fundamental

weight is of the form ωi = α1 +2α2 + · · ·+(i−1)αi−1 + i
(

αi + · · · + αn−1 + 1
2
αn

)

for each

i ∈ [1, n].

Proposition 7.2. Suppose that µ =
∑n

i=1 aiωi 6 λ is a dominant weight, and at least

one of the following conditions holds:

(i) n > 9 and ak 6= 0 for some k ∈ [3, n];

(ii) n ∈ [7, 8] and ak 6= 0 for some k ∈ [4, n];

(iii) n = 6 and either a4 6= 0 or a6 6= 0;

(iv) n > 5 and ai, aj 6= 0 for some i ∈ [1, 3] and j ∈ [n − 1, n];

(v) n = 4 and ai, a3 6= 0 for some i ∈ [1, 2].

Then (†) holds.

Proof. Assume that ak 6= 0 for some k ∈ [3, n]. Then Ψ = 〈αi | ai = 0〉 is contained in

Φ(Ak−1Cn−k) and

rΨ > rAk−1Cn−k
= 2k−2k

(

n

k

)

4n − 3k − 1

n(n − 1)
.

If k = 4 then rA3Cn−4
> dim G = n(2n + 1) for n > 6 and rA3Cn−4

6 rAk−1Cn−k
for

k ∈ [4, n − 2]. Thus (†) holds for n > 6 provided that ak 6= 0 for k ∈ [4, n − 2]. Also, by

taking k = 3 and k = n−1, we find that rA2Cn−3
> dim G if n > 9 and rAn−2C1

> dim G if

n > 7. If k = n then rAn−1
> dim G whenever n > 10; moreover, if n ∈ [6, 9] and an 6= 0

then (†) holds by Premet’s theorem since ωn−2 < ωn.

Suppose that both a1 6= 0 and an 6= 0. Then Ψ ⊂ Φ(An−2) and rΨ > rAn−2
=

2n−2(n + 2) exceeds dim G for n > 5. Furthermore, since rAn−2
6 rA1An−3

6 rA2An−4
, we

cannot have an 6= 0 and either a2 or a3 non-zero.

124



We calculate rA2An−5C1
= 2n−4

3
(n − 2)(n − 3)(n2 + 7n − 26), rA1An−4C1

= 2n−4(n −

2)(n2 + 5n − 14) and rAn−3C1
= 2n−3(n2 + 3n − 6) so that (†) holds if both a3 and an−1

are non-zero for n > 5 and if both ai and an−1 are non-zero with i ∈ [1, 2] for n > 4.

The proposition above very much restricts the possible highest weights for our irre-

ducible modules.

The modules that have dimension at most dimG + 2 are as follows: L(ω1), L(ω2) and

the adjoint module L(2ω1) for n > 3, and the module L(ω3) for n = 3. Only L(ω1) for

n > 3 has dimension less than dim B = n(n+1) so we are left to consider L(ω2) for n > 3

and L(ω3) for n = 3.

Lemma 7.3. Suppose that dim V > dim G + 2. If n > 3 then (†) holds except possibly

for the modules with highest weight ω4 for n ∈ [4, 5], ω1 + ω3 for n = 3, ω5 for n = 5, ω3

for n ∈ [4, 8], and both ω1 + ω2 and 3ω1 (p > 3) for n ∈ [3, 4].

Proof. We shall split the analysis of weights to follow into six parts according as n > 9,

n ∈ [7, 8] or n = 6, 5, 4 or 3.

Case I: n > 9. By condition (i) of Proposition 7.2 we may assume that µ = a1ω1+a2ω2.

Let us set m1 =
∑2

i=1 iai so that, as in Lemma 5.3, if m1 > 3 then for some bi with

0 6 bi 6 ai for each i ∈ [1, 2] we have

µ′ = µ −

(

2
∑

i=1

biωi − ωj

)

< µ 6 λ,

where j =
∑2

i=1 ibi and 3 6 j 6 4. Since the coefficient a′
j of µ′ is non-zero, by applying

Premet’s theorem, we may assume that m1 6 2. Hence the possible weights µ correspond

to modules with dimension at most dimG.

Case II: n ∈ [7, 8]. By condition (ii) of Proposition 7.2, we may assume that ak = 0

for k ∈ [4, n], whence µ =
∑3

i=1 aiωi. Set M1 =
∑3

i=1 iai; if M1 > 4 then, as in Lemma

5.3 there exist bi for each i ∈ [1, 3] satisfying 0 6 bi 6 ai such that

µ′ = µ −

(

3
∑

i=1

biωi − ωj

)

< µ 6 λ,
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where j =
∑3

i=1 ibi and 4 6 j 6 6. Since a′
j 6= 0 in µ′ we may assume, by Premet’s

theorem, that M1 6 3.

Considering the weight ω1 + ω2 we calculate rA2Cn−3
= 2(n − 2)(2n − 5) and rCn−2

=

4(2n − 3) since ω1 + ω2 > ω3. Thus we have |Λ| > 44 + 90 = 134 for n = 7 and

|Λ| > 52 + 132 = 184 for n = 8, and (†) holds in both cases. Therefore we must consider

further the weight ω3 for n ∈ [7, 8].

Case III: n = 6. By conditions (iii) and (iv) of Proposition 7.2 we may assume that

µ =
∑3

i=1 aiωi + a5ω5 and that we do not have both ai 6= 0 and a5 6= 0 for i ∈ [1, 3].

Thus, if a5 6= 0 then µ = a5ω5. In fact (†) always holds in this case since ω5 > ω3 and

rA4C1
+rA2C3

= 64+56 = 120 > dim G. We may now assume that µ =
∑3

i=1 aiωi. Suppose

first that precisely two coefficients of µ are non-zero. The condition (†) holds if a1 and

a3 are non-zero since ω1 + ω3 > ω4, and if a1 and a2 are non-zero since ω1 + ω2 > ω3 and

rC4
+ rA2C3

= 36 + 56 = 92. Similarly if a2 and a3 are non-zero since ω2 + ω3 > ω1 + ω2.

In particular this shows that at most one coefficient of µ can be non-zero. We can use

Premet’s theorem and the partial orderings 3ω1 > ω1 + ω2, 2ω2 > ω4 and 2ω3 > ω1 + ω3

to deduce that we need only to consider further the weight ω3 for n = 6.

Case IV: n = 5. By condition (iv) of Proposition 7.2 we may assume that we do not

have both ai 6= 0 and aj 6= 0 for i ∈ [1, 3] and j ∈ [4, 5]. If both a4 and a5 are non-zero

then (†) holds since rA3
= 56. If a4 6= 0 then we may assume a4 = 1 since 2ω4 > ω2 + ω4.

Similarly, if a5 6= 0 then we may assume a5 = 1 since 2ω5 > ω3 + ω5.

We may now assume that µ =
∑3

i=1 aiωi. If both a2 and a3 are non-zero then (†)

holds since rA1C2
= 102; the same is true if both a1 and a3 are non-zero. If both a1

and a2 are non-zero then (†) holds by Premet’s theorem since ω1 + ω2 > ω3 and we have

rC3
+ rA2C2

= 28 + 30 = 58. Thus we can assume that precisely one coefficient of µ is

non-zero. We must have a1 6 2 since 3ω1 > ω1 + ω2. Also if a2 6= 0 then a2 = 1 since

2ω2 > ω1 + ω3 and if a3 6= 0 then a3 = 1 since 2ω3 > ω2 + ω4. Therefore we must consider

further ω3, ω4 and ω5 for n = 5.

Case V: n = 4. By condition (v) of Proposition 7.2 we see that (†) holds if both ai 6= 0

and a3 6= 0 for i ∈ [1, 2]. Suppose that both a1 and a4 are non-zero. Then Ψ ⊂ Φ(A2)
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and rA2
= 24. We see that (†) holds since rC2

= 20 and ω1 + ω4 > ω1 + ω2. Similarly we

are done if both a2 and a4 are non-zero since then Ψ ⊂ Φ(A2
1) and rA2

1
= 40. Therefore

we can have at most two coefficients of µ non-zero and if two coefficients are non-zero

then either a1 6= 0 and a2 6= 0 or a3 6= 0 and a4 6= 0. The condition (†) holds in the

latter case since ω3 + ω4 > ω2 + ω3. In the former case we must have a1 = a2 = 1 since

2ω1 + ω2 > ω1 + ω3 and ω1 + 2ω2 > ω2 + ω3.

Assume that precisely one coefficient of µ is non-zero. If a1 > 4 then (†) holds since

4ω1 > ω1+ω3. Similarly if ai > 2 for i ∈ [2, 4] since 2ω4 > 2ω3 > 2ω2 > ω1+ω3. Therefore

we must consider further ω1 + ω2, 3ω1, ω3 and ω4.

Case VI: n = 3. If both a2 and a3 are non-zero then (†) holds by Premet since

ω2 + ω3 > ω1 + ω2 and we have rA1
= 10 and rC1

= 12. In particular we see that at most

two coefficients of µ can be non-zero. If both a1 and a3 are non-zero then (†) holds if

a1 + a3 > 2 since ω1 +2ω3 > ω2 +ω3 and 2ω1 +ω3 > ω2 +ω3. The weight ω1 +ω3 satisfies

ω1 +ω3 > 2ω1 > ω2 but rA1
+ rC2

+ rA1C1
= 10+2+5 = 17 which does not exceed dimG.

If both a1 and a2 are non-zero then (†) holds if a1 + a2 > 2 since ω1 + 2ω2 > ω2 + ω3

and since 2ω1 + ω2 > ω1 + ω3. Now assuming that only one coefficient of µ is non-zero

we may take a1 6 3 since 4ω1 > 2ω1 + ω2 in which case (†) holds, a2 = 1 by above since

2ω2 > ω1 + ω3 and a3 = 0 since 2ω3 > 2ω2 and L(ω3) has dimension less than dim G. We

must consider further ω1 + ω2, ω1 + ω3 and 3ω1.

7.2 Even characteristic

Assume now that p = 2. By Zalesski’s Theorem 2.7 and Theorem 2.8 any 2-restricted

weight with short support can be treated in the same way as the previous section since

the conclusion of Premet’s theorem holds true and the associated module is tensor inde-

composable. Thus (†) holds for all 2-restricted modules with short support except those

listed in Lemma 7.3.

The tensor decomposable modules take the form L
(
∑n−1

i=1 aiωi

)

⊗ L(ωn) where each

ai ∈ {0, 1}. Note that this module is isomorphic to L
(
∑n−1

i=1 aiωi + ωn

)

by Theorem 2.4.

127



We shall use Proposition 4.3 to show that (†) holds for these modules. In Lemma 7.3 we

have shown that (†) holds for all but a short list of modules (most of which are 2-restricted

with short support). Therefore, after applying Proposition 4.3 it remains to investigate

the modules L(µ)⊗L(ωn) where µ is one of ω4 for n = 5, ω3 for n ∈ [4, 8], and ω1 +ω2 for

n ∈ [3, 4] (the relevant exceptions in Lemma 7.3), as well as ω1 and ω2 both for n ∈ [3,∞)

(since L(ω1) and L(ω2) have dimensions at most dimG).

Lemma 7.4. If G = Sp2n(K) acts on a tensor decomposable p-restricted module V then

(†) holds except possibly if V = L(ω1) ⊗ L(ωn) for n ∈ [3, 4].

Proof. We shall apply Proposition 4.3 to each of the tensor decomposable modules. First

we notice that, in any case, we may assume n 6 6 since dim L(ωn) > dim G otherwise.

Consider L(ω1 + ω2) ⊗ L(ωn) for n ∈ [3, 4]. Recall that the conclusion of Premet’s

theorem holds for ω1 + ω2 ∈ X(T )S. We find that

|Λω1+ω2
| > rCn−2

=
1

2

2nn!

2n−2(n − 2)!

2n(n − 1) − 2(n − 2)(n − 3)

2n(n − 1)
= 4(2n − 3),

whence |Λω1+ω2
| dim L(ωn) > 2n+2(2n − 3); this exceeds dim G for n ∈ [3, 4].

Consider L(ω4) ⊗ L(ω5) for n = 5. Since |Λω4
| > rA3C1

= 28 and dimL(ω5) = 32 we

have that (†) holds.

Consider L(ω2) ⊗ L(ωn) for n ∈ [3, 6]. We find that |Λω2
| > rA1Cn−2

= 4n − 7 so

|Λω2
| dim L(ωn) > dim G for n ∈ [3, 6]. We deal with L(ω3) ⊗ L(ωn) for n ∈ [4, 6]

analogously since rA2Cn−3
= 2(n − 2)(2n − 5) > rA1Cn−2

.

Finally, consider the module L(ω1) ⊗ L(ωn) for n ∈ [3, 6]. We have |Λωn
| > rAn−1

=

2n−2, whence |Λωn
| dim L(ω1) > 2n−1n exceeds dim G for n > 5.

We must examine L(ωn) for p = 2 and n ∈ [7,∞); this module has dimension 2n.

We have 〈ωn, α〉 = 0 or ±2 for short roots α ∈ Φ(Cn) and in particular, 〈ωn, α〉 = 2 for

1
2
n(n − 1) short roots. Thus, for a fixed short root α there are 2n−1n(n−1)

2n(n−1)
= 2n−2 weights

µ ∈ W.ωn with weight string containing µ µ + 2α. Since p = 2 we obtain |Λ| > 2n−2

by the adjacency principle; this exceeds dim G for n > 10. Hence, in the next section, it
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remains for us to consider L(ωn) for p = 2 and n ∈ [7, 9].

7.3 Weight string analysis

We list in Table 7.1 the weights which require further consideration.

λ n Lemma

ω4 5 7.6 (†) (p 6= 3), (♦) (p = 3)
4 (p 6= 2) 7.6 (♦)a

ω1 + ωn 4 (p = 2) 7.5 (†)
3 7.5 (†)

ω5 5 (p 6= 2) 7.6 (♦)
ω3 [7, 8] 7.7 (†)

[5, 6] 7.7 (♦)
4 7.7 (♦)b

ω1 + ω2 [3, 4] 7.5 (†)
3ω1 [3, 4] (p 6= 2, 3) 7.5 (†)
ωn [7, 9] (p = 2) 7.8 (♦)

Except for: a X = A2
1, A3 and C2

2 ,
b X = A3 if p = 3.

Table 7.1: Possible weights in type Cn for n > 3

Lemma 7.5. Let G act on the irreducible module V where we take V to be one of L(ω1 +

ω3) for n = 3, L(ω1 + ω4) for n = 4 and p = 2, L(3ω1) for n ∈ [3, 4] and p > 3, or

L(ω1 + ω2) for n ∈ [3, 4]. Then (†) holds in each case.

Proof. Consider L(ω1 + ω3) with n = 3. In the last column of the second table in Figure

7.1 we are using fact that if p = 2 then 2α(s) = 1 if and only if α(s) = 1. We see that (†)

holds for all p.

Now consider L(ω1 + ω4) for n = 4 and p = 2. By ignoring the weights in W.ω1 and

W.(ω1 + ω2) (since they occur with multiplicity zero) we see from Figure 7.2 below that

(†) holds.

Consider the module L(3ω1) for n ∈ [3, 4]; we have 3ω1 > ω1 + ω2 > ω3 > ω1. It is

more convenient to take these two low rank cases separately since certain weight strings

simply do not occur for n = 3.

129



i ω |W.ω| mω

p 6= 2, 3 p = 3 p = 2
3 ω1 + ω3 24 1 1 1
2 2ω1 6 1 1 0
1 ω2 12 3 2 2
0 0 1 4 3 0

Weight No. of l
strings strings p 6= 2, 3 p = 3 p = 2

µ3 4
µ3 µ3 4 4 4 4

µ3 µ2 µ3 2 2 2 2
µ3 µ1 µ1 µ3 4 16 12 16

µ2 µ2 2 2 2
µ1 2

µ1 µ0 µ1 1 4 3 2
Lower bound on |Λ| 28 23 24

Figure 7.1: (λ, n) = (ω1 + ω3, 3)

i ω |W.ω| mω

p = 2
4 ω1 + ω4 64 1
3 ω1 + ω2 48 0
2 ω3 32 2
1 ω1 8 0

Weight No. of l
strings strings p = 2

µ4 16
µ4 µ4 8 8

µ4 µ3 µ4 8 8
µ4 µ2 µ2 µ4 8 32

µ3 µ3 10
µ3 µ2 µ3 8

µ3 µ1 µ1 µ3 2
µ2 µ1 µ2 4 8
Lower bound on |Λ| 56

Figure 7.2: (λ, n) = (ω1 + ω4, 4)

If n = 4 the usual calculations with weight strings shows that |Λ| > 2rC3
+rC2

+rA2C1
=

4 + 20 + 12 = 36 = dimG. We show in Figure 7.3 that (†) holds by using weight

multiplicities.

i ω |W.ω| mω

p 6= 2, 3
4 3ω1 8 1
3 ω1 + ω2 48 1
2 ω3 32 1
1 ω1 8 4

Weight No. of l
strings strings p 6= 2, 3

µ4 4
µ4 µ3 µ3 µ4 2 4

µ3 8
µ3 µ3 8 8

µ3 µ2 µ3 8 8
µ3 µ1 µ1 µ3 2 10

µ2 µ2 8 8
µ2 µ1 µ2 4 8
Lower bound on |Λ| 46

Figure 7.3: (λ, n) = (3ω1, 4)

Similarly, if n = 3 we have |Λ| > 2rC2
+ rC1

+ rA2
= 4 + 12 + 2 = 18 = |Φ(G)|, and we

show in Figure 7.4 that (†) holds by using weight multiplicities.

