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Abstract

Rayleigh-Taylor instability has been an area of active research in fluid dynamics for

the last twenty years, but relatively little attention has been paid to the dynamics

of problems where Rayleigh-Taylor instability plays a role, but is only one compo-

nent of a more complex system. Here, Rayleigh-Taylor instability between miscible

fluids is examined in situations where it is confined by various means: by geometric

restriction, by penetration into a stable linear stratification, and by impingement

on a stable density interface. Water-based experiments are modelled using a vari-

ety of techniques, ranging from simple hand calculation of energy exchange to full

three-dimensional numerical simulation. Since there are well known difficulties in

modelling unconfined Rayleigh-Taylor instability, the confined test cases have been

sequenced to begin with dynamically simple benchmark systems on which existing

modelling approaches perform well, then they progress to more complex systems and

explore the limitations of the various models. Some work on the phenomenology of

turbulent mixing is also presented, including a new experimental technique that al-

lows mixed fluid to be visualised directly, and an analysis of energy transport and

mixing efficiency in variable density flows dominated by mixing.
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Chapter 1

Overview

1.1 Introduction

The classic view of Rayleigh-Taylor instability is the unbounded growth of any pertur-

bations initially present on an interface between initially quiescent fluids of different

density when the interface is subjected to an acceleration normal to the interface in

the direction from the light to the heavy fluid. The instability leads to the distortion

of the interface and in miscible fluids, their mixing, driven by the baroclinic genera-

tion of vorticity which arises from the misaligment of pressure and density gradients,

as the inviscid variable density vorticity equation,

Dω

Dt
− (ω.∇) u = − 1

ρ2
∇ρ×∇p, (1.1)

makes clear. The vorticity generated by the instability is initially concentrated at

the interface between the two fluids, but in miscible fluids undergoing molecular

mixing, the region over which there are large density gradients enlarges with time,

and so too does the region generating vorticity.

Rayleigh-Taylor instability is one of the purest fluid systems in which molecular

mixing can be initiated, since the instability exists independently of boundary condi-

tions. Despite its apparent geometric simplicity, a horizontal density interface in free

space gives rise to some of the most complex, important and least well-understood

phenomena in classical mechanics. Once vorticity has been generated baroclinically,

it non-linearly self-advects according to equation 1.1, progressively increasing its

spatial complexity and leading to turbulence.
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1. Overview 1.2

Lord Rayleigh identified an instability between fluids with different densities in a

now famous publication of experimental work, Rayleigh (1883). Theoretical studies

by G.I.Taylor were published some 67 years later (Taylor (1950)), and unaware of

Rayleigh’s previous work, Taylor’s name became synonymous with the instability

of two fluids of different density in an acceleration field; only more recently has the

historical connection with Rayleigh’s original work been recognised and in his honour

Rayleigh-Taylor instability has been so named.

1.2 Historical perspective

1.2.1 Analytical studies

G.I. Taylor’s work (Taylor (1950)) considered the following simplified thought exper-

iment - two inviscid incompressible two-dimensional fluids in an unbounded domain,

separated by a perfectly sharp, nominally horizontal interface, with small sinusoidal

perturbations. If the amplitude were chosen to be much smaller than the wavelength

of the instability, the equations of motion could be linearised. He showed that if the

acceleration field is directed from the light to the heavy fluid, the perturbations

grow exponentially in time. Following experimental work designed to verify Taylor’s

theoretical model, a diffuse interface correction was developed by Duff et al. (1962),

which accounted for the reduced observed growth rate.

It was observed that the instability did not conform to linear theory beyond its

very earliest stages, and a model was proposed by Davies & Taylor (1950) and Layzer

(1955) to explain the development in the non-linear regime at later times. Using a

potential flow approximation, this model studied the motion of a rising air bubble in

a tall tube, and generalised this for a sinusoidal initial interface perturbation. This

was the first body of work to show that rising bubbles reach an asymptotic velocity,

and by extension Rayleigh-Taylor instability might tend towards linear growth.

Interest in Rayleigh-Taylor instability was revitalised when Youngs (1984b) pre-

dicted numerically that the instability follows quadratic growth in time (i.e. a linear

increase in velocity), and Read (1984) confirmed this experimentally. On dimensional

grounds this seems rather obvious: there is no alternative combination of reduced
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1.2 1. Overview

gravity g′ and time t which could yield a length scale h that does not grow as t2. By

convention we write

h = αAgt2, (1.2)

where α is a scaling factor, A is non-dimensional density,

A = ρu−ρl
ρu+ρl

, (1.3)

and is related to a reduced gravity in the Boussinesq limit by

g′ = ∆ρ
ρ g = 2Ag. (1.4)

Despite the simplicity of this scaling (see §4.2.4 for a more rigorous derivation),

superficially at least it contradicts Layzer’s earlier prediction that h ∼ t.
More recently Layzer’s potential flow ideas have been developed to gain further

insight into the phenomenology of Rayleigh-Taylor instability. Linden et al. (1994)

simplified the potential flow approach to a simple force-balance relationship, account-

ing for the action of mutual buoyancy and drag forces on fluid bodies. Such models,

known as ‘buoyancy-drag’ models, make assumptions about the shape of the inter-

penetrating structures and compute the force balance accordingly. These models

predict exponential growth at early times when the drag force is negligible relative

to the buoyancy, and thus matches Taylor’s original theory. At later times, however,

the drag becomes more significant and eventually exactly balances the drag, leading

to an asymptotic velocity and associated linear growth. Layzer’s and Taylor’s ideas

are thus reconciled, but neither appears to predict quadratic growth.

The most important distinction between the conditions that give rise to late-time

quadratic growth and those that give linear growth is the modal character of the ini-

tial perturbation. In general, real interfacial perturbations are multi-modal and the

(non-linear) interaction of these modes when they develop changes the scale of the

most-unstable mode, and hence changes the growth rate. A number of multi-mode

models have been constructed which attempt to capture some of the experimentally

observed modal dynamics. So-called ‘bubble competition’ and ‘bubble merger’ mod-

els (e.g. Zufiria (1988); Ofer et al. (1996); Rikanati et al. (2000)) assume the develop-

ment of each mode can be described independently by a buoyancy-drag model, and a
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1. Overview 1.2

chosen interaction mechanism couples the modes together and provides a mechanism

for the dominant scale to change. Some models use a ‘takeover’ analogy whereby

smaller bubbles are engulfed, others demand that the bubble structures maintain

geometrical self-similarity throughout their growth and in some way ‘merge’. By

choosing carefully how the modes interact, the correct (quadratic) overall growth

behaviour can be recovered, and some insight into the Rayleigh-Taylor phenomenol-

ogy can be deduced.

1.2.2 Experimental studies

Lord Rayleigh’s initial attempts at observing the instability experimentally (Rayleigh

(1883)) used warm salty dyed water supported by a porous membrane above cold

fresh water. Thermal diffusion of heat to the atmosphere then allowed the upper layer

to become cool, and reach parity of buoyancy with the lower layer. Under further

cooling, the upper layer started to migrate into the lower layer in thin vertical finger-

like strands. Rayleigh believed he was observing the baroclinically driven process

we know today as Rayleigh-Taylor instability. However, he had inadvertantly (see

Schmitt (1995) for a historical review) discovered a diffusion driven process which we

know today as salt fingering. The finger-like structures occur because heat diffuses

more efficiently than salt between upper and lower layer fluid, making lower layer

fluid warm and relatively buoyant in between the fingers, and upper layer fluid in

the fingers colder and heavier and thus perpetuating the instability.

The earliest experimental work, Lewis (1950); Emmons et al. (1959), that faith-

fully demonstrated the baroclinically driven instability shortly followed Taylor’s ana-

lytical study (see §1.2.1). Interest was not revived until there became a technological

imperative to develop the basic science. The linear regime, which predicts exponen-

tial growth of the instability, is valid where perturbations have large wavelength

relative to their amplitude, and this describes the Rayleigh-Taylor flow only at very

early times in its evolution. The non-linear behaviour that develops at later times

presents a much richer scientific problem and recent attention has focussed on this

latter regime.

One of the many complications in the non-linear regime is that self-advection
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1.2 1. Overview

of vorticity leads to the interface (interfacial region in miscible fluids) becoming in-

creasingly convoluted in space. Small initial perturbations become accentuated due

to the baroclinic vorticity they supply to themselves, and they organise into self-

advected structures known as ‘bubbles’ if they contain relatively less dense fluid and

are rising upwards, and ‘spikes’ if they are more dense. Bubble and spike structures

eventually overturn due to their own vorticity, and acquire a mushroom-like appear-

ance, before individual structures break down into much less well-defined shapes at

later times. While the bubbles and spikes remain coherent structures, the growth

rate of the instability decreases - as predicted by the theoretical models balancing

buoyancy and drag. Only under very carefully controlled conditions, eg. Waddell

et al. (2001); Wilkinson & Jacobs (2007), can this process be observed in isolation;

a much more common occurence is to have a wide spectrum of modes in the initial

perturbation, and this growth rate decrease is not observed.

Read (1984) made the first experimental study of Rayleigh-Taylor instability that

demonstrated a growth law in the non-linear regime of the form h = αAgt2, and work

since then has been dominated by attempts to quantify the rate coefficient α. Read’s

work used rocket propulsion to reverse the acceleration field on a quiescent gravita-

tionally stable density stratification. Similar work has been done more recently with

a linear electric motor (e.g. Dimonte & Schneider (1996)), compressed gas driving a

piston (e.g. Nevmerzhitsky et al. (1994)) and using high-energy lasers (e.g. Robey

et al. (2001)). Simply using gravity itself to act on an initially unstable stratifica-

tion has also been thoroughly investigated in the G. K. Batchelor Laboratory (e.g.

Linden et al. (1994); Dalziel et al. (1999)).

Despite - or perhaps because of - the range of experimental approaches taken,

there has as yet been no convincing settlement on a unique value of α. As numerical

simulations have developed over the same period, they have been predicting ever

lower values of α, and concern has grown that our scientific understanding of the

fluid mechanics is in some way deficient. The simple arguments used to construct

the h = αAgt2 growth law embed assumptions about the nature of the turbulent

mixing, particularly that on a horizontally averaged basis, kinetic energy and den-

sity fields have a self-similar (invariant with h) form. Dalziel et al. (1999) establishes
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experimentally that these assumptions are indeed valid, though the experimental

configuration used was not appropriate for making measurements of α with a high

degree of statistical confidence. Snider & Andrews (1994) built a water tunnel with

two inlet streams (one for each density), from which a spatially evolving steady state

Rayleigh-Taylor instability was created and much more precise growth rate measure-

ments have been made with this apparatus. Even with such accurate measurements,

the discrepancy between numerical and experimental estimates of α has continued

to widen; only very recently has it been appreciated that the modal structure of the

initial conditions plays a significant role in determining the subsequent growth of

the instability. Inevitably in experiments this is poorly controlled, whereas in sim-

ulations as mesh resolutions have increased, prescribed perturbation wavenumbers

have been increasing in consort.

1.2.3 Numerical studies

Numerical simulation has become an increasingly useful tool in studying Rayleigh-

Taylor instability, and its use on the problem dates back to Youngs (1984b), which

predicted quadratic growth and matched the parallel experimental work of Read

(1984). The growth of computing capacity in the intervening years has allowed

simulation to explore the instability in ever-greater detail, particularly in regimes

that cannot be easily reached by experiment. However there has been a persistent,

and increasing concern that simulated growth rates were generally lower than those

measured in experiments. The growth rates in the published literature lie in the

range 0.01 < α < 0.07 - variation almost of an order of magnitude, it should be

noted - with experiments congregating at the upper end. In an attempt to resolve

these concerns, an international collaboration was established, known as the ‘Alpha

Group’ Dimonte et al. (2004), which simulated a series of simple well-defined test

problems aimed at definitively establishing a universal rate coefficient. On these test

cases, with few exceptions, the computer codes predict similar growth rates, and

this confirmed that in general the spread of α values was not caused by algorithmic

variation.

Indeed as computing capacity expanded, the disparity between numerics and
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experiment appeared to widen, and a view has only recently emerged Ramaprabhu

et al. (2006); Mikaelian (2008) that the spectral distribution of the initial condition

might have a role in determining the rate coefficient. As computational grid sizes

have increased, the resolvable wavenumber range has widened, so this view is gaining

crediblity.

What makes such assertions hard to verify, are the respective limitations of ex-

periment and simulation. Interfacial perturbations cannot generally be prescribed

a priori in experiments, so any direct comparison with simulation is marred by un-

certainty in matching initial conditions. Experimentally measurable features of the

initial condition have in Dalziel et al. (1999) been used to improve the match with

simulation, but this approach necessarily has its limitations. A more subtle prob-

lem arises when simulating Rayleigh-Taylor instability. As the instability grows, its

Reynolds number increases with the size of the largest structures, and the length

scale of the smallest eddies decreases in consort. Quite quickly, these become in-

adequately resolved, and this modifies the turbulent energy flux that drives energy

from large scales to dissipation at small scales. Direct Numerical Simulation (DNS)

aims to completely resolve all these scales, but the overwhelming computational cost

of doing so in any reasonable scenario restricts this method exclusively to scientific

rather than practical utility.

A whole field of research has grown to try and mitigate the net (large scale)

effects of under-resolving dynamical processes at small scales, and thus maximise

the utility of computation. However the algorithmic details are handled, the general

aim is to get the right rate of energy flux leaving the resolved scales. Approaches

range in complexity from inventing small scale velocity fields using an self-affine

projection of the resolved fields (see Meneveau & Katz (2000)), through traditional

local eddy-viscosity methods (Smagorinsky (1963)) to doing no explicit modelling

of the small scales (Margolin et al. (2006)). The ‘do nothing’ approach is known

formally as Implicit Large Eddy Simulation (ILES), and is increasingly acquiring

acceptance in the Rayleigh-Taylor community since it gives surprisingly accurate

predictions despite its simplicity.
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1.3 Ongoing research

Current work on the Rayleigh-Taylor instability seeks to build on the vast literature

and datasets that now exist, and refine our understanding of the growth behaviour

so that predictive models can be applied with confidence. Long-held assumptions

are being challenged - notably that α may not be a universal constant, and may

depend (as discussed in §1.2.3) on the initial perturbation, the density difference

(Wilkinson & Jacobs (2007)), the miscibility of the fluids (Mikaelian (2008)), and

the Reynolds number (Cabot & Cook (2006)). Indeed h ∼ t2 may not be the correct

functional form at all according to Cook et al. (2004); one of the highest resolu-

tion simulations (Cabot & Cook (2006)) has identified a four-stage growth process:

independent modal growth, weak turbulence, mixing transition, strong turbulence.

Current numerical simulations are only sufficiently well-resolved to glimpse the third

stage, so it seems likely that there remain answers to be uncovered to questions we

have not yet even posed.

Given that the growth behaviour - the most elementary statistic of the insta-

bility - has not been quantified to our satisfaction, it is less surprising that other

critical questions also remain unresolved. Predicting the degree of molecular mixing

taking place in Rayleigh-Taylor instability has long been one of the motives for its

study, and while in a limited parameter regime this is straightforward to measure

experimentally (e.g. Linden et al. (1994); Lawrie & Dalziel (2006a); Andrews et al.

(2007)), in some applications we do not have the capability to do such measurements.

How mixing behaviour is changed by density gradients surrounding a Rayleigh-Taylor

unstable interface is another important question that has hitherto received little at-

tention (excepting Jacobs & Dalziel (2005)), and one which this thesis works towards

addressing.

That such a geometrically simple and elegant problem has given rise to decades

of intensive research, and yet even now the most basic laws are a matter of serious

debate, is a testament to the phenomenal complexity of Rayleigh-Taylor instability.
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1.4 Thesis outline

The remainder of this thesis is organised as follows: chapter 2 introduces the exper-

imental apparatus and basic laboratory techniques used to examine the Rayleigh-

Taylor instability and charts the history of their development. Chapter 3 explains

the numerical algorithms used in MOBILE , the Implicit Large Eddy Simulation

tool developed for and used in the study of Rayleigh-Taylor instability throughout

this thesis. Chapter 4 provides an introduction to existing modelling approaches for

Rayleigh-Taylor instability that will be used and developed in subsequent chapters.

Chapter 5 discusses a new experimental diagnostic technique called RLIF, which

has been developed to directly visualise molecular mixing in Rayleigh-Taylor insta-

blity. Comparison with existing experimental methods and with simulation is also

considered here. Chapter 6 investigates the Rayleigh-Taylor instability confined by

geometry in a high-aspect-ratio domain, a benchmark test case selected because it

reduces dynamical complexity and a variety of modelling approaches perform well.

Again in a high-aspect-ratio domain, chapter 7 investigates Rayleigh-Taylor instabil-

ity penetrating into a stable linear stratification, a scenario widely believed to pose a

challenge for numerical models. Chapter 8 considers the Rayleigh-Taylor instability

sandwiched between two stable linear stratifcations in a low-aspect ratio domain, and

examines energy transport and mixing efficiency in the system. Chapter 9 studies

asymmetric Rayleigh-Taylor instability, where it is confined on one side by a stable

density interface.

Chapter 10 reviews the thesis, draws together the main ideas and outlines relevant

further work. The appendix contains four numerical studies designed to demonstrate

grid convergence and validate MOBILE on a range of fluid problems, non-Boussinesq

single-mode Rayleigh-Taylor instability, high-aspect-ratio Rayleigh-Taylor instability,

stratified Kelvin-Helmholtz instability, and lock-exchange gravity currents.
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Chapter 2

Experimental methods

2.1 Introduction

The rationale behind all experiments contributing this thesis is this: the techniques

used to create the flow, and the techniques used to observe the flow should avoid

modifying the physics of the problem being studied.

The regime in which the Rayleigh-Taylor instability has been studied here was

chosen with care to be tractable for mathematical modelling. In this regard, density

differences were selected to study the Rayleigh-Taylor instability under conditions

of ‘high’ Reynolds number turbulence while still satisfying the Boussinesq criterion.

Further, geometric simplicity has been preserved, both by apparatus design and

avoidance of intrusive measurement techniques.

The main experimental techniques used here were Planar Light-Induced Fluo-

rescence (PLIF) and so-called Dye-attenuation. Both are optical diagnostics that

exploit passive scalar transport of a dye and are appropriate for revealing aspects of

the mixing process - the theme of this thesis.

Subsequent sections are organised as follows: §2.2.1 discusses the evolution of

the apparatus that has historically been used to study Rayleigh-Taylor in the G. K.

Batchelor Laboratory, focussing on scientific and phenomenological aspects; §2.2.2

covers the details pertaining to modern experimental techniques in this apparatus.

§2.3 introduces apparatus used to study Rayleigh-Taylor instability under conditions

of geometric confinement, and §2.4 analyses the techniques used in this thesis to
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2.2 2. Experimental methods

Figure 2.1: Low aspect-ratio Rayleigh-Taylor box, showing its barrier fully with-
drawn.

create complex vertical profiles of density for experiments in both sets of apparatus.

2.2 Low-aspect-ratio Rayleigh-Taylor instability

2.2.1 Equipment history and development

The PLIF experiments in this thesis were conducted using developments of apparatus

which have been applied previously by Dalziel (1993); Dalziel et al. (1999); Jacobs

& Dalziel (2005). Some methods (e.g. Waddell et al. (2001)) can induce a finite,

systematic and repeatable perturbation of the interface, but historically the research

aim of experiments in this apparatus has been to study Rayleigh-Taylor instability

in its purest form - where the interface is minimally and randomly perturbed over a

wide spectrum of wavelengths.

In the simplest configuration to give rise to a Rayleigh-Taylor instability driven

flow, relatively dense fluid sits above a horizontal barrier located at the mid-plane

position of the tank. Relatively less dense fluid sits beneath the barrier in a chamber

of equal volume. When fully closed, the barrier sits in a tight-fitting horizontal

groove on three of the four sides, and is pulled out of the tank through a letterbox-

shaped seal on the fourth side to initiate the experiment. The acrylic container used
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(a)

(b)

(c)

Figure 2.2: Image sequence showing crossection of the composite barrier while
being withdrawn.

for the experiment is shown in figure 2.1.

Unfortunately the withdrawal of a horizontal barrier has been shown to have a

significant and unwelcome influence on the evolution of the flow, and much devel-

opment work since this method of initiating Rayleigh-Taylor instability was adopted

has been focussed on mitigating the unwanted behaviour.

A thin metal barrier has been used in the past, notably by Linden et al. (1994).

Unfortunately, while the barrier is being withdrawn from the tank, momentum of

fluid adjacent to it becomes non-zero, and under the action of viscosity, diffuses

outwards to form a boundary layer above and below the barrier. This contaminates

the Rayleigh-Taylor interface with momentum. Additionally however, this boundary

layer (of moving fluid) is stripped off the barrier surface by the seal at the point

where the barrier leaves the tank, and is deflected by the vertical endwall. By

considering continuity, it is obvious that the action of withdrawing the barrier induces

a circulation cell in both upper and lower chambers of the tank.
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(a) (b)

(c) (d)

Figure 2.3: Image sequence showing composite barrier withdrawal from the
tank. The chequered pattern is fixed in the reference frame of the cloth, and
this remains stationary with respect to the tank.

One desires a method of withdrawing the barrier that avoids inducing boundary

layer development, and a composite barrier solution was devised by Lane-Serff (1989).

The metal part of the barrier comprises two horizontal sheets separated vertically

to form a wide flat tube. A sheet of polyester fabric is fixed to the end face of the

tank structure through which the barrier is withdrawn, lies on the upper surface

of the tube, and folds inside it, passing out of the tank through the barrier at the

withdrawing end. A second piece of fabric treats the lower surface in the same way

(see diagram 2.2). Shear due to withdrawing the barrier is confined between fabric

and metal elements, rather than at the surface exposed to the fluid, which, apart

from at the barrier’s very tip, is fixed in the reference frame of the tank throughout

the withdrawal. A sketch of the process is indicated in figure 2.3.

An unavoidable complication is the effect that a barrier of non-negligible thickness

(2.4mm) has on the overall dynamics of the flow. The inviscid response of the flow

to the removal of a finite volume from the mid-height of the box is to establish a
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pressure gradient, and this induces upper layer fluid to descend - the upper surface

being left free to air to allow the adjustment - and it acquires momentum as it does

so. The fluid beneath, being incompressible, cannot respond symmetrically, and this

gives rise to a net circulation. Figure 2.4(a) illustrates the asymmetry at early time.

That this circulation persists at later times too is simply a statement of angular

momentum conservation. The strength of the circulation is controlled by the barrier

velocity profile. If the initial acceleration is too sudden, the angular momentum

generated can come to dominate the flow evolution and lead at later times to a bulk

overturning of the flow, so it may exhaust its potential energy when the Rayleigh-

Taylor instability has still only partially evolved. Incidentally, deceleration at the

end of travel needs also to be smooth; bumping the barrier on the endstops of its

guide rails sends a highly disturbing pressure wave into the fluid. Optimally, the

barrier removal takes 2-4 seconds and by controlling the tension on the polyester

cloth and resisting this with pressure on the metal part of the barrier, a smooth

velocity profile is achieved.

Manufacturing the composite, hollow barrier to achieve an approximately ran-

dom initial perturbation proved to be a further complication. In figure 2.5 a high

amplitude single mode can be observed, which is compared and contrasted with a

close to random perturbation generated from a correctly manufactured barrier. As

the barrier is withdrawn it is squeezed through the endwall seal, and if its internal

volume is significant, then any flexibility in the metal leads to small quantities of

fluid inside being forced out through its open end, into the tank as a small flow-rate

planar jet. The jet has a characteristic modal oscillation (see Bickley (1937)), and

the Rayleigh-Taylor interface is unstable to this mode.

The design of the sealing for the barrier has recently (in 2007) undergone con-

siderable modification to greatly reduce its leakage. Traditionally, neoprene rubber

sliding seals were pressed against the moving surfaces where the barrier exits the

tank, but it proved impossible to seal the sharp corners, resulting in a steady leak.

With more complex stratifications being studied, the barrier leakage gives rise to

a very important component of error in the vertical density profile. A secondary

seal was developed so that the neoprene rubber was not being asked to withstand
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(a) t = 0.5s (b) t = 9.5s

(c) t = 3.5s (d) t = 12.5s

(e) t = 6.5s (f) t = 15.5s

Figure 2.4: Iso-surface of density visualised with a semi-opaque cocktail of dyes.
The nylon cloth covering the barrier can be seen in (a). The Atwood number is
A = 7× 10−4.

the full hydrostatic pressure head. This seal is a rubber O-ring encircling the bar-

rier (see figure 2.6), held in a groove on a PVC block attached to the barrier, and
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(a)

(b)

Figure 2.5: Comparison of interface perturbations with two barriers of the same
nominal design: (a) shows an incorrectly manufactured barrier which releases a
Bickley jet into the Rayleigh-Taylor instability as it is withdrawn, and (b) shows
a correctly manufactured barrier achieving a near-random perturbation.

sealing against another PVC block fixed to the tank. When the barrier is clipped

shut for long periods (as required when creating complex stratifications) only the

baroclinic head can drive a leakage flow - through either the tank sidewall grooves or

the endwall sliding seal, and since this obviously scales with the density difference,

the Boussinesq problems studied here tend not to suffer from significant leakage.

2.2.2 Operational details

The photograph in figure 2.7 shows how the low-aspect-ratio Rayleigh-Taylor appa-

ratus is operated. The user’s right hand pulls the nylon cloth from the tank, and the

force this exerts on the metal part of the barrier causes it to slide out in a manner

akin to a first-order pulley system. The user’s left hand provides a resistive (into
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Figure 2.6: Detail of the barrier seal, an O-ring (coloured black) which seals
two PVC blocks (coloured grey) held together with clips (coloured red) against
hydrostatic pressure when the barrier is closed.

tank) force to maintain tension in the nylon cloth during the removal.

The sides of the tank were covered with a matt black book-binding material on

both internal and external surfaces, since this limited the optical contamination due

to total internal reflection of incident beams. The viewing sidewall and endwall were

not permanently covered, though the viewing wall not in operation was covered in

matt black insulating tape on the inside surface wherever the light sheet impinged,

and a removable cover fitted to the outside face. Experiments contributing to this

thesis used overhead illumination, and the base of the tank is partially covered in a

Maltese cross arrangement. Thus both longitudinal and transverse oriented vertical

light sheets could pass through the base of the tank without reflecting, meanwhile

stray reflections back into the tank were minimsed by having black covering elsewhere

on the base. A mirror directed the exiting light sheet away at an oblique angle.

Waves on the free water surface, initiated by the removal of the barrier, were

found to have a negligible effect on the dynamics of the flow, but a non-negligible

effect on the illumination. To achieve a consistent refraction of the incident light

from above as it entered the tank, the surface needed to be covered, yet allowed

to adjust to the change in volume caused by removing the barrier. A transparent
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Figure 2.7: Sketch showing the user’s technique for withdrawing the barrier.

floating lid was found to be adequate although for practical reasons a tank-fixed

transparent plate, only partially covering the surface and submerged by 3mm was

used instead. Comparison of these devices with a free surface showed no significant

change in the internal flow. Light shielding was used to prevent peripheral light,

both ambient, and directly from the beam, from entering the top of the tank.

The light source was a 700W xenon arc lamp mounted vertically downwards pro-

ducing light across a spectrum ranging from 300nm to 1200nm and passed through

a 350nm long-pass dichroic reflector for safety reasons. An optical path of 2000mm,

was the maximum obtainable given constraints of ceiling height. Beam divergence,

in this case, was such that the light sheet thickened from 0.25mm at the optical

guide slit resting on the submerged transparent plate, to 4mm over a ray path dis-
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tance of 500mm. Conveniently, the change in refractive index between air and water

tended to reduce the divergence angle. The light sheet thickness at the position of

the barrier was 2.1mm.

Data acquisition was via a UNIQVision 1830C-12B-CL series digital CCD Bayer

mosaic colour camera, which used the CameraLink interface protocol and a BitFlow

R64 framegrabber PCI card to acquire images. DigiFlow software passed the data

to a RAID hard disk array in real time. Typically f0.95 25mm focal length C-mount

Vortex lenses were used; fast lenses permitted the use of thin light sheets, and/or

less efficient fluorophores. The 25mm focal length was appropriate when viewing

the whole domain; for close-up detail photography, a 50mm lens was used. Depth-

of-field and parallax problems were not encountered since detailed imaging work

concentrated on imaging a single, thin light sheet.

The removal of the finite-thickness barrier induces a very low pressure at its tip,

and this can cause dissolved air to come out of solution, form rising bubbles, and

interfere with optical diagostics. To prevent this, the water was depressurised in

two 54-litre stainless-steel cylinders (see figure 2.8). Each has a acrylic lid and was

sealed with a rubber gasket and a smearing of silicon grease. A venturi pump was

connnected to a small air space left between the water surfaces and the acrylic lids.

Optical differences between layers can pose a major problem when conducting

PLIF experiments, since fluoresced light from the illuminated plane may have to pass

a large distance through fluid that does not necessarily have a constant refractive

index. Dissolved salt - the customary agent of stratification in water - increases both

the density and refractive index. Propan-2-ol has the interesting property that it

reduces the density while increasing the refractive index. Thus a small quantity of

Propan-2-ol added to the less dense layer succesfully matches refractive indices of

the two layers, and so the fluoresced light is not appreciably refracted as it traverses

through the tank. Where PLIF was performed on flows with density profiles based

on multiple linear stratifications, each stratification was stably stratified in salt and

unstably stratified in alcohol. Approximately 3ml Propan-2-ol matches the refractive

index change caused by 1g salt in each litre of water.

Stratification profiles were measured using a conductivity probe calibrated to read
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Figure 2.8: Dissolved air is removed from solution by depressurisation in these
stainless steel cylinders.

density (where measured, salt was the sole stratifying agent). The probe had two

coaxial electrodes, and water was drawn by capillary siphon up through a 0.3mm hole

in an electrically insulating acetyl tip to contact the internal electrode. The resistivity

of the water was measured on the path between internal and external electrode,

but since the field lines focus at the small hole, the measurement is dominated by

the conductivity of the water being drawn through the hole. The probe traversed

downwards through the fluid driven by software through a PCI DAQ card using a

constant speed motor. Microswitches on an end buffer cut the motor drive and the

probe output signal to the PCI card.