Consider L(ω1 +ω2) for n ∈ [3, 4]. In Figures 7.5 and 7.6 for n = 4 and n = 3 we show

that (†) holds for all characteristics.

Recall from [2, p.47] that for the root system of type Cn we have Φ = ΦS ∪ ΦL where

ΦS = {±ǫi ± ǫj | 1 6 i < j 6 n} consists of 2n(n − 1) short roots and ΦL = {±2ǫi | 1 6
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i ω |W.ω| mω

p 6= 2, 3
4 3ω1 6 1
3 ω1 + ω2 24 1
2 ω3 8 1
1 ω1 6 3

Weight No. of l
strings strings p 6= 2, 3

µ4 2
µ4 µ3 µ3 µ4 2 4

µ3 µ3 4 4
µ3 µ2 µ3 4 4

µ3 µ1 µ1 µ3 2 8
µ2 µ1 µ2 2 4
Lower bound on |Λ| 24

Figure 7.4: (λ, n) = (3ω1, 3)

i ω |W.ω| mω

p 6= 3 p = 3
3 ω1 + ω2 48 1 1
2 ω3 32 2 1
1 ω1 8 6 4

Weight No. of l
strings strings p 6= 2, 3 p = 3 p = 2

µ3 8
µ3 µ3 10 10 10 10

µ3 µ2 µ3 8 16 8 16
µ3 µ1 µ1 µ3 2 14 10 16

µ2 µ2 8 16 8 16
µ2 µ1 µ2 4 16 8 16
Lower bound on |Λ| 72 44 74

Figure 7.5: (λ, n) = (ω1 + ω2, 4)

i 6 n} consists of 2n long roots. Let αi = ǫi − ǫi+1 for i ∈ [1, n − 1] and αn = 2ǫn be the

simple roots. Therefore we have ωi =
∑i

k=1 ǫk. We shall need this for the next lemma.

Lemma 7.6. Let G act on the irreducible module V where we take V to be one of L(ω5)

for n = 5 with p 6= 2, L(ω4) for n = 4 with p 6= 2 or L(ω4) for n = 5. If V = L(ω4) for

n = 5 with p 6= 3 then (†) holds. If V is either L(ω5) for n = 5 with p 6= 2 or L(ω4) for

n = 5 with p = 3 then (♦) is satisfied for all X ∈ I. If V = L(ω4) for n = 4 with p 6= 2

then (♦) holds for all X ∈ I \ {A2
1, A3, C

2
2}.

Proof. Consider the module L(ω4) for n = 5. In Figure 7.7 we see that (†) holds unless

p = 3.

If p = 3 then (♦) holds for each X ∈ I such that |Φ(X)| > 9. We may therefore

assume that there are two orthogonal roots, α (short) and β (long), outside Φs. It is

straightforward to check that 〈ω4, α〉 = 0, ±1 or ±2 and 〈ω4, β〉 = 0 or ±1. We note that

for a root system of type Cn there are 2n.2(n−1)(n−2) orthogonal pairs of roots α short,

β long, so 240 such pairs if n = 5.

We have 〈ω4, α〉 = 2 and 〈ω4, β〉 = 1 for 12 pairs of roots α, β with (α, β) = 0. In more

detail, the 12 pairs of orthogonal long and short roots are 2ǫi and ǫj +ǫk with i, j, k ∈ [1, 4],

j < k and k 6= i 6= j. There are 80.12 = 960 triples (µ; α, β) with 〈µ, α〉 = 2, 〈µ, β〉 = 1
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i ω |W.ω| mω

p 6= 3, 7 p = 7 p = 3
3 ω1 + ω2 24 1 1 1
2 ω3 8 2 2 1
1 ω1 6 4 3 3

Weight No. of l
strings strings p 6= 2, 3, 7 p = 7 p = 3 p = 2
µ3 µ3 6 6 6 6 6

µ3 µ2 µ3 4 8 8 4 8
µ3 µ1 µ1 µ3 2 10 8 8 12

µ2 µ1 µ2 2 8 8 4 8
Lower bound on |Λ| 32 28 22 34

Figure 7.6: (λ, n) = (ω1 + ω2, 3)

i ω |W.ω| mω

p 6= 2, 3 p = 2 p = 3
2 ω4 80 1 1 1
1 ω2 40 2 2 1
0 0 1 5 4 1

Weight No. of l
strings strings p 6= 2, 3 p = 2 p = 3

µ2 24
µ2 µ2 16 16 16 16

µ2 µ1 µ2 12 24 24 12
µ1 2

µ1 µ1 12 24 24 12
µ1 µ0 µ1 1 4 4 1
Lower bound on |Λ| 68 68 41

Figure 7.7: (λ, n) = (ω4, 5)

for orthogonal roots α ∈ ΦS, β ∈ ΦL and µ ∈ W.ω4. For a given pair α, β there are

960
240

= 4 weights µ ∈ W.ω4 such that 〈µ, α〉 = 2 and 〈µ, β〉 = 1. Thus there are four 3 × 2

weight nets and similarly we calculate that there are four 3×1, eight 2×2 and eight 1×2

weight nets. We cannot obtain 2 × 1 weight nets since 〈ω4, α〉 = 1 and 〈ω4, β〉 = 0 is not

possible and we need not consider weights µ ∈ W.ω4 with 〈µ, α〉 = 〈µ, β〉 = 0 since there

is no contribution to |Λ| from 1×1 weight nets. So from weight nets containing µ ∈ W.ω4

we find that |Λ| > 4.3 + 4.1 + 8.2 + 8.1 = 40.

Now we consider the remaining weight nets for L(ω4), i.e., those containing ν ∈ W.ω2

and no weights from W.ω4. As before, we can check that 〈ω2, α〉 = 0, ±1 or ±2 and

〈ω2, β〉 = 0 or ±1. It is not possible to find pairs of orthogonal roots α and β with

〈ω2, α〉 = 2 and 〈ω2, β〉 = 1. We find that there are two 2 × 2 and eight 2 × 1 weight

nets and there is one 3 × 1 weight net (which has the form µ1 µ0 µ1). The contribution

to |Λ| from the weight nets formed from weights ν ∈ W.ω2 with 〈ν, α〉 = 0 and 〈ν, β〉 = 1

was counted earlier since these nets appear in the 3 × 2 weight nets above. Therefore

|Λ| > 40 + 2.2 + 8.1 + 1.1 = 53 and (♦) is satisfied for all X ∈ I.
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Consider the module L(ω5) for n = 5. When p = 2 the module has dimension less

than dim G, so we assume that p 6= 2. There are three dominant weight orbits for this

module; they are related as follows: ω5 > ω3 > ω1. If p 6= 2, 3 then mω5
= mω3

= 1 and

mω1
= 2 whereas if p = 3 then mν = 1 for each ν ∈ Π(ω5). Thus in the latter case we do

not gain anything from considering weight multiplicities. We use Proposition 4.3 to see

that |Λ| > rA4
+ rA2C2

+ rC4
= 8+30+2 = 40. The condition (♦) is satisfied for all X ∈ I

with |Φ(X)| > 10 and it is clear that we may assume that there are two orthogonal roots

(one long and one short) not in Φs.

As before we may calculate the number of weight nets, however we arrange the weights

in Π(ω5) into weight nets provided explicitly below (ordered by nets of the same size: 1×2,

2×2, 3×2, 2×1, 3×1 and one 3×2 weight net that does not have a negative counterpart

since it is unchanged under negation) where the difference between horizontal weights is

α1 and vertical weights is α5. We omit the eight 1 × 1 weight nets.

1 2 3 4 5

2
1 2 3 2 3

2
1 2 2 2 3

2
1 2 1 2 3

2
1 2 1 0 1

2

1 2 3 4 3

2
1 2 3 2 1

2
1 2 2 2 1

2
1 2 1 2 1

2
1 2 1 0 - 1

2

1 1 2 2 3

2
0 1 2 2 3

2
1 1 1 2 3

2
0 1 1 2 3

2
1 1 1 0 1

2
0 1 1 0 1

2
1 1 0 0 1

2
0 1 0 0 1

2

1 1 2 2 1

2
0 1 2 2 1

2
1 1 1 2 1

2
0 1 1 2 1

2
1 1 1 0 - 1

2
0 1 1 0 - 1

2
1 1 0 0 - 1

2
0 1 0 0 - 1

2

1 0 1 2 3

2
0 0 1 2 3

2
-1 0 1 2 3

2
1 0 1 0 1

2
0 0 1 0 1

2
-1 0 1 0 1

2

1 0 1 2 1

2
0 0 1 2 1

2
-1 0 1 2 1

2
1 0 1 0 - 1

2
0 0 1 0 - 1

2
-1 0 1 0 - 1

2

1 1 2 3 3

2
0 1 2 3 3

2
1 1 2 1 1

2
0 1 2 1 1

2
1 1 1 1 1

2
0 1 1 1 1

2
1 1 0 1 1

2
0 1 0 1 1

2
1 1 0 -1 - 1

2
0 1 0 -1 - 1

2

1 0 1 1 1

2
0 0 1 1 1

2
-1 0 1 1 1

2
1 0 0 1 1

2
0 0 0 1 1

2
-1 0 0 1 1

2

1 0 0 0 1

2
0 0 0 0 1

2
-1 0 0 0 1

2

1 0 0 0 - 1

2
0 0 0 0 - 1

2
-1 0 0 0 - 1

2

If we take the weight nets above together with the corresponding negative versions for

all but the last weight net then, by the adjacency principle, we have |Λ| > 55 if p = 3 and

|Λ| > 62 if p 6= 2, 3. Thus (♦) is satisfied for all X ∈ I.

Consider the module L(ω4) for n = 4. If p = 2 then dim L(ω4) = 16 < 20 = dim B

so we may assume that p 6= 2. We may use the available information about weight

multiplicities to show that |Λ| > 13 or 14 according as p = 3 or p 6= 2, 3. As usual (♦) is

satisfied for X ∈ I satisfying |Φ(X)| > 18 or 19; the remaining centraliser types are ∅, A1,

A2
1, A2, A3, C1, C1A1, C1A2, C2

1 , C2
1A1, C2, C2A1, C2C1, C2

2 and C3. It is straightforward
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to show that (♦) holds for all but three of these. If X is one of A3, C2
2 or A2

1 then we may

have equality in (♦) so this module for p 6= 2 is a possible exception in Theorem 7.1.

Lemma 7.7. Let G act on the irreducible module L(ω3) for n ∈ [4, 8]. If n ∈ [7, 8] then

(†) holds and if n ∈ [5, 6] or n = 4 with p 6= 3 then (♦) holds for each X ∈ I. If n = 4

with p = 3 then (♦) holds for all X ∈ I \ {A3}.

Proof. Consider the module L(ω3) with n ∈ [4, 8]. It is necessary to separate the case

n = 4 = p+1 from the others in the right-hand table of Figure 7.8 because mω1
= 1 here.

We see that for n ∈ [7, 8] the condition (†) holds.

i ω |W.ω| mω

p ∤ n − 1 p | n − 1

2 ω3
4

3
n(n − 1)(n − 2) 1 1

1 ω1 2n n − 2 n − 3

Weight No. of l
strings strings p ∤ (n − 1) p | (n − 1) 6= 3 p | (n − 1) = 3

µ2
4

3
(n − 2)(n2 − 7n + 15)

µ2 µ2 4(n − 2)(n − 3) 4(n − 2)(n − 3) 4(n − 2)(n − 3) 8
µ2 µ1 µ2 2(n − 2) 4(n − 2) 4(n − 2) 4

µ1 µ1 2 2(n − 2) 2(n − 3) 2
Lower bound on |Λ| 2(n − 2)(2n − 3) 2(n − 1)(2n − 5) 14

Figure 7.8: λ = ω3 for n ∈ [4, 8]

Suppose that we can find two orthogonal roots, α (short) and β (long), outside Φs.

We see that 〈ω3, α〉 = 0, ±1 or ±2 and 〈ω3, β〉 = 0 or ±1. We note that for a root system

of type Cn there are 4n(n − 1)(n − 2) orthogonal pairs of roots α short and β long.

We have 〈ω3, α〉 = 2 and 〈ω3, β〉 = 1 for 3 pairs of roots α, β with (α, β) = 0. These

3 pairs of orthogonal long and short roots are ǫ2 + ǫ3 and 2ǫ1, ǫ1 + ǫ3 and 2ǫ2, and 2ǫ3

and ǫ1 + ǫ2. There are 4
3
n(n − 1)(n − 2).3 triples (µ; α, β) with 〈µ, α〉 = 2, 〈µ, β〉 = 1 for

orthogonal roots α ∈ ΦS, β ∈ ΦL and µ ∈ W.ω3. For a given pair α, β there is one weight

µ ∈ W.ω4 such that 〈µ, α〉 = 2 and 〈µ, β〉 = 1. Thus there is one 3 × 2 weight net and

similarly we calculate that there are 2(n− 3) 3× 1, 4(n− 3) 2× 2, 4(n− 3)(n− 4) 2× 1

and 2 + 2(n − 3)(n − 4) 1 × 2 weight nets.

Now we consider the remaining weight nets for L(ω3), i.e., those containing ν ∈ W.ω1

and no weights from W.ω3. As before, we can check that 〈ω1, α〉 = 0 or ±1 and 〈ω1, β〉 = 0
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or ±1. It is not possible to find pairs of orthogonal roots α and β with 〈ω1, α〉 = 〈ω1, β〉 =

1. We find that there are two 2× 1 weight nets. The contribution to |Λ| from the weight

net formed from weights ν ∈ W.ω1 with 〈ν, α〉 = 0 and 〈ν, β〉 = 1 was counted earlier

since this net appears in the 3 × 2 weight net above.

If n = 6 then from Figure 7.8 we see that |Λ| > 72 or 70 according as p 6= 5 or p = 5.

There are certainly two orthogonal roots, one short and one long, outside Φs. Therefore,

if p = 5 we have |Λ| > 14 + 24 + 24 + 12 + 5 + 6 = 85. This exceeds dimG and the same

is true for p 6= 5 since the weights in W.ω1 have larger multiplicity.

If n = 5 we see from Figure 7.8 that |Λ| > 40 or 42 according as p = 2 or p 6= 2 and if

n = 4 then |Λ| > 14 or 20 according as p = 3 or p 6= 3. Thus (♦) is satisfied for n = 5 if

|Φ(X)| > 8 or 10 according as p 6= 2 or p = 2 and for n = 4 if |Φ(X)| > 12 or 18 according

as p 6= 3 or p = 3. In fact if n = 4 and p = 3 then all X ∈ I are possible except C3C1 and

C4.

We provide the subsystems X in Table 7.2 below that remain to be dealt with to show

that (♦) is satisfied for all X ∈ I. For n = 5 there are three subsystems which need

consideration for p = 2 only; these are presented at the end of the n = 5 row. Similarly

with n = 4 there are two subsystems to be treated for p = 3 only.

n Centraliser type
5 ∅, A1, C1, A2

1, A1C1, C2
1 , A1C

2
1 , A2

1C1, A2, A2A1, A2C1, C2; A2C
2
1 , C2A1, C2C1

4 ∅, A1, C1, A2
1, A1C1, C2

1 , A1C
2
1 , A2, A2C1, C2, C2A1, C2C1, A3; C2

2 , C3

Table 7.2: Centraliser types requiring consideration for L(ω3) with n ∈ [4, 5]

If n = 5 we may assume that there are two orthogonal roots, α (short) and β (long),

outside Φs. Using the weight nets calculated above we find that |Λ| > 49 or 47 according

as p 6= 2 or p = 2. We see that (♦) is satisfied unless X = ∅ (for all p), or A1 or C1 for

p = 2.