The stratification was achieved using a double-bucket arrangement (Fortuin (1960)),

filling slowly through a tube suspended just above the tank base, and with the least

dense water entering first. An analysis of the issues is detailed in §2.4.
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2.3 High-aspect-ratio Rayleigh-Taylor instability

2.3.1 Equipment history and development

The dynamics of Rayleigh-Taylor instability are profoundly affected by geometric

confinement. When unconfined, one feature of Rayleigh-Taylor instablity is that

the characteristic bubble and spike (aspect-ratio O(1)) structures increase in length

scale with time. Once these structures reach parity with the domain horizontal

length scale, they cannot continue to develop, and the growth rate of the instability

is thus constrained.

This effect was observed when conducting experiments in a tall thin tube (5cm ×
5 cm × 2m) . Previous work in this apparatus (Dalziel et al. (2008)) has focussed on

overturning a two-layer stable density stratification in the tube, to initiate Rayleigh-

Taylor instability. The work for this thesis focussed on the erosion of a linear stable

density stratification, so the thin tube, containing the stratification, was held static

and the instability was initiated by releasing fluid from a large (165 litre) reservoir

beneath (see figure 2.9) which was less dense than the tube base density. The reser-

voir was dyed red with food colouring (3ml Red Fiesta), and the attenuation of a

backlight illumination due to the dye as it progressed up the tube was measured.

The release mechanism was a simple swivelling gate, initially clipped shut against

the full hydrostatic head. The disturbance introduced by opening the gate inevitably

affected the flow at early time, but only until the dominant length scale of the

instablity reached parity with the domain horizontal length scale. Thereafter, the

dynamics become increasingly insensitive to the initial conditions. At very late time

- the main focus of this work - the separation of time scales is so vast that the

initialisation method has a negligible effect on the flow.

Some unexpected dynamics were observed at late time, particularly in experi-

ments with a relatively low initial Atwood number. One would expect the interface

marking the maximum progress of dyed reservoir fluid up the tube to decelerate to-

wards zero when approaching the vertical height in the stratification whose density

corresponds to that of the reservoir. In fact, the interface actually accelerated again,

driven by exchange flows between thin layers present in the stratification. The for-
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Figure 2.9: The high-aspect-ratio Rayleigh-Taylor instability experimental ap-
paratus.

mation of these layers was caused by the differential diffusion of heat and salt (see

Turner (1974)). Unfortunately there were a number of possible causes inherent in

the experimental environment:

1. Heat was added to the fluid in the tube by the pumping apparatus used to set

up the stratification.

2. Heat may have been added by red dye absorbing IR radiation from the back-

light.

3. Water used in the experiment, particularly in the reservoir, may not have

reached thermal equilibrium with ambient before use.
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4. Ambient temperature variation in the laboratory was approximately 1◦C over

a period of an experiment, and a thermal stratification of 2.5◦C existed over

the 2m height of the tube.

The tube inevitably has a high surface to volume ratio, so fluid could respond

to the themal gradients across its surfaces within the time-scale of an experiment.

Any combination of these factors would give rise to a double-diffusive staircase. To

mitigate the ambient thermal stratification, desk fans were used to circulate air

around. To reduce incident radiation, the backlight was moved a good distance from

the tank and an optical diffuser and heat shield placed in between. An exhaustive

study of the time water was left at various points in the experimental procedure to

equilibrate with ambient temperature - with and without evaporation permitted -

showed that double-diffusive effects were minimised when the time water was exposed

to laboratory conditions was minimised. However, the effects of double-diffusion were

never completely eliminated.

2.3.2 Operational details

Images were acquired with an Atmel-Grenoble Cameila 8M CCD monochrome cam-

era with an LCD timing shutter between the lens and the CCD sensor. The Cam-

eraLink protocol was used to transfer data from the camera to an R2 BitFlow

framegrabber PCI card, and DigiFlow software was used to write the data to a

RAID array of hard disks in real time. The camera was positioned 10m away from

the tube to minimise image-processing errors due to parallax.

The stratification was achieved using a double-bucket arrangement (Fortuin (1960)),

filling slowly from the base with the least dense water entering first. Air escaped

from the tube via a small release valve in the lid. Obtaining consistent stratifications

was problematic, and an analysis of the issues is detailed in §2.4.
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Figure 2.10: The density profile used to investigate stratification-confined
Rayleigh-Taylor instability.

2.4 Producing linear stratifications

2.4.1 Theoretical background

Two layer Rayleigh-Taylor instability has been studied extensively in various con-

texts, and some previous work has been done on multi-layer configurations (Jacobs

& Dalziel (2005)). Rayleigh-Taylor instability had not been investigated in configu-

rations where it is confined by stable linear stratifications. As figure 2.10 shows, the

configuration studied involves two identical linear stable stratifications arranged one

above the other, with a Rayleigh-Taylor unstable interface between them.

The linear stratifications were created using a technique first developed by For-

tuin (1960). The principle works as follows: the hydrostatic pressures in two equally

filled geometrically identical buckets supported at the same height are equal (ne-

glecting any baroclinic head), so provided the two buckets are connected, removing

volume at a constant rate Q from one bucket - here called the mixing bucket - to

fill a tank causes a reduction in water surface height, and therfore a loss in hydro-

static pressure at the base of the bucket. A pressure gradient is therefore maintained

to drive a flow at a rate Q
2 from the other bucket - here called the supply bucket.

This new volume of fluid may contain a tracer, possibly salinity, at concentration
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cs, and provided there is sufficient agitation of the mixing bucket the average tracer

concentration in the mixing bucket cm has incremented.

The above process leads to a pair of differential equations describing the volume

of the mixing bucket and the average quantity of the tracer in the mixing bucket as

functions of time:

∂V cm
∂t

=
1
2
Qcs −Qcm (2.1)

∂V

∂t
= −1

2
Q. (2.2)

Expanding equation 2.1 with the product rule, integrating the volume equation, with

integration constant V0, and rearranging, we have(
V0 −

1
2
Qt

)
dcm
dt

=
1
2
Q (cs − cm) . (2.3)

Written as
dcm
dt

+

(
−1

2Q

V0 − 1
2Qt

)
cm =

(
1
2Qcs

V0 − 1
2Qt

)
, (2.4)

this is in the standard form,

dy

dx
+ p (x) y = q (x) (2.5)

that has a well-known solution

y =
∫
e
∫
p(x)dxq (x) dx
e
∫
p(x)dx

, (2.6)

Thus we arrive at a linear function,

cm = −cs + k

(
V0 −

1
2
Qt

)
, (2.7)

for cm(t), where k is constant of integration. The next section explores the practical

implementation of this principle.

2.4.2 Practical implementation

Previous stratified flow experiments in the G. K. Batchelor Laboratory (e.g. Hig-

ginson et al. (2003); Scase & Dalziel (2004, 2006)) used double buckets designed to

operate as described in §2.4.1. A constant flow rate pump provided both kinetic

energy for mixing, and a head for an outlet flow. When the bucket is shallow, the
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maximum flow rate at which the pump can operate is limited by the entrainment of

air by a vortex at the pump intake. When the bucket is full, the volume flux through

the pump is a very small proportion of the volume, and this sets a minimum bound

on the rate at which mixing can take place. For stratifications to be approximately

C2 continuous, the pump flow rate and control valve settings must be constant while

stratifying.

When filling a tank from the bottom, the pump has to overcome an increasing

hydrostatic head (2m in the case of the high-aspect-ratio Rayleigh-Taylor tank), and

this decreases the flow rate into the tank and changes the rate of recirculation in the

mixing bucket. It proved impossible even with a range of control valves to select a

pump flow rate that both delivered fluid against a 2m hydrostatic head and satified

the maximum bound on inlet flow rate. To avoid this issue, a separate peristaltic

pump fed directly from the mixing bucket was used to deliver a well-controlled volume

flow rate to the tank irrespecive of the head, and the main pump was dedicated to

recirculation only.

Unfortunately the stratifications produced using this method did not always be-

have as expected. In particular, although the mean gradient was consistent between

nominally identical experiments, the absolute values of the densities were not. This

was especially noticeable in the high-aspect-ratio Rayleigh-Taylor experiments where

density differences were relatively high, and further investigation of these inconsis-

tencies was warranted.

The analysis in §2.4.1 assumes instantaneous mixing of fluid in the mixing bucket,

and clearly this is not an accurate model. A starting point for a modification could

be to use a previous value of cm as an outflux tracer concentration:

∂V cm(t)
∂t

=
1
2
Qcs −Qcm(t− τ) , (2.8)

where τ is representative of the mixing time. To track this intermediate concen-

tration analytically, a third ODE is required, and to circumvent the need to solve

an increasingly complex system, a simple numerical representation of the turbulent

mixing process in the bucket - impractical to model directly - was conceived. The

experimental apparatus used a constant-volume-flux recirculating pump to provide

kinetic energy for the required mixing. It was modelled as a single flow path from
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Figure 2.11: Comparison of experimentally measured stratification and numer-
ical model at a range of double bucket recirculation rates.

the outlet of the pump, through the bucket to the pump intake, thus the problem

was reduced to one dimension. Inflow from the supply bucket is assumed to mix

with fluid directly leaving the pump outlet and extraction of fluid to fill the tank

was taken off at the pump intake.

Numerically, a time-explicit finite-volume representation of the bucket tracks

both bucket volume and tracer concentration. The bucket volume adjusts uniformly

over each cell during each timestep, and the tracer is advected passively, hence the

update equation has the form

cn+1
i =

1
Vnew

(
Vold c

n
i + ∆t

(
Fi− 1

2
− Fi+ 1

2

))
(2.9)

where Vnew and Vold are new and old cell volumes respectively. The fluxes are

upwinded according to the velocity, but because dV leaves the bucket per unit time,

and only 1
2dV enters, to satisfy continuity the velocity must increase linearly along

the bucket flow-path. Hence the fluxes are defined as

Fi+ 1
2

= cni

(
∆R
∆t

+
1
2

∆V
∆t

(
1 +

li
lmax

))
(2.10)

where ∆R is the volume recirculated per unit time, and lmax is the total flow-path
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length. The upstream and downstream boundary fluxes are

Fupstream = 1
2cs

∆V
∆t + ci=max

∆R
∆t (2.11)

Fdownstream = ci=max
(

∆V
∆t + ∆R

∆t

)
(2.12)

Evolving the model in time reveals how a curved stratification profile can be

expected, since the proportion of fluid volume being driven through the pump in-

creases as the total volume in the mixing bucket falls. At low - practical - rates of

recirculation O(1% of initial volume per unit time), damped oscillations of the pro-

file are observed in simulation. These correspond in frequency to those observed in

experiment. See figure 2.11 for a comparison of the model and a sample stratification

from an experiment.

From this it is clear that the double bucket technique does not deliver perfect

linear stratifications, and since the oscillations identified above arise from a highly

turbulent mixing process in the bucket, it is unsurprising to find that there exists

some variability in the initial density being fed to the tank.
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Chapter 3

Computational Methods

3.1 Introduction

A computer program called MOBILE was developed to model the experimental

configurations studied in this thesis. The following observations help identify a

suitable modelling strategy. Fluids used in the experiment were liquid-based, and

hence, at least to an acceptable approximation, incompressible. Rayleigh-Taylor

instability is driven by spatial variations in density, so in simulation the density field

must be tracked. Since the fluids used in the experiment have low surface energy

when in contact with one another, they easily inter-diffuse and are termed ‘miscible’.

This greatly simplifies the computational problem, since any interfacial surface has

a negligible influence on the dynamics of the flow, and therefore need not be tracked

explicitly. A suitable governing equation set is therefore

∂ck
∂t

+
∂ (ckuj)
∂xj

= 0,

∂ (ρui)
∂t

+
∂ (ρuiuj)
∂xj

= − ∂p

∂xi
+ ρgi,

ρ
∂ui
∂xj

∂uj
∂xi

= −∂
2p

∂x2
i

,

Σck = 1,

ρ = Σ (ckρk) ,

(3.1)

where ck is the volume fraction of the k’th advected tracer which has a prescribed

density ρk. Note that the Boussinesq approximation has been made and that the
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constraint of incompressibility is enforced by adjustment of the pressure field to

conserve volume implicitly.

For many years it has been argued (e.g. Margolin et al. (2006)) that the quite

considerable existing numerical technology developed for accurately capturing shock

systems in the compressible Euler equations can be applied when studying variable

density incompressible turbulence, since there is a coincidence of requirements to

provide sharp resolution of steep gradients. Typically numerical schemes whose

truncation error scales with a high power of the grid cell size capture such steep

gradients, but without special treatment they induce entropy violating oscillations

in the surrounding region.

A class of methods known as ‘Total Variation Bounded’, prevent spurious os-

cillations by smoothly interpolating between a high order upwind-biased scheme in

regions of the domain which are deemed sufficiently smooth, and a first order up-

wind scheme where flow variable curvatures are high. Inevitably where the scheme

behaves as first order, there is some compromise in accuracy locally, and formally the

global accuracy cannot be higher than first order. However, the additional numerical

dissipation arising from using the lower order scheme is localised around regions of

high curvature, and in nature viscous forcing µ∇2u is significant only in these re-

gions, so it is becoming accepted in some fields to employ numerical error as a valid

proxy for physical viscosity. This is the semi-empirical basis for a class of numerical

approaches known as Implicit Large Eddy Simulation (ILES), and this method has

been adopted in the current work.

Despite having been used on this empirical basis for fifteen years, only very

recently has there been a determined effort to formalise the above rationale for using

ILES. Its attraction is algorithmic simplicity and correspondingly low computational

cost, since explicit viscous terms that scale with 1
(∆x)2

are not computed, and unlike

conventional LES models (e.g. Smagorinsky (1963); Pullin (2000); Meneveau & Katz

(2000)), there is no semi-empirical sub-grid-scale model. Particularly in applications

with a wide separation of scales and where it is therefore unfeasible to directly

compute the smallest of them, such as meteorology (Smolarkiewicz et al. (2007))

and Rayleigh-Taylor driven flows (e.g. Dalziel et al. (1999); Hahn & Drikakis (2005);
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Thornber et al. (2008); Rider (2007)), ILES has a distinct advantage. Inevitably it

is less suitable for viscous boundary layers and other diffusion dominated flows, and

performs less well than Direct Numerical Simulation (DNS) on the rare problems

where DNS is affordable.

3.2 Numerical implementation

3.2.1 High order advection

A fractional step approach, closely following Andrews (1995) has been used to decou-

ple the governing equation set 3.1 into hyperbolic and elliptic components; for both,

well-developed numerical techniques exist. This section discusses the discretisation

of the hyperbolic element.

The weak form of the conservation laws,∫∫∫
∂φ

∂t
dV +

∫∫
φu.ndS = 0 (3.2)

is enforced locally over each grid cell for each conserved variable φV . By Stokes

theorem, a polyhedral finite-volume discretisation over the domain enforces the weak

form globally. The upwind flux function is evaluated at each cell boundary face, and

subsequently these values are used to advect conserved variables from cell to cell

over the course of one timestep. The accumulated contributions from neighbouring

cells are included in a volume-weighted average of the conserved variable over the

cell. This is an unsplit approach and remains numerically stable provided the total

volume fluxed over a timestep from neighbouring cells does not exceed the volume

of a grid cell. This method has a truncation error that scales with the timestep size

- known as a first order scheme.

For hexahedral discretisation, as implemented in MOBILE, the multi-dimensional

problem can be decomposed into a sequence of one-dimensional update instructions.

This is known as a fractional step method. The most recently updated values of the

conserved variable are used to compute fluxes in the next direction in the sequence.

Strang (1968) noticed that the particular sequence X-Y-Z-Z-Y-X has a truncation

error that scales with the square of the timestep, provided the complete sequence

takes place within one timestep (i.e. before application of boundary conditions,
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source terms and pressure corrections). If the Strang splitting were implemented lit-

erally, global numerical stability could only be achieved by running each directional

splitting at or below half of its optimal timestep. Although not formally second

order, a popular adaptation involves running at the optimal timestep, and spreading

the Strang splitting over two timesteps. Empirical evidence suggests that in this

case truncation error accumulates less quickly. MOBILE uses this adaptation.

The one-dimensional update instructions each individually must satisfy the weak

form of the linear advection equation in each cell:

φ∗i =
(
φni V

n
i + Fn

i− 1
2

− Fn
i+ 1

2

)
/V n+1

i , (3.3)

where in this case superscript n represents time level, and subscript i represents

spatial location. The updated value of the conserved variable, φ∗i , is used as input

for the next one-dimensional step in the sequence. The flux function F is evaluated

at the cell faces (located at i+ 1
2 and i− 1

2 in space) by treating the piecewise constant

cell average values as initial conditions for a local Riemann problem on the cell face.

For the linear advection equation, here shown in its weak form,∫∫∫ (
∂φ

∂t
+ u

∂φ

∂x

)
dV = 0 (3.4)

the wave system reduces to a single wave (the contact discontinuity) so Godunov’s

first order solution (Godunov (1959)) to the Riemann problem is evaluated directly

using a local estimate of the advection velocity u and the values of φ available on

either side of a cell face.

Once again, in strong parallel with shock-capturing compressible schemes, exten-

sion to higher order is achieved here by solving the Riemann problem on a modified

set of left and right φ states. Such schemes employ a piecewise polynomial recon-

struction of the spatial field φ(x) from the cell mean values. The simplest higher

order scheme uses piecewise linear reconstruction, and the overall scheme accuracy

in this case scales with the square of the grid cell size. The method is known as

MUSCL extrapolation (Collela (1985)).

The most obvious gradient to choose for a linear reconstruction in the cell at

xi−1 has the form

mi−1 =
φi − φi−2

2∆x
. (3.5)
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To maintain conservation, the mean value of φi−1 must remain unchanged. The

reconstructed profile is advected with fluid velocity ui− 1
2
> 0 in time ∆t, so the

actual value of φ which is fluxed across the cell face is the mean value over a small

distance ui− 1
2
∆t on the upwind side of the xi− 1

2
cell face.

A yet higher order estimate of the gradient, due to Youngs (1984a), can be

constructed by using the fluxed volume ui− 1
2
∆t as a weighting to bias the mi−1

gradient as far towards a central difference over the cell face as stability permits.

This more sophisticated gradient has the form

mi−1 =

(
1 +

ui− 1
2
∆t

∆x

)
φi−1 − φi−2

3
+

(
2−

ui− 1
2
∆t

∆x

)
φi − φi−1

3
. (3.6)

Unfortunately, as with all higher order schemes employing a linear combination of

local values of φ (see Godunov (1959) for background), oscillations arise around steep

gradients because the truncation error modifies the equation the discretisation was

intended to solve. To illustrate this, consider the following conditionally stable dis-

cretisation of the linear advection equation, which converges at a rate O
(
∆x2,∆t2

)
,

and is nominally equivalent to the scheme developed from equation 3.5 :

3φni − 4φn−1
i + φn−2

i

∆t
+

3φni − 4φni−1 + φni−2

2∆x
= 0. (3.7)

By approximating the terms φni−1, φni−2, φn−1
i and φn−2

i with Taylor’s expansions in

space and time as appropriate, then substituting those into the update scheme 3.7, it

is clear that early terms in the series cancel out, but later terms do not. Noting that

for sufficiently smooth φ, higher time derivatives can be recast as spatial derivatives,

we see that the modified equation has the form

∂φ

∂t
+ u

∂φ

∂x
=
(

2u∆x2

3
+

2u3∆t2

3

)
∂3φ

∂x3
+ . . . , (3.8)

which has a dispersive source term at leading order. The approximate solution to

the linear advection equation with this numerical scheme will be contaminated with

oscillations around sharp gradients, and this has become known as Gibbs behaviour.

Physically, its occurence implies that such systems can become increasingly ordered,

and clearly this violates the Second Law of Thermodynamics. To circumvent this we

locally select a numerical method that satisfies the entropy inequality (i.e. dissipative

leading order error) wherever we expect oscillatory behaviour to emerge.
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ii− 2

φ

i + 1i− 1

Figure 3.1: Schematic showing how high order gradient is chosen and the quan-
tity of fluid (shown in black) fluxed across an upwind face in time ∆t.

Interpolation between low and high order schemes is achieved in the current

work by preventing the MUSCL reconstructed field φ̂ (x) from having new extrema

relative to the piecewise constant function φ (x) in neighbouring cells. Figure 3.1

illustrates a geometrical argument for selecting a function that interpolates between

numerical schemes whose accuracy scales with high and low order powers of the grid

cell size. In the figure, the piecewise constant function φ (x) is shown in grey fill,

and a higher order, MUSCL reconstructed field is shown for the upwind cell i − 1.

The medium thickness line is a second order slope that preserves the total quantity

of some scalar φ in the cell, but this produces an unphysical breach of monatonicity

at i− 3
2 . A modified slope, which conserves the cell volume integral and also satisfies

monatonicity, is shown by the heavy line. The higher order estimate of the quantity

of φ fluxed across the cell face in time ∆t is given by the volume shown in black,

and is a function of velocity, as indicated by the length of the arrow.

The above scheme for multi-dimensional advection is employed to update both

scalar quantities and components of momentum, though to avoid exciting the 2∆x

grid mode while maintaining high order accuracy, the discrete velocity components

are defined on the cell faces, while the scalars are defined at cell centres. Thus,

ρV u is conserved in cells of volume V indexed by (xi− 1
2
, yj , zk), ρV v is conserved in

cells (xi, yj− 1
2
, zk), and ρV w in (xi, yj , zk− 1

2
). Thus the full computation uses four

mutually staggered, distinctly indexed grids to solve all velocity and scalar advection.

The transverse derivative terms, e.g. ∂(ρuv)
∂x incorporate velocity and density values

computed on all other grids into the current grid, hence fully coupling adjacent values

and reducing the gain of the 2∆x mode. A schematic showing the grid configuration

and the stencil for upwinded horizontal momentum advection is shown in figure 3.2.

The grid of solid lines depicts the scalar cell boundary, and the grid of dashed lines
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j

j − 1

j − 2

ii− 1i− 2 i + 1 i + 2

j + 1

Figure 3.2: Stencil pattern for upwinded u momentum. The hollow circle is
the point being updated, the black dots and vestigial arrows depict data needed
when u > 0 and v > 0.

depicts the offset grid of u momentum cells. The black coloured dots and vestigial

arrows show where density and velocity information is retrieved from the data array,

in the case where the flow direction is from the bottom left corner. The cell outlines

show the extent of the stencil should the upwind direction be reversed. The large

arrows show the fluxes of u momentum that are computed using the current stencil

information for a given (i, j) ordinate, and the large hollow circle shows the position

that will receive an updated u momentum value from the newly computed fluxes.

The small triangle indicates how the data is mapped from cell faces and cell centres

to an (i, j) index location in the data array.

3.2.2 Source terms

The fluid is forced by the application of source terms to the (face centred) velocity

field. Obviously the internal forcing is due to the pressure field applied across the

faces S of the cell,

unew = (ρV uold + ∆tS (pi−1 − pi)) / (ρV ) , (3.9)
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and for variable density problems, the volumetric forcing due to buoyancy

unew = (ρV uold + ∆tV gx (ρ− ρb)) / (ρV ) , (3.10)

over the cell volume V . No Boussinesq approximation is made, but to reduce the

numerical error associated with performing arithmetic operations on numbers with

large differences in magnitude, the mean hydrostatic pressure is debited from the

computed pressure field, and only the remaining baroclinic head forces the flow.

For problems in which the reference frame rotates (see appendix A) with an an-

gular velocity Ω, volumetric forcing due to coriolis and centripetal terms is included,

unew = (ρV uold + 2∆tρV (Ω× uold)) / (ρV ) (3.11)

unew = (ρV uold + ∆tρV (Ω×Ω× x)) / (ρV ) . (3.12)

Where Ω is non-constant, an additional update,

unew =
(
ρV uold + ∆tρV

(
∂Ω
∂t
× x

))
/ (ρV ) , (3.13)

is required. The updated velocity field now incorporates changes due to momentum

advection and the additional accelerations caused by pressure gradients, buoyancy,

and rotation of the reference frame. However, this new field is very unlikely to be

exactly divergence free, and discussion of how this is restored follows.

3.2.3 Velocity projection and pressure correction

When solving the equations 3.1 numerically, the hyperbolic fractional step is con-

strained to conserve mass and momentum, but does not necessarily conserve volume.

The velocity field U∗ obtained from the hyperbolic fractional step and the source

term updates must be constrained to satisfy ∇.U = 0, which is an elliptic problem.

Therefore a projection is required to map the intermediate vector field U∗ onto the

space of divergence free fields Udiv. There is no unique projection, and by definition

none can conserve linear momentum, but one that conserves angular momentum is

highly desirable, since the projection is transparent to the flow vorticity. For this

reason the Helmholtz Decomposition is used:

U∗ = ∇Φ +∇×Ψ (3.14)

U∗ = Uno curl + Uno div (3.15)
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where the decomposed fields have the following properties,

∇.Uno div = 0 (3.16)

∇×Uno curl = 0, (3.17)

and we can thus define a velocity potential,

∇Φ = Uno curl. (3.18)

Taking the divergence of equation 3.15 we have

∇.U∗ = ∇2Φ +∇.Uno div. (3.19)

By property 3.16 we have a Poisson equation for the velocity potential Φ. In the

continuum limit, Φ can be characterised as a Lagrange multiplier on the divergence-

free constraint. In an incompressible fluid there is no constitutive relation from

kinetic physics to fix the value of pressure, but given an arbitrary value at some

point in the domain, a field can be defined, and its gradient provides a force on the

fluid. This force accelerates the fluid in a pressure-like manner such that volume is

conserved, according to,
∂U
∂t

= −∇Φ. (3.20)

Algorithmically, we wish to satisfy volume conservation discretely,

∆t∆y∆z
∆x∆y∆z

(
un+1
i+ 1

2

− un+1
i− 1

2

)
+

∆t∆x∆z
∆x∆y∆z

(
vn+1
j+ 1

2

− vn+1
j− 1

2

)
+

∆t∆x∆y
∆x∆y∆z

(
wn+1
k+ 1

2

− wn+1
k− 1

2

)
= 0,

(3.21)

and obtain the required velocities by applying pressure as a surface force to each

(staggered) momentum cell. The acceleration update we require is of the form

un+1
i− 1

2

= u∗
i− 1

2

+
∆t∆y∆z

1
2 (ρi−1 + ρi) ∆x∆y∆z

(
pn+1
i − pn+1

i−1

)
, (3.22)

where u∗
i− 1

2

is the intermediate velocity field obtained after the hyperbolic step, and

the pn+1 field is implicitly defined. Assuming we have a reasonable initial estimate

of the pressure field pn we can express the correction to the pressure as

pn+1 = pn + ∆p. (3.23)
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Thus we can substitute our expression for un+1 into our equation for volume conser-

vation:

∆t∆y∆z
∆x∆y∆z

(
u∗
i+ 1

2

+
∆t∆y∆z

1
2 (ρi+1 + ρi) ∆x∆y∆z

(
pni+1 + ∆pi+1 − pni −∆pni

)
−u∗

i− 1
2

− ∆t∆y∆z
1
2 (ρi−1 + ρi) ∆x∆y∆z

(
pni + ∆pi − pni−1 −∆pni−1

))
+

∆t∆x∆z
∆x∆y∆z

(
v∗
j+ 1

2

+
∆t∆x∆z

1
2 (ρj+1 + ρj) ∆x∆y∆z

(
pnj+1 + ∆pj+1 − pnj −∆pnj

)
−v∗

j− 1
2

− ∆t∆x∆z
1
2 (ρj−1 + ρj) ∆x∆y∆z

(
pnj + ∆pj − pnj−1 −∆pnj−1

))
+

∆t∆x∆y
∆x∆y∆z

(
w∗
k+ 1

2

+
∆t∆x∆y

1
2 (ρk+1 + ρk) ∆x∆y∆z

(
pnk+1 + ∆pk+1 − pnk −∆pnk

)
−w∗

k− 1
2

− ∆t∆x∆y
1
2 (ρk−1 + ρk) ∆x∆y∆z

(
pnk + ∆pk − pnk−1 −∆pnk−1

))
= 0.

(3.24)

The pressure correction field ∆p is the only unknown, and so the form of the equation

becomes evident:

Wi+ 1
2

(∆pi −∆pi+1) +Wi+ 1
2

(∆pi −∆pi−1) +

Wj+ 1
2

(∆pj −∆pj+1) +Wj− 1
2

(∆pj −∆pj−1) +

Wk+ 1
2

(∆pk −∆pk+1) +Wk− 1
2

(∆pk −∆pk−1) = ∇.U∗∗

(3.25)

where W is a weighting function based on local density, cell face area and cell volume,

and U∗∗ is a notational contraction for the U∗ velocity field updated by accelerating

with the existing pressure field pn (as implied by equation 3.24). Noting that i,j,k and

n indices have been supressed where possible, it is clear that equation 3.25 is elliptic,

with a naturally arising density-weighted 7 point stencil in three dimensions. In a

uniform density flow, the weights are equal, and equation 3.25 reduces to a standard

discrete Poisson equation. Solving by Successive Over Relaxation (SOR), or similar,

is an obvious solution approach.

3.2.4 Boundary conditions

Several simple types of boundary condition have been written, namely

• Slip wall / symmetry
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• No-slip wall

• Inflow

• Transmissive

• Periodic / internal ,

to maximise the flexibility of the code. These conditions are implemented as suitably

chosen values in three rows of ‘ghost cells’ sitting outside the domain. Each block,

or grid, is initialised with updated ghost cell data at the beginning of each timestep.

The slip wall condition imposes zero velocity through the outermost face of the last

cell, a Dirichelet condition, and supplies a pressure in the cell immediately outside,

equal to the pressure in the cell immediately inside, a von Neumann condition. This

is self-consistent, and when sources terms come to be updated, the velocity remains

unchanged. The pressure correction weight is also set to 0, which is equivalent

to specifying that solid walls are infinitely massive. This effectively re-weights the

stencil from a central difference approximation to the laplacian with seven points to

a one-sided difference with six. By construction, corners are correctly handled.

The no-slip condition operates identically to the slip condition, except that an

equal and opposite wall-parallel velocity is imposed immediately outside the domain.

Velocities are defined on cell faces, so the interpolated value at the wall satisfies no-

slip exactly. This is not especially useful in an ILES code, since transverse gradient

does not activiate the limiters and thus make no contribution to dissipation. There

is no material difference in results between slip and no-slip condition, except in a

rotating reference frame where it is less trivial to calculate an appropriate bound-

ary condition. With a physical viscosity implemented, the no-slip condition would

perform satisfactorily.

The inflow boundary condition has been implemented primarily for testing the

advection routines, and specifies a pressure distribution, velocity vector and incoming

scalar concentrations from which a density is computed. The pressure correction

weight across the inflow face is specified from the density field. The transmissive

boundary condition maps the pressure, scalar and velocity field from the edge of

the domain to the ghost cells outside. While outflow conditions have well-known
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problems and remain an active research area (see Giles (1990) for background), a

naive implementation works well on simple problems, provided that the mean exit

velocity is sufficiently large that flow never re-enters the domain.

Periodic and internal boundaries do not require assumptions to be made when

populating the ghost cells. These boundaries are packaged up and delivered to

the matching block that unwraps the data (re-ordered according to orientation)

and places in the ghost cells. The upwinding algorithm for wall-normal advection

uses information from no more than two cells centres and three cell faces beyond

the domain, in both wall-normal and wall-parallel directions. As can be deduced

from figure 3.2, in calculating u momentum at the corner cell, scalar information is

required from the cell diagonally outside the domain from the corner. This cell, and

others in the vicinity, needs to be initialised. In a square arrangement of blocks,

named from A to D as shown in figure 3.3, information needed for the ghost cell

corner of block A, say, can be found inside the domain of the diagonally opposite

block C. Manually specifying the grid corner connectivity is tedious and error-

prone, but by careful sequencing of boundary copying operations, the information

can be transferred automatically. Firstly the ghost faces of all grids are packed,

delivered and unpacked, and then secondly the ghost edges (the corners) of all grids

are packed, delivered and unpacked. Hence domain-internal information in block C

(that is needed by block A for its ghost corner) is passed through the B − C face

connectivity to the face ghost cells of block B, then in the second step the ghost

corner of grid A is filled directly through the A − B connectivity. Of course, all

the other overlapping corners are filled in the same way by the single sequence of

operations.
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D

 A B

C

Figure 3.3: Data in the black square in the domain of block C is needed by block
A as ghost data for its corner. A two stage process shown by the arrows enables
this data to be retrieved without any explicit connectivity between block A and
C.

3.3 Algorithmic details

3.3.1 Multigrid convergence acceleration

Many standard tools have been developed to solve the sparse linear systems that

emerge from discrete elliptic problems. Direct methods such as Gaussian elimination

are accurate to machine precision and some efficient methods have been developed.

The operation count of naive direct methods are of O
(
N6
)
, while the best methods,

using Fast Fourier Transforms and block decomposition, scale as N3logN , where N is

a representative index dimension of one side of the computational domain. However

to remain efficient these methods tend to be restricted to domain sizes N = 2χ, χ ∈
N , which makes them somewhat application-specific. Relaxation methods, on the

other hand, are easy to implement, and very general. A naive relaxation method,

such as Jacobi or SOR iteration scales as N6; this is uncompetitive, but applying

a multigrid methodology this can be reduced to O
(
N3logN

)
, as fast as the fastest
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direct methods. Additionally we only require to converge equation 3.25 to the level

of truncation error accrued in the hyperbolic step, so direct methods are wasteful.

Equation 3.24 corresponds to a sparse linear system of the form

Ah = b (3.26)

where b is the divergence denoted ∇.u∗∗, h is the vector of pressure corrections

∆p and A is a septa-diagonal matrix of density weighting coefficients of the form

Wi− 1
2

= ∆t∆y2∆z2
1
2

(ρi−1+ρi)∆x∆y∆z
. A relaxation iteration using the Jacobi method has the

form

gi+1 = (L+ U)gi +D−1b (3.27)

where L+U = A−D with D a diagonal matrix, and g is the current approximation

to h. Multigrid exploits the fact that relaxation operations with a Poisson-like stencil

are inherently parabolic with respect to the iteration index, and ‘dissipate’ (smooth)

most efficiently on a scale O (∆x). By defining a residual vector r and an error vector

e according to

r = b−Ag, (3.28)

e = h− g, (3.29)

it is clear that

Ae = r = b−Ag, (3.30)

which implies that by mapping the residual vector r, rather than our current estimate

g onto more coarse grids, we solve directly for the error e, which is more likely than

the vector g to have high amplitude modes of O (∆x). The reduction of e over length-

scales O (q∆x) is handled most efficiently on a grid with a mesh spacing O (q∆x),

so it makes sense to spread the calculation over several resolutions. The multigrid

approach is applied recursively, halving the grid index dimension until the coarsest

possible grid, then mapping the solution estimate successively from coarse grids to

fine. This form of the multigrid method is called the V-cycle. One period of the

simple V-cycle multigrid algorithm is shown in figure 3.4, where each dot represents

an iteration sweep.
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fine grid

coarse grid

Figure 3.4: Schematic of the simple V-cycle multigrid algorithm, where each dot
represents a smoothing operation. The optimal algorithm uses three iterations
on each grid level, except on the coarsest grid, which is converged to tolerance.

The fine-coarse mapping used in MOBILE is a finite-volume formulation, and

is achieved by integrating the residual over all the fine-grid cells that contribute to

the corresponding coarse-grid cell. The problem for the error at the coarsest grid is

solved iteratively to a very tight tolerance using the Jacobi scheme. This eliminates

the longest wavelength mode, since this was found to considerably reduce the number

of V-cycles required. The updated error vector e is projected from coarse grid to fine

grid using a compact stencil linear interpolation that is transparent to modes with

wavelength O
(
2∆xfine

)
and greater. Figure 3.5 shows in one space dimension that in

a cell- rather than node-centred algorithm, there are no points which are co-located at

all levels of refinement, thus modes of twice the frequency are transferred from coarse

to fine grid than can be achieved with a co-located scheme. The fine grid smoothing

operates more efficiently, and tests indicated a 12% reduction in computational cost

overall. Once the error e has been projected onto the fine grid, it is then added to the

existing fine-grid estimate g, as implied by equation 3.29. In performance testing, the

optimal algorithm was found to use only three relaxation iterations before moving to

a finer or coarser grid, since the efficiency of the smoothing degraded approximately

exponentially with the number of iterations.
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e

xfine

xcoarse

Figure 3.5: Schematic showing in one space dimension the linear interpolation
scheme used when projecting a coarse residual solution ê(x) onto a finer non
co-located grid. Compared with a co-located scheme this yields a 12% reduction
in overall cost.

3.3.2 Parallel implementation

The Message Passing Interface (MPI) protocol is used to enable a single problem

to be spread over multiple processors with distributed memory. The computational

domain is decomposed into cuboidal blocks, and boundary information is passed

between blocks in advance of the algorithm requiring updated information at the

boundary of a block. The code is structured such that all processes are aware of the

existence, location and size of every block in the domain, and messaging operations

are organised in mutual MPI Isend()-MPI Irecv() pairs. Separate, contiguous send

and receive buffers are allocated for each internal boundary on a grid and these are

filled with the (in general) non-contiguous data from the grid before the communi-

cation is posted. Boundary information scales with O
(
N2B

)
, where again N is the

index dimension, and B is the number of blocks.

The quantity of data that must be passed is proportional to the half-width of

the numerical stencil. For the hyperbolic step, this includes the two upwind cells

needed to reconstruct the MUSCL gradients. The algorithm requires a staggered

grid arrangement to advect the cell-face velocities, and therefore the velocity field
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is defined on all block boundary surfaces. While this is advantageous for efficiently

defining external boundary conditions, two upwind cells are required to update these

values on internal domain decomposition boundaries, and ghost values for these

cells are indexed by xi− 3
2

and xi− 5
2
. The arrays for the primitive variables and

working storage arrays are interleaved, so that memory access is localised and the

cache hit rate is maximised, an increasingly important consideration for modern

processor architectures. Thus a convention has been adopted whereby values on the

mutually staggered grids are mapped to an index location in memory as follows:

xi,j,k, xi− 1
2
,j,k, xi,j− 1

2
,k, xi,j,k− 1

2
→ i, j, k. Consequently, three index locations are re-

quired outside the domain in each direction to provide enough ghost cell space to

completely capture the numerical stencil at an internal boundary.

The elliptic step uses a much smaller stencil, and this needs only one row of ghost

cells at a block boundary, which improves the parallel efficiency. However, if parity

is maintained betwen parallel and serial algorithms, communication is required in

advance of every relaxation step, which is inefficient. The parallel efficiency is even

poorer on coarser multi-grids, since the execution time of a relaxation step scales as

O
(
N3
)

while the communication overhead scales as O
(
N2
)
. Relatively little can

be done to ameliorate this, since the apparently plausible approach of restricting

blocking to finer grids and handling coarse grids on one processor actually raises the

communication overhead scaling to O
(
N3
)
. On small test problems of (32×32×96)

cells, with two internal block boundaries and sixteen periodic domain boundaries, the

communication overhead was 40% of the total wall clock time on a dual-core CPU,

but of course this scales favourably as problem size increases. The principal aim of

parallelising this code was to permit the solution of large problem sets (>4GB) on

available 32-bit operating systems, and on large problems the development costs of

algorithmic refinement outweigh the execution time saved.
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Chapter 4

Unconfined Rayleigh-Taylor

instability

4.1 Introduction

Theoretical work on gravitationally unstable density interfaces began with Rayleigh

(1883), and continues to this day. Such difficulty has been encountered in trying to

quantify the most elementary statistic about evolution of a Rayleigh-Taylor unstable

flow - the height of the energised layer - that almost all the modelling work in

the literature to date focuses on this issue. This chapter introduces some of these

modelling approaches, applied here in the context of the idealised Rayleigh-Taylor

problem, and where appropriate these will be developed in later chapters to help

understand Rayleigh-Taylor instability evolution in situations where it is confined by

density stratification or geometric restriction.

4.2 Models for Rayleigh-Taylor instability

4.2.1 Early-time growth

It was noted in Taylor (1950) that two superposed fluids with an interface normal to

the acceleration field could exist in a state of unstable equilibrium. However if small

corrugations were to exist on the interface, a growing standing wave pattern could

be expected. By considering an unbounded two-dimensional domain, incompressible
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potential flow, and a sinusoidal interface, the velocity potentials φ in upper and lower

layers are given by

φu = ae−kz+nt cos(kx), (4.1)

φl = −aekz+nt cos(kx), (4.2)

with an interfacial surface displacement

ζ = a
k

n
ent cos(kx), (4.3)

where k is the wavenumber of the surface, a is an arbitrary initial constant and n

is a time-evolution growth parameter, which is as yet unknown. If p is the mean

pressure at the interface, then the upper and lower pressure fields are

pu = p− gρuz + ρuφ̇u (4.4)

pl = p− gρlz + ρlφ̇l (4.5)

and since pressure must be continuous across the interface, the following relation

must hold:

− g(ρl − ρu)ζ = (ρl + ρu)naent cos(kx). (4.6)

Solving for the rate parameter n, we have

n2 = kg
ρu − ρl
ρu + ρl

. (4.7)

Choosing the positive solution for n and substituting into equation 4.3 gives an

exponential growth of the surface displacement. As one would expect, the growth

is a function of gravity, of a non-dimensional density ρu−ρl
ρu+ρl

(known as the Atwood

number and usually denoted A), and more interestingly, the interface wavenumber.

It is clear from this analysis that the Rayleigh-Taylor instability grows most quickly

at higher wavenumbers, and that the rate is unbounded as k →∞. However, if one

accounts for the viscosity of a real fluid, a stability analysis will yield a wavelength

of maximum instability, which scales as

λ ∼
(
ν2

Ag

) 1
3

, (4.8)

simply on dimensional grounds. Surface tension also acts to stabilise the Rayleigh-

Taylor instability - to the extent that interface perturbations actually decay above
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a critical wavelength - but for the miscible fluids studied in this thesis, this effect is

negligible.

4.2.2 Potential flow

Development of unstable interfaces beyond the linear phase was first studied by

Davies & Taylor (1950), and generalised somewhat in Layzer (1955). Both papers

begin by considering a two-dimensional incompressible potential flow in a vertical

cylinder with a initially flat free under-surface. This is Rayleigh-Taylor unstable with

an Atwood number A→ 1. The velocity potential must satisfy Bernoulli’s equation

in cylindrical polar ordinates:

∂φ

∂t
− 1

2

(
∂φ

∂z

)2

− 1
2

(
∂φ

∂r

)2

− z = α (t) (4.9)

where α (t) is arbitrary. Although a velocity potential that everywhere satisfies

equation 4.9 was not found,

φ = F (t)e−zJ0(r) (4.10)

is an appropriate linearised functional form in the region surrounding the point of

maximum displacement of the interface. F (t) must be chosen to satisfy the free-

surface condition near this point. In the late-time limit, the Bernoulli equation leads

to

∂F (t)
∂t

−
∫
F (t)dt = 0. (4.11)

Thus

F (t) = et+c (4.12)

where c is a constant of integration. When substituted into equation 4.10, the corre-

sponding late-time velocity potential clearly represents a steady state in a reference

frame moving upwards with a constant velocity. Generalising for an array of such

bubbles is trivial, by the natural symmetry conditions for potential flow at a wall, and

thus Layzer’s analysis describes single-mode Rayleigh-Taylor instability and predicts

a terminal velocity.
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4.2.3 Buoyancy-drag balance

The complexity of directly evaluating a potential flow to calculate growth behaviour

can be avoided. From first principles, the following equation describes how buoyancy

and drag compete to accelerate a body, which in this case is a bubble of lower layer

fluid penetrating the upper layer:

(ρlV + CaρuV )
du

dt
= (ρu − ρl)V g − ρuSu2. (4.13)

The term CaρuV accounts for the inertia of the fluid displaced around the body

under the action of a potential flow, a so-called ‘added mass’. S and V are body

surface and volumes respectively. If the surface to volume ratio were constant (set

by the wavelength λ of the instability) we would have

(ρl + Caρu)
du

dt
= (ρu − ρl)g −

Cd
λ
ρuu

2 (4.14)

with both coefficients Ca and Cd being geometrically determined. Clearly in the

early stages while drag is much less significant than buoyancy, we have exponential

growth, whereas at late time, the terminal velocity is given by

u∞ =

√
1
Cd

(
2A

1 +A

)
gλ (4.15)

where A is the Atwood number. Interestingly, this suggests that the terminal velocity

increases with λ and hence decreases with k, which superficially contradicts Taylor’s

earlier work.

Linden et al. (1994) proposed a more refined buoyancy-drag model of the form,

(2 + E)
d2h

dt2
= Ag(1− E)− Cd

λ

(
dh

dt

)2

E = e
−6πh
λ ,

(4.16)

where the parameter E modifies the effective mass and the buoyancy to account

for the change in aspect-ratio of the bubble structure. As the height becomes large

in comparison to its wavelength, the baroclinic torque becomes bigger since the

bubble has long near-vertical sides (hence a greater buoyancy force), and the mass

of displaced fluid becomes a smaller proportion of the overall mass (hence a reduced

added mass component). Figure 4.1 illustrates the behaviour of this model for a
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Figure 4.1: Blue curves plot the buoyancy-drag growth model for several per-
turbation wavelengths, while the red curve is the parabolic envelope. Length-
and time-scales are arbitrary.

range of wavelengths λ. It is clear that the functional form reconciles a) Taylor’s

prediction of initial exponential growth; b) small wavenumbers growing most quickly;

c) Layzer’s prediction of a terminal velocity; and d) terminal velocity increasing with

λ.

In real-world situations, well-defined initial perturbations are difficult to achieve,

and single-mode perturbations can only be created in carefully chosen circumstances

(Waddell et al. (2001); Wilkinson & Jacobs (2007)). Interface perturbations with

a wide spectrum of wavenumbers are more commonly encountered. Some insight

into the evolution of such a system can be obtained by regarding the evolution of

a broad-band perturbation spectrum as an ensemble of independent single modes.

The envelope of this ensemble appears parabolic in shape in figure 4.1, and this,

as identified by Dalziel (2001), correlates with the experiments of Read (1984) and

simulations of Youngs (1984b). The next section illustrates a simple way to recover

this behaviour by analysing the energetics of the system.
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4.2 4. Unconfined Rayleigh-Taylor instability

4.2.4 Energy budget

By considering energy exchange between potential and kinetic as the instability

develops, we can derive a scaling law for its evolution. We assume here that the initial

state is at rest, and all the potential energy released after time t0 is transformed into

kinetic energy, and is not dissipated on a timescale over which the model is valid.

Following the notation of Jacobs & Dalziel (2005), we have∫
ρ0gzdz =

∫
ρgzdz +

∫
1
2
ρu2dz, (4.17)

where ρ = ρ (z, t), ρ0 = ρ (z, 0) and the symbol φ =
∫∫

φdxdy∫∫
dxdy

indicates a fluid

property averaged over a horizontal plane. Under Boussinesq conditions, we can

ignore changes in kinetic energy due to density variation, and assign a representative

density ρb. Thus ∫ (
ρ0 − ρ

)
zdz ∼ 1

2
ρb
g

∫
u2dz. (4.18)

Assuming the density and velocity profiles remain self-similar across the energised

zone throughout the time evolution of the flow, we construct a similarity variable

ζ =
z

h (t)
, (4.19)

where h is the current height of the energised zone, and functions of space and time

are separated:

(
ρ0 − ρ

)
= ρ̂ (t) r(ζ) (4.20)

u2 = û2 (t) s(ζ) . (4.21)

The integral equation then becomes

ρ̂gh

∫
r(ζ) ζ d(ζ) ∼ 1

2
ρbû2

∫
s(ζ) d(ζ) . (4.22)

The integrals on both sides are constants, so

ρ̂gh ∼ ρbû2. (4.23)

It is reasonable to assume that ∂h
∂t varies directly with û, and to define the represen-

tative inertial density as ρb = 1
2 (ρu + ρl) under a Boussinesq approximation. The
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Figure 4.2: Diagram illustrating the simple box model for the evolving density
profile. There is an implied assumption in this model that fluid in the mixing
zone quickly becomes well mixed.

amplitude function ρ̂ (t) does not vary with time in this problem, and an obvious

choice is ρ̂ (t) = ρu − ρl so that −1
2 < r(ζ) < 1

2 . Hence

(ρu − ρl) gh ∼
1
2

(ρu + ρl)
(
∂h

∂t

)2

(4.24)

Noticing that the Atwood number A = ρu−ρl
ρu+ρl

is contained in this equation, we can

integrate both sides in time to give

h ∼ 1
2
Ag(t− t0)2, (4.25)

where t0 is a constant of integration and behaves like a virtual time-origin. This

scaling is constructed on the assumption that all the potential energy released by

the instability goes into advancing the front h of the energised zone. In fact h

grows much more slowly, which implies that only a small proportion of the released

potential energy is spent on moving the front. We introduce an emprically derived

constant α to account for this, and arrive at the well-known relationship

h = αAgt2. (4.26)
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4.2 4. Unconfined Rayleigh-Taylor instability

4.2.5 Gradient diffusion

A variety of methods can be used to deduce an h ∼ t2 relationship in Rayleigh-Taylor

instability. We have seen how this was achieved using both buoyancy-drag and

energy models; here a method is discussed which aims to parameterise the influence

of small-scale turbulent mixing on the large-scale overall dynamics. Prandtl (1925)

first proposed that scalar transport in a zero-mean flow, while complex and non-

linear locally, could be modelled in aggregate by linear diffusion,

∂φ

∂t
=

∂

∂z

(
κ
∂φ

∂z

)
(4.27)

where φ is a scalar being diffused. Prandtl noticed that the factor κ has dimension
L2

T and proposed that this could be expressed as

κ = γ lturb uturb, (4.28)

with lturb and uturb representative length and velocity scales respectively, and γ

an arbitrary constant. Prandtl argued that γ = 1
3 , but in general this value is

determined by calibration. There are no universal choices for lturb and uturb, since

these parameters are strongly problem-dependent and may change throughout the

evolution of the system.

Here, uturb and lturb must be carefully chosen to reflect the specific nature of tur-

bulence in a Rayleigh-Taylor context. The variable density incompressible vorticity

equation,
∂ω

∂t
+ (u.∇)ω = − 1

ρ2
(∇p×∇ρ) + (ω.∇) u + ν∇2ω, (4.29)

is possibly the clearest starting point. We aim to estimate the magnitude of the im-

portant terms and consider the balance of forces in the non-linear regime of Rayleigh-

Taylor instability.

Both the advective term (u.∇)ω and the vortex stretching term (ω.∇) u have

dimensions of u2

l2turb
, and the diffusion term ν∇2ω ∼ ν u

l3turb
. Under Boussinesq condi-

tions, the hydrostatic pressure dominates the pressure gradient, so ∇p ≈ ρg. Hence

the baroclinic torque scales as

− 1
ρ2

(∇p×∇ρ) ∼ − 1
ρ2
ρg

∆ρ
∆x

. (4.30)
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4. Unconfined Rayleigh-Taylor instability 4.2

In the more natural dimensions of force per unit mass, and noting that if eddies have

aspect-ratio O(1), then horizontal density gradients will have the same magnitude

as vertical density gradients, we have the following groupings:

Inertia ∼ u2

lturb
,

Viscosity ∼ ν u

l2turb
,

Buoyancy ∼ 1
ρ
glturb

∆ρ
∆z

.

(4.31)

Arguably viscosity has only a negligible influence in the non-linear regime of

Rayleigh-Taylor instability, since inertia scales with u2, viscosity only with u, and u

is linearly increasing with time. Therefore the balance between inertia and buoyancy

is likely to determine flow conditions. Rearranging, and using appropriate notation,

we can deduce a scaling for the turbulent velocity,

uturb =

√
l2turb g

ρ

∂ρ

∂z
, (4.32)

provided we know a length-scale lturb. In Rayleigh-Taylor instability, the largest

turbulent eddies are likely to scale with the height of the energised zone, h. Following

Inogamov et al. (2001), the diffusion equation 4.27, becomes

∂ρ

∂t
=

1
3
l2turb
√
g
∂

∂z

(
1√
ρ

(
∂ρ

∂z

) 3
2

)
, (4.33)

where the diffused scalar is the density ρ. In Rayleigh-Taylor evolution there are no

variable parameters in z or t so according to this model, the diffusion profile must

be self-similar. Inogamov’s similarity variable was

ε = γ
z

tδ
(4.34)

and transforming the diffusion equation to this similarity variable, we have

− ε∂ρ
∂ε

=
1
3
√
g l2turb

γ

δt
5δ
2
−1

∂

∂ε

(
1

ρ
1
2

(
∂ρ

∂z

) 3
2

)
. (4.35)

This is a second order ODE provided

l2turb

t
5δ
2
−1

= const. (4.36)
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4.3 4. Unconfined Rayleigh-Taylor instability

Inogamov argues that one would not expect the physical behaviour of the system to

exceed second order since we are modelling scalar transport as a diffusive process,

so it is reasonable to enforce condition 4.36. There is only one value of δ which both

satisfies condition 4.36 and permits the scaling lturb ∼ h which we know occurs in

the physical system. This value is δ = 2, and for a constant value of the similarity

variable ε, this implies z ∼ t2 as we have come to expect from previously discussed

methods.

Inogamov et al. (2001) also explored the possibility of having a constant lturb,

and this yields δ = 2
5 , giving a power law growth profile which scales with h ∼ t

2
5 .

This is a result that shall be developed in detail in chapters 6 and 7 where geometry

constrains the turbulent length-scale.

4.3 Summary

A review of existing approaches for modelling the growth of Rayleigh-Taylor insta-

bility is presented, beginning with Taylor’s potential flow prediction of exponential

growth in the small amplitude regime, then outlining Layzer’s prediction of a ter-

minal velocity in a potential flow by generalising the case of a bubble in a vertical

tube. Similar results were reached by considering the force-balance on a penetrating

body, and this reconciled the apparent paradox that terminal velocity decreases with

wavenumber but the most-unstable mode is at high wavenumber. The observation

that the ensemble of several wavelengths leads to a parabolic envelope growth profile

explains the connection between the single-mode analyses and the classic h = αAgt2,

which is shown to be obtainable in several ways. In preparation for developments

in later chapters, both an energy-budget and gradient-diffusion approach is outlined

here.
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Chapter 5

Direct Visualisation of Mixing

5.1 Introduction

The molecular mixing behaviour of density driven flows has historically proven dif-

ficult to quantify, in part due to the phenomenal complexity of the turbulent pro-

cesses that lead to mixing at small scales, but also since molecular mixing itself is

very hard to accurately measure - surely a first step in acquiring a more complete

understanding. This chapter presents a new technique for measuring mixing induced

by Rayleigh-Taylor instability, and uses a chemical indicator to highlight regions of

flow that have become molecularly mixed. The indicator fluoresces with one of two

colours depending on the surrounding hydrogen ion concentration, and the boundary

between the two colours is an unambiguous definition of a volume fraction contour

in the fluid. This experimental technique is applied herein to mixing induced by

the classical two-homogenous-layer Rayleigh-Taylor instability, and compared with

numerical simulation.

5.2 Reactive Light Induced Fluorescence (RLIF)

5.2.1 Previous attempts

Planar Light Induced Fluorescence (PLIF) is a common technique for observing

scalar transport, and has successfully been used in many fields to obtain some in-

sight into mixing processes (e.g. Dahm & Dimotakis (1987); Lester & Clemens
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5.2 5. Direct Visualisation of Mixing

Figure 5.1: Standard PLIF imaging yields no sub-pixel information about the
local mixing state. The same intensity value can be obtained from fully mixed,
and fully unmixed fluid.

(2003); v Vliet et al. (2004)). Used conventionally, however, it does not yield any

absolute quantification of mixing at a point in the observed plane. It merely places a

maximum bound on the molecular mixing at such a point (see figure 5.1). The light

intensity incident on one pixel of a CCD sensor is formed from the volume integral

of all light sources and absorbers on the incident ray paths to that pixel. Thus in a

PLIF context, and neglecting parallax and adsorption, this integral is composed of

light from a small voxel bounded by the projection of the pixel in the PLIF plane

and the thickness of the light sheet itself. There is no sub-pixel information about

mixing, since an arbitrary normalised intensity value created from homogenously

mixed fluid is indistinguishable from that created from appropriate proportions of

wholly unmixed fluid. Until imaging hardware is able to reach well below the Batch-

elor scale, spatially precise molecular mixing information cannot be obtained in high

Reynolds number fluid mechanics with standard PLIF techniques.

Only by exploiting the molecular mixing itself as a diagnostic tool can progress

be made. Light/Laser Induced Fluorescence has been used in the past to study

mixing in miscible shear flows, e.g. Koochesfahani & Dimotakis (1985), where di-

sodium fluorescein, known to lose fluorescence intensity when mixed with acid, was

used to observe Kelvin-Helmholtz instability. Also, more recently, a hybrid fluo-

rescence/phosphorescence technique in gaseous shear flows (Hu & Koochesfahani

(2002)) was used to observe mixing in jets. However, in Rayleigh-Taylor based flows

there seem not to be comparable experiments. Experiments using non-fluorescent
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Figure 5.2: Chemical structure of Acridine.

pH indicators to quantify aggregate mixing have been performed (e.g. Linden et al.

(1994); Andrews et al. (2007)), but direct visualisation of the mixing process, and

the detailed fluid structure giving rise to it, has not previously been achieved. For

the work presented in this thesis, a pH sensitive fluorescent dye was found with

the special property that it maintains emission intensity on mixing, but sharply

changes colour, thus yielding spatially accurate passive tracer and molecular mixing

information from a single experimental realisation.

5.2.2 Chemical behaviour

The chemical, C13H9N , commonly known as Acridine, is an organic fluorphore with

two benzene rings, as shown in figure 5.2. Incident light excites the de-localised

electrons associated with the rings, and raises their energy state. When they collapse

back to the ground state they emit a proportion of that absorbed energy as light.

Since Planck’s constant directly relates energy and emission wavelength, the emission

must be at a longer wavelength. Conveniently for the present purposes, Acridine is

sensitive to pH, and when H+ ions congregate around the Acridine molecule, their

influence reduces the proportion of incident energy that can be released upon collapse

to ground state. Thus the emission spectrum is a function of pH, and to a good

approximation behaves like a Heaviside function since the electron excitation rapidly

switches between energy states. At high pH, the emission is blue, and at low pH

the emission is cyan-green.
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5.2 5. Direct Visualisation of Mixing

Figure 5.3: Recirculating pump, batch tank, output filter and settling bucket
for production of saturated Acridine solution.

Acridine is only sparingly soluble in water, so producing a usable fluorescent

solution was a non-trivial task. Agitating water and raw granular Acridine with

a magnetic stirrer, until an acceptable level of dissolution had been obtained, then

filtering the solute from the suspension achieved test-tube scale production. However,

this process is hugely inefficient and labour intensive for the large volumes required

in experiment. It was found that, with agitation, Acridine dissolves well in Propan-

2-ol, but precipitates when the solution is diluted with water. The particle size is

extremely small though, and therefore the surface area for dissolution to occur is

many orders of magnitude greater than directly dissolving raw granules in water.

A batch production system comprising a 9-litre tank and circulating pump, output

filter and collection bucket (see figure 5.3) was assembled to agitate large volumes of

the suspension and encourage dissolution over a period of time (usually 24 hours).

The secondary effect of the pump was to heat the water and this was thought to

aid the process of dissolution, as well as to accelerate the rate at which dissolved air

contained in the water left solution. Fine-scale filtering of the remaining particulates

in each 9-litre batch was found to be impractical, and a sequence of storage tanks was

relied upon to let the suspension settle over several days at laboratory temperature.