We may take three orthogonal roots outside Φs, two short roots and one long root as

in Lemma 7.6. Set x = 〈ω3, α〉, y = 〈ω3, β〉 and z = 〈ω3, γ〉 where α and γ are short

roots and β is a long root. Note that there are the same number of triples of roots α,

β, γ taking values (a, b, c) and (c, b, a). We find that there are 12 triples of such roots
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with (x, y, z) = (2, 1, 0), 48 with (x, y, z) = (1, 1, 1), 48 with (x, y, z) = (0, 1, 0), 24 with

(x, y, z) = (2, 0, 1) and 48 with (x, y, z) = (1, 0, 0). Since |W.ω3| = 80 and there are 960

triples of two short roots and one long root (mutually orthogonal) we calculate that, for

a given triple α, β, γ there is one weight µ ∈ W.ω3 with 3 × 2 × 1 weight net, one weight

with 1 × 2 × 3 weight net, four weights with 2 × 2 × 2 weight nets, four weights with

1 × 2 × 1 weight net, two weights with 3 × 1 × 2 weight net, two weights with 2 × 1 × 3

weight net, four weights with 2× 1× 1 weight net and four weights with 1× 1× 2 weight

net. Note that weight nets with side of length 3 here consist of weight strings of the form

µ2 µ1 µ2.

Since 〈ω1, α〉 = 〈ω1, γ〉 = 0 and 〈ω1, β〉 = 1 for 96 triples of roots α, β, γ and W.ω1 = 10

we see, by taking such a triple, that there is only one weight with 1 × 2 × 1 weight net.

This means that the string µ1 µ1 (where the weights in this string differ by β) in the

3 × 2 × 1 and the 1 × 2 × 3 weight net are the same. These should be combined to

form a three-dimensional plus shape consisting of eight weights in W.ω3 occurring with

multiplicity 1 and two weights in W.ω1 occurring with multiplicity 3 or 2 according as

p 6= 2 or p = 2.

If we take α, β, γ /∈ Φs then we have |Λ| > 7 or 8 from the plus-shaped net according

as p 6= 2 or p = 2 and |Λ| > 10 for each of the 3× 1× 2 and 2× 1× 3 weight nets for any

p. Thus |Λ| > 55 or 56 according as p 6= 2 or p = 2. In both cases (♦) is satisfied for all

X ∈ I.

If n = 4 with p 6= 3 then we can take two orthogonal roots outside Φs as before to

show that |Λ| > 22, which is a small improvement. If p = 3 we need to deal with the cases

X = C2
2 and C3 before we can assume that there are two orthogonal roots, one short and

one long, not in Φs. It is straightforward to run through each of the possibilities for n = 4

in Table 7.2 with p 6= 3 to show that (♦) is satisfied. However, if p = 3 it is only possible

to deal with all X ∈ I \ {A3}. Suppose that X = A3 with simple roots α1, α2 and α3.

There are four cliques and weights in a clique are characterised by the coefficient of α4;

this can be one of 3
2
, 1

2
, −1

2
or −3

2
. The cliques have size 4, 16, 16 and 4 in the order just

mentioned. It is certainly possible that dA3

ω3
= 20 = eA3

ω3
, hence 2α4(s) = 1 and we must
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have α4(s) = −1.

We end this chapter by considering the spin module L(ωn) for n ∈ [7, 9] with p = 2.

We may label weights in W.ωn by strings consisting of n plus and minus signs. We do

this by considering the coefficients of a weight µ ∈ W.ωn, imagining a zero coefficient

preceding the original coefficients of µ and then placing a plus sign in the ith position of

the string if the (i+1)st coefficient is larger than the ith coefficient for i ∈ [0, n−2] and we

place a plus sign in the nth position if twice the nth coefficient is larger than the (n−1)st

coefficient; otherwise there is a minus sign. This simplifies the task of determining whether

the difference between two weights is a root and to determine clusters. Two weights differ

by 2(αi + · · · + αj) for j < n if they are identical except that a plus and minus sign have

been interchanged in the ith and (j + 1)st positions. Recall that p = 2 so 2α(s) = 1 if

and only if α(s) = 1. Two weights differ by αn if they are identical except one has a

plus sign in the nth position of the string and the other has a minus sign. It is clear,

therefore, that if we compare two weights with one having two plus signs and the other

having two minus signs in the ith and jth positions (otherwise identical) then they differ

by 2(αi + · · · + αj−1 + 2αj + · · · + 2αn−1 + αn).

Lemma 7.8. Let G act on the irreducible modules L(ωn) for n ∈ [7, 9] with p = 2. If

n ∈ [7, 9] then (♦) is satisfied for all X ∈ I.

Proof. Recall that we have |Λ| > 2n−2 by the last paragraph in Section 7.2. If n = 9

then |Λ| > 128 and dim G = 171, whence we quickly see that we may assume that there

are two orthogonal roots, one long and one short, not in Φs. If n = 8 then |Λ| > 64 and

dim G = 136; we see that there are two orthogonal roots not in Φs unless X = C4C4.

However, if X = C4C4 then, since p = 2, the semisimple element s is a scalar multiple of

the identity, i.e., s is central.

Assume that we can take two orthogonal roots α short and β long not in the Φs. We

have 〈ωn, α〉 = 0 or ±2 and 〈ωn, β〉 = ±1. We may calculate the number of 1 × 2 and

2× 2 weight nets, but it is quicker to notice that all weights in W.ωn occur in pairs in the

weight nets; therefore |Λ| > 2n−1. If n = 9 we now find that (♦) is satisfied for all X ∈ I
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since |Λ| > 256 > 162 = |Φ(G)|. If n = 8 then (♦) holds for all X ∈ I except X = ∅

since |Λ| > 128 = |Φ(G)|. Suppose that X = ∅ and arrange the weights into weight nets

where the horizontal difference between weights in the same net is α1 and the vertical

difference α8, say. Clearly d∅
ω8

> 128 since the horizontal (or vertical) difference between

pairs of weights are roots and all weights appear in such pairs. However, at most one of

the four weights + + + + +−−+ , + + + + +−−− and + +−+ +−−+ , + +−+ +−−− can lie in the

eigenspace and these occur in two pairs as indicated, whence d∅
ω8

> 129.

If n = 7 then in order to take two orthogonal roots as before, we need to deal with the

cases X = C5C2 and X = C4C3. However, in these cases, we see that s is a scalar multiple

of the identity, hence central. Therefore, |Λ| > 64 and dim G = 105. It remains to show

that (♦) holds for the 60 centraliser types listed in the table below; this is routine.

Centraliser type
∅, A1, A2

1, A3
1, A2, A2A1, A2A

2
1, A2

2, A3, A3A1, A3A2, A4, A4A1, A5,
C1, C1A1, C1A

2
1, C1A

3
1, C1A2, C1A2A1, C1A

2
2, C1A3, C1A3A1, C1A4, C1A5,

C2
1 , C2

1A1, C2
1A

2
1, C2

1A2, C2
1A2A1, C2

1A3, C2
1A4, C2, C2A1, C2A

2
1, C2C1, C2C1A1,

C2C1A
2
1, C2A2, C2A2A1, C2A2C1, C2A3, C2A3C1, C2A4, C2

2 , C2
2A1, C2

2A2, C3, C3A1,
C3A

2
1, C3C1, C3C1A1, C3A2, C3A2C1, C3A3, C3C2, C3C2A1, C4, C4A1, C4C1

Table 7.3: Centraliser types requiring consideration for L(ω7) with n = 7

138



Chapter 8

Groups of type Dn

Throughout this chapter we shall assume that G is a simple simply connected algebraic

group of type Dn defined over an algebraically closed field K and V = L(λ) is an irre-

ducible G-module with p-restricted highest weight λ. Recall that we list modules up to

duality.

We shall prove the following result.

Theorem 8.1. Let G = Spin2n(K) act on V = L(λ). If dim V 6 dim G + 2 then

dim E = dim V with the possible exception of L(ω7) for n = 7; if instead dim V > dim G+2

then dim E < dim V with the possible exceptions of L(2ω1) for n > 4 with p 6= 2, and both

L(ω7) and L(ω8) for n = 8.

This theorem is a consequence of the lemmas which follow in later sections.

8.1 Initial survey

Consider µ 6 λ where µ =
∑n

i=1 aiωi is a dominant weight. We use Proposition 4.2

repeatedly in this section. We shall begin by obtaining conditions on the coefficients

ai in order to show that (†) is satisfied for n large enough. This will allow us later to

list modules which will require further consideration and in some cases we can use the

information on weight multiplicities in Lübeck’s tables to show that (†) holds.

139



Proposition 8.2. Suppose that µ =
∑n

i=1 aiωi 6 λ is a dominant weight, and at least

one of the following conditions holds:

(i) n > 6 and ak 6= 0 for some k ∈ [4, n − 2], n > 8 and a3 6= 0, and n > 11 and either

an−1 6= 0 or an 6= 0;

(ii) n > 7 and an−1, an 6= 0;

(iii) n > 5 and either ak, an−1 6= 0 or ak, an 6= 0 for some k ∈ [2, n − 2];

(iv) n > 7 and either a1, an−1 6= 0 or a1, an 6= 0;

(v) If n > 6 then m1 =
∑3

i=1 iai 6 3.

Then (†) holds.

Proof. Let us first assume that at least one coefficient ak 6= 0. Suppose that ak 6= 0 for

k ∈ [1, n − 2]. Then Ψ = 〈αi | ai = 0〉 ⊂ Φ(Ak−1Dn−k) and so

rΨ > rAk−1Dn−k
= 2k−2k

(

n

k

)

4n − 3k − 1

n(n − 1)
.

If k = 3 then rA2Dn−3
= 2(n − 2)(2n − 5) > dim G for n > 8, if k = 4 then rA3Dn−4

=

2
3
(n − 2)(n − 3)(4n − 13) > dim G for n > 6 and if k = n − 2 then rAn−3D2

= 2n−5(n +

5)(n − 2) > dim G for n > 6. We see that for n > 6 the value of rAk−1Dn−k
is at least

rA3Dn−4
for each k ∈ [4, n − 2].

Suppose that an−1 6= 0 (or equivalently an 6= 0). Then Ψ ⊂ Φ(An−1) and rΨ > rAn−1
=

2n−3 which exceeds dim G for n > 11. If both an−1 6= 0 and an 6= 0 then Ψ ⊂ Φ(An−2)

and rΨ > rAn−2
= 2n−3(n + 2) exceeds dim G for n > 7. Thus, (†) may not be satisfied if

n > 11 and ak 6= 0 for k ∈ [1, 2], if 8 6 n 6 10 and ak 6= 0 for k ∈ [1, 2] ∪ [n − 1, n] and if

6 6 n 6 7 and ak 6= 0 for k ∈ [1, 3] ∪ [n − 1, n].

For n > 6, if m1 =
∑3

i=1 iai > 4 then we claim that we can find {bi}
n
i=1 such that

µ′ =
∑n

j=1 bjωj < µ with b4 6= 0. It suffices to check this for the weights 4ω1, 2ω2, 2ω1+ω2,

ω1 +ω3 with m1 = 4, the weights ω1 +2ω2 and ω2 +ω3 with m1 = 5 and 2ω3 with m1 = 6
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since the coefficients a1, a2 and a3 of each of these weights are the smallest values that

need to be checked for any µ. Indeed all weights ν listed with m1 = 4 satisfy ν > ω4,

both weights τ with m1 = 5 listed satisfy τ > ω1 + ω4, and 2ω3 > ω2 + ω4. Hence we can

assume that m1 6 3, otherwise (†) holds.

Next suppose that a2 6= 0 and an−1 6= 0. We have Ψ ⊂ Φ(A1An−3) so that rΨ >

2n−4(n2 + 3n− 8) which exceeds dim G for n > 5. Similarly for a2 6= 0 and an 6= 0. Since

rAk−1An−k−1
> rA1An−3

for 2 6 k 6 n−2 and n > 5 we see that (†) is satisfied when ak 6= 0

and an−1 6= 0 (or an 6= 0) for such values of k and n.

Finally, suppose that a1 6= 0 and an−1 6= 0. Here Ψ ⊂ Φ(An−2) and, as we have

already seen, rΨ > dim G for n > 7 in which case (†) is satisfied. Similarly for a1 6= 0 and

an 6= 0.

We shall repeatedly use these conditions in the next three lemmas in order to obtain

a list of weights for values of n > 4 when (†) may not hold.

We shall not consider the natural module L(ω1) for n > 4 since dim L(ω1) = 2n <

n2 = dim B, i.e., the module is too small. Recall that the adjoint module is L(ω2) for

n ∈ [4,∞). The modules L(ωn−1) and L(ωn) need not be considered for n ∈ [5, 6] since

dim L(ωn−1) = dim L(ωn) = 2n−1 < n2 for these values of n. The module L(ω7) for n = 7

has dimension 64 which is less than dim G = 91.

Lemma 8.3. Let µ =
∑n

i=1 aiωi be a dominant weight with µ 6 λ. If at least three ai are

non-zero for n > 6 then (†) is satisfied.

Proof. If n > 8 then we can have both a1 and a2 non-zero and at most one of an−1 and

an non-zero; all other coefficients can be assumed to be zero. However we cannot have

both a1 6= 0 and one of at 6= 0 for t ∈ {n − 1, n}.

If n = 7 we can again have at most one of a6 and a7 non-zero and since m1 6 3 we

have at most two ai for i ∈ [1, 3] non-zero. Thus at least one of a2 and a3 are non-zero

and one of at for t ∈ [6, 7] is non-zero, hence (†) is satisfied.

If n = 6 we may have both a5 6= 0 and a6 6= 0. Since m1 6 3 we can have at most two

ai 6= 0 for i ∈ [1, 3]. If two ai 6= 0 for i ∈ [1, 3] then we must have a1 = a2 = 1 and if we
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have either a5 6= 0 or a6 6= 0 then (†) holds. Similarly, if only one ai 6= 0 for i ∈ [1, 3] then

we must have a1 6= 0 since (†) is satisfied if as 6= 0 and at 6= 0 for s ∈ [2, 3] and t ∈ [5, 6].

Therefore we have ai 6= 0 for i ∈ {1, 5, 6}; however ω1 + ω5 + ω6 > ω1 + ω3 > ω4 and since

(†) is satisfied for weights with a4 6= 0 we can use Premet’s theorem for ω1 + ω5 + ω6.

We can now assume for n > 6 that at most two ai are non-zero.

Lemma 8.4. Suppose that dim V > dim G + 2. If n > 6 then (†) holds except possibly

for the modules with highest weights 2ω1 for n ∈ [6,∞) with p 6= 2, ωn−1 for n ∈ {8, 10},

ωn for n ∈ [8, 10] and ω3 for n = 6.

Proof. Assume that n > 11. We have m1 6 3 and we may assume that ak = 0 for

k ∈ [3, n]. The remaining weights to be considered are 2ω1, ω1 + ω2 and 3ω1. However,

by Premet, we need not consider either ω1 + ω2 or 3ω1 since ω3 lies beneath both of these

in the partial ordering.

If 8 6 n 6 10 we again have m1 6 3 and we can assume a3 = 0 but we may also

have either an−1 = 1 or an = 1 (but not both). We cannot have either an−1 or an > 2 as

then there is a weight µ′ < µ with a′
n−2 6= 0 in which case (†) is satisfied. We may not

have both as 6= 0 and at 6= 0 for s ∈ {1, 2} and t ∈ {n − 1, n}. The remaining weights

to be considered are the same three for n > 11 as well as ωn−1 and ωn. If n = 7 we may

have a3 6= 0, but since m1 6 3 the only weights other than those for 8 6 n 6 10 to be

considered are 3ω1, ω1 + ω2 and ω3.

Consider the weight ω3 for n = 7. Since ω3 > ω1 we can use Premet’s theorem to

include the contribution to |Λ| from the weights in W.ω1. We see in the case n = 7 that

rA2Dn−3
+ rDn−1

= 2(n − 2)(2n − 5) + 2 just exceeds dim G. Hence (†) also holds for the

weights 3ω1 and ω1 + ω2 which lie above ω3 in the partial ordering.