Finally, a saturated solution of Acridine was obtained.
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Two-layer Rayleigh-Taylor instability

Top layer 0.5 litres 2M hydrochloric acid

19.5 litres de-aerated fresh softened water

Bottom layer 2 litres Acridine solution

0.15 litres propan-2-ol

17.85 litres de-aerated fresh softened water

Figure 5.4: Recipe for two-layer RLIF experiments.

Some unwanted chemical interaction was noted in refining the experimental tech-

nique. In particular, salt (Na Cl), customarily used to control density differences,

was found to significantly reduce the fluorescent signal from Acridine. Supporting

evidence was found in the chemistry literature (Geddes (2001)) where it has been

noted that halide ions indeed quench fluorescence by reducing the quantum yield

when excited electrons return to ground state. To circumvent the need for salt as a

stratifying agent, the experimental configuration was inverted, with relatively light

Acridine solution placed in the lower layer, and relatively dense hydrochloric acid

(H Cl) placed in the upper layer. Other acids were considered, but for laboratory

safety in the event of reaction products, and the longevity of the tank inside surfaces,

hydrochloric acid was chosen. Refractive indices were matched by adding (relatively

less dense) alcohol as required to the lower layer. In turn, to limit the effect on data

quality of dye attenuating the light sheet intensity, the illumination was mounted

downwards from the ceiling, maximising optical contrast at the Rayleigh-Taylor in-

terface. It is noted in passing that the fluorescent emission from di-sodium fluorescein

solution must presumably also suffer a similar loss of efficiency in the presence of

halide ions, although investigators exploiting it in their studies of mixing have not

appeared to identify this as a source of error.

A further effect attributed to chemical interaction was observed when one or

other layer contained incompletely de-aerated water. Tiny bubbles were sometimes

observed in clouds at the tip of the barrier and it is thought that dilution of the

acid by mixing could lead to residual dissociation of the H+ and Cl− ions, providing

a small heat source just sufficient to induce air to leave solution and form these
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Figure 5.5: Bayer-filter spectra for CCD sensor used in the Uniq-Vision
UC1830CL colour camera.

bubbles. At the acid concentrations used, this could only be a very small heat

source, and certainly of negligible dynamic significance and has only a minor and

short-lived impact on the optical measurements. The recipe for an exemplar two-

layer experiment is given in the table 5.4.

5.2.3 Optical Decomposition

By eye, Acridine emits fluoresced light in two very distinct colours, depending on

the pH of the solution. Unfortunately a camera with colour space discretised into

Red, Green and Blue CCD sensors cannot so easily discriminate between the colours,

since the spectra of the fluoresced colours overlap. Further complication arises since

Bayer filter CCD sensors use filters with overlapping spectra. Accumulated intensity

values in the camera can thus be modelled as a linear superposition of all visible

wavelengths, after various filtering operations, at each pixel location. A suitable
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Figure 5.6: Spectral response of Perkin-Elmer arc-lamp fitted with a UV filtered
parabolic reflector.

model for sensor values might be

R =
∫ 700nm

400nm
φE (λ, pH (φ) , I (λ))FR (λ) dλ

G =
∫ 700nm

400nm
φE (λ, pH (φ) , I (λ))FG (λ) dλ

B =
∫ 700nm

400nm
φE (λ, pH (φ) , I (λ))FB (λ) dλ,

(5.1)

where φ is the volume fraction (of acid, say), I is the incident spectrum, FR, FG and

FB are the Bayer filter spectra, and E is the Acridine emission profile as function

of λ, pH and I. Note also that this model neglects any losses from fluoresced light

being attenuated when travelling through from the RLIF imaging plane to the side

of the tank.

Since our objective is to interpret camera RGB intensity values as a volume frac-

tion contour, we need to deconvolve the filter functions to recover φ for each pixel

location. Clearly, as presented above, this problem is infinitely under-determined,

but we can replace the integral definition of equation 5.1 by a discrete sum and the

functions by vectors, and construct a closely equivalent linear system. Recognising

that the aim is to classify fluid by its mixedness, we can define a fluid state M rep-

resenting mixed fluid, and a corresponding state U for unmixed fluid, according to
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Figure 5.7: Normalised colour spectra for both blue and cyan-green emission
states of Acridine.

some volume fraction threshold. From calibration data we also know that Acridine

colours have a low spectral density above 600nm, so there is little useful informa-

tion in the Red-filtered CCD sensor, and we can discard this, yielding a correctly

determined system for each pixel location. If we consider a discretisation with n

wavelengths and p volume fractions, then

(2× n) (n× p) (p× 2) (2× 1) (2× 1)

[F (λ)] [E (λ, φ)] [T (φ)]

 U

M

 =

 B

G

 , (5.2)

where T (φ) is a transition matrix which classifies fluid according to volume fraction

into mixed or unmixed. To be well-conditioned, the volume fraction threshold at

which T is biased towards U or M must match the transition threshold in the

experimental Acridine-Acid system, and similarly B CCD data must correspond to

classification U (and G to M).

To populate F, E and T, a calibration study was performed with the assistance

of chemist Dr. Jean-Luc Weitor, using a fluorimeter, spectrometer and a glass prism.

The matrix F was obtained by taking a prism and separating approximately white

arc-lamp light into its spectrum, projecting through a semi-opaque diffusive screen,
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Figure 5.8: Adsorption spectra for blue and cyan-green emission states of Acri-
dine.

and photographing the projection. The R(λ), G(λ), B(λ) curves obtained for the

Uniq-Vision UC1830CL are shown in figure 5.5, and correction for the non-uniformity

of the arc-lamp light intensity across the visible spectrum has been made according

to Perkin-Elmer supplied data, shown in figure 5.6.

The matrix E was obtained by performing fluorimetry at various pH values and

concentrations. These tests established not only that the normalised fluorescent

emission spectra (i.e. the perceived colours) were independent of excitation wave-

length and concentration, but also that the adsorption spectrum varies with pH.

Figure 5.7 cross-plots the colour spectra, with multiple curves from various excita-

tion wavelengths collapsing under normalisation to one of the two colours, depending

on pH. The sharp peaks are artefacts of the fluorimetry, and are caused by the sen-

sor picking up scattered incident light (which is concentrated in a narrow band of

wavelengths) and harmonics of the incident light. Some peaks are larger than oth-

ers, with high peaks relative to the fluorescent emission indicating low fluorescent

efficiency at that incident wavelength. The true fluoresced signal of Acridine on both

sides of the colour transition is indicated in figure 5.7 by the more heavily weighted

blue and green lines. Figure 5.8 shows the normalised incident energy adsorption
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Figure 5.9: Map of Acridine spectral response as a function of volume fraction.

spectra for each colour, as calculated from several measurements around the peak

adsorption wavelength.

Compiling this information to express the spectral response of Acridine as a

function of volume fraction produces the data-set to populate E (λ, φ), depicted

in figure 5.9. In a two-fluid system, pH is directly related to volume fraction φ

(where φ = 0 corresponds to unmixed Acridine; φ = 1 corresponds to unmixed

Acid solution), and it is convenient that pH varies logarithmically with φ, so around

the threshold at which Acridine changes emission colour, large variations in pH

correspond to small variations in φ. Thus the Acridine colour transition occurs

at low values of ‘mixedness’, making this an especially sensitive diagnostic for the

occurrence of molecular mixing. The current experimental implementation has the

advantage that both outer boundaries of the mixing region are well defined (the

non-reacting boundary of the mixing region is also well defined in an Rayleigh-Taylor

flow since it behaves like a conventional passive fluorescent dye penetrating into an

un-dyed region). For other conceivable applications, particularly where chemical

reaction rates are related to specific ratios of species, other volume fraction contours

may be sought, and with this technique these can in principle be observed simply

by varying acid concentration. The visualisation and illumination technology used

herein is not sufficiently refined to have much flexibility in selecting the volume

fraction contour and still return a high signal-to-noise ratio video image, but this is

merely a practical issue, and not a limitation of the method.

Convolving E with the CCD sensor filters F predicts the camera response as a

function of volume fraction, shown in figure 5.10. For completeness, R(φ) is included,
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Figure 5.10: CCD sensor response to Acridine as a function of volume fraction.

but clearly R (φ) ≈ 0, hence the earlier statements about ensuring the linear system

is well conditioned. By extracting numerical values from the figure, it can be seen

that there is a sudden change in the ratio B(φ)
G(φ) in the range 0 < φ < 0.1: B(0)

G(0) =
0.48
0.17 = 2.82; B(0.1)

G(0.1) = 1.0
0.57 = 1.75. This is the Acridine colour transition.

The spectra of figure 5.8 show how much broader the peak adsorption band

becomes when Acridine is in its low-pH state. This means that more incident energy

is absorbed when the emitted colour is of longer wavelength (and lower energy), and

this is reflected in the steep rise of fluoresced intensity values during colour transition

from blue state to green state. The subsequent reduction in fluoresced intensity tends

towards a linear decrease, as a consequence of dilution until at φ = 1 there is no

Acridine remaining, so no fluorescent emission at all.

5.3 Experimental and numerical comparison

5.3.1 Qualitative observations

Having refined a technique for generating large quantities of Acridine, and measured

its spectral properties, an ensemble of experiments was conducted, replicating the

classic Rayleigh-Taylor problem and, for consistency and convenience, using the same
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(a) (b)

Figure 5.11: Comparison between (a) traditional PLIF, and (b) new RLIF exper-
imental diagnostics for visualising molecular mixing. Both images are taken at
non-dimensional time τ = 0.44 and the Atwood numbers are (a) A = 1.5× 10−3,
and (b) A = 1× 10−3.

apparatus as Dalziel et al. (1999). Initial observations suggest the new diagnostic

does not interfere with the Rayleigh-Taylor instability, and figure 5.11 shows snap-

shots taken at the same non-dimensional time τ =
√
Ag/Ht = 0.44 (where H is the

tank height) in a Rayleigh-Taylor flow with the same Atwood number, using both

traditional PLIF with a Fluorescein tracer and the new RLIF using Acridine.

A sequence of colour images in figure 5.12 shows the development of the flow at

various times, where the time origin is determined by the time at which the end of

the barrier passes through the imaging plane (note that the t = 0 image is brighter

above the barrier when it is closed, because the nylon cloth reflects and scatters

incident light from above). The advantage of the RLIF diagnostic technique is the

ability to directly visualise the molecular mixing and examine the evolution of the

advancing surface which bounds the mixed region. At t = 4s the mixed region has

few very well-defined shapes. This is consistent with small length-scale, short time-

scale processes early in the instability development, and with the imparting by the

barrier of some small but finite initial kinetic energy on the flow during withdrawal.

As the instability develops, the eddy turnover time-scales grow and can be more

easily captured at the camera frame rate. The imaging plane sits in the geometric

centre of the tank and is oriented across the barrier. As discussed in §2.2.1, the

removal of the barrier induces a net overturning circulation, and there appears to be

a systematic upward velocity component at the tank mid-plane that persists some

time after withdrawal. This is not uniform across the width of the tank, but is
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largest in amplitude at the middle, and therefore must arise from a low wavenumber

component of the initial perturbation. As one would expect from the analysis of

§4.2.3, this does not manifest itself immediately, but from observation it appears to

become significant when the instability has grown to a height comparable with the

domain width (around t = 12s). Ultimately it dominates the flow’s evolution. It is

clear from images at t = 16s and t = 20s that unmixed lower layer fluid remains

unmixed for a considerable distance inside the large rising bubble, and the front of

mixing propagates from the sides of the bubble inwards over time, until eventually all

of the bubble-internal fluid crosses the mixing threshold. Such is the unpredictable

nature of Rayleigh-Taylor turbulence that even with similar initial perturbation this

general behaviour is not consistent. Analysis of other video sequences shows that in

some instances even at moderate stages of development (t = 10s) very little mixing

occurs on the sides of the bubbles, and the majority occurs on the bubble and spike

heads.

5.3.2 Growth profile

The simplest and most fundamental statistic related to the mixing process is the en-

velope growth profile that, according to the analysis of §4.2.4, should be quadratic if

the mixing region has self-similar density and kinetic energy profiles. It is acquiring

greater acceptance in the research community that the spectral profile of the initial

condition strongly influences the subsequent instability development, and here three

MOBILE simulations with a range of initial conditions are presented in compari-

son with the experimental ensemble. Figure 5.13 shows a colour image indicating

the structure of the density/scalar field at the interfacial mid-plane. The image

is split into three patches with different spectral profiles for each initial condition,

from left to right corresponding to (1) (x < 0.133m) a random amplitude, random

phase (idealised) density perturbation, (2) (0.133m < x < 0.267m) a constant ampli-

tude, random phase (broadband) density perturbation, and (3) (x > 0.267m) a high

wavenumber, random phase (narrowband) density perturbation. A transect through

the centreline is shown superimposed on the image to show the wave-form of each

perturbation.
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(a) t = 0s (b) t = 4s (c) t = 8s

(d) t = 12s (e) t = 16s (f) t = 20s

Figure 5.12: Direct visualisation of molecular mixing using Acridine. The At-
wood number is A = 1× 10−3.
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The simulated growth profiles with these differing initial conditions are compared

with an experimental ensemble in figure 5.14. The simulations are remarkably consis-

tent, but although the upward trend is generally accelerating, there is an apparently

systematic deviation from quadratic growth. This behaviour is also in evidence in

simulations by Youngs published in Dalziel et al. (1999) when they are processed

with a similar measure. Here, the vertical trajectory with time of the 2% / 98%

horizontally averaged volume fraction contour is plotted, for consistency with ex-

periments. Historically more sophisticated measures have been used, e.g.
∫
φdz

and
∫
φ(1− φ)dz (where • is a horizontally averaged quantity), since these enhance

the visual appearance of the numerical results in resembling quadratic growth. The

well-known discrepancy between numerical and experimental growth rates discussed

in §1.2.3 is also very clear in the figure. The experimental ensemble does display

quadratic growth, but with a displaced origin. It is believed that this arises from

the barrier withdrawal, which imparts significant kinetic energy on the flow before

Rayleigh-Taylor instability gets underway. A non-zero initial kinetic energy modifies

equation 4.24 to

(ρu − ρl) gh ∼
1
2

(ρu + ρl)
(
∂h

∂t

)2

+ E0, (5.3)

where E0 is an initial kinetic energy associated with the barrier withdrawal, and

integrating this through yields h(t) with the normal quadratic relationship, but with

an additional linear term related to the initial kinetic energy, in the form

h = αAgt2 + Ê0t, (5.4)

where Ê0 incorporates E0 and the extra integration constants. In figure 5.14, the

upper bound on the growth envelope includes a linear term. The convention for

non-dimensional time-scale adopted in this figure and henceforth has been to define

τ =
√
Ag/Ht with, for later convenience in chapter 8 and in contrast to previous

work, H defined as the half-height of the tank (H = 0.25m), rather than the full

height.

The value of α which very closely matches the experimental mean is α = 0.05,

which is slightly lower than other previous experimental measurements (e.g. Snider

& Andrews (1994) which measured α = 0.070±0.011). In obtaining the recent figure,
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Figure 5.13: Initial numerical scalar concentration fields for horizontal mid-
planes of three simulations, with a length-wise transect to illustrate the pertur-
bation in each case. The plot geometry is to scale.

the linear correction for contamination by the initial kinetic energy caused by the

barrier withdrawal has been included in the calculation. In the previous work there

is a similar source of kinetic energy (from boundary layer formation on the splitter

plate dividing the two flows), and no similar linear correction was used. This may

explain the small discrepancy.

5.3.3 Molecular mixing

More revealing than the envelope growth for examining the internal structure of a

scalar mixing process is the so-called molecular mixing fraction. This quantity is

defined over a horizontal plane as

Θp (z, t) =
φ (1− φ)

φ
(

1− φ
) , (5.5)

where • is a horizontally averaged quantity and φ is the volume fraction. The

function φ(1 − φ) has a maximum at φ = 0.5, which represents well mixed fluid.

Taking the ratio of the two distinct evaluations of the horizontal planar average

helps to distinguish, for instance, a sinusoidally perturbed interface that remains

unmixed, from a well-mixed layer where both cases have the same arithmetic mean

φ (at z = zi). In the first case φ (1− φ) = 0, in the second, φ (1− φ) = 0.25, hence

when normalised by φ
(

1− φ
)

the mixing parameter lies in the range 0 < Θp < 1.

However, as figure 5.1 is intended to illustrate, the domain over which the averaging

operation • is performed cannot be arbitrarily reduced when experimental data has
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Figure 5.14: Growth profiles from experimental ensemble, numerical simula-
tions with various initial conditions, compared against an envelope of parabolae
0.03 < α < 0.08.

finite resolution. Therefore in practice φ(1−φ) is not unambiguously discriminatory

between mixed and unmixed fluid, rather it provides an upper bound for the mixing

fraction.

Figure 5.15 shows how Θp (z, t) varies as the instability evolves (where the denom-

inator of equation 5.5 is very close to zero, the image is coloured black). The bottom

half of the plot (z < 0.25) shows experimental results from the bottom half of the

tank, and the top half of the plot (z > 0.25) shows a numerical prediction generated

by MOBILE using the broadband initial condition, and processed in a consistent

manner by taking the vertical mid-plane at z > 0.25. To make a fair comparison,

the time-scales have been adjusted to account for the well-known discrepancy in

estimates of α between simulation and experiment. The idealised quadratic profile

required to reach the tank extremities at the same time is shown in white, with

α = 0.13 for the experiment (with no linear correction term) and α = 0.03 for the

simulation.

The simulation has a statistically homogenous initial condition, so out-of-plane

scalar transport is insignificant. This is not the case in the experiment because of

the initial barrier perturbation, and growing horizontal streaks appear in the time-

series image as spikes distorted from a downward path penetrate the viewing plane.
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Figure 5.15: Local molecular mixing fraction Θp (z, t) as calculated from planar
slices taken from a MOBILE simulation (z > 0.25), and experiment (z < 0.25).
Ideal quadratic growth is also shown for reference.

This is most noticeable at later time (texp = 8s), where less well-mixed fluid from

the middle of a large spike has appeared in the image plane. The distortion of

bubble and spike paths is systematic so an ensemble of such experiments (Dalziel

et al. (1999)) behaves in the same manner. The data presented here is from a single

experiment, since it reveals rather more of the internal structure of the mixing zone

than could be observed in an ensemble average. This diagnostic reveals the vertical

transport of parcels of fluid both upwards and downwards, which are distinguishable

as a diagonal criss-cross because they undergo a relatively small amount of additional

mixing as they move. Numerical resolution imposes a limit on how many of these

individual diagonal transport paths can be captured in the simulation, but their

spatial structure is well modelled. The detail of the envelope profile is less well

modelled, as one would expect without directly simulating the barrier removal, but

one notable common feature is the reduction in molecular mixing close the boundary

as the instability reaches the vertical extremities of the tank. The molecular mixing

is a little lower at late time (tsim > 20s) in the simulation than in the experiment,

though the simulation values are consistent with the equivalent measure,

Θs(z, x) =
φ(1− φ)
φ(1− φ)

, (5.6)
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(where • is a temporal mean) computed by Wilson & Andrews (2002) in their steady

state (spatially evolving in x) water-tunnel experiments. They reported Θs ≈ 0.7

with very little spatial variation either in z or x within the Rayleigh-Taylor mixing

region.

A convenient parameter analogous to Θp that captures the aggregate mixing

state of the Rayleigh-Taylor system can be defined. The global mixing fraction,

Θg(t) =

∫∞
−∞ φ(1− φ)dz∫∞
−∞ φ(1− φ)dz

, (5.7)

indicates of the proportion of fluid that has become mixed, how well mixed it has

become, and again by construction lies in the range 0 < Θg < 1. Linden et al. (1994)

introduced this measure, and Dalziel et al. (1999) presents a modified formula,

Θ̂g(t) =

〈∫∞
−∞ φ(1− φ)dz∫∞
−∞ φ(1− φ)dz

〉
, (5.8)

where 〈•〉 is an ensemble average. Having investigated archive data from experiments

contributing to the paper and reverse engineered the associated processing code, it

appears that the • operator is not simply a horizontal average (which is sensitive

to any spatial inhomogeneity of the Rayleigh-Taylor instability), but is a more ro-

bust measure based on a probability density function P (φ) of the volume fraction

evaluated over the whole image plane. The algorithm used is as follows,

Q(φ) = Fs (〈P (φ)〉) (5.9)

Θ̂g(t) =
(∫ 1

0
φ̂(1− φ̂)Qdφ̂

)
/

((∫ 1

0
φ̂Qdφ̂

)(
1−

∫ 1

0
φ̂Qdφ̂

))
, (5.10)

where Fs is a low-pass smoothing filter, and φ̂ is a dummy variable looping over

the range 0 < φ̂ < 1 of the probability density function Q. To confirm that this is

indeed the algorithm used to generate figure 24 of Dalziel et al. (1999), the archived

experimental ensemble has been re-processed, and this is shown in figure 5.16.

The re-processed mean and the originally published curve display the same trend,

although there is a small offset, possibly caused by alternative choices made in defin-

ing boundary conditions for the smoothing filter Fs. The published curve is not

shown before t = 2s and this is the time taken for the barrier to be removed from the

tank. There is a very high degree of scatter in the individual measurements, despite
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Figure 5.16: Global molecular mixing fraction Θ̂g (t) calculated using equation
5.9 on a recent simulation, a recent experiment, archived experimental data from
Dalziel et al. (1999), and compared with published curves.

nominally identical barrier withdrawal and quiescent initial conditions. Visually too,

the archived video images show that dye transport is remarkably consistent between

elements of the ensemble, and only the central (well-illuminated) portion of the tank

was used to gather data, thereby maximising the signal-to-noise ratio. It is unclear

why the scatter is so wide, and it is also unclear why the early time data (t ≤ 2s)

does not grow from 0. The recent experiment was conducted in the ‘transverse’ ori-

entation where the end of the barrier passes through the imaging plane at a single

instant, rather than the ‘along-tank’ orientation used in Dalziel et al. (1999), where

the barrier can observed being withdrawn in the viewing plane. Apart from the early

time (t ≤ 2s) where for these reasons Θ̂g are not directly comparable, the data from

the recent ‘transverse’ experiment predominantly sits within the range of scatter of

the ‘along-tank’ experiments. The marked transition around t = 10s in the ensemble

mean from Θ̂g ≈ 0.6 to Θ̂g → 1.0 coincides with the time at which the Rayleigh-

Taylor instability reaches the top of the tank and can no longer continue to develop

freely. The transition point is noted slightly earlier in the recent experiment than in

the majority of the archive ensemble, but there is an ambiguity over where a virtual

time-origin should be placed to account for the change of orientation. The time-

origin chosen for the ‘transverse’ experiment is the time at which the barrier passes
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Figure 5.17: Typical histogram of volume fraction at the early stages of a mixing
process. Basis functions for equation 5.9 are also shown.

through the imaging plane; in the archive experiments, the time-origin is taken as

the instant of barrier release.

One of the simulations from Dalziel et al. (1999) is also plotted in figure 5.16

and, broadly speaking, this predicts a steady increase in molecular mixing fraction

rather than an early-time (t < 10s) plateau transitioning to a late-time plateau

(t > 10s). However, firm conclusions cannot be drawn because the methodology

used to plot simulation results in Dalziel et al. (1999) is not consistent with that used

for experiments. Instead of ensemble averaging across several simulations, averaging

is performed across several vertical slices in the same simulation. It is not clear how

this would affect the results, but there is evidence (discussed in more detail later

in this section) that the tank dimensions influence the structure of the Rayleigh-

Taylor instability once h(t) has grown to be comparable with the tank width and this

influence could be masked by averaging vertical slices at a variety of spatial locations.

A simulation using MOBILE is also plotted for comparison, using a methodology

consistent with the re-processed experimental data, and this shows significantly less

mixing than either previous simulations or experiments, though in common with the

earlier simulation predicts a steady increase in molecular mixing.

The parameters Θ̂g(t), Θp(z, t) and Θs(z, x) are appropriate measures of molec-

ular mixing when the experimental diagnostic is correlated with volume fraction.

Acridine, on the other hand, provides a resolution-independent diagnostic for iden-
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tifying where fluid has mixed beyond a pre-determined volume fraction, and this

region is bounded on one side by an iso-surface φcrit (x, y, z, t). The other bounding

surface can be defined in the same manner as a threshold for a passive scalar, and

for symmetry this is here selected to be (1−φcrit). To establish some degree of con-

sistency between the two diagnostic techniques, the Fluorescein experiments were

processed to classify fluid as being in one of three states: (1) unmixed undyed, (2)

mixed, (3) unmixed dyed, intended to match the equivalent volume fraction states

that are obtained naturally from the Acridine experiments. In this new definition,

Θ̂a, say, a histogram with three unequally sized bins replaces the probability density

function Q, as illustrated in figure 5.17. The normalised basis functions φ̂, (1 − φ̂)

and φ̂(1 − φ̂) used in equation 5.9 are also shown, to illustrate why Θ̂a increases

as the histogram bin classifying mixed fluid becomes populated with more pixels

from the image plane. As discussed earlier, all variants of the measure Θ have a

maximum value of unity since the quadratic basis function in the numerator equals

the product of the linear basis functions in the denominator when φ̂ = 0.5. When

Q is replaced with a three-state histogram, the value in each bin is calculated as the

mean of the occurrence frequency of volume fractions covered by that bin. When

the ‘mixed’ bin dominates the range of volume fractions (the Acridine thresholds are

approximately φ = 0.02 and φ = 0.98), Θ no longer has a maximum value of unity

because fluid with a homogenous volume fraction of φ = 0.5 is processed as having

a mean occurrence frequency spread evenly across the bin and this is interpreted as

being less than fully mixed. By making appropriate changes to the basis functions,

this deficiency could be alleviated, but to avoid further complication and uncertainty

in interpreting the data, the original basis functions have been used.

Figure 5.18 shows the closest representative comparison between the Acridine and

Fluorescein experiments on this modified measure Θ̂a. The experimental ensembles

(and simulations) have separate time-scales because the Acridine experiments were

conducted at a slightly lower Atwood number than the Fluorescein experiments, and

the results have been scaled to have a consistent non-dimensional time-scale. Com-

pared with Θ̂g, the new measure is more robust, and the scatter in the Fluorescein

experiments is substantially reduced. It appears that there is a very distinct tran-
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Figure 5.18: Global molecular mixing fractions Θ̂a (t) using calculated from Flu-
orescein (Dalziel et al. (1999)) and Acridine experiments and a common simu-
lation with synthetic Fluorescein and Acridine diagnostics.

sition between predominantly unmixed and predominantly mixed (fully mixed fluid

would return a mixing fraction of Θ̂a = 0.7) occurring at tFluorescein = 10s, and

this corresponds to the same transition point in figure 5.16. The recent Fluores-

cein experiment with a transverse orientation of the image plane sits more closely

within the spread of archive ensemble data, but the ambiguity over the location of

the virtual time-origin mentioned above is very clear here, since the transition time

is shifted by ∼ 2s.

The Acridine ensemble has a distinctly different trajectory to the Fluorescein

ensemble despite considerable care being taken to match volume fraction thresholds.

The argument illustrated in figure 5.1 would suggest that the Fluorescein measure

of molecular mixing should be an upper bound on the actual value, which in turn

should be more closely matched by the Acridine measure. Clearly the results in figure

5.18 do not support this hypothesis, but unfortunately there are too many variables

between the experimental ensembles to make conclusive statements of this sort. The

major, and at present unavoidable, inconsistency between the measurements is the

correction made for light attenuation due to adsorption by the dye. Conventional

PLIF data can be corrected by assuming that incident light sheet intensity decays

exponentially in a homogenously dyed medium according to the empirical Lambert-
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Beer rule,

∂I

∂s
= −η(φ)I, (5.11)

where I is the light intensity field, s is a light ray path, and η is an adsorption coef-

ficient which varies in some way with dye concentration φ (usually taken as a linear

variation). By inverting the decay function along each light ray, a correction for the

attenuation can be made so that the corrected image more accurately represents φ.

As with many inverse problems, the method is poorly conditioned, but it works rea-

sonably well for simple problems, and the archive data from Dalziel et al. (1999) was

processed in this way. Since Acridine is a less efficient fluorophore than Fluorescein,

Acridine dye concentrations had to be maximised to achieve an acceptable signal-to-

noise ratio with the (sub-optimal) arc-lamp light source, and therefore attenuation is

a more significant problem. Unfortunately the attenuation correction is much more

complex to implement when adsorption of incident light by the dye may be depen-

dent both on the wavelengths of incident light and the excitation state of the dye.

While the signal-to-noise ratio was generally satisfactory for making threshold-based

measurements, the technological hardware is not yet sufficiently refined for more de-

tailed data extraction. The measurements of Θ̂a from RLIF experiments have been

taken without any attenuation correction, and this possibly explains the difference

in trend shape compared with Fluorescein experiments, and its lower terminal value.

To shed some light on the influence the experimental diagnostic has on the re-

sults, a MOBILE simulation post-processed in two ways, to resemble both Acridine

and Fluorescein experiments. An empirically calibrated estimate of light attenuation

was used to modify incident light, and the calibration shown in figure 5.10 was used

to map scalar concentration/volume fraction φ to an RGB image. The resulting sim-

ulated Acridine curve is shown as a dark red line in figure 5.18, and the comparison

with the Acridine ensemble mean is good except for the early time (tAcridine < 3s)

while the barrier is being withdrawn. The synthetic Fluorescein diagnostic (red line)

is not so successful at replicating the relevant experimental behaviour, but this is

unsurprising given the large discrepancy in the corresponding (red) curve in figure

5.16 where the whole probability density function is used to calculate Θ̂g. In many

ways Θ̂a is a much less severe test of a numerical simulation than Θ̂g, but it is the
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Figure 5.19: Scatter plot of cross-sectional surfaces and cross-sectional volumes
for an ensemble of Acridine experiments and a MOBILE simulation with a syn-
thetic Acridine diagnostic.

only reasonable way at present to compare Fluorescein and Acridine experiments.