If n = 6 we need to consider weights which have both a5 6= 0 and a6 6= 0; in such a

case a5 = a6 = 1 since ω4 < 2ωs for s ∈ {5, 6} and we may assume that a4 = 0. We can

have both a1 6= 0 and as 6= 0 but not both a2 6= 0 and as 6= 0 for s ∈ {5, 6}. In this case

we are forced to have as = 1 as just argued and a1 < 2 since ω2 + ωs < 2ω1 + ωs. Thus,
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we must consider further the weights ω5 + ω6, ω1 + ω5 and ω1 + ω6 together with ω5 and

ω6 and the relevant weights satisfying m1 6 3 and aj = 0 for j ∈ [4, 6].

Consider the weight ω1 + ω6. We find for type Dn that rAn−2
= 2n−3(n + 2) and

rAn−1
= 2n−3 so using the fact that ω5 < ω1 + ω6 together with Premet’s theorem we

see for n = 6 that rA4
+ rA5

= 72 > 66 = dim G, i.e., (†) holds. Similarly we can use

ω6 < ω1 + ω5 for the module with highest weight ω1 + ω5. Also for n = 6 we can use the

ordering ω5 + ω6 > ω3 to see that rA4
+ rA2D3

= 64 + 56 = 120 which exceeds dimG.

Consider ω1 +ω2 for n = 6. We have rDn−2
= 4(2n− 3) and ω1 +ω2 > ω3 > ω1 so that

rD4
+ rA2D3

+ rD5
= 36 + 56 + 2 = 94 which exceeds dimG. By this calculation we need

not consider 3ω1 for n = 6 any further.

We note that dim L(ωn−1) = dim L(ωn) = 2n−1 < dim G for n ∈ [4, 7] so, by duality,

we need only consider L(ωn−1) for n ∈ {8, 10} and L(ωn) for n ∈ [8, 10].

We are left to investigate the low rank cases n = 4 and 5.

Lemma 8.5. Suppose that dim V > dim G+ 2. If n ∈ [4, 5] then (†) holds except possibly

for the modules with highest weights 2ω1 for n ∈ [4, 5] with p 6= 2, ω3 for n = 5, both

ω1 + ωn−1 and ω1 + ωn for n ∈ [4, 5], and both 2ω4 and 2ω5 for n = 5 with p 6= 2.

Proof. If n = 5 we cannot have three or more coefficients ai 6= 0. The smallest possible

value of rΨ occurs for A2
1, however, rA2

1
= 216 which certainly exceeds dim G = 45.

Therefore, assume that at most two ai are non-zero. We cannot have both as 6= 0

and at 6= 0 for s ∈ {2, 3} and t ∈ {4, 5}. Suppose that both a1 6= 0 and at 6= 0 for

t ∈ {4, 5}. Since ω2 + ωt < 2ω1 + ωt we must have a1 = 1. Using Premet’s theorem, since

ω1 + ω3 < ω1 + 2ωt and rA3
1

= 102 we see that (†) is satisfied and the only weights left to

be considered are ω1 + ω4 and ω1 + ω5.

Suppose that only one of either a4 6= 0 or a5 6= 0. Since ω3+ω4 < 3ω4 and ω3+ω5 < 3ω5

and rA2A1
= 64 we are left to consider the weights 2ω4 and 2ω5.

Similarly, we cannot have both a4 6= 0 and a5 6= 0 since ω2 < ω4 +ω5 and rA1A3
+rA3

=

18 + 28 = 46 > 45 = dim G. We can assume from now on that a4 = a5 = 0. We can

have neither ω2 + ω3 nor ω1 + ω3 since rA3
1

= 102. Similarly we cannot have ω1 + ω2 since
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ω3 < ω1 + ω2 and rA3
+ rA2A2

1
= 28 + 30 = 58. Therefore we cannot have any two of ai

for i ∈ [1, 3] non-zero. We can assume that a1 6 2 since 3ω1 > ω1 + ω2. The following

ordering of weights 2ω3 > 2ω2 > ω1 + ω3 means we may assume that a2 6 1 and a3 6 1

since rA3
1

= 102. Thus the weights remaining to be considered are 2ω1 and ω3.

Consider the case n = 4. If at least three ai 6= 0 we see that the smallest value of rΨ

occurs, of course, for Ψ = A1 in which case rA1
= 44; this exceeds dim G = 28 and (†) is

satisfied. We can assume that at most two ai are non-zero. First suppose that a2 6= 0.

Since 2ω2 > ω1 + ω3 + ω4 we can use Premet’s theorem to conclude that (†) holds and

therefore we may assume that a2 < 2. We do not need to consider ω1 + ω2 further since

ω1 + ω2 > ω3 + ω4 and we calculate rA2
1

= 20 and rA2
= 12. By symmetry we see that

if a2 = 1 then a1 = a3 = a4 = 0. Now suppose that a2 = 0. As we have just seen, we

cannot have 3ω1 since 3ω1 > ω1 + ω2. Similarly we cannot have the weight 2ω1 + ω3 since

2ω1 +ω3 > ω2 +ω3. Thus the weights which require further consideration are 2ω1, ω1 +ω3

and ω1 + ω4.

The following table displays (up to duality) the highest weights of irreducible p-

restricted G-modules which require further consideration.

λ n Lemma

2ω1 [4,∞) (p 6= 2) -
ωn−1 10 8.7 (†)

8 8.7 (♦)a

ωn 10 8.7 (†)
[8, 9] 8.7 (♦)a

ω3 6 8.6 (†)
5 8.6 (♦)

ω1 + ωn−1 5 8.6 (†)
4 8.6 (♦)

ω1 + ωn 5 8.6 (†)
4 8.6 (♦)

2ω4 5 (p 6= 2) 8.6 (†)
2ω5 5 (p 6= 2) 8.6 (†)

a Except for X = A7 when n = 8

Table 8.1: Possible weights in type Dn for n > 4
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8.2 Weight string analysis

We shall begin with the modules which require the consideration of few, if any, centraliser

types.

Lemma 8.6. Let G act on the irreducible module V where we take V to be one of L(ω1 +

ωn−1) or L(ω1 + ωn) for n ∈ [4, 5], L(2ω4) or L(2ω5) for n = 5 with p 6= 2, or L(ω3) for

n ∈ [5, 6]. Then (†) holds for L(2ω4), L(2ω5), L(ω1 + ω4) and L(ω1 + ω5) for n = 5, and

L(ω3) for n = 6, otherwise (♦) holds for each X ∈ I.

Proof. We perform the usual calculations for L(2ω5) with n = 5 and display them in

Figure 8.1. Since dim D5(K) = 45 we see that (†) holds. Similarly for L(2ω4) with n = 5.

i ω |W.ω| mω

p 6= 2
3 2ω5 16 1
2 ω3 80 1
1 ω1 10 3

Weight No. of l
strings strings p 6= 2

µ3 8
µ3 µ3 4 4

µ2 20
µ2 µ2 24 24

µ2 µ1 µ2 6 12
µ1 µ1 2 6

Lower bound on |Λ| 46

Figure 8.1: (λ, n) = (2ω5, 5)

The use of weight multiplicities if n = 6 for the module L(ω3) in Figure 8.2 shows that

(†) holds. If n = 5 then Figure 8.3 shows that (♦) holds for all X ∈ I except for X = ∅

with p = 2.

i ω |W.ω| mω

p 6= 2 p = 2
2 ω3 160 1 1
1 ω1 12 5 4

Weight No. of l
strings strings p 6= 2 p = 2

µ2 48
µ2 µ2 48 48 48

µ2 µ1 µ2 8 16 16
µ1 µ1 2 10 8

Lower bound on |Λ| 74 72

Figure 8.2: (λ, n) = (ω3, 6)

Thus we can take two orthogonal roots not in Φs; we consider pairs of such roots not of

the form ǫi + ǫj and ǫi − ǫj. We shall calculate the number of weight nets. Set x = 〈ω3, α〉

and y = 〈ω3, β〉. We note that there are the same number of pairs of orthogonal roots with

(x, y) = (a, b) and (b, a) provided a 6= b. There are 12 pairs of orthogonal roots α, β such

145



i ω |W.ω| mω

p 6= 2 p = 2
2 ω3 80 1 1
1 ω1 10 4 2

Weight No. of l
strings strings p 6= 2 p = 2

µ2 20
µ2 µ2 24 24 24

µ2 µ1 µ2 6 12 12
µ1 µ1 2 8 4

Lower bound on |Λ| 44 40

Figure 8.3: (λ, n) = (ω3, 5)

that (x, y) = (2, 1), 12 pairs such that (x, y) = (2, 0), 48 pairs such that (x, y) = (1, 1)

and 24 pairs such that (x, y) = (1, 0). Thus, for a particular pair α, β there are 80.12
480

= 2

weights µ ∈ W.ω3 such that (x, y) = (2, 1), i.e., there are two 3× 2 weight nets. Similarly,

we find that there are two 2 × 3 weight nets, two 3 × 1 and two 1 × 3 weight nets, eight

2 × 2 weight nets, and four 2 × 1 and four 1 × 2 weight nets. Note that weight strings

of length 3 occurring in the weight nets are of the form µ2 µ1 µ2 (taking the notation of

Figure 8.3).

There are 96 pairs of orthogonal roots with 〈ω1, α〉 = 〈ω1, β〉 = 0. So, for a given pair

of roots α and β, there are 10.96
480

= 2 weights µ ∈ W.ω1 orthogonal to both α and β. Thus

the two 3 × 1 and two 1 × 3 weight nets above actually form two weight nets which have

a plus-shape. The same weight in W.ω1 occurs in one of the 1 × 3 and one of the 3 × 1

weight nets.

Thus |Λ| > 56 or 52 according as p 6= 2 or p = 2 whence (♦) always holds.

Next we consider L(ω1 + ωn) for n ∈ [4, 5]. If n = 5 then Figure 8.4 shows that (†)

holds, whereas if n = 4 further work is required to show that (♦) is satisfied for X = ∅ and

A1 for all p and D2 for p = 2 as is evident from Figure 8.5. We note that the subsystem

A2
1 does not occur here.

i ω |W.ω| mω

p 6= 5 p = 5
2 ω1 + ω5 80 1 1
1 ω4 16 4 3

Weight No. of l
strings strings p 6= 5 p = 5

µ2 24
µ2 µ2 20 20 20

µ2 µ1 µ2 8 16 16
µ1 µ1 4 16 12

Lower bound on |Λ| 52 48

Figure 8.4: (λ, n) = (ω1 + ω5, 5)

If X = ∅ then the following cliques and their negatives show that d∅
ω1+ω4

> 32 or 26

according as p 6= 2 or p = 2. Therefore (♦) is satisfied since e∅
ω1+ω4

= 24. Note that the
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i ω |W.ω| mω

p 6= 2 p = 2
2 ω1 + ω4 32 1 1
1 ω3 8 3 2

Weight No. of l
strings strings p 6= 2 p = 2

µ2 8
µ2 µ2 8 8 8

µ2 µ1 µ2 4 8 8
µ1 µ1 2 6 4

Lower bound on |Λ| 22 20

Figure 8.5: (λ, n) = (ω1 + ω4, 4)

first cluster below consists of weights in W.ω3.

1

2
1 1 1

2

3

2
2 1 3

2

3

2
2 1 1

2

1

2
0 1 1

2

3

2
1 1 1

2

1

2
1 0 1

2

1

2
2 1 3

2

1

2
2 1 1

2
- 1

2
0 1 1

2

3

2
1 0 1

2

1

2
0 0 1

2

1

2
1 1 3

2

1

2
1 1 - 1

2
- 1

2
-1 0 1

2

- 1

2
0 0 1

2

In the table below we handle the case X = A1 with simple root α1. There are six

cliques involving weights in W.ω3 as can be seen in the right-hand table in Figure 8.5.

The table below shows the arrangement of some clusters into cliques; taking them and

the corresponding negative cliques yields dA1

ω1+ω4
> 28 or 24 according as p 6= 2 or p = 2

which in either case exceeds eA1

ω1+ω4
= 22.

X = A1

Clique Cluster size l Clique Cluster size l

· 2 1 3

2
2 2 · 1 1 1

2
5/4 10/8

· 2 1 1

2
2 · 1 0 1

2
5/4

· 0 1 1

2
2 2 · 0 0 1

2
6/4

· 0 1 - 1

2
2

We are left with X = D2 with simple roots α3 and α4. There are two cliques consisting

of six weights and containing two weights in W.ω3. Using the clusters given in the table

below together with their negatives, we see that dD2

ω1+ω4
> 28 or 24 according as p 6= 2 or

p = 2. Since eD2

ω1+ω4
= 20 we have that (♦) is satisfied.

X = D2

Clique Cluster size l Clique Cluster size l Clique Cluster size l

1

2
1 · · 10/8 10/8 3

2
2 1 · 2 2 1

2
2 1 · 2 2

1

2
0 · · 10/8 3

2
1 · 1

2
2 - 1

2
1 · 1

2
2

Similarly for L(ω1 + ωn−1) with n ∈ [4, 5].

Our methods do not suffice for L(2ω1). Using weight multiplicities the best we can

show is that |Λ| > 4(n − 1). This is not conducive to further progress.

147



It remains to consider the spin modules L(ωn) for n ∈ [8, 10] and L(ωn−1) for n ∈

{8, 10}. We recall that Φ(Dn) = {±ǫi ± ǫj | 1 6 i < j 6 n}. Let αi = ǫi − ǫi+1 for

i ∈ [1, n − 2], αn−1 = ǫn−1 − ǫn and αn = ǫn−1 + ǫn be the simple roots.

Lemma 8.7. Let G act on the irreducible modules L(ωn−1) for n ∈ {8, 10} and L(ωn) for

n ∈ [8, 10]. Then (†) holds for both L(ω9) and L(ω10) with n = 10, (♦) is satisfied for all

X ∈ I for L(ω9) with n = 9, and (♦) is satisfied for all X ∈ I \ {A7} for both L(ω7) and

L(ω8) with n = 8.

Proof. Recall that dim L(ωn) = 2n−1 and rAn−1
= 2n−3. We shall explain how we may

write each weight in this module as a string of n plus and minus signs. Consider the

coefficients bi of a weight µ written as a linear combination of simple roots µ =
∑n

i=1 biαi

and setting b0 = 0 we imagine a zero coefficient preceding b1. If bi > bi−1 for 1 6 i 6 n−2

and i = n there is a plus sign in position i; otherwise there is a minus sign. There is a plus

sign in position n − 1 if bn−2 < bn−1 + bn; otherwise there is a minus sign. Suppose that

two weights when written as a string of plus and minus signs are identical apart from the

ith and jth positions where the first weight has a plus sign in position i and minus sign

in position j and vice-versa for the second weight. Then the difference between them is

the root αi + · · ·αj−1. Consider two weights identical except one has two plus signs and

the other has two minus signs in the (n− 1)st and nth positions. The difference between

these two weights is αn. Therefore, the difference between two weights that are identical

other than one has two plus signs and the other has two minus signs in the ith and jth

positions is the root αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−2 + αn−1 + αn. We note that there

are always an even number of minus signs in the string of plus and minus signs for a given

weight. There is one weight consisting of n plus signs (and no minus signs),
(

n
2

)

weights

with n − 2 plus signs,
(

n
4

)

weights with n − 4 plus signs, etc.

First assume that n = 10 so that |Λ| > 128. There is a dichotomy here: either

X = A9 or we can take the two orthogonal roots ǫ1 + ǫ10 = α1 + · · · + α8 + α10 and

ǫ1 − ǫ10 = α1 + · · · + α9 not in Φs.

In the former case we provide the clusters that occur in the table below. It is clear
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that dA9

ω10
> 210 > 190 = dimG.

X = A9

Cluster Cluster size

+ + + + + + + + + + : 1

+ + + + + + + + −− : 45

+ + + + + + −−−− : 210

+ + + + −−−−−− : 210

+ + −−−−−−−− : 45

−−−−−−−−−− : 1

In the latter case, taking the two orthogonal roots outside Φs, each weight occurs in

a pair differing by one of these two roots; given below are the four types of pairs. Note

that weights in a pair have identical signs in the second to eighth positions.
+ • • • • • • • + + + • • • • • • • − − + • • • • • • • + − + • • • • • • • − +
− • • • • • • • + − − • • • • • • • − + − • • • • • • • + + − • • • • • • • − −

Thus by the adjacency principle we find that |Λ| > 256 > 190 = dimG so (†) holds.

Assume that n = 9 so that |Λ| > 64. We can always take the two orthogonal roots

ǫ1 + ǫ9 and ǫ1 − ǫ9 outside Φs unless X = A8. However, as can be seen from the table

below, for X = A8 if the cluster + + + + + − − − − lies in or not in the eigenspace, (♦) is

satisfied.

X = A8

Cluster Cluster size

+ + + + + + + + + : 1

+ + + + + + + −− : 36

+ + + + + −−−− : 126

+ + + −−−−−− : 84

+ −−−−−−−− : 9

Now by taking the two orthogonal roots not in Φs we have |Λ| > 1
2
dim L(ω9) = 128 as

before. Thus (♦) holds for all X ∈ I satisfying |Φ(X)| > 144 − 128 = 16. The remaining

centraliser types are detailed in Table 8.2 and can be dealt with easily.

Assume that n = 8 so |Λ| > 32. As above there are two cases: either X = A7

or the orthogonal roots ǫ1 + ǫ8 and ǫ1 − ǫ8 are not in Φs. In the latter case we have

|Λ| > 1
2
dim L(ω8) = 64 so (♦) is satisfied unless |Φ(X)| > 112 − 64 = 48 and the

remaining centraliser types are given in Table 8.2. These are reasonably straightforward
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to go through. In the former case we arrange the 128 weights in W.ω8 into five clusters

in the table below.

X = A7

Cluster Cluster size

+ + + + + + + + : 1

+ + + + + + −− : 28

+ + + + −−−− : 70

+ + −−−−−− : 28

−−−−−−−− : 1

It is possible that dA7

ω8
= eA7

ω8
= 56 by assuming that the second and fourth clusters in

the table below lie in Λ. Thus we cannot conclude that (♦) holds for X = A7.

n Centraliser types
9 ∅, A1, A2

1, A3
1, A4

1; A2, A2A1, A2A
2
1, A2A

3
1, A2

2, A2
2A1; A3, A3A1, A3A

2
1;

D2, D2A1, D2A
2
1, D2A

3
1, D2A2, D2A2A1, D2A2A

2
1, D2A

2
2, D2A3, D2

2,
D2

2A1, D2
2A

2
1, D2

2A2, D2
2A2A1; D3, D3A1, D3A

2
1, D3D2

8 ∅, A1, A2
1, A3

1, A4
1; A2, A2A1, A2A

2
1, A2

2, A2
2A1; A3, A3A1, A3A

2
1, A3A2, A2

3;
A4, A4A1, A4A2; A5, A5A1; A6; D2, D2A1, D2A

2
1, D2A

3
1, D2A2, D2A2A1,

D2A
2
2, D2A3, D2A4, D2A5, D2

2, D2
2A1, D2

2A
2
1, D2

2A2, D2
2A3; D3, D3A1, D3A

2
1,

D3A2, D3A2A1, D3D2, D3D2A1, D3D2A2, D3A3, D3A4, D2
3, D2

3A1; D4, D4A1,
D4A

2
1, D4A2, D4A3, D4D2, D4D2A1, D4D3, D2

4; D5, D5A1, D5A2, D5D2

Table 8.2: Centraliser types requiring consideration for L(ωn) with n ∈ [8, 9]
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Chapter 9

Groups of exceptional type

In this chapter we consider the groups of exceptional type acting on p-restricted irreducible

modules. We shall use Proposition 4.2 repeatedly in order to show that (†) holds for nearly

all modules V with dim V > dim G + 2. If there are roots of different lengths we shall

use the standard notation Ãj to denote the root subsystem Aj for j ∈ [1, n] consisting

of short roots. We remark that if G is a simple algebraic group of type E8, F4 or G2

then there is only one group in the isogeny class, i.e., the adjoint and simply connected

group are the same. However, for all other simple algebraic groups there is a need to

distinguish between the simply connected group and other isogenous groups such as the

adjoint group.

9.1 Types E6, E7 and E8

Lemma 9.1. Consider the simple simply connected algebraic group G of type En for

n ∈ {6, 7, 8} defined over an algebraically closed field K acting on an irreducible G-module

with p-restricted highest weight λ. If dim V > dim G + 2 then (†) holds.

Proof. Consider a dominant weight µ =
∑n

i=1 aiωi with µ 6 λ. Suppose that ak 6= 0 for

some k ∈ [1, n]. Then Ψ = 〈αi | ai = 0〉 ⊂ Ψk = 〈αi | i 6= k〉 and rΨ > rΨk
for each k.

The possible Ψk and values of rΨk
for each k and n are given in the table below.
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Type E8 Type E7 Type E6

k Ψk rΨk
Ψk rΨk

Ψk rΨk

1 D7 702 D6 33 D5 6
2 A7 6624 A6 192 A5 21
3 A1A6 28224 A1A5 752 A1A4 75
4 A2A1A4 213696 A2A1A3 4240 A2A1A2 290
5 A4A3 104832 A4A2 1600 A4A1 75
6 D5A2 122220 D5A1 252 D5 6
7 E6A1 2324 E6 12
8 E7 57

Assume that n = 8. Clearly rΨ exceeds dim G = 248 for k 6= 8 so (†) holds. Thus

we need only consider weights of the form µ = a8ω8. We quickly see that only a8 = 1 is

possible by using Premet’s theorem since ω7 < 2ω8. The module of highest weight ω8 is

the adjoint module.

Now assume that n = 7 in which case dim G = 133. We see that if ak 6= 0 for k ∈ [2, 6]

then (†) holds and we need only consider modules of the form µ = a1ω1 + a7ω7. However

we have 2ω1 > ω3, 2ω7 > ω6 and ω1 + ω7 > ω2. Therefore, the only weights remaining are

ω1 and ω7 which correspond to the adjoint module and a 56-dimensional module L(ω7);

recalling that for type E7 the dimension of a Borel subgroup is 70 finishes the analysis for

type E7.

Finally, if n = 6 then dim G = 78 and we can only conclude from the table above that

we may assume that a4 = 0 as otherwise (†) holds. Note that there is a non-trivial graph

automorphism for E6 so we need only consider modules up to duality. Suppose only one

of the ak 6= 0 for k 6= 4. If a1 > 3 then (†) holds since 3ω1 > ω1 + ω2 > ω3 and the same

is true if a3 > 2 since 2ω3 > ω4. By duality we may assume that a6 6 2 and a5 6 1.

We are done if a2 > 2 since 2ω2 > ω4. It can be easily checked that 2ω1 > ω3 > ω6 and

from the table we see that rA1A4
= 75 and rD5

= 6. This shows that (†) holds for the

irreducible modules with highest weights ω3 and 2ω1. We are left with the irreducible

modules L(ω2) and (up to duality) L(ω1); however the former is the adjoint module and

we do not consider the latter since dim L(ω1) = 27 < dim B = 42.

Suppose now we have at least two ak 6= 0. The subsystem of E6 of rank 4 with largest
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Weyl group and the most roots is D4. Thus in order to obtain the smallest value of rΨ

when Ψ has rank at most 4 we must take Ψ = D4. Since rD4
= 90 exceeds dim G we may

assume that only one ak is non-zero; we have just dealt with this situation.

9.2 Type F4

Recall that we need only consider short roots when there are two different root lengths.

Lemma 9.2. Consider the simple algebraic group G = F4(K) acting on an irreducible

G-module with p-restricted highest weight λ. If dim V > dim G + 2 then (†) holds.

Proof. We need not consider the module L(ω4) which has dimension 25 or 26 according

as p = 3 or p 6= 3 nor the adjoint module L(ω1). Let µ =
∑4

i=1 aiωi 6 λ be a dominant

weight. We assume first that p 6= 2 in order to use Premet’s theorem to obtain conditions

on the coefficients of µ. Suppose at least two ak 6= 0. Then rank Ψ 6 2 and the possible

subsystems of rank 2 in F4 are Ã2, A2, A1Ã1 and B2; the smallest rΨ occurs for Ψ = B2

where rB2
= 1

2
1152
23

(24−4)
24

= 60 which exceeds dim G = 52. So we are left to consider

modules with one non-zero coefficient. We do not need to consider further any weight

of the form a1ω1 since 2ω1 > ω1 + ω4 and as mentioned above we cannot have a1 = 1.

Similarly if a3 6= 0 then (†) holds by Premet’s theorem since ω3 > ω1 > ω4 and we find

rA2Ã1
= 44, rC3

= 6 and rB3
= 9. If a4 6= 0 and a4 > 1 then (†) holds since 2ω4 > ω3.

Again, we cannot have a2 6= 0 since ω2 > ω1 + ω4. Thus the result holds for p 6= 2.

Now assume p = 2. We need to take care in this case as weight strings may not be

saturated, hence we must rely on the information in [18] and [9]. However neither of

these references provide information about ω2 + ω3 for p = 2 or weights with at least

three coefficients non-zero. We shall use the fact that, for a given weight µ and short root

α ∈ Φ, if 〈µ, α〉 = ±2m for m > 0 then the adjacency principle applies because α(s) = 1

if and only if 2mα(s) = 1 for any s ∈ Gss \ Z.

First suppose that only one ak 6= 0. We need only consider the module L(ω2) for

p = 2 by the first sentence of the lemma and since there is a graph automorphism of the
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group for p = 2. We see from Figure 9.1 that (†) holds for p = 2. We have included

all characteristics to highlight the situation for weight strings when the conclusion of

Premet’s theorem does not hold; we can ignore all µi with i ∈ {1, 3, 5} for p = 2 as these

weights occur with multiplicity zero.

i ω |W.ω| mω

p 6= 2, 3 p = 3 p = 2
6 ω2 96 1 1 1
5 ω1 + ω4 144 1 1 0
4 2ω4 24 3 3 2
3 ω3 96 4 4 0
2 ω1 24 10 9 4
1 ω4 24 13 12 0
0 0 1 26 22 6

Weight No. of l
strings strings p 6= 2, 3 p = 3 p = 2

µ6 24
µ6 µ4 µ6 24 48 48 24

µ6 µ3 µ2 µ3 µ6 12 96 96 24
µ5 µ5 24 24 24 0

µ5 µ4 µ5 6 12 12 0
µ5 µ3 µ3 µ5 24 120 120 0

µ5 µ2 µ1 µ2 µ5 6 90 84 24
µ4 µ3 µ4 8 32 32 16

µ4 µ1 µ0 µ1 µ4 1 26 24 4
µ3 µ1 µ1 µ3 8 136 128 0
Lower bound on |Λ| 584 568 92

Figure 9.1: λ = ω2

Suppose that two ak 6= 0. Suppose that µ = ω3 + ω4 in which case we have 〈µ, α〉 = 1

for four short roots (0010, 0001, 0110, and 1110), 〈µ, α〉 = 2 for three short roots (0011,

0111 and 1111) and 〈µ, α〉 = 4 for one short root (1231). Thus, for a given α ∈ ΦS,

there are 192.8
24

= 64 weights µ ∈ W (Φ) that appear in weight strings along with µ − 2mα

for some m ∈ [0, 2], so there is a contribution of at least 64 to |Λ| and (†) is satisfied.

Using Lübeck’s tables [18] we can use this contribution also for the weights ω1 + ω3 and

ω2 + ω4 since ω3 + ω4 appears with non-zero multiplicity lower in the partial ordering of

both of these weights. We calculate in an exactly similar way that ω2 + ω3, ω1 + ω2 and

2ω3 contribute at least 84, 48 and 36 to |Λ|. Since by [18] we know that 2ω3 occurs in

L(ω1 + ω2) with a non-zero multiplicity, (†) holds. From [18] we see that ω3, ω1 and ω4

occur in L(ω1 + ω4) with non-zero multiplicity and that the same is true for ω1 and ω4 in

L(ω3). Therefore we can use the same calculation above for L(ω3) with p 6= 2 to conclude

that (†) holds for L(ω1 + ω4).

Suppose that three ak are non-zero. If µ = ω1 + ω3 + ω4 then the number of short

roots α ∈ Φ(F4) such that 〈µ, α〉 = 1, 2 or 4 is three (0010, 0001 and 0110), two (0011

and 0111) or one (1111), respectively. Thus, for a given α ∈ ΦS, there are 576.6
24

= 144

weights µ ∈ W (Φ) that appear in weight strings along with µ − 2mα for some m ∈ [0, 2]
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implying that there is a contribution of at least 144 to |Λ| by the adjacency principle.

The calculations for ω1 + ω2 + ω3, ω1 + ω2 + ω4 and ω2 + ω3 + ω4 and ω1 + ω2 + ω3 + ω4

are analogous, and also show that (†) holds.

We remark that we could have used Zalesski’s theorem for the module L(ω3 +ω4) with

p = 2 since it has zero support on the long roots whence it is tensor indecomposable. The

same is not true though for L(ω1 +ω2) with p = 2 even though it has zero support on the

short roots; this is one of the exceptions for type F4 in Theorem 2.7.

9.3 Type G2

In this section we consider the action of G2(K) on irreducible p-restricted modules.

Lemma 9.3. Consider the simple algebraic group G = G2(K) acting on an irreducible

G-module with p-restricted highest weight λ. If dim V > dim G + 2 then (†) holds except

for the modules L(2ω1) for p 6= 2 and L(2ω2) for p = 3 where (♦) is satisfied.

Proof. The conditions in the statement of the lemma mean that we are not considering the

modules L(ω1) and L(ω2) since dim G = 14. We calculate r∅ = 6, rÃ1
= 2 and rA1

= 3.

We shall assume for the moment that p 6= 2, 3. Let µ = a1ω1 + a2ω2 6 λ be a dominant

weight. If a2 = 0 then we may assume that a1 = 2 since 3ω1 > ω1 + ω2 > 2ω1 > ω2 > ω1

in which case |Λ| > 17. Similarly, if a1 = 0 then (†) holds by Premet’s theorem if a2 > 2

since 2ω2 > 3ω1.

Now suppose that both a1 6= 0 and a2 6= 0. Since

ω1 + 2ω2 > 2ω1 + ω2 > 2ω2 > ω1 + ω2 > ω2

we see that (†) holds if a1+a2 > 2 using the values of rΨ given above and Premet’s theorem.

We shall consider the module L(ω1 + ω2) later (where we use weight multiplicities) since

the partial ordering ω1 + ω2 > 2ω1 > ω2 > ω1 only shows that |Λ| > 6 + 3 + 2 + 3 = 14.

Assume that p = 2; the only weight we need to consider is ω1 +ω2 since the other two

2-restricted modules are too small as we have mentioned.
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Assume that p = 3. Then the weights ω1 + ω2, 2ω1 and 2ω2 require further analysis.

We see from [18] that the same ordering of weights used for p > 3 shows that (†) holds

for ω1 + 2ω2 and 2ω1 + ω2. The remaining 3-restricted weight 2ω1 + 2ω2 is only listed by

Lübeck on his website for p = 5 and 7 as otherwise the dimension of the module exceeds

500. However the required information is contained in the paper of Gilkey and Seitz in [9,

p.413] from which we see that for p > 2 all dominant weights µ with µ 6 2ω1 + 2ω2 occur

with non-zero multiplicity. Thus (†) holds as 2ω1 + 2ω2 > ω1 + 2ω2. We remark that for

p = 3 the multiplicities of dominant weights below 2ω1 + 2ω2 in the partial ordering are

the same as those obtained using Freudenthal’s formula [13, p.124] for characteristic 0.

It remains to consider the modules L(2ω1) for p 6= 2, L(ω1 + ω2) for all p and L(2ω2)

for p = 3.

We begin with L(2ω1) and detail the calculations involving weight strings in Figure

9.2.

i ω |W.ω| mω

p 6= 2, 7 p = 7
3 2ω1 6 1 1
2 ω2 6 1 1
1 ω1 6 2 2
0 0 1 3 2

Weight No. of l
strings strings p 6= 2, 7 p = 7

µ3 µ2 µ3 2 2 2
µ3 µ1 µ0 µ1 µ3 1 4 4

µ2 µ1 µ1 µ2 2 6 6
Lower bound on |Λ| 12 12

Figure 9.2: λ = 2ω1

We see that (♦) is satisfied for all centraliser types except when X = ∅. It suffices

to consider only the case p = 7. We assume in turn that the weight 0 is either in or not

in the eigenspace. If 0 is in the eigenspace then all weights in W.ω1 or W.ω2 lie in Λ, so

d∅
2ω1

> 6 + 2.6 = 18 > 12 = e∅
2ω1

. If 0 is not in the eigenspace then the two cliques shown

below together with their negative counterparts show that d∅
2ω1

> 2+2.4+2.2 = 14. The

weights in W.ω1 are italicised since they have multiplicity 2.