5.3.4 Turbulent structure

The Acridine experimental ensemble is best suited, given the technological limita-

tions, to providing information about pre-determined iso-surfaces of volume fraction

and the volume of mixed fluid that these surfaces bound, and some insight is given

by this into the structure of Rayleigh-Taylor induced turbulence. For dimension-

ally consistent nomenclature in the forthcoming discussion, the imaging plane cuts

through a volume of mixed fluid yielding a volume cross-sectional area, and the cuts

through the bounding surfaces yield cross-sectional lengths.

We expect from our understanding of Rayleigh-Taylor instability discussed in

§4.2.3 that bubble and spike structures grow in length-scale as the instability devel-

ops. We therefore expect certain geometric relationships between the surface area of

these structures and their volumes. Consider a single-mode sinusoidal perturbation

that does not grow isotropically, but instead maintains a constant wavelength and

increases in amplitude. Modelling each bubble or spike as a cylinder, their surface

areas would scale as S = πλh(t) once h(t) � λ, and the inter-penetrating volume

would scale as V = 1
4πλ

2h(t). The surface to volume ratio would in this case be con-
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stant and independent of h(t). Consider now the case where the bubbles and spikes

maintain geometric self-similarity (compare with bubble merger models discussed in

§1.2.1). Irrespective of whether the most appropriate model for an individual struc-

ture is a cylinder or a sphere, λ ∼ h, so S ∼ h2, and V ∼ h3. However, as bubbles

merge and/or engulf one another and become larger, fewer can be accommodated

across any horizontal plane, so their numbers reduce by 1
h2 . From this analysis, we

would expect the ratio S
V ∼ 1

h , and since h ∼ t2 and V ∼ h
∫∫

dxdy ∼ t2, that would

suggest that the iso-surface area remains constant in time. This runs counter to our

understanding of turbulence and its role in enhancing the rate at which inter-diffusion

of species can occur.

It is generally believed that the stirring of a fluid interface at high Reynolds num-

ber induces a net transfer of kinetic energy from large length-scales to successively

smaller ones. Any scalar interface in the turbulent field will be advected around by

vorticity associated with this energy, and the vorticity tends to organise in structures

that preferentially stretch scalar interfaces, steepening the gradients by reducing the

length-scale over which scalars change concentration. Diffusion occurs at very low

rates per unit surface area, but in a turbulent field the available surface tends to-

wards being volume-filling, and therefore interleaving at a molecular level can occur

rapidly.

The degree to which iso-surfaces become space-filling can be quantified by their

fractal dimension, a parameter which has been used extensively in the past to de-

scribe Rayleigh-Taylor instability and other interfacial fluid flows (e.g. Linden et al.

(1994); Dalziel et al. (1999); Maxworthy (1987)). One convenient property of frac-

tal objects is that the volume enclosed by a fractal surface of dimension D ∈ R
has dimension D+ 1, so if the experimental cross-sections of surface and volume are

fractal objects then we would expect the surface cross-sectional length (Ŝ) to volume

cross-sectional area (V̂ ) ratio to behave like

Ŝ

V̂
=
r1+δ

r2+δ
(5.12)

where D = floor(D) + δ, 0 < δ < 1, and r is simply a length-scale parameter.

For δ = 0, Ŝ(V̂ ) is a quadratic function, and for values of δ in the valid range the

deviation from quadratic is small. Previous work of Dalziel et al. (1999) and Lawrie
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& Dalziel (2006b) have both obtained δ ≈ 0.5.

We have now developed two estimates for the relationship between cross-sectional

surfaces and volumes, one argued on the basis of geometric self-similarity that

S(t) = const. and one from scale-invariant self-affine self-similarity given by equa-

tion 5.12. Figure 5.19 shows a scatter plot of an ensemble of Acridine experiments

and a matching (synthetic diagnostic) MOBILE simulation. The arrow indicates

the direction of time evolution. The normalisation of V̂ is by the total image-plane

area, and the Ŝ contour is computed at the imaging resolution and is represented by

pixels tagged where the volume fraction thresholds are traversed. The total length

of the contour is calculated from the number of tagged pixels and normalised again

by the total image-plane area. Testing at reduced resolution shows that the rela-

tionship between Ŝ and V̂ is independent of the resolution at which the contour is

computed. In the early stages of the instability growth (when V̂ is small), Ŝ and V̂

are quite clearly linearly related, and this represents an intermediate state between

geometric self-similarity and fractal self-similarity. At later time (though well before

the instability reaches the top of the tank) Ŝ grows more slowly per unit increase in

V̂ . This trend - although it occurs somewhat earlier - is particularly marked in the

numerical simulation, and that it occurs in both experiments and simulation sug-

gests that the trend is independent of initial conditions. Examination of the video

images of both experiment and simulation shows that the change in behaviour oc-

curs when the instability height h(t) is comparable with the width of the domain,

and this coincides with the emergence of an instability mode with a wavelength the

size of the domain width. It would appear that this disrupts the self-similar de-

velopment that appears at early stages when the instability is unconfined by the

tank dimensions. It seems reasonable to conclude from the experimental evidence

that where the Rayleigh-Taylor instability is unconfined, a clean, well defined linear

surface to volume relationship is observed, and while there is no obvious model for

this that fits our pre-conceptions of self-similarity, these results are consistent with

some intermediate form of self-similarity.
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5.4 Summary

In this chapter a new diagnostic technique developed to be able to visualise di-

rectly the molecular mixing taking place in miscible Rayleigh-Taylor instability. Un-

til we can resolve down to the Batchelor scale, conventional PLIF measurements

can only provide an upper bound on the mixing taking place; Reactive Light In-

duced Fluorescence (RLIF) uses a chemical indicator of mixing and is therefore a

resolution-independent diagnostic. A detailed calibration of the chemical and the

optical filtering process is presented. By inverting the filtering, a method for re-

covering volume fraction from optical data is suggested. Experimental results using

RLIF are compared with MOBILE simulations. As in previous studies, simulations

under-predict the growth rate of Rayleigh-Taylor instability. Notwithstanding this

discrepancy, numerical predictions of the local molecular mixing fraction compare

well with conventional PLIF experiments, and with data from steady-state water-

tunnel experiments. The global molecular mixing fraction as defined and applied

historically was found not to be robust, and an alternative measure which could be

used to directly compare molecular mixing information yielded by the RLIF diag-

nostic with conventional PLIF has been developed. The technology used in RLIF

measurements is not yet sufficiently refined to demonstrate satisfactory comparison,

though by carefully matching the post-processing of simulations with the experimen-

tal diagnostic, it is clearer where the discrepancies lie. RLIF excels at identifying

iso-surfaces of volume fraction, and this information has been used to identify a form

of self-similarity in Rayleigh-Taylor instability that is intermediate betwen a fractal

and geometric self-similarity.
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Chapter 6

Mixing in confined geometries -

simple stratifications

6.1 Introduction

Rayleigh-Taylor instability has been extensively studied in configurations where ge-

ometry has played little role in modifying its evolution. When unconfined, one

feature of Rayleigh-Taylor instablity is that the characteristic bubble and spike struc-

tures (both O(1) aspect-ratio at low Atwood number) increase in length scale with

time. Once these structures reach parity with the horizontal length scale of the

domain, they cannot continue to develop in a structurally self-similar fashion. The

flow features then no longer have the appearance of bubbles and spikes, but more

closely resemble turbulent eddies that commonly arise in constant density flows.

Changing the nature of the turbulent motion affects the growth rate of the in-

stability. We know from analyses in chapter 4 that the ideal Rayleigh-Taylor process

begins with exponential growth of initial interface perturbations, but remains in this

state for only a short period. Thereafter the instability moves into the classic, non-

linear, structurally self-similar regime with quadratic growth. When the turbulent

length-scales are restrained by geometry, the instability decelerates and grows as a

rational power of time. A schematic description of the Rayleigh-Taylor lifecycle is

indicated in figure 6.1. Depending on the precise geometric configuration and initial

conditions, the relative time-scales of the development stages vary. In the experi-
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z

t
Taylor’s 
linear 
theory

Classic
self−similar
theory

Inogamov’s
geometric
confinement

Figure 6.1: Schematic depicting the complete evolution of h (t), from the early
linear stage through the non-linear self-similar regime to the region in which
geometic confinement restricts Rayleigh-Taylor development.

mental configuration studied in this chapter, the maximum eddy size is restricted

by the walls of a tall thin tube. Instead of motion in the tank dissipating after 2-3

minutes, as one observes in a small low aspect-ratio domain, motion in the high-

aspect-ratio case continues for 2-3 hours, and except for a neglectably small time at

the beginning, all of this motion is in the final rational power regime.

In this chapter, an analytical model, making the assumption of profile self-

similarity and thus termed a ‘zero-dimensional model’, is proposed in §6.2.1 to de-

scribe the flow. A one-dimensional numerical model is developed in §6.2.2 that makes

more detailed predictions of the system, and then numerical simulations using MO-

BILE , considered in §6.2.3, provide three-dimensional modelling. Two experimental

configurations are studied, the classic case studied experimentally in Dalziel et al.

(2008), in which a two-layer statically stable density profile in the tall tube is over-

turned, and a static case where less dense fluid rises into the tall tube from a large

reservoir. This second configuration enables more complex initial stratifications to

be studied in chapter 7. Comparison with experiments in both cases shows that

these models predict with surprising accuracy the functional form of the fluid be-

haviour. The high-aspect-ratio Rayleigh-Taylor instability is therefore a sufficiently

simple benchmark problem from which modelling of more complex problems can be
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explored.

6.2 Modelling approaches

The modelling approaches used in this chapter develop from the gradient-diffusion

method described in §4.2.5. To reiterate briefly, Prandtl (1925) first proposed that

scalar transport in a zero-mean flow, while complex and non-linear locally, could be

modelled in aggregate by a simple scalar diffusion,

∂φ

∂t
=

∂

∂z

(
κ
∂φ

∂z

)
, (6.1)

where φ is a scalar being diffused. Prandtl noticed that the factor κ has dimension
L2

T and proposed that this could be expressed as

κ = γ lturb uturb, (6.2)

with lturb and uturb representative length and velocity scales, respectively, and γ an

arbitrary constant to be determined by calibration. Definitions for lturb and uturb

are problem-specific, but in the Rayleigh-Taylor case there are natural choices.

Here, we assume that the overall dynamics of the system can be adequately

represented by the interaction of buoyancy, inertial and viscous forces, as described

by equations 4.31. In the non-linear regime of Rayleigh-Taylor instability, molecular

viscosity is relatively unimportant, so the force balance determining the evolution of

the system is between inertia and buoyancy. A velocity scale,

uturb =

√
l2turb g

ρ

∂ρ

∂z
, (6.3)

can be deduced from this balance, provided a representative length-scale lturb is

known. When unconfined, the length lturb, (a measure of some representative eddy

size) would normally grow as a function of the mixing zone height, whereas in a

narrow tube, this cannot happen. It has been observed (Dalziel et al. (2008)) that

the velocity field contains approximately circular structures, so the length-scale in

all directions is therefore limited by the lateral constraint of the tube. Hence in

the growth phase before the geometry is a serious constraint (a negligibly short

time-scale), lturb ∼ t2 until it is limited by the tube and thereafter remains constant.
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With these choices for lturb and uturb, we can proceed to examine the Rayleigh-Taylor

instability when it is laterally constrained.

6.2.1 Similarity model

Experimental observation of Rayleigh-Taylor flows suggests that the shape of the

horizontally averaged density profile is approximately invariant while the instability

is growing. To make progress analytically, we invoke this observation and develop a

model in which the vertical profile of a conserved scalar φ can be expressed in the

form

φ (z, t) = φ̂ (ζ)h (t) , (6.4)

where ζ is a non-dimensional height. Following Dalziel et al. (2008), in which the

Rayleigh-Taylor instability was initiated by overturning a stable density interface at

t = 0, a model for the transport of φ can be developed. If the initial interface is

chosen to coincide with z = ζ = 0, and φ is a proxy for relative density and sits in

the upper half of the tube at t = 0+ε, then the total quantity of φ that has migrated

across z = 0 after some time t is proportional to the height h (t) of the instability.

The scalar flux across z = 0 is driven by turbulent diffusion caused by the instability,

and it might seem reasonable that this could be modelled as a linear function of the

scalar gradient at z = 0 as follows,∫∫∫
z<0

∂φ

∂t
dV = κb2

∂φ

∂z

∣∣∣∣
z=0

. (6.5)

This step invokes an assumption of global self-similarity, and reduces the problem to

determining the time-evolution of flux at a single point, ζ = 0. For this reason this

similarity model is considered to be ‘zero-dimensional’. Substituting the separated

variables form for φ and rearranging, we have

h
dh

dt
= κb2

∂φ̂(ζ)
∂ζ

∣∣∣
ζ=0∫ 0

−∞ φ̂ (ζ) dζ
, (6.6)

for a square tube of width b. By self-similarity, ∂φ̂(ζ)
∂ζ

∣∣∣
ζ=0

and
∫ 0
−∞ φ̂ (ζ) dζ terms are

constant and can thus be ignored, giving the compact description

hḣ ∼ κ, (6.7)
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provided the forces of buoyancy and inertia remain in balance. The diffusivity κ

can be replaced with definitions for the representative turbulent length and velocity

scales,

hḣ ∼ lturbuturb, (6.8)

and in this simple scaling argument these scales can be evaluated at the z = 0 plane.

Assuming a self-similar scalar profile, an approximation to the density gradient ∂ρ
∂z

at z = 0 is given by ∆ρ
∆z , with

∆z = h

∆ρ = ρu − ρl.
(6.9)

Thus we can now evaluate a velocity scale of the form of equation 6.3 and hence

hḣ ∼ b
√
gb2

ρ

∆ρ
∆z

. (6.10)

At no point is there a need to solve for the functional form φ̂(ζ). Where ρ appears

in the denominator of equation 6.10, a Boussinesq reference density ρb = 1
2 (ρl + ρu)

is chosen. This leads to the relationship

hḣ =

√
2gb4A0

h
(6.11)

where A0 is the initial Atwood number. We solve an integral equation of the form∫ √
h3

A0

dh

dt
dt ∼

∫
Cdt (6.12)

where C =
√

2gb4, and the functional dependence h(t) is easily obtained:∫
h

3
2
dh

dt
dt ∼ t

h ∼ t 2
5 .

(6.13)

This result provides a useful rule-of-thumb estimate of the growth rate of the instabil-

ity in confined geometries, and agrees with the somewhat less succinct derivation of

Inogamov et al. (2001). Inogamov also showed, as reiterated in §4.2.5, that h ∼ t2 is

recovered if lturb ∼ h, and the same result can be obtained from the above exposition.

It should also be noted that previous work on these high-aspect-ratio Rayleigh-Taylor

problems (Debacq et al. (2001, 2003)) has modelled κ as a constant, which gives a
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growth scaling with a different rational power h ∼ t
1
2 and this appears consistent

with their measurements in a very narrow tube. A more detailed discussion of this

is presented in Dalziel et al. (2008).

6.2.2 Non-linear gradient-diffusion model

It is difficult to increase the sophistication and predictive capacity of models while

still pursuing analytical solution. Recourse to numerical evaluation permits a more

complete model to be constructed, which can inform us easily about behaviour in

situations where analytical models are difficult to construct.

Motivated by the similarity solution presented in §6.2.1, a numerical model is

developed which defines, as before, the diffusion parameter κ using Prandtl’s mixing

length hypothesis with lturb fixed by geometry, but in this case the velocity scale uturb

is determined according to the local density gradient. The turbulent flux function

is hence evaluated locally and no assumption of global self-similarity is invoked.

Density diffusion is modelled according to equation 6.1 and is approximated using a

time-explicit finite-volume model,

ρn+1
i =

1
∆zib2

(
∆zib2ρni + ∆t

(
Fn
i− 1

2

− Fn
i+ 1

2

))
. (6.14)

This model has been used with the second experimental configuration mentioned in

§6.1, namely the static tall tube overlying a large reservoir. To provide boundary

conditions appropriate for this case, ghost cell values selected to provide a zero-

flux boundary condition at z = zmax+ 1
2

and maintain an imposed density boundary

condition at z = zmin−1. The reservoir was assumed to be large enough not to be

affected either in density or dye concentration by discharge of dense water from the

tube (acceptable since the tube is less than 4% of the reservoir volume) and as a first

approximation the initial reservoir density was imposed as a boundary condition at

z = zmin−1.

The flux definition for mass diffusion was taken as

Fi+ 1
2

= −uturblturb
∂ρ

∂z
(6.15)

with the definition for uturb taken as equation 6.3 where this is consistent with the

potential energy available. As discussed in §6.2.1, lturb is taken as the tube width b.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.2: Scalar concentration taken on the vertical mid-plane of a
64× 64× 2560 MOBILE simulation. Sections are taken at (a) t = 0, (b) t = 20s,
(c) t = 40s, (d) t = 60s, (e) t = 80s, (f) t = 100s, (g) t = 120s. The Atwood num-
ber is A = 1.5× 10−3.

The only adjustable constant in this model is γ, and in the absence of any a priori

estimate, this was set to unity. While dye and density fields are linearly related in

the current, very simple density stratification, this is not true in general, so a second

scalar equation with the same diffusion coefficient κ and appropriate boundary/initial

conditions was evolved in tandem with the density field to represent the behaviour

90



6.2 6. Mixing in confined geometries - simple stratifications

Figure 6.3: The dashed line indcates the simulated reservoir, which is 5.7% by
volume of the reservoir used in the experiment. Reservoir and tall tube are
depicted approximately in perspective.

of dye in the experiment.

6.2.3 Full three-dimensional simulation

The MOBILE numerical model was used to simulate both the overturned tank and

static/reservoir cases. Many available research codes are unable to model such con-

figurations, however MOBILE was developed with this case in mind, and uses a

multi-block structured approach to handle the geometry of the reservoir. The algo-

rithm uses the ILES methodology, so while the small-scale details and wall boundary

layers are unlikely to be accurately captured, the flow’s bulk properties could be ex-

pected to be correctly estimated. Figure 6.2 shows a sequence of vertical slices

through a simulation modelling the classic two-layer overturned configuration.

Unfortunately the memory requirements for simulating a large reservoir compa-

rable with the experiment were beyond that available, if the flow inside the tall tube
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(a) t = 4s (b) t = 46s

(c) t = 18s (d) t = 60s

(e) t = 32s (f) t = 74s

Figure 6.4: Scalar concentration taken on the vertical mid-plane of the reservoir.
The Atwood number is A = 7.3× 10−3. The greyscale colour scheme illustrates
well how efficiently dye disperses in the computational reservoir.

were to be modelled at a meaningful resolution. To preserve mesh density at af-

fordable cost, the size of the computational domain was reduced, as shown in figure

6.3.

Since an excessively small reservoir might significantly alter the dynamical be-

haviour inside the tube and introduce a modelling error in the region of interest, the

flowfield inside the reservoir was checked to quantify the error. As can be seen from

figure 6.4, the box fills with dense fluid from the bottom, thus for an extended period
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the supply of relatively unmixed light fluid is maintained at the interface with the

tall tube.

The computational reservoir represents the worst-case scenario for deviation from

the ‘large reservoir condition’ that is needed for the one-dimensional numerical model

of §6.2.2 and is approached in the experiment, yet the boundary condition at the

tube-reservoir interface is remarkably close to having a constant density even in the

simulations where the volume ratio is approximately 2:1. This is illustrated in figure

6.5.

6.3 Validation against experiment

6.3.1 Overturned configuration

The classic overturning tank case was studied to verify that the model predictions

reflected the experimental results obtained with a dye-attenuation technique. The

tall tube was illuminated with a backlight and the camera recorded any attenuation of

the backlight due to fluid dyed red (dense fluid). By design, the dye attenuation was

integrated along each ray path (approximately horizontal), and by taking a horizontal

average across the width of the tank, the vertical profile of mean scalar concentration

was obtained. The experimental image in figure 6.6 was formed by concantenating a

sequence of such one-dimensional vertical profiles taken over 600 seconds. Existing

experimental data from a parallel study Dalziel et al. (2008) was compared against

the analytical prediction and the MOBILE simulation, as illustrated in figure 6.6.

The coefficients (estimates of ∂φ̂(ζ)
∂ζ

∣∣∣
ζ=0

and
∫ 0
−∞ φ̂ (ζ) dζ) in the similarity model

were set using data given in Dalziel et al. (2008) to retrieve the 98% scalar concentra-

tion contour. When compared against one experiment from the ensemble presented

in Dalziel et al. (2008), the coefficient values appear not to be very accurate, though

there are several possible causes for the discrepancy. The most likely explanation is

that the time origin appropriate for the experiment does not coincide with the corre-

sponding origin for the similarity model. The act of overturning the stable interface

to initiate Rayleigh-Taylor instability takes time, initiates a net circulation (in the

rotating reference frame), and thus distorts the intial interface by up to 81 degrees
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Figure 6.5: Time-series image of the horizontally averaged scalar concentration
as a function of height in the computational reservoir. The blue superimposed
curve shows the time-evolution of mean density at the interface between reservoir
and tall tube. A = 7.3× 10−3.

(see Linden (1977)). The point in time at which Rayleigh-Taylor instability begins

is not well defined, and it happens over a finite region in space, as indicated by the

initial smudge of horizontally averaged scalar concentration contours near t = 0.

Attempts were made to simulate the overturning by adding appropriate source

terms (see §3.2.2) to the governing fluid equations 3.1. These terms result in dis-

tortion of the interface, and the standard Rayleigh-Taylor idealised initial conditions

(isotropic initial random-amplitude random-phase density perturbation) becomes

highly stretched in the rotation direction and inclined to the vertical. The stretch-

ing of the perturbations reduces the rate of generation of baroclinic torque, and

hence the Rayleigh-Taylor growth rate, and the interfacial inclination favours shear

rather than baroclinically driven instability. While both effects may to some extent

occur in the initial stages of the experiment, visual observation suggests that the

eddy size very quickly reaches parity with the lateral tube dimensions, and this was

not observed on a comparable time-scale in the ILES simulations. It is quite pos-

sible that the velocity perturbations unavoidably introduced to the experiment by

the tank overturning accelerate the breakdown of any shear-based instability into

a density-driven Rayleigh-Taylor instability within the time-scale of the ‘smudge’.
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Figure 6.6: Time-series images of horizontally averaged scalar concentration
from (a) MOBILE , and (b) overturned tank experiment of Dalziel et al. (2008).
Theoretical prediction of h (t) ∼ t

2
5 is shown in black, scaled according to the

Atwood number. A = 1.5× 10−3.

Velocity perturbations were not explored numerically, and non-overturned idealised

initial condition Rayleigh-Taylor simulations were used instead to model the system,

and this proved much more successful. The similarity model tracks the 98% ide-

alised simulation contour more closely than the experiment, lending weight to the

assertion that uncertainties in the experimental initial condition are responsible for

the aforementioned discrepancy with the similarity model.

6.3.2 Static reservoir configuration

Previous experiments on high-aspect-ratio Rayleigh-Taylor instability have focussed

on the overturned configuration, but this is unsuitable for studying the confinement

of Rayleigh-Taylor instability driven mixing by stable stratification. To verify that

the modelling assumptions that have been used in the overturning context remain

applicable to the static reservoir configuration, two-layer Rayleigh-Taylor unstable

experiments were performed in both cases, again using the dye-attenuation method

and this time with light reservoir fluid being dyed red. One particular advantage of

the static case is the relative insignificance of the initial condition. The experimental
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Figure 6.7: Time-series images of horizontally averaged scalar concentration
from (a) one-dimensional model, and (b) MOBILE simulation in the static
reservoir configuration. The white curves show h (t) calculated using the zero-
dimensional model. The boundary condition for the one-dimensional model is
taken from figure 6.5. A = 7.3× 10−3.

apparatus simply has a small plate intially supporting the fluid that is rotated out

of the way to begin the experiment. Since the lateral dimensions are discontinuous

at the tube-reservoir interface and the flow in the reservoir is of little intrinsic in-

terest, the presence of the plate and any disturbance associated with its removal is

insignificant on the time-scale of the experiment.

The same coefficients were used for the similarity model in figure 6.7 as for fig-

ure 6.6, but it appears that the scalar concentration contour being followed in the

static/reservoir case is closer to 95% than 98%. The model parameters were de-

termined in Dalziel et al. (2008) against a single overturned tank experiment and

checked against experiments over a range of Atwood numbers (there is no Atwood

number dependence on the coefficients). There is little reason to expect these values

to change markedly between overturning and static configurations, since the non-

dimensionalised density profile in one half of the overturned tube should correspond

to the non-dimensionalised density profile in the static tube. However, uncertain-

ties with the initial conditions in the overturned case may be the cause of a small

calibration error in the calculated coefficient values.
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Figure 6.8: Time-series images showing horizontally averaged scalar concentra-
tion from (a) one-dimensional model, and (b) experiment in the static reservoir
configuration. The white curve shows the zero-dimensional prediction of h (t).
A = 1.02× 10−2.

To reduce potential sources for error in the comparison between the one- and

three-dimensional models, the effective boundary condition at the tube-reservoir

interface, shown in figure 6.5, is extracted from the ILES simulation and supplied

to the diffusion model. The effective instantaneous Atwood number is reducing very

slowly over time as the reservoir fills with dense fluid. Clearly this level of detail

cannot easily be incorporated in the self-similarity model, so some late-time mis-

match in their predictions is to be expected.

Since we have established that the zero- one- and three-dimensional models give

self-consistent results in a test case where all initial and boundary conditions are

known, the zero- and one-dimensional models were applied to a real experiment.

Figure 6.8 illustrates this comparison. Here the zero-dimensional model tracks the

scalar concentration boundary well, and the one-dimensional model predicts the

experimental φ(z, t) very accurately. The value of γ used remains the a priori value

of unity; there was no justification for modifying this. Any minor discrepancies in the

concentration field can be attributed to calibration errors in mapping dye-attenuated

light intensity to actual dye concentration, since this departs from a linear function
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at low dye concentrations.

One particularly notable feature in figure 6.8 is the late-time behaviour. There

appear to be inflexion points in scalar concentration contours, and the similarity

model does not predict this. It is unclear whether or not the MOBILE simulations

would, given enough time, since it was prohibitively expensive to run the calculations

for so long. These inflexions are thought to be caused by the zero-flux top boundary

condition, which the one- and three-dimensional models incorporate, and as seen in

the figure, the location of the inflexion point propagates out from the top boundary

once light fluid has contacted it. The information propagation downwards into the

fluid must follow the same diffusion law as the scalars rising upwards, but at later

time the assumption that buoyancy and inertia are the only forces in balance is

somewhat questionable, and the evolution of the contours in this new regime has not

been investigated.

6.4 Summary

This chapter has investigated the extent to which two configurations for laterally con-

fined two-layer Rayleigh-Taylor instability can be modelled as a turbulent diffusion

process. Prandtl’s mixing length hypothesis was used as a closure for an analytical

self-similarity model, and a more sophisticated non-linear one-dimensional model in

which experimental boundary conditions can be represented. A three-dimensional

ILES model was also used to approximate the full turbulent behaviour of the exper-

iment, and the relevant comparisons are remarkably close.
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Chapter 7

Mixing in confined geometries -

linearly stratified upper layer

7.1 Introduction

In chapter 6 pre-existing work on high-aspect-ratio Rayleigh-Taylor instability in

overturned tubes was compared with Rayleigh-Taylor instability between fluid in a

static tube and a large bottom reservoir. This new configuration has two obvious

advantages: the initial condition is more controllable, and the static tube can be filled

with a more complex stratification profile than an overturned tube. This chapter

considers the development of Rayleigh-Taylor instability into an upper layer linearly

stratified in density, where the reservoir fluid has some intermediate density between

the extrema of the stratification. The density profiles ρ(z, t) considered herein have

the following initial form:

ρ (z, 0) =

 ρu − β (z − zi) , z ≥ zi
ρl, z ≤ zi

ρu > ρl

β ≥ 0,

(7.1)

as indicated schematically in figure 7.1. On this basis representative scaling param-

eters can be chosen. Here an Atwood number is defined by densities ρu and ρl at
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ρ
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Figure 7.1: Initial stratification for stratified high-aspect-ratio experiment.

the initial interface height zi:

A =
ρu − ρl
ρu + ρl

, (7.2)

and for convenience we define a neutral buoyancy height

zn = zi +
ρu − ρl
β

, (7.3)

which is the point to which reservoir fluid would reach if the initial stratification

were to be adiabatically rearranged to be everywhere statically stable. The following

section, §7.2, outlines how models proposed in §6.2 can be modified and extended for

use in more complex density profiles. These are then compared against one another

and against experiment in §7.3.
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7.2 Model developments

7.2.1 Similarity model

The zero-dimensional (self-similarity) model of §6.2.1 is modified for penetration of

Rayleigh-Taylor instability into stable stratifications by introducing an instantaneous

Atwood number that represents the density difference over the Rayleigh-Taylor un-

stable region. As this region grows, by erosion of the stable stratification, the density

difference gets smaller, until the upper boundary of the region reaches the neutral

buoyancy height, where there is no remaining available energy to do further mix-

ing and the instantaneous Atwood number correspondingly approaches zero. In this

model the height h(∞) of the instability is necessarily given by the neutral buoyancy

height: h(∞) = zn − zi. Equation 6.10 becomes

hḣ = lturbuturb

= b

√
gb2

ρ

∆ρ
h(∞)

,
(7.4)

where ∆z is the current height of the instability h(t), and ∆ρ is in this case given

by

∆ρ = ρ (h (t))− ρl

= ρu +
h (t)
h(∞)

(ρl − ρu)− ρl,
(7.5)

for the linear stratification described by equation 7.1. Equation 7.4 simplifies to

hḣ =

√
(2gb4A0)

(
1
h
− 1
h(∞)

)
, (7.6)

where A0 is the initial Atwood number. In the forthcoming figure 7.7, the blue curve

plots h(t) obtained from a numerical integration of equation 7.6, using experimental

values of ρu and ρl, and the neutral buoyancy point h(∞) which is known from the

initial stratification. This model predicts the correct initial growth rate, since at

early times the dynamics are indistinguishable from the homogenous, unstratified

upper layer case, but the deceleration of the instability is underestimated, and hence

the time-scale to reach the neutral buoyancy point is also underestimated. A more

sophisticated model is required and the next section discusses this.
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7.2.2 Mass diffusion model

The one-dimensional numerical model described in §6.2.2 uses equation 6.3 to define

an appropriate local turbulent velocity scale uturb. This is well defined in regions

of the fluid with ∂ρ
∂z > 0, but breaks down in a stable stratification. To resolve

this anomaly, an additional energetic condition was introduced to the model. In

this closed, initially quiescent system, a turbulent velocity can only be generated by

baroclinic release of potential energy, so where the stratification cannot support such

release, uturb is identically zero. The conditional branch in the numerical model is

thus

uturb =


√

l2turb g

ρ
∂ρ
∂z ,

∂ρ
∂z > 0

0, ∂ρ
∂z < 0.