4 2 2 1
3 2 1 1
3 1 1 0

Figure 9.3 shows that (†) is satisfied for L(ω1 + ω2) for all p.

Consider the module L(2ω2). We see from Figure 9.4 that if p = 3 then (♦) holds

except when X = ∅. (The case p 6= 2, 3 is included in the figure to highlight that the
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i ω |W.ω| mω

p 6= 3, 7 p = 3 p = 7
4 ω1 + ω2 12 1 1 1
3 2ω1 6 2 2 1
2 ω2 6 2 1 1
1 ω1 6 4 3 2
0 0 1 4 1 2

Weight No. of l
strings strings p 6= 3, 7 p = 3 p = 7
µ4 µ4 2 2 2 2

µ4 µ3 µ2 µ3 µ4 2 8 6 4
µ4 µ2 µ1 µ1 µ2 µ4 2 14 10 8

µ3 µ1 µ0 µ1 µ3 1 8 5 4
Lower bound on |Λ| 32 23 18

Figure 9.3: λ = ω1 + ω2

conclusion of Premet’s theorem does not hold when p = 3.)

i ω |W.ω| mω

p 6= 2, 3 p = 3
6 2ω2 6 1 1
5 3ω1 6 1 1
4 ω1 + ω2 12 1 0
3 2ω1 6 2 0
2 ω2 6 3 2
1 ω1 6 3 0
0 0 1 5 3

Weight No. of l
strings strings p 6= 2, 3 p = 3

µ6 2
µ6 µ4 µ3 µ2 µ3 µ4 µ6 2 10 4

µ5 µ4 µ4 µ5 2 4 2
µ4 µ2 µ1 µ1 µ2 µ4 2 14 4

µ5 µ3 µ1 µ0 µ1 µ3 µ5 1 8 2
Lower bound on |Λ| 36 12

Figure 9.4: λ = 2ω2

If X = ∅ we can arrange the weights into clusters using the fact that α(s) = 1 if and

only if 3α(s) = 1 for any s ∈ Gss \ Z. We consider separately the cases when the weight

0 lies and does not lie in the eigenspace. We shall italicise weights in W.ω2 since these

occur with multiplicity 2. If 0 is in the eigenspace then the weights 3 2, 3 1, 0 1, 3 0 and

their negatives lie in Λ, so d∅
2ω2

> 14 > 12 = e∅
2ω2

. If 0 is not in the eigenspace then the

three cliques below show that d∅
2ω2

> 3 + 2 + 4 + 4 = 13, as required.

6 4 3 2 0 -1
6 3 3 1 -3 -1
3 3 0 1 -3 -2
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Chapter 10

Twisted modules

In this chapter we consider simple simply connected algebraic groups defined over an

algebraically closed field K of characteristic p > 0 acting on tensor products with twists

of irreducible p-restricted modules; we shall call these twisted modules. Recall that we

need only consider irreducible modules V = U ⊗ W (q) where both dim U and dim W are

less than dim G; this quickly follows from Proposition 4.3. It is also clear that we need

not consider modules that are tensor products with twists of three or more p-restricted

irreducible modules. For classical groups the p-restricted modules of lowest dimension

are the natural modules and the dimension of the tensor product of two of these for any

simple algebraic group exceeds dim G.

We shall prove the following result.

Theorem 10.1. Let G be a simple simply connected algebraic group acting on an irre-

ducible module V = L(µ) ⊗ L(ν)(q) where µ and ν are p-restricted and q is a power of p,

and dim V > dim G + 2. Then dim E < dim V with the possible exceptions of the action

of a group of type Bn, Cn or Dn on L(ω1) ⊗ L(ω1)
(q).

This theorem is a consequence of the lemmas which follow in later sections.
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10.1 Initial survey

We shall use Proposition 4.3 to show that (†) holds for all but a small list of irreducible

modules. If V = U ⊗W (q) is such a module then we investigate weight strings for both U

and W and then combine the weight strings together to form weight nets; in this way we

can find a lower bound for the codimension of any eigenspace of V . Consider the G-module

L(λ)(q) where q = pr with r > 0 (note that we used slightly different notation in Theorem

2.3). The weights of this module are just qµ where µ ∈ Π(λ). In some sense, the twist by

q does not affect the adjacency principle since the equation qµ(s) = q(µ + α)(s) for some

s ∈ Gss \ Z(G) is equivalent to qα(s) = α(s) = 1. In particular in the tensor product of

two p-restricted modules the twist by q may be applied to either module without affecting

our analysis. We choose, therefore, without loss of generality to apply the twist to the

p-restricted irreducible module of larger dimension. We note that the action of a group

on U ⊗ V (q) is not necessarily the same as that of the same group on U∗ ⊗ V (q); there is

an example of this in Section 3.2.

Proposition 10.2. Let G be a simple simply connected algebraic group and let V =

U ⊗ W (q) where U and W are irreducible p-restricted G-modules. Then (†) holds except

possibly for the irreducible modules given in Table 10.1.

Proof. Case I: An. Suppose that G is of type An for n > 1, so dim G = n(n+2). If n = 1

we need to consider the modules L(ω1)⊗L(2ω1)
(q) and L(2ω1)⊗L(2ω1)

(q). If n > 2 then

we need to consider the p-restricted modules L(ω1) of dimension n+1, L(ω2) of dimension

1
2
n(n+1), L(2ω1) of dimension 1

2
(n+1)(n+2), the adjoint module L(ω1+ωn) of dimension

n(n + 2) if p ∤ n + 1 and n(n + 2) − 1 otherwise and L(ω3) for n ∈ [5, 7] of dimension

1
6
n(n2 − 1). We calculate lower bounds (in the same order just used) for the codimension

of a given eigenspace for these five modules: these are rAn−1
= 1, rA1An−2

= n − 1,

rAn−1
+ rA1An−2

= n (since 2ω1 > ω2), rAn−2
= 2n − 1 and rA2An−3

= 1
2
(n − 1)(n − 2).

We see that (†) holds for L(ω1) ⊗ L(ω1 + ωn)(q) since rAn−2
dim L(ω1) > dim G for

n > 2. Since L(ω1+ωn) is the adjoint module and |Λ| > 1 for all modules to be considered

except L(ω1) (which we have just dealt with), we see that (†) holds for any twisted module
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involving L(ω1 +ωn). Also (†) holds for L(ω1)⊗L(ω3)
(q) since rA2An−3

dim L(ω1) > dim G

for n ∈ [5, 7] and L(ω2)⊗L(ω3)
(q) since rA1An−2

dim L(ω3) > dim G for n ∈ [5, 7], whence it

also holds for L(ω3)⊗L(ω3)
(q). The modules L(2ω1)⊗L(2ω1)

(q) and L(2ω1)⊗L(ω3)
(q) both

satisfy (†) since (rAn−1
+rA1An−2

) dim L(2ω1) > dim G for n > 2 and rA2An−3
dim L(2ω1) >

dim G for n ∈ [5, 7]. Similarly (†) holds for the modules L(ω2)⊗L(2ω1)
(q) for n > 3 since

rA1An−2
dim L(2ω1) > dim G and L(ω2) ⊗ L(ω2)

(q) for n > 4 since rA1An−2
dim L(ω2) >

dim G.

We shall need to investigate further U ⊗ V (q) where U ∈ {L(ω1), L(ωn)} and V ∈

{L(ω2), L(ωn−1)} for n > 3, U⊗V (q) where U ∈ {L(ω1), L(ωn)} and V ∈ {L(2ω1), L(2ωn)}

for n > 1, L(ω2) ⊗ L(ω2)
(q) for n = 3 and L(2ω1) ⊗ L(2ω1)

(q) for n = 1.

Case II: Bn. Suppose now that G is of type Bn for n > 2. We need to consider

the p-restricted modules L(ω1) for n > 2 which has dimension 2n + 1 − δ2p, L(ωn) for

n ∈ [2, 6] which has dimension 2n, the module L(ω2) for n > 3 which has dimension

n(2n + 1) = dim G for p 6= 2 and at least 2n(n − 1) for p = 2 (this is the adjoint module

for n > 3) and L(2ω2) for n = 2 6= p which has dimension 10.

We calculate lower bounds for the codimension of a given eigenspace for each of the

modules given. First, for the module L(ω1) we have |Λ| > rBn−1
= 1 and for the spin

module L(ωn) we have |Λ| > rAn−1
= 2n−1. We find that |Λ| > rA1Bn−2

+ rBn−1
= 2n − 1

for the module L(ω2) if p 6= 2 and |Λ| > rBn−1
= 2n − 2 if p = 2. For L(2ω2) with

n = 2 6= p the weights 2ω2 > ω1 > 0 occur, where |W.(2ω2)| = |W.ω1| = 4 and m0 = 2 so

|Λ| > rB1
+ rA1

= 2 + 1 = 3.

We see that (†) holds for L(ω1) ⊗ L(ω2)
(q) for n > 3 since (2n − 1 − δ2p) dim L(ω1) >

dim G and for L(ω1) ⊗ L(2ω2)
(q) for n = 2 6= p since 3 dim L(ω1) = 12 > 10 = dim G.

Indeed, (†) holds for all tensor products of modules involving the adjoint modules L(ω2)

for n > 3 and L(2ω1) for n = 2 6= p. Also, (†) holds for both L(ω1) ⊗ L(ωn)(q) and

L(ωn) ⊗ L(ωn)(q) for n > 3 since both rAn−1
dim L(ω1) and rAn−1

dim L(ωn) = 22n−1

exceed dim G unless n = 2.

Hence we shall need to investigate further the modules L(ω1) ⊗ L(ω2)
(q) and L(ω2) ⊗

L(ω2)
(q) for n = 2, and L(ω1) ⊗ L(ω1)

(q) for n > 2.
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Case III: Cn. Suppose that G is of type Cn for n > 3, so dim G = n(2n + 1). We

need to consider the p-restricted modules L(ω1) which has dimension 2n, L(ω2) which has

dimension 2n(n− 1), the adjoint module L(2ω1) for p 6= 2, L(ωn) for n ∈ [4, 6] and p = 2

which has dimension 2n and L(ω3) for n = 3 which has dimension 8 for p = 2 and 14 for

p 6= 2 since here mω1
6= 0.

As before we calculate lower bounds for the codimension of a given eigenspace for each

of the modules given. First, for the module L(ω1) we have |Λ| > rCn−1
= 2 and for the

spin module L(ωn) we have |Λ| > rAn−1
= 2n−2. For L(ω3) with n = 3 and p 6= 2 we have

|Λ| > 2 + 2 = 4 by including the contribution from W.ω1. The module L(ω2) satisfies

|Λ| > rA1Cn−2
= 4n−7 and for the adjoint module L(2ω1) we have |Λ| > rCn−1

+rA1Cn−2
=

4n − 5.

It is clear that (†) holds for any twisted module involving L(2ω1). We see that (†)

holds for L(ω1) ⊗ L(ω2)
(q) with n > 3 since rA1Cn−2

dim L(ω1) > dim G whence also

for L(ω2) ⊗ L(ω2)
(q) with n > 3, for L(ω2) ⊗ L(ω3)

(q) with n = 3 since 2 dim L(ω2) =

24 > dim G, for L(ω2) ⊗ L(ωn)(q) with n ∈ [4, 6] since rAn−1
dim L(ω2) > dim G and for

L(ωn) ⊗ L(ωn)(q) with n ∈ [4, 6] since rAn−1
dim L(ωn) = 22n−2 > dim G. The condition

(†) holds if n = 3 and p 6= 2 for L(ω1) ⊗ L(ω3)
(q) since 4 dim L(ω1) > 21 whence for

L(ω3) ⊗ L(ω3)
(q) since dim L(ω1) < dim L(ω3) here and finally for L(ω1) ⊗ L(ωn)(q) with

n ∈ [5, 6] and p = 2 since rAn−1
dim L(ω1) > dim G.

We shall need to investigate further the modules L(ω3)⊗L(ω3)
(q) for n = 3 and p = 2,

the module L(ω1) ⊗ L(ωn)(q) for n ∈ [3, 4] and p = 2, and L(ω1) ⊗ L(ω1)
(q) for n > 3.

Case IV: Dn. Suppose that G is of type Dn for n > 4, so dim G = n(2n−1). We need

to consider the p-restricted modules L(ω1) for n > 4 which has dimension 2n, the adjoint

module L(ω2) which has dimension n(2n− 1) if p 6= 2 and n(2n− 1)− (2, n) if p = 2 and

the spin module L(ωn) for n ∈ [4, 7] with dimension 2n−1.

We calculate that for the module L(ω1) we have |Λ| > rDn−1
= 2, for L(ω2) we have

|Λ| > rA1Dn−1
= 4n − 7 and for L(ωn) with n ∈ [4, 7] we have |Λ| > rAn−1

= 2n−3. The

condition (†) holds for any twisted module including the adjoint module. It also holds

for L(ω1) ⊗ L(ωn)(q) for n ∈ [6, 7] since rAn−1
dim L(ω1) > dim G. However, we need to
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further investigate the modules L(ω1) ⊗ L(ωn−1)
(q) and L(ω1) ⊗ L(ωn)(q) for n ∈ [4, 5],

and L(ω1) ⊗ L(ω1)
(q) for n > 4.

Case V: Exceptional types. If G = (E6)sc(K) then we need to consider the p-restricted

modules L(ω1) (and L(ω6)) which has dimension 27 and the adjoint module L(ω2) which

has dimension 78 − δ3p. We see that for L(ω1) we have |Λ| > rD5
= 6 and for L(ω2) we

have |Λ| > rA5
= 21. It is clear from Proposition 4.3 since dimG = 78 that (†) holds for

all twisted modules.

If G = (E7)sc(K) then we need to consider the p-restricted modules L(ω7) which has

dimension 56 and the adjoint module L(ω1) which has dimension 133 − δ2p. For L(ω7)

we have |Λ| > rE6
= 12 and for L(ω2) we have |Λ| > rD6

= 33. Again, it is clear from

Proposition 4.3 since dimG = 133 that (†) holds in all cases here.

If G = E8(K) then we need only to consider the adjoint module L(ω8) which has

dimension 248. We have |Λ| > rE7
= 57 so we are done immediately by Proposition 4.3.

If G = F4(K) then we need to consider L(ω4) which has dimension 26 − δ3p and the

adjoint module L(ω1) which has dimension 52 if p 6= 2 and 26 if p = 2. We calculate

rB3
= 9 and rC3

= 6 so we are done.

Finally, if G = G2(K) then the modules to be considered are V1 = L(ω1) which has

dimension 7− δ2p and V2 = L(ω2) which has dimension 7 if p = 3 and 14 if p 6= 3. We find

that |Λ1| > rA1
= 3 and |Λ2| > rÃ1

= 2 so (†) holds for V1⊗V
(q)
1 since |Λ1| dim V1 > dim G

and for V1 ⊗ V
(q)
2 since |Λ1| dim V2 > dim G. The module V2 ⊗ V

(q)
2 requires further

consideration if p = 3 since |Λ2| dim V2 = 2.7 = 14 here; if p 6= 3 then (†) holds.

We list in Table 10.1 the irreducible twisted modules which require further considera-

tion.

10.2 Weight net analysis

We shall begin with the modules L(ω1) ⊗ L(ωn−1)
(q) and L(ω1) ⊗ L(ωn)(q) for n ∈ [4, 5].
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Type Module n Lemma

An L(ω1) ⊗ L(ω2)
(q) [7,∞) 10.5 (†)

[3, 6] 10.5 (♦)
L(ω1) ⊗ L(ωn−1)

(q) [7,∞) 10.5 (†)
[3, 6] 10.5 (♦)

L(ωn) ⊗ L(ω2)
(q) [7,∞) 10.5 (†)

[3, 6] 10.5 (♦)
L(ωn) ⊗ L(ωn−1)

(q) [7,∞) 10.5 (†)
[3, 6] 10.5 (♦)

L(ω1) ⊗ L(2ω1)
(q) [3,∞) 10.5 (†)

[1, 2] 10.5 (♦)
L(ω1) ⊗ L(2ωn)(q) [3,∞) 10.5 (†)

[1, 2] 10.5 (♦)
L(ωn) ⊗ L(2ω1)

(q) [3,∞) 10.5 (†)
[1, 2] 10.5 (♦)

L(ωn) ⊗ L(2ωn)(q) [3,∞) 10.5 (†)
[1, 2] 10.5 (♦)

L(ω2) ⊗ L(ω2)
(q) 3 10.6 (†)

L(2ω1) ⊗ L(2ω1)
(q) 1 10.6 (†)

Bn L(ω1) ⊗ L(ω1)
(q) [2,∞) -

L(ω1) ⊗ L(ω2)
(q) 2 10.6 (♦)

L(ω2) ⊗ L(ω2)
(q) 2 10.6 (♦)

Cn L(ω1) ⊗ L(ω1)
(q) [3,∞) -

L(ω1) ⊗ L(ωn)(q) [3, 4] (p = 2) 10.6 (†)
L(ω3) ⊗ L(ω3)

(q) 3 (p = 2) 10.6 (†)

Dn L(ω1) ⊗ L(ω1)
(q) [4,∞) -

L(ω1) ⊗ L(ω5)
(q) 5 10.3 (†)

L(ω1) ⊗ L(ω4)
(q) 5 10.3 (†)

L(ω1) ⊗ L(ω4)
(q) 4 10.3 (♦)

L(ω1) ⊗ L(ω3)
(q) 4 10.3 (♦)

G2 L(ω2) ⊗ L(ω2)
(q) (p = 3) 10.4 (†)

Table 10.1: Possible twisted modules for all Lie types

Lemma 10.3. Let G = Spin2n(K) act on L(ω1) ⊗ L(ωn−1)
(q) and L(ω1) ⊗ L(ωn)(q) for

n ∈ [4, 5]. In both cases, if n = 5 then (†) holds and if n = 4 then (♦) holds for all X ∈ I.