. (7.7)

While this model is constructed to be energetically consistent, and can therefore

describe mixing in an arbitrary vertical density profile with both statically stable

and statically unstable regions, experimental evidence shows that a sharp interface

forms between the Rayleigh-Taylor unstable region and the remaining quiescent part

of the stable stratification. The detailed dynamics of the interface between these

regions is complex and this simple model cannot accurately represent them.

The local physical process can be described as follows: the turbulent kinetic

energy previously released from potential energy causes eddies, some of which pene-

trate a distance O(b) into the otherwise quiescent statically stable region, engulfing

this small quantity of (on average) more dense fluid into the kinetically active zone,

releasing further potential energy and progressively eroding the stable stratification.

The analogous local process in the one-dimensional numerical model leads to

a downward flux of mass through the unstable stratification, and away from the

interface, reducing the density in the numerical cell at the top of the unstable region

until it becomes less dense than the cell above. The conditional branch on the top face

of this cell switches, across which diffusion can now begin, perpetuating the release

of potential energy. The downward flux of mass away from the interface controls

the rate of its upward progress, and this process operates on a macro-scale governed

by the density gradient in the entire system, so the approximation of the interface
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detail does not lead to an overall error in the predicted growth of the instability.

7.2.3 Energy transport model

An attempt to improve the one-dimensional numerical model’s ability to capture the

interface dynamics has been made by modelling the energtics of the system more

carefully. An energy transport equation was added to permit the non-local produc-

tion and dissipation of energy that would be necessary to achieve some representation

of engulfment events. The energy exchange per unit volume between potential and

kinetic as a result of mass diffusion can be explicitly evaluated with Prandtl’s mixing

model:

∆Ek ∼ ρbu2
turb = l2turbg

∂ρ

∂z
(7.8)

This additional kinetic energy ∆Ek may be allowed to diffuse around at a similar

rate κT to the mass - subject perhaps to a turbulent Schmidt number. It must also

dissipate at some rate ε. Unfortunately, at this point we encouter the classic problem

of closure, since a transport equation for ε could be created, with sources and sinks

that would also have to be modelled. Because we have no reliable way to model such

parameters, we choose here to derive an approximate closure for ε.

We know that the turbulent length scale is constrained by geometry such that

lturb = b. We assume that the resulting eddies have an approximately circular

structure of size b - as confirmed by observation - so the turbulent kinetic energy

with a characteristic velocity uturb induces an isotropic velocity gradient

∂u

∂x
∼ 2

uturb
b

, (7.9)

where the factor 2 indicates that in an approximately zero-mean flow by continuity

the velocity difference across the tube must be twice the absolute value of uturb. The

shear stress generated on a vertical mid-plane in the fluid is therefore τ ∼ 2ρν uturbb
and the energy dissipated as a result of this shear is∫∫

∂V
u.τdS ∼

∫∫∫
2ρν

u2
turb

b

dV

b
, (7.10)

where the surface integral is re-expressed as a volume integral for subsequent con-

venience. Noting that uturb can be expressed as a function of Ek, the whole energy
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process can be modelled thus:

∂Ek
∂t

+
∂

∂z

(
κT lturb

√
2
Ek
ρ

∂Ek
∂z

)
= l2turbg

∂ρ

∂z
− cε

Ekν

b2
(7.11)

where κT = γenergyuturblturb is a turbulent energy diffusivity and the dissipation rate

coefficient cε ≤ 1. Numerical investigation of the ‘second order’ system (coupled

energy and mass transport) was performed with the initial aim of reducing the step-

wise character the interface appears to have as it progresses from numerical cell to

cell. While the local interface dynamics were not actually modelled significantly bet-

ter, the exercise uncovered an interesting macro-scale feature of the system. Giving

kinetic energy the freedom in the model to transport away from its point of produc-

tion before it is dissipated leads to an increase in the overall kinetic energy in the

system, which artificially raises the rate of diffusion and hence the instability growth

rate ḣ(t). No non-trivial combination of the free parameters in the coupled system

(γmass, γenergy, cε) was found which could recover h(t) as given by the mass trans-

port model with γmass = 1. The trivial case where cε = 1 implies instantaneous,

local production and dissipation of kinetic energy, and the system reduces to the

mass transport equation. Since, as illustrated later in figure 7.7, the mass transport

model predicts h(t) very well, this makes the important suggestion that the physical

system also has an approximate local balance between kinetic energy production and

dissipation.

7.2.4 Three-dimensional simulation

The three-dimensional simulation tool MOBILE was once again used to model the

tall tube and reservoir experimental configuration, and the stratification measured

from an experiment was used as an initial condition for a simulation. Development

of the instability takes place over time-scales an order of magnitude larger than for

the homogenous case, and since the maximum velocities that limit the numerical

timestep in the simulation are O(1)m/s even at relatively late times, resolving the

2m tall tube with 32x32x1280 cells over O(104)s would take O(106) timesteps. This

computational cost was unacceptable, so numerical investigation was limited to a sin-

gle Atwood number and the simulation was truncated after O(105) timesteps. Three
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Figure 7.2: Initial stratification for run with initial Atwood number A0 = 10−2.
The blue curve indicated the measured stratification, the red dashed lines indi-
cate the neutral buoyancy height for reservoir fluid.

scalars were advected in this simulation, one representing the scalar concentration

of reservoir fluid (dyed red in the experiment) and two others representing the dense

and light extrema of the linear stratification. The baroclinic source term is evalu-

ated from the volume-weighted scalar concentration in a computational cell. This is

not numerically equivalent to advecting density directly (because of non-linearities

in high order monotone fluxes), and therefore one cannot guarantee density mono-

tonicity, though extensive tests suggest that monotonicity is achieved in practice.

7.3 Comparison with experiment

7.3.1 Model cross-validation

Having established in chapter 6 that the zero-, one- and three-dimensional models

work well for unstably stratified two-layer systems, these models have been modified

for stably stratified flows as detailed in §7.2, and are here used to examine the

development of Rayleigh-Taylor instability into a stably stratified upper layer.

The Atwood number of the experiment selected for three-dimensional simulation

was A0 = 10−2, and the stratification in the tall tube was very close to linear with

a gradient β = 12kg/m4 as shown in figure 7.2.
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Figure 7.3: Time-series of horizontally averaged scalar concentrations as a func-
tion of height from (a) one-dimensional model and (b) three dimensional simu-
lation. The white curve is the penetration height h(t) obtained from the one-
dimensional model, shown in both plots for comparison. A boundary condition
correction for the small simulated reservoir of (b) has been made in (a).

The neutral buoyancy height is a rule of thumb prediction of the behaviour of

the system, since there exists insufficient potential energy available to drive reservoir

fluid above this point.

The prediction of the scalar concentration field made by MOBILE is shown in

figure 7.3(b). As with the corresponding two-layer case, the computational reser-

voir that was affordable to simulate is much smaller than the reservoir used in the

experiment, and although the reservoir fills with dense fluid from the bottom, the

horizontally averaged density at the reservoir-tube interface,

ρbc =
∫∫

ρ(zi, t)dxdy∫∫
dxdy

, (7.12)

sits at only a small offset from the initial reservoir density, and is a weak function

of time. In figure 7.4 the boundary condition ρbc(t) is plotted as a line, and the

horizontally averaged density in the reservoir ρ(z, t)|z<zi is shown as a time-series

image.

To make a fair comparison between one- and three-dimensional models, the the

interface density ρbc(t) was implemented as a time-varying boundary condition for
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Figure 7.4: Time-series image of scalar concentration in the reservoir predicted
by MOBILE . The blue curve denotes the horizontally averaged density at the
interface between the tall tube and the reservoir.

the one-dimensional model. Comparison between the left and right plots of scalar

concentration φ(z, t) indicates that the correction is appropriate and the envelope

profiles match extremely well. There is some turbulent noise evident in the simula-

tion, with the period and variance of the noise in any individual contour associated

with motion at the time and length scales of individual eddies. There is clearly a

large separation of time-scales between those governing the gross dynamics of the

system and the detailed turbulent structure, and this perhaps indicates why the gross

dynamics are modelled so well with such simple models, and it also explains why

simulations are so expensive. There is sufficient time for potential energy acquired

from more dense fluid from a point above to do mixing and/or dissipate before the

structure of the density profile has changed markedly. Thus a model that enforces

locality of energy production and dissipation could be expected to perform well.

As discussed in §7.2.2, the detail of the stable-unstable interfacial dynamics can-

not be fully represented with the one-dimensional model. The separation of time-

scales reduces the sensitivity of the system response to this error, but in figure 7.3(a),

the scalar contours slightly beneath the interface are somewhat step-like. This has

no great effect on the system overall, but these steps arise from the impulse sup-

plied to the system by the conditional branch (equation 7.7) switching as the density
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Figure 7.5: The red curves are one-dimensional predictions of the vertical scalar
concentration profile, scaled for height and end-point concentrations. The blue
curves come from the three-dimensional simulation.

on the interface cell reaches equality with the cell beneath. The interfacial region

(unlike in the two-layer case) remains confined in vertical extent to O(b) and over

the range h − b < z < h the vertical scalar concentration has a steep gradient and

φ falls to zero at h. The scalar concentration at h(t) − b increases over time until

all the fluid more dense than the reservoir has fallen out of the tube. At this point

φ (h(t)− b) = 1.

Normalising the vertical scalar concentration profile in the kinetically active re-

gion with the value φ(h(t) − b, t) and normalising the height simply by h(t), as in

figure 7.5, it is clear that the interior profile is approximately linear. The slight

curvature does change from concave to convex over time, a feature which is accentu-

ated in the one-dimensional model by the discrete steps which mark the advance of

the envelope at late times, and the high levels of kinetic energy at very early times

which makes the assumption of a sharp interface confined to width O(b) and clearly

separated time-scales inappropriate.

Comparison of the one-dimensional model with the experiment as shown in figure

7.6 establishes that the scalar concentration field φ(z, t) and the instability growth

function h(t) match particularly closely with the experimental measurements. Some

distortion of the experimental image occurs near the bottom of the tube, due to
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Figure 7.6: Time-series of horizontally averaged scalar concentration as a func-
tion of height from (a) one-dimensional model, and (b) experiment. The white
curve is the penetration height h(t) obtained from (a), and plotted over (b) for
comparison. A correction for dye non-linearity has been made in the experi-
mental time-series.

line-of-sight interference around the sliding hatch that releases the flow, and scalar

concentration contours in this region cannot be regarded as accurate. Parallax cor-

rection was not used since the camera was 10m from the tube, and line-of-sight av-

erages along rays of angle θ converging at the camera focal point have been mapped

directly to a vertical ordinate z. The red dye used for the dye-attenuation mea-

surements had a slightly non-linear light adsorption function when illuminated with

white light, and this has been accounted for in the mapping of the attenuated light

intensity field I to scalar concentration φ, I(θ, t)→ φ(z, t).

An interesting qualitative comparison can be made between the period and vari-

ance of fluctuations in the scalar concentration contours in simulation and experi-

ment. These fluctuations are associated with individual eddy structures in the flow.

Although the sampling rates were severely limited by data storage capacity both in

the experimental image capturing and the simulation, in each case there is a clear

decay in the period of these fluctuations, indicating longer eddy turnover times and

generally declining levels of kinetic energy in the system. This can be seen as encour-

aging confirmation that ILES modelling (in which kinetic energy leaves the system
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Figure 7.7: This plot shows compares all the model predictions with the exper-
imental timeseries, and a t

2
5 curve is plotted for reference.

only through the enforcement of monotonicity of momentum) can predict with sur-

prising accuracy not only the global properties of the system but some important

aspects of its fine detail. It is unlikely to be coincidental that ILES performs very

well when there is a clear separation of scales between detailed mixing dynamics and

the instability growth h(t), particularly when ILES performs less well on the low

aspect-ratio Rayleigh-Taylor instability where there is no separation of mixing and

instability growth scales. A separation of scales implies that kinetic energy is locally

produced and dissipated, and it may well be that the ILES methodology embeds this

assumption.

Figure 7.7 shows the ensemble of predictions for the experimental measurements

examined in detail in this section. The h(t) ∼ t
2
5 curve shown in yellow is the

98% contour prediction from the similarity model discussed in §6.2.1 for the unsta-

ble two-layer system, and is included to provide a comparison of time-scales. The

modified model (which takes into account the time-dependence of the effective At-

wood number) makes an unacceptable estimate, shown in blue, of the time-scales

involved. While a scaling parameter could be included in the model to correct the

predicted time-scale, the functional form of h(t) does not correspond to the ex-

periment and there is little a priori justification for involving arbitrary parameters
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Figure 7.8: One-dimensional predictions of envelope profiles h(t) for experiments
at various Atwood numbers.

which would create a match. The intrinsic cause of the discrepancy is that the form

of self-similarity used to develop the model is no longer valid, since the stratifica-

tion gradient introduces a second length-scale to the problem. The one-dimensional

model (in red) makes the best overall prediction of the envelope h(t) and accurately

estimates the time-scale. The MOBILE prediction of h(t) is plotted in white, but

the tight scalar concentration threshold used to define h is sensitive to turbulent

fluctuations and is something of a disadvantage in making a fair comparison with

other models. It should also be noted that no correction has been made for the small

computational reservoir, and the close match of the MOBILE and experimental h(t)

trajectories implies that the modelling error introduced to cut the computational

cost is insignificant.

7.3.2 Variation with Atwood number

Since the computational cost of modelling the full range of experimentally studied

Atwood numbers using MOBILE was prohibitively expensive, the one-dimensional

model, shown in §7.3.1 to be an excellent proxy for both experiment and simulation,

was used to explore a wider range of parameters than those that could be tested

experimentally or numerically.
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Figure 7.8 shows h(t) covering the experimentally feasible range of Atwood num-

bers, and compares experiments with corresponding one-dimensional model predic-

tions. The model performs extremely well, except for very minor discrepancies during

the transition from rapid growth rate to slow growth in two cases, and larger discrep-

ancies at late time in the low Atwood number cases. The experiments were intended

to have a common neutral buoyancy height zn = 1.5m, but as the figure shows, this

was not achieved. The causes of these three errors are discussed in turn below.

The errors during transition from rapid to slow growth may be due simply to

inadequate sampling of the initial stratification. Measurements of the experimental

stratification were taken at 10 points during filling, and these values were used to

generate an initial condition for the one-dimensional model.

The errors in low Atwood number cases at late time are due to thermal effects

modifying the fluid buoyancy. In these cases the potential energy released by eroding

the stratification unexpectedly turned out to be of the same order as the heat trans-

fer through the walls of the tube. There were a number of complicating factors in the

experimental environment. Firstly the laboratory ambient was vertically stratified

by 20C, and the mean temperature had a diurnal variation, which was significant

over the three-hour duration of each experiment. Secondly, part of the process of pro-

ducing the stratification requires water to be pumped around a recirculating bucket

(see §2.4.2 for details), thereby doing work on the water and raising its temperature

above ambient. Thirdly, the reservoir was filled directly from the laboratory mains

supply, around ambient laboratory temperature. The surface to volume ratio of the

reservoir and the tube are very different, so even leaving the experiment set up for a

long period would not have ensured uniform water temperatures, due to the diurnal

variation in the ambient.

The mis-match of temperatures gave rise to an interesting phenomenon at the

interface, known as double-diffusive convection, and this is illustrated in figure 7.9,

a time-series excerpt taken just before h(t) = zn. The mechanism for this form of

convection is well known (see Huppert & Turner (1981)) and in the present example

can be explained as follows.

In this system heat and salt diffuse at markedly different rates, since the large
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Figure 7.9: Time-series extract showing double-diffusive steps when primarily
salt-driven mixing occurs in the presence of a temperature mismatch between
the water temperatures and laboratory ambient. A0 = 0.5× 10−2.

relative surface area of the tube walls permits relatively quick thermal diffusion in

and out of the system, while salt must remain in the system. The temperature

gradient is stronger between ambient and the warmer undyed fluid from the initial

stratification than the lighter, cooler, dyed fluid penetrating upwards from the reser-

voir. The undyed fluid, statically stable when warm, becomes relatively denser than

its immediate surroundings as it cools, and needs to fall slightly to regain neutral

buoyancy. By continuity, an exchange event must take place, lifting dyed fluid and

giving rise to the step like progress of the dye front. The fallen fluid is undyed, and

denser than anything else in the dyed region, having come from a height slightly

above the dye interface (which coincides with the height of maximum density) and

fallen to a height just beneath, and therefore continues to accelerate through the

unstably stratified dyed region, as can be seen by small downward-pointing streaks

in the scalar concentration profile. Over time molecular mixing smears out any mea-
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Figure 7.10: One-dimensional model predictions of (a) idealised initial conditions
across a range 2.5× 10−4 < A0 < 0.1, and (b) self-similar collapse by scaling with
non-dimensional time.

surable variation in the volume fraction of dye and so these streaks are only visible

for a short time. Each discrete exchange event is a double-diffusive step, and they

serve to increase the growth rate h(t) of the dye front, as shown in the blue and green

experimental curves of figure 7.8 but not predicted by the one-dimensional model.

The final error, the unintended variation in neutral buoyancy height, was caused

by a minor experimental error when stratifying the tall tube, which was magnified

by the very weak density gradient. A valve at the top of the tube permitted air

(and in the event of over-filling, water) to escape benignly, and when shut would

support the hydrostatic pressure of the water column. At the end of stratifying both

the valve at the top and the peristaltic pump at the bottom had to be shut off,

ideally simultaneously. In practice the pump was stopped just before shutting the

valve to avoid over-pressurising the tube, and since the pump could not completely

support the hydrostatic pressure, a safety margin of overfill was required so water

could still leak through the pump at the bottom without ingesting air through the

valve at the top. The tube was inconsistently over-filled with water, and this shifts

the stratification and hence the neutral buoyancy point.

From the above discussion it is clear that experimental conditions were too sen-
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sitive to initial stratification, thermal effects and experimental error to characterise

the system’s behaviour across a wide range of Atwood numbers. Additionally, these

experiments were restricted in Atwood number by the solubility of salt in water,

and some practical considerations due to the method of stratifying from the bottom

rather than the top of the tube (see §2.4.2).

The one-dimensional model has no such restrictions. Having ascertained that

it models the system well in situations for which comparable experiments exist, it

was then applied over a wider range of initial Atwood numbers. The modelling as-

sumptions remain valid even at very high Atwood numbers, since locally the density

gradients are small and can still be treated as Boussinesq. Idealised initial condi-

tions were created such that the neutral buoyancy height was 1m over a range of

2.5 × 10−4 < A0 < 0.1, and the results are shown in figure 7.10, where the light-

blue curves are at Atwood numbers than could not be studied experimentally, and

the other colours correspond to Atwood numbers measured and shown in figure

7.8, though with a stratification chosen to achieve a consistent neutral buoyancy

height. Immediate observations are that the functional form h(t) seems independent

of Atwood number, and the non-dimensionalisation τ =
√
Ag/znt is appropriate for

self-similar collapse.

7.4 Summary

This chapter has investigated the extension of models, which were initially applied

in chapter 6 to laterally confined two-layer Rayleigh-Taylor instability, to the case

where the upper layer is stably stratified. The presence of a stable stratification

has raised new issues about energetic consistency for the one-dimensional numerical

model, which have been resolved and the model agrees very closely with experimental

measurements. Further extension of the model to incorporate energy transport leads

to the conclusion that potential energy is released into kinetic energy that is entirely

dissipated locally, so there is no net transport of kinetic energy in this system.

The three-dimensional ILES model performs very well on three harsh diagnostic

tests, which suggests, at least in cases where turbulent eddy turnover times are well

separated from the global system dynamic time-scale and energy is produced and
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dissipated locally, that ILES captures many of the important features of the flow.

Experimental artefacts due to the baroclinic interaction of temperature and salt were

also explained, and a simple relationship between Atwood number and rise-time to

neutral buoyancy was found.
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Chapter 8

Mixing confined by stable linear

stratifications

8.1 Introduction

The focus in this chapter is to examine the mixing behaviour of systems where

Rayleigh-Taylor instability drives the flow, but additional features of the system

interact with the developing instability to restrict its growth. Geometric confinement

was considered in chapters 6 and 7; here we study Rayleigh-Taylor instability confined

both above and below by a pair of stable linear stratifications. The initial condition

is defined as

ρ (z, 0) = ρu − β (z − zi) , z ≥ zi

ρ (z, 0) = ρl − β (z − zi) , z ≤ zi

ρu > ρl

β > 0

(8.1)

where ρu and ρl are densities just above and below the interface located at zi, and β is

a (chosen) stratification gradient. The interface density, ρ (zi, 0) is multi-valued. For

convenience this is shown pictorially in figure 8.1, and an experimental illustration

is shown in figure 8.2.

Subsequent sections are organised as follows: in §8.2 the energy budget analysis

of §4.2.4 is extended to include stratified initial profiles, and compared with an
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ρ
ρl ρu

z

zmax

zi

Figure 8.1: Diagram illustrating the initial density profile. Note that in this
case the neutral buoyancy height zn coincides with zmax.

ensemble of experiments and a matching simulation. The concept of mixing efficiency

is introduced in §8.3 and some simple relationships between the density profile and

mixing effciency are derived. These results are used to gain some understanding of

the noticeable differences between the simulation and the ensemble of experiments,

which are discussed in §8.4.

8.2 Growth law

Modifying the approach of §4.2.4 we can derive a growth law for this configuration.

Using the same notation, we begin with the energy budget equation∫
ρ0gzdz =

∫
ρgzdz +

∫
1
2
ρu2dz. (8.2)

However, it is difficult to progress by invoking a similarity argument, because the

problem contains both the length-scale of the instability growth, and a fixed length-

scale set by the stratification. We can progress by assuming a functional form for(
ρ0 − ρ

)
(z, t), and evaluate directly. The simplest reasonable model of Rayleigh-

Taylor instability assumes that fluid in the mixing zone of height h has mixed in-
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stantaneously, and has acquired the uniform density 1
2 (ρu + ρl). Thus

1
S

∫ +∞

−∞

(
ρ0 − ρ

)
gzdz =

∫ zi+h

zi

ρu − ρl
2

− β (z − zi) gzdz

+
∫ zi

zi−h
−ρu − ρl

2
− β (z − zi) gzdz

= gh2 ρu − ρl
2

− 2
3
βgh3,

(8.3)

where S =
∫∫

dxdy is the area over which horizontal averaging takes place.

The kinetic energy, after making the Boussinesq approximation, becomes∫ +∞

−∞

1
2
ρu2dz ∼ ρu + ρl

2

(
∂h

∂t

)2

h, (8.4)

where we argue that kinetic energy u2 scales with
(
∂h
∂t

)2
. That energy is distributed

over the mixing zone volume, which scales with h, so the energy balance is therefore

gh2 ρu − ρl
2

− 2
3βgh

3 ∼ ρu + ρl
2

(
∂h

∂t

)2

h. (8.5)

Noting that

β =
ρu − ρl
zmax − zi

, (8.6)

the integration to recover h(t) is of the form∫
dt ∼

∫
1√

ghA (1−Bh)
dh

dt
dt, (8.7)

where A is the Atwood number, and B = 4β
3(zmax−zi) , to which there is a solution

t ∼ 1√
gAB

tan−1

(√
B

h−Bh2

(
h− 1

2B

))
+ h0. (8.8)

This simple model gives us some insight into the Rayleigh-Taylor instability when

confined on each side by a stable stratification. Its central assumption is that, where

energetically possible, fluids of different densities that are in proximity with each

other reach a well-mixed state on a time-scale much faster than the rate at which

the mixed layer grows. While this is a valid assumption on high-aspect-ratio flows,

as seen in chapter 7, its applicability to the present case does not necessarily fol-

low. Indeed, numerical evidence suggests that the profile in the mixed region is

approximately linear with ∂ρ
∂z progressively reducing, and this is inconsistent with a

well-mixed model.
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(a) t = 0s (b) t = 4s (c) t = 8s

(d) t = 12s (e) t = 16s (f) t = 20s

Figure 8.2: Experimental image sequence showing the Rayleigh-Taylor instabil-
ity confined by linear stratification. The Atwood number is A = 2× 10−3.
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8.3 8. Mixing confined by stable linear stratifications

8.3 Mixing efficiency

8.3.1 Concepts

Mixing between miscible fluids is a two-step process by which fluid parcels in prox-

imity are first stirred and then inter-diffuse. The stirring requires kinetic energy, and

the turbulence that this creates stretches filaments of each fluid so they have a large

surface area relative to their volume. The rate at which molecular diffusion takes

place is very slow, but the morphological changes brought about by the turbulence

greatly increase the interfacial area over which this happens, and so mixing is a rapid

means of inter-diffusing two fluids.

The mixing efficiency η of a process measures the effectiveness of the kinetic

energy input at increasing the interfacial area, and this helps quantify the character

of the turbulence. In a variable density incompressible system initially at rest (with

no external source of energy), mixing can only be achieved by converting potential

energy into kinetic energy, then spending that kinetic energy in some way which

gives rise to mixing. There are two ways energy can be irreversibly ‘lost’ from the

variable density system: 1) by viscous dissipation to heat, and 2) by inter-diffusion

to change the structure of the density field.

Following Winters et al. (1995) we decompose the total potential energy (Etp)

into two components, ‘Available’ and ‘Background’. Available potential energy (Eap)

is that component which is available to provide kinetic energy for mixing, and the

Background potenial energy (Ebp) is the remainder, which has already been used to

do mixing (or was already unavailable at t = 0).

A density stratification at rest which has ∂ρ
∂z ≤ 0 has no potential energy available

for mixing, hence a measure of the background potential energy in a system at any

time is the potential energy of the equivalent stable stratification - that obtained if

one could adiabatically rearrange the actual stratification ρ(z) into the stable state

ρ(z∗) with minimal potential energy. Perturbing any given stratification simply by

moving fluid parcels around from their original vertical position z to a new position

z′ does not change the background state. In an evolving flow with no mixing, ρ(z, t)

has a constant background state ρ(z∗). Should molecular mixing of fluid parcels of
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Figure 8.3: This schematic shows the various permitted pathways for energy to
be exchanged from one type to another.

differing densities occur over some time ∆t, then the combined fluid parcel has a

new, unique density, and there is no longer a bijective mapping between ρ(z, t+ ∆t)

and ρ(z∗). A new background state ρ(z∗, t + ∆t) must be created, and the Second

Law of Thermodynamics dictates that its potential energy is greater. Hence the

background state ρ(z∗, t) can be viewed as a datum of zero available energy for the

flow in its current condition ρ(z, t).

Figure 8.3 illustrates the pathways by which energy can be exchanged in a flow

over an arbitrary timespan ∆t. A suitable differential system that mirrors this

description is

∂Ei
∂t

= ε

∂Ek
∂t

= −φ− ε
∂Eap
∂t

= φ− ζ
∂Ebp
∂t

= ζ,

(8.9)

where Ei is internal energy, Ek is kinetic energy, φ is a net adiabatic energy flux per-

122



8.3 8. Mixing confined by stable linear stratifications

mitting exchange between potential and kinetic energies, ε the power lost to internal

energy by viscous dissipation, and ζ the power lost to changes in the background

state. Since ζ effectively represents the energy that has gone into molecular mix-

ing, an appropriate definition of an ‘instantaneous mixing efficiency’ would be that

proportion of the total power expended by the system which was not lost as heat,

i.e.

ηi =
ζ

ζ + ε
(8.10)

Integrating numerator and denominator separately in time, we can define an ‘aggre-

gate mixing efficiency’, which simplifies in the Rayleigh-Taylor case with zero initial

velocity field, to

ηa =
∆Ebp
∆Eap

, (8.11)

provided one adopts the convention ∆Ebp = −
∫∞

0 ζdt. Thus, solely from measure-

ment of stratifications at t = 0 and t = ∞ (which are both quiescent conditions in

the closed systems we consider here) we can determine an efficiency.

8.3.2 Everywhere-unstable systems

We define ‘everyhere-unstable systems’ to be those with an initial stratification
∂ρ
∂z ≥ 0. The simplest such case is the classic two-homogenous-layer Rayleigh-Taylor

unstable problem, and previous work Linden et al. (1994) has shown that the system

approaches a well-mixed homogenous end state. Defining our potential energies, for

convenience, in a reference frame ẑ = z− zi (where zi is the interface location), with

an arbitrary upper and lower bound H, and ρu, ρl constant upper and lower layer

densities, we have

E0
tp =

∫ 0

−H
ρugẑdẑ +

∫ H

0
ρugẑdẑ =

1
2
gH2 (ρu − ρl)

E0
bp =

∫ 0

−H
ρlgẑdẑ +

∫ H

0
ρugẑdẑ =

1
2
gH2 (ρl − ρu)

E∞bp =
∫ H

−H

ρu + ρl
2

gẑdẑ = 0

E∞tp =E∞bp .

(8.12)
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The mixing efficiency in terms of initial and final state stratifications is

ηa =
E∞bp − E0

bp(
E0
tp − E0

bp

)
−
(
E∞tp − E∞bp

)
=

0− 1
2gH

2 (ρl − ρu)(
1
2gH

2 (ρu − ρl)− 1
2gH

2 (ρl − ρu)
)
− 0

=
1
2
.