Proof. First consider the module L(ω1). There are 2(n − 1)(n − 2) or 2(n − 1) roots

α ∈ Φ(Dn) according as 〈ω1, α〉 = 0 or 1. Thus, for a given α there are 2n.2(n−1)(n−2)
2n(n−1)

=

2(n − 2) weights µ ∈ W.ω1 with weight string µ and similarly 2 weights µ ∈ W.ω1 with
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weight string µ µ + α.

For the module L(ωn) there are n(n − 1) or 1
2
n(n − 1) roots α ∈ Φ(Dn) according as

〈ωn, α〉 = 0 or 1. Thus, for a given α there are 2n−1.n(n−1)
2n(n−1)

= 2n−2 weights µ ∈ W.ωn with

weight string µ and similarly 2n−3 weights µ ∈ W.ωn with weight string µ µ + α.

By combining these two calculations, given α /∈ Φs the weight nets for L(ω1)⊗L(ωn)(q)

where µ ∈ W.ω1 and µ′ ∈ W.ωn are given below along with the number of each type of

weight net.
µ + qµ′ µ + qµ′ µ + q(µ′ + α) µ + qµ′

(µ + α) + qµ′

µ + qµ′ µ + q(µ′ + α)

(µ + α) + qµ′ (µ + α) + q(µ′ + α)

2n−1(n − 2) 2n−2(n − 2) 2n−1 2n−2

Thus we have |Λ| > 2n−2(n− 2) + 2n−1 + 2n−1 = 2n−2(n + 2) which exceeds dim G for

n = 5 so (†) holds here and equals |Φ(Dn)| = 24 for n = 4 in which case we are left to

show that (♦) holds for X = ∅.

The 8 weights in W.ω1 are as follows.

1 1 1

2

1

2
0 1 1

2

1

2
0 0 1

2

1

2
0 0 1

2
- 1

2
0 0 - 1

2

1

2
0 0 - 1

2
- 1

2
0 -1 - 1

2
- 1

2
-1 -1 - 1

2
- 1

2

Similarly, the 8 weights in W.ω4 are as follows.

1

2
1 1

2
1 1

2
1 1

2
0 1

2
0 1

2
0 - 1

2
0 1

2
0 1

2
0 - 1

2
0 - 1

2
0 - 1

2
0 - 1

2
-1 - 1

2
0 - 1

2
-1 - 1

2
-1

If we write the 64 weights µ + qµ′ where µ ∈ W.ω1, µ′ ∈ W.ω4 of L(ω1) ⊗ L(ω4)
(q)

in an 8 × 8 grid then it is clear that in each row and each column at least 6 weights lie

in Λ; thus d∅
ω1+qω4

= 48 > 24 = e∅
ω1+qω4

. The lemma follows for L(ω1) ⊗ L(ωn−1)
(q) with

n ∈ [4, 5] similarly.

In the next lemma we shall deal with the only twisted module requiring consideration

for a group of exceptional type.

Lemma 10.4. Consider the simple algebraic group G = G2(K) acting on L(ω2)⊗L(ω2)
(q)

with p = 3. Then (†) holds.

Proof. When p = 3 the weights in W.ω1 appear with multiplicity zero and the weight 0

appears with multiplicity one in L(ω2). The short roots in Φ(G2) are ±α1, ±(α1 + α2)

and ±(2α1 + α2) and we may assume that one of these does not lie in Φs. We see that

〈ω2, α〉 = 0 for α ∈ {±α1} and 〈ω2, α〉 = 3 for α ∈ {α1 + α2, 2α1 + α2}. Thus, given a
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short root α, there are 6.2
6

= 2 weights µ ∈ W.ω2 with 〈µ, α〉 = 0 and similarly 2 weights

µ ∈ W.ω2 with 〈µ, α〉 = 3. If p 6= 3 there are two weight strings of the form µ2 µ1 µ1 µ2

where µi ∈ W.ωi for i = 1, 2. Although mω1
= 0 we may still use the adjacency principle

for p = 3 by taking α /∈ Φs and using the fact that µ(s) = (µ − 3α)(s) if and only if

α(s) = 1. If µ, µ′ ∈ W.ω2 then the weight nets that occur for L(ω2) ⊗ L(ω2)
(q) are as

follows.
µ + qµ′ µ + qµ′ µ + q(µ′ + 3α) µ + qµ′

(µ + 3α) + qµ′

µ + qµ′ µ + q(µ′ + 3α)

(µ + 3α) + qµ′ (µ + 3α) + q(µ′ + 3α)

4 4 4 4

Thus we have |Λ| > 4.1 + 4.1 + 4.2 = 16 > dim G = 14 as required.

Recall from Section 5.3 that for type An the weights in W.ωk with k ∈ [1, n] can be

represented by strings of length n+1 consisting of k plus signs and n−k +1 minus signs.

Also elements of the Weyl group act by permuting plus and minus signs.

Lemma 10.5. Let G = SLn+1(K) act on U ⊗ V (q) where U ∈ {L(ω1), L(ωn)} and V ∈

{L(ω2), L(ωn−1)} for n ∈ [3,∞), and U ⊗ V (q) where U ∈ {L(ω1), L(ωn)} and V ∈

{L(2ω1), L(2ωn)} for n ∈ [1,∞). Then in the former case (†) holds for n ∈ [7,∞) and

(♦) is always satisfied for n ∈ [3, 6], and in the latter case (†) holds for n ∈ [3,∞) and

(♦) is always satisfied for n ∈ [1, 2].

Proof. We begin by recalling that dimL(ω1) = n + 1, dim L(ω2) = 1
2
n(n + 1) and

dim L(2ω1) = 1
2
(n + 1)(n + 2). Following the usual calculations we find that, for a given

α ∈ Φ(An), there are n − 1 weights µ ∈ W.ω1 with weight string µ and there is 1 weight

µ ∈ W.ω1 with weight string µ µ + α. Similarly, there are 1 + 1
2
(n − 2)(n − 1) weights

ν ∈ W.ω2 with weight string ν and there are n− 1 weights ν ∈ W.ω2 with weight string ν

ν +α. Finally, considering L(2ω1), there are n−1 weights η ∈ W.(2ω1) with weight string

η and there is 1 weight η ∈ W.(2ω1) with weight string η η+α η+2α where η+α ∈ W.ω2.

Consider the module L(ω1)⊗L(ω2)
(q); taking α /∈ Φs we count the number of weights

that occur as singletons, i.e., those weights of the form µ + qν with 〈µ, α〉 = 〈ν, α〉 = 0.

There are (n−1)+ 1
2
(n−2)(n−1)2 such weights. The remaining weights of L(ω1)⊗L(ω2)

(q)
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all occur in pairs so we find that |Λ| > 1
2

(

1
2
n(n + 1)2 − (n − 1) − 1

2
(n − 2)(n − 1)2

)

=

1
2
(3n2 − n + 2). This exceeds dim G for n > 7 so (†) holds.

We may now take two orthogonal roots outside the root system Φs of CG(s) since (♦)

is satisfied if X = An−1 for n > 3. Assume without loss that these two roots are α1 and

α3. We see that there are
(

n−3
1

)

= n − 3 weights in W.ω1 orthogonal to both of these

roots and similarly there are 2 +
(

n−3
2

)

weights in W.ω2 orthogonal to them both (those

weights of the form + +−−− · · ·−, −−+ +− · · ·− and −−−−+ + − · · ·−). Thus we now find that

|Λ| > 1
2

(

1
2
n(n + 1)2 − 2(n − 3) − 1

2
(n − 4)(n − 3)2

)

= 3n2 − 9n+12 which exceeds dim G

for n > 5. If n = 4 then |Λ| > 24 = dim G so (♦) is satisfied for all X ∈ I and if n = 3

then |Λ| > 12 = Φ(A3) so we are left to consider the possibility X = ∅ here.

Now if n = 3 then the weights in W.ω1 are 3 2 1, -1 2 1, -1 -2 1 and -1 -2 -3 where

we have omitted a factor of 1
4

on each coefficient. Clearly the difference between any two

of these is a root in A3. Suppose that X = ∅; if we arrange the 24 weights µ + qν with

µ ∈ W.ω1, ν ∈ W.ω2 of L(ω1) ⊗ L(ω2)
(q) into a 6 × 4 grid then, in each column, at least

three of the four weights lies in Λ. Thus d∅
ω1+qω2

> 18 > 12 = e∅
ω1+qω2

. (We are essentially

using Proposition 4.3 here.)

It is clear that the same conclusions for L(ω1) ⊗ L(ω2)
(q) with n ∈ [3,∞) hold for

L(ω1) ⊗ L(ωn−1)
(q), L(ωn) ⊗ L(ω2)

(q) and L(ωn) ⊗ L(ωn−1)
(q) with n ∈ [3,∞).

Consider the module L(ω1)⊗L(2ω1)
(q). Since ω2 < 2ω1 we can use Premet’s theorem

to conclude that (†) holds for n > 7. Using the data at the start of this lemma we find

that the weight nets for this module are as follows.

µ + qν µ + qν µ + q(ν + α) µ + q(ν + 2α) µ + qν

(µ + α) + qν

µ + qν µ + q(ν + α) µ + q(ν + 2α)

(µ + α) + qν (µ + α) + q(ν + α) (µ + α) + q(ν + 2α)

(n − 1)2 n − 1 n − 1 1

µ + qη µ + qη µ + q(η + α) µ + qη

(µ + α) + qη

µ + qη µ + q(η + α)

(µ + α) + qη (µ + α) + q(η + α)

1

2
(n − 2)(n − 1)2 (n − 1)2 1

2
(n − 2)(n − 1) n − 1

Thus we have |Λ| > 1
2
(3n2 + n + 2) which exceeds dim G for n > 3 and equals dim G

for n ∈ [1, 2].

We can draw the same conclusions when n ∈ [2,∞) for L(ωn) ⊗ L(2ω1)
(q), L(ω1) ⊗
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L(2ωn)(q) and L(ωn) ⊗ L(2ωn)(q).

The last lemma of this chapter deals with the remaining six families of modules in

Table 10.1.

Lemma 10.6. Let G be a simple simply connected algebraic group defined over K.

(i) If G is of type An acting on either L(ω2)⊗L(ω2)
(q) for n = 3 or L(2ω1)⊗L(2ω1)

(q)

for n = 1 then (†) holds.

(ii) If G is of type B2 acting on either L(ω1)⊗ L(ω2)
(q) or L(ω2)⊗ L(ω2)

(q) then (♦) is

satisfied for all X ∈ I.

(iii) If G is of type Cn with p = 2 acting on either L(ω1) ⊗ L(ωn)(q) for n ∈ [3, 4] or

L(ω3) ⊗ L(ω3)
(q) for n = 3 then (†) holds.

Proof. Consider the action of SL2(K) on L(2ω1)⊗L(2ω1)
(q). We can arrange the 9 weights

of this module in a 3 × 3 grid as follows.
2ω1 + q(2ω1) 2ω1 + q0 2ω1 − q(2ω1)

0 + q(2ω1) 0 + q0 0 − q(2ω1)

−2ω1 + q(2ω1) −2ω1 + q0 −2ω1 − q(2ω1)

Clearly, by observing that 2ω1 = α1, we have |Λ| > 4 > 3 = dim G so (†) holds.

Consider the action of SL4(K) on L(ω2) ⊗ L(ω2)
(q). If µ, µ′ ∈ W.ω2 and α /∈ Φs

then, using the calculations in the previous lemma, the weight nets for this module are

as follows.
µ + qµ′ µ + qµ′ µ + q(µ′ + α) µ + qµ′

(µ + α) + qµ′

µ + qµ′ µ + q(µ′ + α)

(µ + α) + qµ′ (µ + α) + q(µ′ + α)

4 4 4 4

Thus |Λ| > 4 + 4 + 8 = 16 > 15 = dim G.

Consider the action of Spin5(K) on L(ω1) ⊗ L(ω2)
(q). Recall that dim L(ω2) = 4 and

dim L(ω1) = 5 or 4 according as p 6= 2 or p = 2 (the difference in the latter case is that

m0 = 0). For a fixed short root α ∈ Φ(B2) there are 2 weights µ ∈ W.ω1 with weight

string µ and 1 weight µ ∈ W.ω1 with weight string µ µ + α µ + 2α where the middle

weight in the string is 0. Similarly we find that there are 2 weights µ′ ∈ W.ω2 with weight

string µ′ µ′ + α.
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Assuming that α /∈ Φs we can arrange the weights of L(ω1) ⊗ L(ω2)
(q) into four 2 × 1

and two 2×3 or 2×2 weight nets according as p 6= 2 or p = 2. If the characteristic is odd

then |Λ| > 4.2 + 2.3 = 10 = dimG and if it is even then, using the fact that 2α(s) = 1 if

and only if α(s) = 1, we have |Λ| > 4 + 2.2 = 8 = |Φ(B2)|. It remains to show that (♦)

holds for X = ∅ if p = 2. The weights of L(ω1) are 1 1, 0 1, 0 -1, -1 -1 and the weights of

L(ω2) are 1
2

1, 1
2

0, -1
2

0 and -1
2

-1 so if we arrange the 16 weights of L(ω1) ⊗ L(ω2)
(q) for

p = 2 into a 4× 4 grid then at least three weights in each row and column lie in Λ. Thus

d∅
ω1+qω2

> 4.3 = 12 > 8 = e∅
ω1+qω2

.

Now consider the action of Spin5(K) on L(ω2) ⊗ L(ω2)
(q). Taking µ, µ′ ∈ W.ω2 and

α /∈ Φs we find |Λ| > 8 since there are four 2 × 2 weight nets for this module. We just

need to consider the case X = ∅ to show that (♦) holds for all X ∈ I, but this follows

immediately as before.

Consider the action of Sp2n(K) with p = 2 on L(ω1) ⊗ L(ωn)(q) for n ∈ [3, 4]. Then

dim L(ω1) = 2n and dim L(ωn) = 2n. We have 〈ωn, α〉 = 0 or 2 for either n(n − 1) or

1
2
n(n − 1) short roots α ∈ Φ(Cn). For a given α there are 2n−1 weights µ ∈ W.ωn with

weight string µ and 2n−2 weights µ ∈ W.ωn with weight string containing µ µ + 2α. For

L(ω1) there are 2(n− 2) weights µ′ ∈ W.ω1 with weight string µ′ and 2 weights µ′ ∈ W.ω1

with weight string µ′ µ′ + α.

The weight nets for L(ω1) ⊗ L(ωn)(q) with p = 2 are as follows where α /∈ Φs.

µ + qµ′ µ + qµ′ µ + q(µ′ + 2α) µ + qµ′

(µ + α) + qµ′

µ + qµ′ µ + q(µ′ + 2α)

(µ + α) + qµ′ (µ + α) + q(µ′ + 2α)

2n(n − 2) 2n−1(n − 2) 2n 2n−1

Therefore we have |Λ| > 2n−1(n− 2) + 2n + 2n = 2n−1(n + 2) which exceeds dim G for

n = 4. If n = 3 then we have |Λ| > 20 whereas dim G = 21 so more work is required.