(8.13)

The above result is well-known for the classic Rayleigh-Taylor problem. Further

exploration shows that this generalises to all odd-function initial stratifications sym-

metric about an interface height zi. All such systems approach a homogenous well-

mixed end state ρb (as discussed in Dalziel et al. (2008)), so the potential energies

are as follows:

E0
tp =

∫ H

−H
(ρb + ∆ρ (ẑ)) gẑdẑ

E0
bp =

∫ H

−H
(ρb −∆ρ (ẑ)) gẑdẑ

E∞bp =
∫ H

−H
ρbgẑdẑ

E∞tp = E∞bp .

(8.14)

As before, the well-mixed state has zero energy in this reference frame, so the mixing

efficiency is independent of ρb and is thus

ηa =
E∞bp − E0

bp(
E0
tp − E0

bp

)
−
(
E∞tp − E∞bp

)
ηa =

0−
∫ H
−H −∆ρ (ẑ) gẑdẑ(∫ H

−H ∆ρ (ẑ) gẑdẑ −
∫ H
−H −∆ρ (ẑ) gẑdẑ

)
− 0

=
1
2
.

(8.15)

8.3.3 Partially unstable systems

The statement ηa = 1
2 implies that half of the potential energy released from a vari-

able density system is expended as heat by viscous dissipation, and the other half is

expended by doing molecular mixing. Both these pathways for energy to leave the

system are micro- (i.e. Kolmogorov- and Batchelor-) scale processes, and this sug-

gests that the power output (energy flux) of the system may be equipartitioned at a
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micro-scale between a flux to internal energy and a flux to background potential en-

ergy. In the case of a unit Schmidt number, where Kolmogorov and Batchelor scales

coincide, there seems no dynamical reason for the micro-scale events to preferen-

tially select one energy pathway over the other, so it is a reasonable hypothesis that

ηa = 1
2 is a general property of low Schmidt number self-similar mixing. Rayleigh-

Taylor experiments in water with salt as the stratifying agent have Schmidt number

Sc = O(1000), and there is ample evidence in the literature (e.g. Linden et al.

(1994); Dalziel et al. (2008)) that ηa = 1
2 even at these very high Schmidt numbers.

One motivation for studying partially unstable systems is to determine whether ηa

is a macro-scale property of the system, derivable from energetic considerations, or

whether it is a micro-scale property, fundamental to miscible fluids. The case where

Rayleigh-Taylor instability is confined between stable stratifications is investigated

in the following analysis.

The relative buoyancy of fluid parcels places a bound on the extent of inter-

penetrating fluid above and below the initial interface. In the convenient, interface-

centred reference frame, this neutral buoyancy height is

zn =
ρu − ρl
β

, (8.16)

and fluid motion is restricted to the region −zn < ẑ < zn. As with everywhere

unstable systems, a well-mixed final state indicates completion of the mixing process.

Using the well-mixed model proposed in §8.2 to predict the growth profile of the
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system, we can calculate an aggregate mixing efficiency. The potential energies are

E0
tp =

∫ 0

−zn
(ρl − βẑ) gẑdẑ +

∫ zn

0
(ρu − βẑ) gẑdẑ

=
ρu − ρl

2
gz2
n −

2
3
βgz3

n

E0
bp =

∫ zn

−zn

(
ρu + ρl

2
− ρu − ρl

2
ẑ

zn

)
gẑdẑ

=− ρu − ρl
3

gz2
n

E∞tp =
∫ − zn

2

−zn
(ρl − βẑ) gẑdẑ+∫ zn

2

− zn
2

ρu + ρl
2

gẑdẑ+∫ zn

zn
2

(ρu − βẑ) gẑdẑ

=
3
8

(ρu − ρl) gz2
n −

2
3

(ρu − ρl)βg
7
8
ẑ3

E∞bp =E∞tp ,

(8.17)

and noting equation 8.16, the aggregrate mixing efficiency is

ηa =

(
3
8 − 14

24

)
+ 1

3(
1
2 − 2

3

)
+ 1

3

=
3
4
. (8.18)

Clearly it is energetically possible to obtain a mixing efficiency greater than 1
2 , though

it is not automatic that a real fluid will evolve to a stratification that gives rise to

the maximum mixing efficiency. Given that the eddy turnover and interfacial growth

time-scales are not well separated and the available energy is finite, it is plausible

that the unstable region does not become perfectly well-mixed in the final state, and

instead becomes stably stratified with some gradient γ. To examine this case we

generalise the end state potential energy, introducing a parameter θ to denote the

height of maximum inter-penetration as a proportion of zn:

E∞tp =
∫ −θzn
−zn

(ρl − βẑ) gẑdẑ+∫ θzn

−θzn

ρu + ρl
2

gẑdẑ+∫ zn

θzn

(
ρu + ρl

2
− (ρu − ρl)

(
θ − 1

2

)
θzn

ẑ

)
gẑdẑ

= (ρu − ρl) gz2
n

(
1− θ

2
− 2

3
(
1− θ3

)
− 2

3
θ2

(
θ − 1

2

))
.

(8.19)
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This gives a mixing efficiency

ηa = 1− θ2 = 1− 1

4
(

1− γ
β

)2 , (8.20)

for non-zero initial stratification gradient β, and subject to the condition θ ≥ 1
2 (for

end-state static stability). With this insight, it is instructive to review the growth

law in §8.2, since it is now evident that assuming a uniformly well-mixed mixing

region by construction fixes the value of θ arbitrarily at θ = 1
2 . This anomaly can

be resolved by noting that the assumed density gradient profile in the mixed region

can be set arbitrarily, and could coincide with the final stratification gradient γ. In

this case the energy exchange calculation would then include a transformed gradient

β + γ, which yields an h(t) of the same form.

8.4 Comparison with simulation and experimental en-

semble

8.4.1 Scalar transport

Fluorescein dye experiments were conducted to examine the Rayleigh-Taylor insta-

bility when confined between linear stratifications, with the dye present in uniform

concentration throughout the lower layer, irrespective of the initial local density.

The migration of this dye upwards due to Rayleigh-Taylor interpenetration is a use-

ful diagnostic to observe the instability growth profile. The theoretical prediction of

§8.2 is cross-plotted with the experimental ensemble and corresponding simulation,

as shown in figure 8.4. The adjustable parameters in the theoretical model are the

virtual time-origin, the time-scale constant (akin to the growth rate constant α in the

classic Rayleigh-Taylor case), and the end-state penetration height θH (in the figure

θ = 1√
2
, corresponding to ηa = 1

2). For visual guidance, h = αAgt2 is plotted with

α = 0.05, A = 1.5× 10−3 and at early time, the predicted growth from the stratified

model is indistinguishable from that for homogenous layers. As the Rayleigh-Taylor

instability grows into the stratification, the effective Atwood number is reduced, so

one would expect the growth to diverge from quadratic. Indeed, this is observed in
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the experiments: the mean of the ensemble matches the theoretical profile in the

phase where it is approximately linear.

The limitations of a well-mixed model are seen when the instability reaches its

eventual penetration height θH. Each experiment exhibits a tendency to over-shoot

and oscillate around θH. Much of the oscillation is likely to have been caused by a

phase locking between the speed of barrier removal and the phase velocity of internal

waves in the stratification, and so their strength could be expected to vary somewhat

between experiments. The penetration height varies somewhat between experiments

in the ensemble, even after taking into account oscillations arising from the internal

waves. The cause is experimental error in the height to which the lower half of the

tank was filled (a small excess above the barrier is needed to prevent air bubbles from

forming on its upper surface). When stratifying from the bottom, the excess slightly

shifts the density profile to have a larger ρl, thus adjusting the Atwood number and

the penetration height.

The ILES simulation makes some questionable predictions about the internal

dynamics of the flow. Regions that appear to be quiescent in the experiment (i.e.

those above and below the mixing zone) have a small amount of kinetic energy in the

simulation. Mixing takes place across the (evolving) boundary between dyed fluid

and undyed fluid and so unlike the experiment, the penetration limit is not clearly

defined. The reason for this apparently spurious mixing is the way in which the

scalar transport is modelled. Four tracers were used, two with an associated density

ρu and two with ρl, to correctly form the initial stratification as a suitably volume-

weighted sum of tracer concentrations, and meanwhile distinguish between (lower

layer) dyed and (upper layer) un-dyed fluid. However, once the instability develops,

dyed ρu tracer, for instance, is in immediate proximity (inside a numerical control

volume) with undyed ρu tracer, and there is no dynamical forcing which prevents the

two tracers from swapping roles. Thus it takes an arbitrarily small kinetic energy to

transport dyed tracer far into the undyed region. For this reason the simulated dye

region does not have a sharp boundary, and the threshold used as demarcation for

the dyed region to obtain h(t), has been selected to identify the point of maximum

vertical dye gradient.
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Figure 8.4: Rayleigh-Taylor growth h (t) evolving from an unstable interface
sitting between two stable linear stratifications, theoretical and numerical pre-
dictions compared with an experimental ensemble.

Except during the initial Rayleigh-Taylor growth phase, the simulation does not

follow the experimental/theoretical trajectory for h(t); once the stratification be-

gins to impede the Rayleigh-Taylor instability, the simulated growth rate is signifi-

cantly below experimental expectations. Since long wavelength modes in the initial

perturbation spectrum gather increasing importance with time (see §4.2.3), it was

conjectured that the ‘idealised’ random amplitude, random phase initial conditions

used elsewhere in this thesis should be modified to include a bias to towards high

amplitudes at low wavenumbers in order to better match the experimental initial

conditions. However, when tested, neither the eddy size nor the growth rate seemed

sensitive to low wavenumbers in the initial condition. This suggests that the ILES

methodology itself is not adequately capturing the fluid processes in stably stratified

fluids.

Among the many distingushing factors between the current low-aspect-ratio

stratified case and the high-aspect-ratio stratified case detailed in chapter 7 where

ILES performs remarkably well, a poor separation of time-scales in the problem

stands out as an obvious feature. The Brünt-Vaisala frequency associated with the

stratification may be acting as a constraint on the eddy turnover frequency, so as

length- and time-scales grow in the Rayleigh-Taylor instability, they reach a limit
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imposed by the stratification, rather than by geometry as in chapter 7. A constraint

on the eddy size would imply lturb → const. and once again this would lead to a

growth behaviour where h scales as a rational power of t. Once the stratification

impedes the Rayleigh-Taylor instability, the ILES calculated h(t) appears to have

this functional form.

As is clear in figure 8.4, the experiment does not have the same functional form,

and it remains unclear what modelling assumptions embedded in ILES reduce the

quality of predictions in this flow. We know from previous work of Turner (1968) that

there is a strong Schmidt number dependence on the erosion of stable interfaces, and

by design ILES does not model viscous effects explicitly, and therefore cannot support

Schmidt numbers except implicitly at O(1). It seems plausible that this modelling

omission might ultimately be responsible for predicting a lower growth rate than

observed in experiment. Unfortunately, testing this assertion in the current system

would require direct numerical simulation at a resolution not currently feasible.

8.4.2 Mixing efficiency

Examining the energetics of the stratification-confined Rayleigh-Taylor problem offers

valuable insight into the system dynamics, and helps establish the extent to which

ILES modelling is useful in such situations. The simulation presented in §8.4.1

used four transported scalars to discriminate between upper and lower layer fluid

and high and low density; unfortunately, although the high order advection scheme

is exactly monotonic for each individual tracer, the volume-weighted sum of more

than two tracers is not necessarily monotonic, and detailed measurements based on

the density field are sensitive to such errors. To study the system energetics new

MOBILE simulations were performed, again initialised to match the experimental

ensemble with an Atwood number A = 1.5×10−3, but using only two scalar fields to

represent density and hence removing the possibility of monotonicity violation. The

beginning and end state density profiles are plotted in figure 8.5. The experimental

density values in this figure come from a vertical traverse of the tank by a probe. The

probe has a metallic outer surface and inner core, separated by insulating material

and the conducting path is from the outer surface through the water around the
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Figure 8.5: Initial and final stratifications for an experiment with a stratification-
confined Rayleigh-Taylor instability, compared with equivalent simulation and
theoretical end-state gradients.

probe tip to the inner core. The resistivity of the conducting path is calibrated

against salt concentration and therefore measures density.

Quite clearly, although the initial conditions are very similar (even accounting

for some uncertainties in the conductivity measurements and some leakage from the

tank), the end state profile from the simulation does not match the experiment well.

Given equation 8.20, we would expect there to be a corresponding discrepancy in

the aggregate mixing efficiency. Indeed, integrating the potential energies directly,

the simulation achieves ηa = 0.735 against the experiment ηa = 0.490, with a dis-

cretisation error in both cases of approximately ±0.002. It would appear that the

simulation is very close to achieving the maximum mixing efficiency that is energet-

ically possible in this configuration (ηa = 0.75 for a well-mixed end state). The real

fluid on the other hand is very close to achieving equidistribution of energy flux into

molecular mixing and viscous dissipation (ηa = 0.5), as hypothesised in §8.3.3. While

the experimental results exhibit a curvature which prevents them closely matching

the theoretical gradient, assuming a mixing efficiency of ηa = 0.5 leads to accurate

predictions of the upper and lower boundaries of the mixing region. This is sig-

nificant, since it offers a good estimate of the height across the initial interface to

which a scalar is transported in this system, a parameter which remained free in the
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well-mixed growth model of §8.2, and this corresponds well with the experimental

evidence in figure 8.4.

While it is clear that simulation is attracted to a maximum mixing efficiency

relaxation of the system and the real fluid is not, it remains instructive to examine

how energy is passed around in the simulated system, particularly since the data

extraction is trivial. The distribution of energy is shown in figure 8.6, where the ‘zero-

energy’ datum for potential energies is taken as the initial state background, and the

scale is normalised by the initial available potential energy. The kinetic energy rises

to a peak by 20s and takes a much longer time to decay. Although most of the

available energy (Eap +Ek) is spent over the first 60s, internal waves are induced on

the boundary between un-mixed stable stratification and the mixed zone, and these

exchange some residual kinetic and available potential energy. Energy contained in

internal waves is not efficiently removed by shear or creation of background potential

energy, so they last for considerable time. These waves are thought to be caused by

imperfect statistical distribution (in a finite-sized box) of initial random amplitude,

random phase perturbations, leading to turbulence which is not perfectly self-similar.

Internal waves are also noticeable in the experimental context due to initialisation

effects (see discussion in §8.4.1), but in the simulations these waves are much less

energetic.

The available energy clearly is spent in two ways, (1) raising the background

potential, and (2) converting to fluid internal energy by viscous, or here in the case

of an ILES simulation, numerical dissipation. The aggregate loss of total potential

energy, assuming there is no residual kinetic energy, equates to the gain of internal

energy. Thus the aggregrate mixing efficiency can be read off the graph directly.

To shed some light on the processes that give rise to the aggregate quantities,

we now examine the transient re-distribution of energy. The model equations 8.9

describe the system energetics, and figure 8.7 plots as functions of time the various

terms in these equations. The energy fluxes ε, φ and ζ are labelled ‘Dissipation’, ‘Ex-

change’ and ‘Background’ respectively; labels for ∂Ek
∂t and ∂Eap

∂t are self-explanatory.

The vertical scale uses the same normalised units as figure 8.6.

The peak in available potential energy release occurs at about t = 5s, and corre-
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Figure 8.6: Time evolution of energy distribution in a stratification-confined
simulation.

sponds, unsurprisingly, to the maximum growth rate of the instability (see figure 8.4).

Equations 8.9 show that available potential energy is released into an net exchange

flux φ and flux to background ζ. From figure 8.7(a) it is clear that the exchange

flux (whose sign is negative simply by the chosen sign convention in equations 8.9)

is very much smaller than the flux to background. Integrated over time, the flux

to background is almost exactly three times larger than the exchange flux, giving

a mixing efficiency of ηa ≈ 0.75, but the graphs show that the flux to background

(the proxy for molecular mixing) reaches a much higher peak when the instability

growth rate is highest, whereas the exchange flux is more stable over time. This

suggests that the mixing efficiency is greatest during the instability acceleration,

and reduces when the stratification begins to impede the instability growth. The

exchange flux to kinetic energy, φ, is a small proportion of the overall energy release,

and surprisingly, it almost exactly balances the flux from kinetic to internal energy,

ε. The kinetic energy in the system at any one time is therefore very low relative to

the potential energy released, and it appears that the system is converting only just

sufficient potential energy into kinetic to perpetuate the instability.

Although the flow of causality is not clear, the combination of low kinetic en-

ergy and a constrained eddy size may explain the unusually high values of mixing
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Figure 8.7: Time evolution of energy fluxes during (a) a stratification-confined
simulation, and (b) a homogenous-layer simulation.

efficiency predicted by ILES. Consider the converse: if there were a higher level of

kinetic energy in a Rayleigh-Taylor flow, there would be a greater likelihood of large

eddies overturning fluid in bulk to reach a stable, low available energy state, without

individual fluid parcels having had the chance to mix. This scenario is self-sustaining,

since larger eddies would penetrate further into the quiescent region and unlock po-

tential energy even more rapidly. Minimising the kinetic energy, whether or not this

is a consequence of a constraint on eddy size, increases the mixing efficiency.

It is instructive to compare the energy fluxes calculated for the stratification-

confined Rayleigh-Taylor instability shown in figure 8.7(a) with the equivalent diag-

nostic for the homogenous-layer Rayleigh-Taylor instability shown in figure 8.7(b),

since it is generally accepted that ILES performs well on this problem. There are

many important qualitative differences between the energetic characteristics of the

two cases. Firstly, the flux to background and the dissipation flux almost exactly

overlie one another in the homogenous-layer case, making ηa → 0.5 inevitable. Sec-

ondly, also in this case, the exchange flux is a large proportion (> 50%) of the

released available potential energy, and more of this exchange remains as kinetic en-

ergy in the system rather than being quickly dissipated. Thirdly, and perhaps most

strikingly, the flux of available potential energy being released during the acceler-
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ating growth phase is much lower in the homogenous-layer simulation than in the

stratification-confined simulation. Given that so much energy is needed to initiate

the instability, this suggests that the stratification strongly inhibits the instability

growth from t = 0, and this is certainly not observed in the experiment. It is also

notable that the energy released does not end up predominantly as kinetic energy, so

by equations 8.9 the only other possible pathway for this energy is into background

potential energy, and one would therefore expect the instantaneous mixing efficiency

to be very high.

The instantaneous mixing efficiency ηi is a useful measure to show how effective

time-local processes are at doing mixing, but this does not indicate the relative

contribution of any phase of the process to the overall mixing efficiency, because it

does not account for fluctuations in the available energy with time. A ‘cumulative

mixing efficiency’,

ηc (t) =

∫ t
0 ζ
(
t̂
)
dt̂∫ t

0 ζ
(
t̂
)

+ ε
(
t̂
)
dt̂
, (8.21)

which interpolates between the instantaneous measure at early time to the aggregate

measure at late time, satisfies this requirement. The simulations show ηi = ηc = 1

at early time (see figure 8.8), and this is due to the intial conditions having a pertur-

bation in density only. An infintesimal advection of density due to buoyancy gives

rise to ‘mixing’ across numerical cell boundaries with there being zero or negligible

kinetic energy present to begin with. Thus no dissipation can occur, and the process

is nominally 100% efficient. In the experiments a velocity perturbation is induced by

the barrier, dissipation will begin immediately, and ηi = 0.5 is a more likely starting

point. Indeed in previous experimental work by Holford et al. (2003) this has been

shown to be the case.

To make some progress in understanding why ILES does not perform well on the

stratification-confined Rayleigh-Taylor problem, the time evolution of the mixing effi-

ciency both for this case and the classic two-homogenous-layer case are cross-plotted

in figure 8.8. In both cases the simulated system relaxes towards maximum mixing

efficiency, yielding an aggregate values ηa = 0.735 and ηa = 0.463 respectively. The

real fluid also approaches maximum mixing efficiency in the two-layer case, as shown

in Holford et al. (2001). For completeness, a single linear unstable stratification
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Figure 8.8: Time evolution of instantaneous and cumulative mixing efficiency for
both homogenous-layer and stratification-confined Rayleigh-Taylor instability.
The Atwood number of the interface is common to both simulations.

perturbed in the middle was also simulated, as a simple case of the kind considered

in §8.3.2, and once again the mixing efficiency approaches the maximum possible,

with ηa = 0.468. The instantaneous mixing efficiency appears to pass through two

phases: a Rayleigh-Taylor growth phase and a late-time decay phase.

In both homogenous-layer and stratification-confined ηi hovers between 0.3 and

0.4 at late time (t > 60s), and this corresponds in time to the form of self-similar

mixing we would expect for well-developed Rayleigh-Taylor instability in a box. It

remains unclear why the mixing efficiency is not closer to 0.5 at this late stage, but

the magnitude of the energy fluxes ζ and ε decay to almost 0 after t = 60s so the

mixing in this phase contributes little to the cumulative efficiency.

The mixing efficiencies ηi differ markedly between the two cases during the

Rayleigh-Taylor growth phase (t < 30s), and this is very surprising since experi-

ments confirm that the Rayleigh-Taylor growth is initially only weakly affected by

the stratification. Given that ηa ≈ 0.5 in experiments of both homogenous-layer

and stratification-confined Rayleigh-Taylor instability, it seems likely that the dis-

crepancy in ILES simulations is a modelling error. The high instantaneous mixing

efficiency in the stratified case suggests that inadequate kinetic energy is present in

the system and therefore dissipation is under-predicted. Abnormally low kinetic en-
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ergy is consistent with a reduced overall growth rate, reduced turbulent length scales,

and visual inspection of the bubble sizes compared with the two-homogenous-layer

case.

8.5 Summary

This chapter has used a case study of Rayleigh-Taylor instability confined by stable

stratifications above and below the unstable interface to develop our understanding

of the mixing process in confined Rayleigh-Taylor instability, and in particular its

efficiency. A model was derived to predict the instability growth h(t), assuming that

the interfacial region becomes well mixed on a much faster time-scale than its over-

all growth. The concept of mixing efficiency was developed from first principles by

identifying the allowable energy pathways in variable density systems. Three defini-

tions of mixing efficiency were adopted - instantaneous, cumulative, and aggregate.

The aggregate mixing efficiency of the classic two-homogenous-layer Rayleigh-Taylor

system was calculated from the system initial and final states as ηa = 0.5; this result

was shown to generalise to an arbitrary antisymmetric initial density profile, and

simulations closely approach this value. It was hypothesised that variable density

mixing in general will tend towards ηi = 0.5 since this indicates that there is no

preference at a molecular level for energy to be channeled into molecular mixing

over viscous dissipation. In the stratification-confined case, it was shown to be ener-

getically possible to achieve a mixing efficiency of ηa = 0.75, yet experimental results

clearly show that the mixing efficiency remains close to ηa = 0.5. Using this phe-

nomenological evidence, the height to which scalars are transported in the interfacial

growth model is no longer a free parameter. Unfortunately, the ILES simulations of

the system do not relax in the same way as the real fluid, and they tend towards

maximum mixing efficiency. The late time behaviour of ILES is reminiscent of the

tall tube simulations and experiments, and suggests that the turbulent length scale

lturb does not scale with the height of the mixed region, as one would expect where

there is no geometric confinement.
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Chapter 9

Mixing confined by a stable

density interface

9.1 Introduction

Confinement of Rayleigh-Taylor instability growth has so far been achieved in two

ways, firstly by limiting the domain geometry, and secondly by providing a linear

stable density stratification into which the instability grows. A third technique

is examined in this chapter, where a sharp, stable density interface inhibits the

Rayleigh-Taylor growth in one direction. A three-layer configuration is envisaged,

with densities denoted ρu, ρl on either side of the unstable interface at height zi, and

ρs for the fluid beyond the stable interface at some height zs, as shown in figure 9.1.

There are several possible initial arrangements for the density, with corresponding

and distinct flow regimes that could be expected to evolve from them. For instance,

the system is globally unstable if the volume weighted mean density of ρu and ρl is

unstable against ρs. The arrangement

ρ (z, 0) = ρu, z > zi

ρ (z, 0) = ρl, zs < z < zi

ρ (z, 0) = ρs, z < zs

ρs = ρu > ρl,

(9.1)
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Figure 9.1: Diagram illustrating the initial density profile.

by this definition of stability is globally stable, and is studied in detail in this chapter.

In the Boussinesq limit, the alternative configuration ρs = ρl < ρu, with ρs above

ρu is dynamically equivalent, but practical considerations favoured the first config-

uration. This mixed unstable-stable system is rich with interesting features and

has previously been explored experimentally and theoretically in Jacobs & Dalziel

(2005). This chapter extends this work with molecular mixing experiments using the

technique outlined in chapter 5, and compares with analogous synthetic diagnostics

from ILES simulations.

9.2 Previous theoretical work

The same approach to an energy budget analysis as §4.2.4 was taken in Jacobs &

Dalziel (2005) to obtain a late-time growth law for the current case. One would

expect flow outside the mixing region to be irrotational, and at early times, when

the height of the Rayleigh-Taylor instability growth is small compared with the dis-

tance to the stable interface, the velocity potential in the irrotational region should
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be independent of the density jump across the stable interface. Hence the stable

interface should have negligible influence on the growth of the instability at early

times. However, at late times this is unlikely to be the case, and the resulting scaling

is re-iterated below.

The energy balance equation 4.17, as before, can be written in the form

g

∫ (
ρ0 − ρ

)
zdz =

1
2
ρb

∫
u2dz, (9.2)

where ρ0 = ρ(z, 0). For an initial configuration as equation 9.1, the expression on

the left can be evaluated as a definite integral in a box of infinite depth,∫ ∞
−∞

(
ρs,u − ρ

)
zdz −

∫ zi

zs

(ρu − ρl) zdz. (9.3)

Provided the density profile is self-similar then there is a natural scaling for the first

integral,

ρs,u − ρ = ρ̂ r (ζ)

u
2 = û2s (ζ) ,

(9.4)

except in this instance the similarity variable ζ must account for the gradual shift

of the centroid zc of the density and kinetic energy distributions that occur as the

stable interface becomes influential and the Rayleigh-Taylor instability evolves asym-

metrically. The definition

ζ =
z − zc (t)
h (t)

(9.5)

is used. By considering mass conservation, the second integral in expression 9.3 can

also be expressed in terms of r (ζ). The equality∫ ∞
−∞

(
ρs,u − ρ

)
dz =

∫ ∞
−∞

(ρs,u − ρ0) dz (9.6)

is simply a re-statement of mass conservation, and noting that∫ ∞
−∞

(
ρs,u − ρ

)
dz = ρ̂h

∫ ∞
−∞

r (ζ) dζ

= (ρu − ρl) ∆z,
(9.7)

and ∫ zi

zs

(ρu − ρl) zdz =
1
2

(ρu − ρl) ∆z2, (9.8)
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where ∆z = zi− zs and the integrals are evaluated in a transformed reference frame

ẑ = z − zi, the left-hand side of equation 9.2 becomes

ρ̂gh

∫ ∞
−∞

r (ζ)
(
ζ +

zc
h
− ∆z

2h

)
dζ. (9.9)

We expect the ratio zc
h to be constant if the density and kinetic energy distributions

are indeed self-similar, and at late time ∆z
h → 0, so the growth rate scaling is identical

to equation 4.23, namely

ρ̂gh ∼ 1
2

(ρu + ρl)
(
dh

dt

)2

. (9.10)

However, from equation 9.7, we know that

ρ̂h

∫
r (ζ) dζ = (ρu − ρl) ∆z, (9.11)

so the scaling, instead of integrating to a t2 profile, becomes linear in time,

ρu − ρl
ρu + ρl

g∆z ∼
(
dh

dt

)2

(9.12)

h ∼
√
Ag∆z t. (9.13)

Since passive scalars will also conform to this growth profile, a separation of space

and time of the form

φ = φ̂q (ζ) (9.14)

where φ represents dye-tagged fluid of density ρl, gives

φ̂h

∫ ∞
−∞

q (ζ) dζ = ∆z. (9.15)

Substituting for h, the maximum concentration φ̂ as a function of t follows

φ̂ ∼ ∆z√
Ag∆zt

. (9.16)

The above analysis is only valid if the turbulent development of the instability

produces self-similar density, passive scalar and kinetic energy profiles. Many pre-

vious studies have shown that classic two-layer Rayleigh-Taylor turbulence is indeed

self-similar once it is well developed, but since no restrictions are made on the func-

tional forms r (ζ) and s (ζ), in isolation there is no information in particular about

the penetration across the stable interface to close the system. There are numerous
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studies of grid-generated turbulence impinging on a stable interface (see Fernando

(1991) for a review) and the penetration rate ue is known to depend on Richardson

number, and nominally has the form

ue
uturb

∼ Ri−n, (9.17)

though the exponent n is in turn a function of Schmidt number. Given the qualitative

similarity between grid and Rayleigh-Taylor generated turbulence above a stable

interface, Jacobs & Dalziel (2005) went on to explore the connection. In the present

context, the length and velocity scales lturb and uturb that constitute Ri can be

derived from the above scaling, so that

Ri =
∆ρglturb
ρbu

2
turb

≈ ρ̂gh

ρb
(
dh
dt

)2 ≈ const. . (9.18)

More robust to measure experimentally than ue is its time integral he, which we

would thus expect to behave as

he ∼ hRi−n, (9.19)

and it is this equation which one would aim to correlate with experimental data.

9.3 Comparison of scalar transport and molecular mix-

ing

9.3.1 Initial observations

A Fluorescein dye PLIF experiment was conducted, firstly to validate current tech-

nique against the previously published experiments of Jacobs & Dalziel (2005), and

secondly to provide all the initialisation information for MOBILE simulations that

could be fairly compared with experiment. The incident light sheet in the following

experiments shines upwards from the bottom of the tank, and the camera orienta-

tion in this case is such that the barrier withdrawal can be observed, illustrated in

the second image of the sequence in figure 9.2. Withdrawal is sufficiently rapid that

the spatial variation in the development of the Rayleigh-Taylor instability is unim-

portant. Additionally, the stable interface provides a buoyancy force opposing any
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barrier-withdrawal induced perturbations of the fluid, and because the interface sits

just below the barrier, bulk overturning is prevented. Unlike the classic two-layer

case, the perturbation imposed by the barrier remains confined to a small region

at the extreme edge of the tank, except for low amplitude gravity waves that are

initiated by the impulse from upper layer fluid reaching the stable interface.