We need to show that dX
ω1+qω3

> dim G for X = A2 and X = C2 in order to take two

orthogonal roots (one short and one long) outside Φs and conclude that (†) holds. Suppose

X = A2 with roots α1 and α2. The weights in W.ω1 split into a clique consisting of two

clusters · · 1
2

and · · -1
2

of size 3. By the adjacency principle for L(ω1) at least one of these

clusters does not lie in the eigenspace. The weights in W.ω3 split into four clusters 1 2 3
2
,

· · 1
2
, · · -1

2
and -1 -2 -1

2
of sizes 1, 3, 3 and 1 respectively. Thus, by the adjacency principle
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for L(ω3) with p = 2, the maximum number of weights that can lie in the eigenspace is 3

(from either cluster of size 3). We form a 6 × 8 grid consisting of weights µ + qµ′ where

µ ∈ W.ω1 and µ′ ∈ W.ω3. Arranging these weights into eight clusters (four of the form 3×1

and four of the form 3 × 3) we find that dω1+qω3
> 2(1.3 + 3.3 + 1.3) = 30 > 21 = dim G.

Suppose that X = C2 with roots α2 and α3. The weights in W.ω1 split into a clique

consisting of three clusters 1 1 1
2
, 0 · · and -1 -1 -1

2
of sizes 1, 4 and 1 respectively. The

weights in W.ω3 split into a clique consisting of two clusters 1 · · and -1 · ·, both of size

4. As before, we form a 6 × 8 grid consisting of weights µ + qµ′ where µ ∈ W.ω1 and

µ′ ∈ W.ω3. Arranging these weights into six clusters (four of the form 1 × 4 and two of

the form 4 × 4) we find that dω1+qω3
> 4 + 4 + 16 + 4 = 28 > 21 = dim G.

Now we take two orthogonal roots α short and β long outside Φs. We see that 〈ω1, α〉 =

0 or ±1 and 〈ω1, β〉 = 0 or ±1; however it is not possible to find two orthogonal roots α,

β such that 〈ω1, α〉 = 〈ω1, β〉 = 0 since n = 3. Similarly we have 〈ω3, α〉 = 0 or ±2 (in the

latter case the weight strings obtained are not saturated) and 〈ω3, β〉 = ±1. In particular

there are no weights in both L(ω1) and L(ω3) orthogonal to both a short and long root

orthogonal to each other. Thus the weights in L(ω1) ⊗ L(ω3)
(q) for n = 3 all appear in

pairs when arranged into weight nets for some fixed pair of mutually orthogonal short

and long roots, whence

|Λ| >
1

2
dim L(ω1) ⊗ L(ω3)

(q) = 24 > 21 = dim G

and (†) holds.

Finally, consider the action of Sp6(K) with p = 2 on L(ω3) ⊗ L(ω3)
(q). The weight

nets that occur are similar to those in the previous case except in the vertical direction

the difference between two weights is 2α rather than α. We find |Λ| > 8 + 8 + 2.4 = 24,

so (†) holds.

It remains to consider L(ω1) ⊗ L(ω1)
(q) for types Bn, Cn and Dn. We should be able

to adapt our techniques to show for each n that (♦) is satisfied for all X ∈ I. The natural

approach is to inductively take mutually orthogonal roots outside Φs.
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Chapter 11

Concluding remarks

In this final chapter we shall briefly discuss a number of points that have arisen in the

course of this thesis.

The Main Theorem presents a clear dichotomy between modules of dimension at most

and larger than dimG + 2. It is somewhat surprising and not entirely clear that this

should be the dividing line. Indeed, one would perhaps intuitively expect that dim G is a

more likely boundary. There are very few modules with dimension dim G+1 or dim G+2,

the most notable is the infinite family L(ω1) ⊗ L(ω1)
(q) in type An for n > 1; the other

modules occur only for a single rank n for small characteristic, or else for n = 1.

Our methodology has been to begin each chapter on large modules with an initial sur-

vey to decide which modules we cannot yet conclude that (†) holds. We have a reasonably

efficient technique to do this and we show that (†) holds for the vast majority of modules.

It is only for modules with dimension closer to dimG + 2 that more work is required and

we usually show that (♦) is satisfied for each X ∈ I rather than that (†) holds. Indeed,

if a module has dimension approximately 2 dimG then we expect to be able to show at

least that (♦) is satisfied for all X ∈ I.

In some cases we have been able to assume that there are two or more orthogonal

roots lying outside the root system Φs for some s ∈ Gss \ Z since (♦) is satisfied for

sufficiently large centraliser types. In these cases, it is subsequently possible to show that

the codimension of the eigenspace exceeds dim G. However, we cannot conclude that (†)
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holds since there are simply too many large centraliser types X to check to ensure that

dX
λ > dim G always holds.

It would be reasonable to expect that a computer program could be produced to find,

for any possible centraliser type, better lower bounds for the codimension of an eigenspace.

This would be easier in cases where the plus minus notation for weights can be used, i.e.,

for modules L(ωk) for k ∈ [1, n] in type An, and L(ωn) for types Bn, Cn (p = 2 only) and

Dn. It is far from efficient when there are many centraliser types to check by hand to

show that (♦) is satisfied for all X ∈ I. For example, there were 60 centraliser types to

go through for the module L(ω7) for type D7 with p = 2.

We have not made any claims about the size of the codimension of the eigenspace for

modules where (†) holds; for modules V where dim V > 3 dim G the codimension of the

eigenspace would certainly far exceed dim G with few exceptions. We do not claim that

(†) is an optimal condition, rather that it is convenient. It allows us to reach our desired

conclusion that dim E < dim V .

Naturally, we would like to have fewer possible exceptions to the Main Theorem. In

particular there are three infinite families for which our methods do not appear to be

sufficient: L(ω2) for n ∈ [3,∞) in type Cn, L(2ω1) for n ∈ [2,∞) with p 6= 2 in type

Bn and L(2ω1) for n ∈ [4,∞) with p 6= 2 in type Dn. It should be possible to deal

with the modules L(ω1) ⊗ L(ω1)
(q) for types Bn, Cn and Dn; an approach by inductively

taking orthogonal roots not in Φs should show that (♦) is satisfied for all X ∈ I. Other

modules with dimension at most dim G could possibly be dealt with using the strategy

employed by Lawther in Section 3.6, though this would be most difficult in the case L(ω3)

for SL8(K). Many of the remaining modules with dimension larger than dim G + 2 can

be dealt with for almost all centraliser types X ∈ I. In cases where dX
λ = eX

λ occurs, it

should be possible to say more since we have quite a bit of information. We know the

centraliser type of a given non-central semisimple element and precisely which weights lie

in the eigenspace.

We have shown that the set of vectors whose stabilisers contain no non-central semisim-

ple element is dense in V . It remains to show that at least one of these vectors has a

171



stabiliser containing no non-trivial unipotent element. Clearly this will require a different

strategy to that employed in this thesis for non-central semisimple elements. There has

been much work done by Suprunenko on the behaviour of unipotent elements in modular

representations of algebraic groups which may be helpful in this regard; she intends to

obtain estimates for the dimensions of the 1-eigenspaces V u = {v ∈ V | uv = v} for each

unipotent u ∈ G following on from the work in [28].

It would be helpful to use the existence of a regular orbit for the action of a simple

algebraic group to deduce that a primitive permutation group of affine type has minimal

base size 2. Indeed, much work has already been done on the almost simple permutation

groups, particularly by Burness.

It should be possible to find further applications of the Main Theorem. In particular,

we have shown for the majority of modules with dimension exceeding dim G + 2 that (†)

holds. This may be useful for problems on eigenvectors in actions of simple algebraic

groups, some of which are described in [29].

Dyfal donc a dyr y garreg

Ńı heolas go haontios
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Appendix A

Cliques for (G, V ) = (A12, L(ω3))

We shall provide cliques for the nineteen centraliser types remaining to be considered for

SL13(K) acting on L(ω3) listed in Table 5.2 of Lemma 5.13. We show in each case that

(♦) is satisfied.

X = ∅

Clique Cluster size l Clique Cluster size l

+ + + −−−−−−−−−− 1 60 −− + + + −−−−−−−− 1 40

− + + + −−−−−−−−− 1 50 −−− + + + −−−−−−− 1 32

From the table above we have d∅
ω3

> 182 > 156 = e∅
ω3

.

X = A1

Clique Cluster size l

+− : + + −−−−−−−−− 2 100

−− : ++ + −−−−−−−− 1 40

−− : − + + + −−−−−−− 1 32

From the table above we have dA1

ω3
> 172 > 154 = eA1

ω3
.

X = A2
1

Clique Cluster size l

+ − | + − : + −−−−−−−− 4 32

+ − | − − : + + −−−−−−− 2 64

−− | + − : + + −−−−−−− 2 64

From the table above we have d
A2

1
ω3 > 160 > 152 = e

A2
1

ω3 .
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X = A3
1

Clique Cluster size l Clique Cluster size l

+ − | + −| − − : + −−−−−− 4 24 + − | − −| − − : + + −−−−− 2 36

+ − | − −| + − : + −−−−−− 4 24 −− | + −| − − : + + −−−−− 2 36

−− | + −| + − : + −−−−−− 4 24 −− | − −| + − : + + −−−−− 2 36

From the table above we have d
A3

1
ω3 > 180 > 150 = e

A3
1

ω3 .

X = A4
1

Clique Cluster size l Clique Cluster size l

+ − | − −| − −| − − : + + −−− 2 16 + − | − −| + −| − − : + −−−− 4 16

−− | + −| − −| − − : + + −−− 2 16 + − | − −| − −| + − : + −−−− 4 16

−− | − −| + −| − − : + + −−− 2 16 −− | + −| + −| − − : + −−−− 4 16

−− | − −| − −| + − : + + −−− 2 16 −− | + −| − −| + − : + −−−− 4 16

+ − | + −| − −| − − : + −−−− 4 16 −− | − −| + −| + − : + −−−− 4 16

From the table above we have d
A4

1
ω3 > 160 > 148 = e

A4
1

ω3 .

X = A5
1

Clique Cluster size l Clique Cluster size l

+ − | + −| + −| − −| − − : −−− 8 64 + − | + −| − −| − −| − − : − + − 4 32

+ − | + −| − −| − −| − − : + −− 4 32 + − | + −| − −| − −| − − : −− + 4 32

From the table above we have d
A5

1
ω3 > 160 > 146 = e

A5
1

ω3 .

X = A6
1

Clique Cluster size l Clique Cluster size l

+ − | + −| + −| − −| − −| − − : − 8 128 +−| + +|− − | − −| − −| − − : − 2 9

+ + |+ − | − −| − −| − −| − − : − 2 9 −− | + +| − −| − −| − −| − − : + 1

+ + | − −| − −| − −| − −| − − : + 1

From the table above we have d
A6

1
ω3 > 146 > 144 = e

A6
1

ω3 .

X = A2

Clique Cluster size l

+ + − : + −−−−−−−−− 3 27

+ −− : + + −−−−−−−− 3 120

−−− : + + + −−−−−−− 1 7

From the table above we have dA2

ω3
> 154 > 150 = eA2

ω3
.

X = A2A1

Clique Cluster size l

+ −−| + − : + −−−−−−− 6 42

+ −−| − − : + + −−−−−− 3 72

−−−| + − : + + −−−−−− 2 48
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From the table above we have dA2A1

ω3
> 162 > 148 = eA2A1

ω3
.

X = A2A2
1

Clique Cluster size l Clique Cluster size l

+ + −| − −| + − : −−−−−− 6 42 + −−| − −| − − : + + −−−− 3 36

+ −−| + −| + − : −−−−−− 12 −−−| + −| − − : + + −−−− 2 24

+ −−| + −| − − : + −−−−− 6 −−−| − −| + − : + + −−−− 2 24

+ −−| − −| + − : + −−−−− 6 30

From the table above we have d
A2A2

1
ω3 > 156 > 146 = e

A2A2
1

ω3 .

X = A2A3
1

Clique Cluster size l Clique Cluster size l

+ −−|+ − | + −| − − : −−−− 12 32 + + −|+ − | − −| − − : −−−− 6 24

−−−| + −| + −| + − : −−−− 8 + + −| − −| − −| − − : + −−− 3

+ −−| + −| − −| − − : + −−− 6 18 −−−| + −| + −| − − : + −−− 4 12

+ −−| − −| + −| − − : + −−− 6 18 −−−| + −| − −| + − : + −−− 4 12

+ −−| − −| − −| + − : + −−− 6 18 −−−| − −| + −| + − : + −−− 4 12

From the table above we have d
A2A3

1
ω3 > 146 > 144 = e

A2A3
1

ω3 .

X = A2A4
1

Clique Cluster size l Clique Cluster size l

+ + −|+ − | − −| − −| − − : −− 6 24 + −−|+ − | + −| − −| − − : −− 12 48

+ + −| − −| − −| − −| − − : + − 3 −−−|+ − | + −| + −| − − : −− 8 24

+ −−|+ − | − −| − −| − − : + − 6 18 −−−|+ − | + −| − −| − − : + − 4 16

+ −−|+ − | − −| − −| − − : − + 6 18

From the table above we have d
A2A4

1
ω3 > 148 > 142 = e

A2A4
1

ω3 .

X = A2A5
1

Clique Cluster size l

+ −−|+ − | + −| − −| − −| − − : 12 96

−−−|+ − | + −| + −| − −| − − : 8 64

From the table above we have d
A2A5

1
ω3 > 160 > 140 = e

A2A5
1

ω3 .

X = A2
2

Clique Cluster size l

+ −−| + −− : + −−−−−− 9 54

+ −−| − −− : + + −−−−− 3 54

−−−| + −− : + + −−−−− 3 54

From the table above we have d
A2

2
ω3 > 162 > 144 = e

A2
2

ω3 .
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X = A2
2
A1

Clique Cluster size l Clique Cluster size l

+ + −| + −− | − − : −−−−− 9 63 + −−| − −− | + − : + −−−− 6 24

+ −−| + + − | − − : −−−−− 9 −−−| + −− | + − : + −−−− 6 24

+ −−| + −− | + − : −−−−− 18 + −−| − −− | − − : + + −−− 3 24

+ −−| + −− | − − : + −−−− 9 −−−| + −− | − − : + + −−− 3 24

From the table above we have d
A2

2
A1

ω3 > 159 > 142 = e
A2

2
A1

ω3 .

X = A2
2
A2

1

Clique Cluster size l Clique Cluster size l

+ −−| + −− |+ − | − − : −−− 18 45 + −−| − −−| − −| − − : + − + 3 7

+ −−| + −− | − −| − − : + −− 9 −−−| − −− |+ − | − − : + − + 2

+ −−| − −− | + −| − − : + −− 6 12 + −−| − −−| − −| − − : − + + 3 7

+ −−| − −− | − −| + − : + −− 6 12 −−−| − −− |+ − | − − : − + + 2

−−−| + −− | + −| − − : + −− 6 12 + + −| − −− |+ − | − − : −−− 6 15

−−−| + −− | − −| + − : + −− 6 12 + + −| − −− | − −| − − : + −− 3

+ −−| − −−| − −| − − : + + − 3 7 −−−| + + − |+ − | − − : −−− 6 15

−−−| − −− |+ − | − − : + + − 2 −−−| + + − | − −| − − : + −− 3

From the table above we have d
A2

2
A2

1
ω3 > 144 > 140 = e

A2
2
A2

1
ω3 .

X = A3

Clique Cluster size l

+ + −− : + −−−−−−−− 6 48

+ −−− : + + −−−−−−− 4 128

From the table above we have dA3

ω3
> 176 > 144 = eA3

ω3
.

X = A3A1

Clique Cluster size l

+ + −− | − − : + −−−−−− 6 36

+ −−− | + − : + −−−−−− 8 48

+ −−− | − − : + + −−−−− 4 72

From the table above we have dA3A1

ω3
> 156 > 142 = eA3A1

ω3
.

X = A3A2
1

Clique Cluster size l Clique Cluster size l

+ + −− | + −| − − : −−−−− 12 56 + + −− | − −| + − : −−−−− 12 44

+ −−− | + +| − − : −−−−− 4 + −−− | − −| + + : −−−−− 4

+ −−− | + −| + − : −−−−− 16 + −−− | − −| + − : + −−−− 8

+ −−− | + −| − − : + −−−− 8 + + + − | − −| − − : −−−−− 4 28

−−−− | + −| + − : + −−−− 4 16 + + −− | − −| − − : + −−−− 6

From the table above we have d
A3A2

1
ω3 > 144 > 140 = e

A3A2
1

ω3 .
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