The unstable interface grows initially according to h = αAgt2 until the velocity

potential is significantly influenced by the stable interface. Thereafter, the insta-

bility growth is expected to slow down, since the supply of buoyant fluid to drive

the instability is, unlike the classic case, finite. Energy is also lost from the system

by doing mixing across the stable interface. Due to the inefficiency of doing work

against buoyancy, penetration across the stable interface is modest, though momen-

tum transport generated by the instability between the upper two layers grows to

become comparable with the buoyancy forcing across the stable interface, and thus

the interface itself eventually becomes highly distorted.
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(a) t = 0s (b) t = 9s

(c) t = 3s (d) t = 12s

(e) t = 6s (f) t = 15s

Figure 9.2: Middle layer scalar transport in the stable interface Rayleigh-Taylor
problem. The field of view does not include the very bottom of the lower
layer. The unstable interface Atwood number is A = 2× 10−3, and stable in-
terface Richardson number sits in the range 1.66 < Ri < 2.44.
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9.3.2 Profile self-similarity

The analysis in §9.2 is only strictly valid for self-similar density and kinetic energy

profiles, so confirming that these are reasonable assumptions is essential for further

comparison with the theory. The middle (relatively less dense) layer was impreg-

nated with dye in the Fluorescein PLIF experiment. Naturally, as the Rayleigh-

Taylor instability evolves, the dye migrates upwards into previously un-dyed fluid.

Once penetration across the stable interface is under way, dye migrates downwards

too. The efficiency of the transport mechanisms is obviously unequal, and the mean

direction of transport is upwards, dominated by the stable layer. The self-similar

form sought must eliminate this vertical time-dependency. Figure 9.3 shows horizon-

tally averaged dye concentration as a function of height, normalised by maximum

dye concentration and shifted by the vertical position of the concentration profile

centroid. The curves are taken from the region after the lower extent of the mixing

region has reached the stable interface but before the upper extent has reached the

top of the tank.

The experimental curves have some noise contamination, which, as shown in Ja-

cobs & Dalziel (2005), reduces significantly when averaged over larger ensemble of

experiments, but the profiles clearly display self-similar collapse. The simulation

does not suffer from such noise, also collapses well, and appears to predict both the

shape and position of profiles seen in the experiment. One interesting discrepancy

is the upper extent of dyed fluid (albeit at low concentration) seen in the experi-

ment exceeds that in the simulation. This is most likely to have arisen from the

well-known under-prediction of α in numerical simulation (see §5.3.2), though also

perhaps through additional energy being supplied to fluid in the experiment by re-

moval of the barrier. The scalar profile across the stable interface is, somewhat

surprisingly, very well predicted by the numerical simulation. Direct visual exami-

nation of the numerical image sequence indicates that the detailed structure is not

well captured - eddies tend to be longer-lived than in reality, but the macro-scale

trends are correct.
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Figure 9.3: Self-similar collapse of density profiles at various times, experimental
and numerical comparison.

9.3.3 Time evolution of concentration field

Having established that self-similarity of the scalar field is a reasonable working

assumption, some predictions of §9.2 are examined. Provided the scalar field is self-

similar, the horizontally averaged scalar field can be decomposed into φ = φ̂q (ζ)

where φ̂ ∼ ∆z√
Ag∆zt

. Figure 9.4 shows 1
φ̂

plotted against t for experiment and simu-

lation, with the theoretical prediction superimposed. A virtual time-origin for the

theoretical curve is admissible, since integration constants in the evaluation of h(t)

have been neglected, and this is physically consistent since self-similarity is not es-

tablished until the Rayleigh-Taylor instability has reached the stable interface.

The maximum value of concentration remains close to unity until the instability

reaches the stable interface (t = 3.5s) then gradually a self-similar form for the

profile is established and φ̂ ∼ 1
t . During the self-similar stage, experiment and

simulation are entirely consistent, and consistent with the theoretical prediction of

linearity. The gradient of the line is
√
Ag∆z
∆z , and arbitrary α-like constants have not
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Figure 9.4: Decay of maximum concentration Ĉ, plotted as an inverse quantity
to compare analytical prediction with experiment and simulation.

been used to improve the fit. When the instability reaches the top of the box, the

structure of the scalar profile changes again, and continuity requires that eventually

φ̂ tends towards a constant as remaining available energy is spent. This appears to

happen more quickly in the experiment than the simulation, and the time-evolution

of the density profile suggests that the simulation reaches an end-state that is less

well mixed than the experiment. After the instability reaches the top of the tank,

the energy in the system decays, and the ILES method seems to under-predict the

mixing in such instances. Lighter middle layer fluid congregates towards the top of

the tank leaving a stably stratified end-state, which inevitably has a higher value of

φ̂.

9.3.4 Interfacial growth

Further experiments were conducted using the Acridine-based RLIF, motivated by

an interest in identifying any qualitative differences between the structure of mixing

across the unstable interface and mixing across the stable interface. The light sheet

comes once again from the tank bottom, but in the normal transverse orientation. An

image sequence from the experiment identifying mixing between the upper (acidic)

and middle (Acridine) layer is shown in figure 9.5, and qualitatively the structure of
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the mixing is similar to classical Rayleigh-Taylor instability, with well-defined bubble

and spike structures, modal interaction and progressive growth of the dominant

length-scale. The fluid with the highest optical intensity (just over the critical volume

fraction threshold) remains biased towards the bottom of the combined upper-middle

region, which is consistent with the density profiles from the earlier experiments.

This also indicates that the mixing is highly efficient, since relatively little dense

fluid needs to fall to drive the mixing process, and that the proportion of dense

fluid from the lower, non-acidic layer entrained into the upper-middle region is fairly

small.
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(a) t = 0 (b) t = 9

(c) t = 3 (d) t = 12

(e) t = 6 (f) t = 15

Figure 9.5: Visualisation of molecular mixing across the unstable interface in
Rayleigh-Taylor instability confined asymmetrically by a stable interface. The
initial stratification and the times at which images are shown are identical to
those in figures 9.2 and 9.6.
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To quantify the entrainment across the stable interface, another experiment was

performed, this time with the lower layer acidic and the upper layer non-acidic. The

middle layer again was impregnated with Acridine. An image sequence from this

experiment is shown in figure 9.6. Immediately apparent is the layer of mixed fluid

which exists before the experiment is initiated. Whereas in the unstable case the

reagents are separated by the barrier until its removal, in the stable case mixing

occurs during the stratifying process. A sponge and polystyrene float was used to

minimise the thickness of the interface. Any possible dynamical influence of the non-

zero thickness was a concern, since vortical structures impinging on the dense lower

region might decelerate through a relatively thick interface and reduce the rate of

mixing. A series of numerical tests were performed with a variety of thicknesses and

profile shapes, each chosen carefully to maintain the same initial available potential

energy, but there was no material change to the entrainment rate.

One interesting feature of this experiment is the obvious contrast in the turbulent

structure that is visualised. Figure 9.6(c) clearly shows isolated Rayleigh-Taylor

spike structures impinging on the interface and penetrating through. Subsequent

images show how they drag lower layer fluid into the upper-middle region, in thin

filamental structures. Consistent with experiment to visualise unstable interface

mixing, very little lower layer fluid is entrained, but unlike the earlier experiment,

the dominant visible length-scale does not grow significantly with time, and the

mixed fluid remains filamental until viscous effects smear the gradients. At later

time there is a pronounced vertical variation in the structure, with ‘newly’ mixed

fluid just above the stable interface still filamental, while ‘older’ mixed fluid further

above the interface is more homogenously distributed.

150



9.3 9. Mixing confined by a stable density interface

(a) t = 0 (b) t = 9

(c) t = 3 (d) t = 12

(e) t = 6 (f) t = 15

Figure 9.6: Visualisation of molecular mixing across the stable interface in
Rayleigh-Taylor instability confined asymmetrically by this stable interface. Note
that the tank-filling process induced mixing prior to release of the unstable in-
terface and is thus identified by the diagnostic. The initial stratification and the
times at which images are shown are identical to those in figures 9.2 and 9.5.
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The erosion of stable interfaces by Rayleigh-Taylor instability has in Jacobs &

Dalziel (2005) been compared to that by grid generated turbulence, and since the

RLIF experiments yield the width of the interfaces directly, this diagnostic was used

to evaluate the performance of MOBILE on this mixing problem. To permit fair

comparison, the simulations were processed to provide a synthetic diagnostic. The

experimental light sheet was modelled by an exponential function along each light

ray

∂I

∂s
= −η(φ)I, (9.20)

where I is the light intensity field, φ is the concentration field, η(φ) is a decay

function (taken to be linear) controlling the rate of adsorption of light, and s is an

ordinate along each ray, for convenience assumed to be aligned with the vertical. The

local light intensity I(y, z) and the calibration charts of chapter 5 were then used

to calculate the Acridine spectral response, from which a green-filtered image was

constructed. This matched the experiments that were recorded using a monochrome

UNIQ camera with a green dichroic filter over the lens. Both experimental and

simulation image sequences were then processed identically to obtain the interfacial

thicknesses as functions of time.

The relationship between the growths of the interfaces is expected to be governed

by the entrainment relationship ue ∼ uRi−n with a suitably defined Richardson num-

ber. The h(t) and he(t) profiles (more robustly available from noisy data sets than

u(t) and ue(t)) are plotted in figure 9.7, and they show good agreement between sim-

ulation and experiment. Given the well-established issues with ILES mis-predicting

α, a virtual time-origin was chosen so that onset impact time for the Rayleigh-Taylor

instability reaching the stable interface was correlated with the experiment. The

early discrepancy in the stable interface case is an experimental artefact, caused by

the light sheet being reflected off the barrier, and therefore highly illuminated un-

mixed Acridine inadvertently contributes to the integral measure of he(t) at first.

This effect is of course not modelled in the simulation; the non-zero initial value in

the simulation is due to the thickness of the diffuse interface, initialised to match

the experiment, and indeed when the barrier is removed this is the level to which

the integral measure reverts.
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Figure 9.7: Integral measure of interfacial growth, comparison of experiment
and simulation.

Clearly the growth rates of both interfaces are very well predicted by MOBILE

, and after the early growth phase both are approximately linear. Linearity of h(t)

is expected from equation 9.13, but this makes no prediction about he(t). That

both functions are linear is encouraging confirmation that the entrainment relation-

ship, equation 9.17, holds true in the Rayleigh-Taylor case, since for linear h(t) the

Richardson number is approximately constant. The Richardson number obtained

by direct evaluation of equation 9.18 is Ri = 3.78, for a suitably chosen ρ̂ and h,

though this tacitly assumes that the turbulent length-scale is equal to (rather than

simply scales with) the unstable interface height h. A more robust measure is to

use equation 9.17, which yields 1.66 < Ri < 2.44 for the range 1.75 > n > 1.00, the

accepted range from experiments discussed in Fernando (1991).

9.4 Summary

This chapter has re-examined the theoretical and experimental work of Jacobs &

Dalziel (2005) and compared it to MOBILE simulations. The scaling relationships

for h(t) given by the theory require self-similarity of density and kinetic energy pro-

files is required. The evolution of the horizontally averaged middle (less dense) layer

concentration was shown (in both experimental and numerical tests) to have self-
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similar properties and thus is consistent with the requirements of the theory. A

testable prediction of the theory has been investigated, namely the evolution of the

maximum concentration, which the theory suggests follows φ̂ ∼ 1
t , and the agree-

ment is excellent. Using the new RLIF diagnostic, the growth of both stable and

unstable interfaces (in separate experiments) was visualised, revealing qualitative

differences between the spatial characters of the mixed fluid in each case. The un-

stable experiment showed length-scales growing with the Rayleigh-Taylor instability,

as one would expect; in the stable experiment the mixed fluid near the stable in-

terface has a filamental structure which does not grow in length-scale with time.

Quantitatively, an integral measure of the interfacial growth was devised so that

robust comparison of the growth rates was possible. The theory predicts linear late-

time growth for the unstable case, and by invoking an entrainment hypothesis lifted

from studies into grid generated turbulence, it was predicted in turn that the stable

interface will grow linearly too if the Richardson number is constant. Experimen-

tal and numerical evidence appear to support both of these assertions. Despite the

well-known uncertainties in predicting the rate of growth of Rayleigh-Taylor unstable

flows with numerical simulation, MOBILE appears to perform remarkably well on

this challenging test case.
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Chapter 10

Conclusions

10.1 Review

In chapter 1 a historical overview of research into Rayleigh-Taylor instability intro-

duced the topic and the three main avenues of research: modelling, experiments,

and numerical simulation, which have contributed to the field. Chapters 2, 3 and

4 provide some detail on how existing techniques in these three avenues have been

developed in this thesis for application to confined Rayleigh-Taylor instability.

Chapter 5 discussed a new experimental diagnostic technique called RLIF, which

directly visualises molecular mixing in Rayleigh-Taylor instability. Chapters 6 and

7 studied Rayleigh-Taylor instability confined by geometry in a high-aspect-ratio

domain, and this work was extended to confinement by stable linear stratification.

Chapter 8 considers the Rayleigh-Taylor instability in a low-aspect-ratio domain con-

fined on both sides by stable linear stratifications and focussed on energy transport

and mixing efficiency. Chapter 9 examined asymmetric Rayleigh-Taylor instability,

where it is confined on one side by a stable density interface. The remainder of

this chapter summarises the main ideas and results, and identifies some interesting

avenues for future work.
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10.2 Themes and ideas

This thesis has examined the interaction of miscible fluids of different densities in

various contexts where potential energy is unlocked from a system by Rayleigh-

Taylor instability. The purest form of the instability, dense fluid overlying light fluid

in free space with infinitesimal perturbations to the interface between the fluids,

is not a configuration that can be created experimentally, so historically we have

relied on a combination of technically feasible experiments and various forms of

modelling to make progress. Most previous work has focussed on understanding

how the instability grows, but this has been hampered because we only have a

limited grasp of some of the sub-processes that control the instability. One poorly-

understood process is molecular mixing, which is particularly important in miscible

fluids. The motivation for this thesis has been to enhance our understanding both

of the physics of molecular mixing, and the ways in which our models represent the

physics.

Perhaps the best way to begin studying a process is to find a way of visualising it.

In chapter 5 a new PLIF diagnostic technique, which employs a chemical indicator of

mixedness, was developed and used to examine molecular mixing in Rayleigh-Taylor

instability. Measures of molecular mixing used previously in the literature have

been found not to be robust, and an alternative measure exploiting the properties

of the new diagnostic has been proposed. Iso-surfaces of volume fraction are readily

identified using the technique, and some new insight into the form of self-similarity of

Rayleigh-Taylor instability has been uncovered. These developments led to a desire to

understand individual components of the mixing process in more detail and explore

them using other methods.

To begin decomposing the problem into more tractible components, ways to

simplify the dynamics of the instability were investigated. The one-dimensional ana-

logue of the pure instability is the high-aspect-ratio case of chapter 6, and this has

the convenient property that the eddies are laterally confined. The eddies have O(1)

aspect ratio (approximately circular) and this constrains the rate of growth of the

instability. The asymptotic behaviour of the mixing region height h follows h ∼ t
2
5 ,

compared with the h ∼ t2 one expects from the pure case. On any reasonable mea-
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sure, the high-aspect-ratio ILES simulations exactly match the experiment, and this

is surprising since numerical simulations have historically and consistently reported

significantly lower (O(50%)) values of the proportionality constant α in the pure

instabilty relation h = αAgt2. The fixed size of the eddies and slower growth rate

combine to adequately separate the turbulent eddy turnover time- and length-scales

from the mixing region growth time- and length-scales. Thus the details of the mix-

ing process, which are probably not captured accurately in the simulation, become

unimportant to the overall instability growth. In contrast, the pure instability eddy

turnover times and the range of eddy sizes scale with h, so any errors in the modelling

of eddy interactions have an O(1) effect on the estimate of instability growth.

Having ascertained that the MOBILE simulation tool performed well on the basic

high-aspect-ratio case, the geometry was extended to include a bottom reservoir,

sufficiently large that it could be regarded as an unbounded domain with fluid of

constant density. This configuration was conceived to permit study in chapter 7

of Rayleigh-Taylor instability penetrating into an initially stably stratified layer, a

state that cannot be realised experimentally in an overturned tank. As a stepping-

stone, experiments of the homogenous-layer case were compared with a hierarchy of

modelling tools. The analytical model, which yields h ∼ t 2
5 in the homogenous case,

assumes that the density profile remains self-similar, and that turbulent processes

in the mixing zone have bulk properties that resemble a diffusion equation. Thus

the density flux across the mid-plane is given by a simple relation hḣ ∼ κ, which

can be closed with Prandtl’s mixing length argument. Using the same assumptions,

a general form for the local density flux can be obtained, and this relation can be

integrated numerically. This low degree-of-freedom representation of the system sits

intermediate in complexity between the analytical, ‘zero’-dimensional model and

the three-dimensional MOBILE simulation. It allows the upper boundary condition

imposed by the top of the tank to be represented satisfactorily, and thus moves

beyond the similarity model in its predictive capability. In particular the functional

form of ρ(z, t) is calculated with extraordinary accuracy.

The behaviour of the stratified high-aspect-ratio Rayleigh-Taylor problem was ini-

tially surprising. Whereas in the homogenous case the upper edge of the mixing zone

157



10. Conclusions 10.2

(h) was diffuse and ill-defined, the edge in the stratified case was extremely sharp.

Analytical modelling of the instability growth was not especially successful since the

second length-scale associated with the stratification introduces problems with mod-

els that require self-similarity. The one-dimensional numerical model gave extremely

reliable predictions of the overall growth, and correctly predicted the sharpness of the

mixing zone edge, but some resolution-dependent artefacts associated with the sharp

edge remained. In attempting to refine the model to capture the interface dynamics,

an energy transport equation was added into the system, which could decouple the

location of production and dissipation of kinetic energy. Interestingly, allowing the

model this freedom caused the predictions of h(t) (for non-trivial parameter values)

to diverge markedly from the experimentally obtained profile. It was deduced that

production and dissipation in this system must therefore be balanced locally in time

and space.

The work on high-aspect-ratio domains demonstrated the utility of simple an-

alytical models, more general forms thereof, and ILES numerical simulations for

investigating Rayleigh-Taylor instability. The rationale for studying this laterally

confined case was to establish a benchmark problem tractable with a range of mod-

elling tools, and then re-introduce complexity to explore the limitations of these

models. In particular, ILES simulations are generally thought to perform poorly

on mixing problems that include stable density gradients, and chapter 8 attempts

unravel these issues. The configuration chosen was a Rayleigh-Taylor unstable inter-

face sandwiched between two stable linear stratifications of the same gradient, in a

low-aspect-ratio domain.

The instability grows as h ∼ t2 initially, before decelerating as the supply of

potential energy is exhausted, and asymptotes towards a steady state. Using the

exchange of potential and kinetic energy, a scaling for h(t) was found analytically.

However, the model embeds an assumption that the mixing region is uniformly well-

mixed, and by construction this sets a well-defined end height h(∞). Intuition and

simulation suggest the mixing region is not well mixed, and experiments confirm

that hexpt(∞) > hmodel(∞) by a substantial margin. Further investigation showed

that the height to which the instability reaches in this system is a function of the
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‘aggregate mixing efficiency’, a parameter which describes how spent energy leaves

the system at a micro-scale. Energy either leaves as heat by dissipation, or by

changing the structure of the density field by doing mixing, and thereby changing

its base state, or ‘background’ potential energy.

It is well established that the mixing efficiency in Rayleigh-Taylor flows is very

close to 50%, i.e. equipartition of energy flux to heat and to mixing. In pure

Rayleigh-Taylor instability this is the maximum value that is energetically possible,

and indeed no other fluid process is known to generate a higher mixing efficiency.

The unusual feature of the stratification-confined Rayleigh-Taylor instability is that

it is energetically possible to have a higher mixing efficiency (up to 75%), and yet

experimental evidence shows that the system still relaxes to 50%. Nothing phe-

nomenological suggests equipartition of spent energy is unlikely, and it appears that

this may be a fundamental feature of variable density turbulent flow. This of course

raises the question of justifying the lower mixing efficiencies reported from other

variable density fluid processes, but these are processes where turbulence in the sys-

tem is not predominantly localised with density gradients. For instance, a system

where turbulence is generated by an oscillating grid located beneath a stable density

interface has a very low mixing efficiency since only a very small proportion of the

turbulence reaches the interface to do mixing between the two fluids.

The ILES simulations in chapter 8 did not behave like the real fluid, but instead

relaxed towards the maximum mixing efficiency solution of 75%. Mass and velocity

diffusion are not explicitly calculated with the ILES method, so the apparent mixing

and dissipation are created solely by the numerical scheme. The scheme is common to

both mass and velocity advection so the numerical Schmidt number is O(1). The real

fluid has a much higher Schmidt number (O(1000)), and so the scales at which spent

energy is dissipated are much larger than those associated with molecular diffusion

of scalars. Despite this huge separation of scales, the real fluid has an equipartition

of spent energy, so it especially interesting that energy transport in ILES, where by

construction there is no such separation of scales, is incorrectly biased towards scalar

diffusion rather than dissipation.

The final method of confinement, examined in chapter 9 was a stable density
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interface sitting beneath a Rayleigh-Taylor unstable interface. Initially uninhibited

by the lower interface, the instability grows as h ∼ t2 but at late time this decelerates

to h ∼ t, since there is a finite volume of buoyant fluid driving the instability.

While mixing and scalar entrainment across the stable interface in this instance is

induced by Rayleigh-Taylor instability, the underlying behaviour is common to the

well-studied problem where the turbulence is generated by an oscillating grid. The

theoretical relations that underlie this problem are shown in the Rayleigh-Taylor

context to continue to work well. Experiments were conducted both using standard

and chemically reacting LIF diagnostic techniques. By using dye calibration data,

ILES simulations were processed to resemble the experimental videos, and these

fair comparisons indicate that ILES is a surprisingly useful tool for understanding

this fluid system, despite the widely-held doubts about the method’s performance in

stably stratified flows.

10.3 Remarks on future directions

This thesis has unearthed several fascinating challenges to our understanding of vari-

able density mixing processes, and has attempted to answer some, firstly by pruning

the complexity of the problem down to tractable analogues, and then progressively

re-introducing complexity to establish the boundaries of our modelling capability.

Inevitably, many questions remain ignored, or are incompletely answered, so the

following is a merely a list of avenues which presently appear ripe for further inves-

tigation.

At the heart of the scientific method is recurrent benchmarking against real-

ity, and the level of detail available from experiments in many ways determines the

scope for progress. The reactive LIF diagnostic technique has been hampered by

inadequate levels of incident light (of the correct wavelength for excitation), and

the related problem of noise thresholds in the camera equipment. The power of the

technique is that it simultaneously yields full range scalar concentration information

and a low-noise demarcation of an individual contour, yet with existing equipment

it was not possible to exploit this capability. A logical next step is to deploy laser

technology for illumination, and upgrade the camera. Only recently has high res-
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olution, high speed, high sensitivity video technology become relatively affordable.

This would permit much more detailed micro-scale investigation of the structures

present in the mixing process and provide some confirmation (or otherwise) of ac-

cepted wisdom which we have hitherto only obtained from numerical simulation and

phenomenological arguments.

At a more mundane level, the measurement and production of linear stratifi-

cations particularly important in chapter 8, was fraught with practical problems.

Despite prior thought and immense care, consistent linear stratifications could not

be produced, due to shallow layer mixing at an early stage of filling, mixing induced

by shutting the barrier, fatigue of the flexible pipe in the peristaltic pump altering

flow rates, tank leakage through the barrier seal, and minor issues with overfilling to

offset any future leakage. Technology now exists to electronically control the strat-

ifying process, and it would be perfectly possible to calibrate out the influence of

these undesirable artefacts.

Measurement of the initial stratification in particular was extremely difficult,

since the motorised conductivity probe had been designed not to traverse the full

height of a tank: at the top the probe could only be started from a position part-

way submerged, both to maintain electrical conductivity around its insulating tip

and to siphon water through its interior. At the other end the probe could easily

be damaged by being driven into a hard surface, and with every traverse required

precautionary recalibration. A minor redesign of the probe, and a programmable

linear stepper motor to drive it would resolve these issues.

While none of the above would materially change the results reported herein,

these are obvious refinements that one would insist upon if undertaking similar work

in future. A much less straightforward refinement is a replacement tank for the low-

aspect-ratio Rayleigh-Taylor instability. The inherent flaw with the current design

is the interaction between barrier removal and the instability, which leads to large-

scale bulk motion that is not predominantly Rayleigh-Taylor driven. A long tank,

with a barrier removed electrically at a steady velocity, would provide adequate

separation of the instability and barrier removal timescales, would not exhibit the

overturning circulation, and barrier end effects would become insignificant. The

161



10. Conclusions 10.3

Rayleigh-Taylor instability would therefore be predominantly spatially rather than

temporally evolving, and one would envisage that this statistically steady scenario

would greatly improve the reliability of the experimental measurements. Funding

for this design concept has been sought.

All of the work in this thesis considers scalar transport in Rayleigh-Taylor driven

flows, but our intrinsic understanding of variable density mixing processes will only

move forward substantially when we have techniques that provide simultaneous ve-

locity and scalar information. There are several ways one might achieve this aim -

particle image velocimetry combined with PLIF is an obvious first step. Stereoscopic

imaging is a natural progression to obtain out-of-plane velocity information; conceiv-

ably PLIF could be extended into the third dimension too by oscillating the position

of the light sheet plane. Perhaps a more revealing approach might be to derive the

velocity information from the evolution of a scalar field. There are existing methods

in the computer graphics literature that use scalar gradient information to infer a

velocity field (e.g. used in digital speed cameras), but the problem is inherently

ill-posed and a regularisation suitable for fluid mechanics applications is non-trivial.

Kalman filtering, a technique used to reconcile numerical weather predictions with

observational data is one popular method. Another perspective is to regard the

search for a velocity field evolution consistent with a given scalar field evolution as a

search for the initial condition of the system, and tackling this inverse problem could

lead to major leaps in our understanding of mixing. Funding has also been sought

to pursue these ideas.

However important a contribution experiments make to our knowledge-base,

modelling is the route by which that knowledge develops into understanding. Nu-

merical simulation is the pinnacle of our modelling capability, yet frequently it makes

incorrect predictions that we cannot explain. Chapter 8 revealed from macro-scale

measurements what appears to be a fundamental truth about variable density mixing

at a micro-scale, namely the equipartition of spent energy into mixing and dissipa-

tion, yet the numerical simulations do not replicate this behaviour. While a complete

understanding of energy transport in these flows remains elusive, it would seem a

potentially fruitful avenue of study to build such fundamental laws into numerical
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codes and evaluate whether they then better represent the macro-scale behaviour.

In particular the ILES method embeds some questionable assumptions about

the micro-scale dynamics. Energy leaves the numerical system most rapidly when

velocity gradients in the flow direction are steep, but in the physical system, trans-

verse shear is primarily responsible for energy loss. In a flow whose macroscopic

behaviour is close to isotropic, these discrepancies may be masked, which might ex-

plain the relative success of ILES for Rayleigh-Taylor flows and its relatively poor

performance in some other cases. It would be a worthwhile exercise to manipu-

late the numerical scheme to respond isotropically to steep gradients and compare

macro-scale behaviour.

In ILES flows, fluids mix by cell averaging at each timestep. Momentum is

treated in a similar way, and therefore the effective Schmidt number is O(1). In

this special case, both dissipation and mixing occur at the grid scale. If a small

explicit viscosity were introduced to raise the Schmidt number, a distinct Batchelor

scale would be created and it is not immediately clear whether the computed mixing

efficiency would change. This might provide some insight into the (errant) behaviour

of the ILES method in the doubly stratified case discussed in chapter 8.

The MOBILE code used throughout this thesis has exclusively used the ILES

method, but in light of the above suggestions, several ways in which the numeri-

cal algorithm should be modified have been identified. From a physical standpoint,

simulating the long tank experiment requires a larger computer (exploiting the ex-

isting parallelisation) and it would be desirable to have an adaptive mesh refinement

capability to optimally allocate computational resource.

One piece of work in progress is an algorithmic modification that incorporates a

solid phase with a ‘Volume-of-Fluid’ approach, allowing withdrawal of the barrier,

and other arbitrary moving solid bodies to be explicitly modelled. This would have

improved the correlation between experiment and simulation in the present work,

particularly in the classic Rayleigh-Taylor case since the bulk overturning of the fluid

forms a significant component of the system development. Ensuring net volume con-

servation with more than two scalars is a well-known issue for non-linear numerical

schemes, and in an incompressible pressure projection code, this is an especially
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important property to maintain. Some work is yet required to achieve this in the

general case.

10.4 Final thoughts

The above remarks on possible avenues for further work are in some sense pedagogical

developments of work already completed. Technology improves and becomes more

affordable, so incremental (that is not to say insubstantial) progress can made in

clearing a backlog of open questions. There are however wider scientific questions

that are inspired by, rather than following from the work herein. Do the same

relationships hold in mixing between non-Newtonian fluids? What happens to the

equipartition of spent energy when surface energy begins to play a role? Does an

emulsion have the same energetic behaviour at a macro-scale as a miscible mixture?

If a water column is stably stratified in salt but unstably stratified in temperature, is

there sufficient non-linearity in the mixing to self-sustain Rayleigh-Taylor instability?

If we could resolve the Batchelor scale, would our cartoon-like intuition of turbulent

structures still hold? Since equipartition of spent energy appears to exist at non-unity

Schmidt numbers, does it follow that available energy distribution is scale-invariant

in the inertial range? These are questions that are easy to pose, but some may take

a more than a lifetime to answer.

164



Appendix A

Validation exercises on MOBILE

A.1 Introduction

This appendix contains details of several verification and validation test problems for

the code used elsewhere in this thesis. The aim of these tests is firstly to verify that

the errors in the numerical approximation to the equations of motion reduce with

increasing resolution, and provide evidence that any convergence with resolution

tends towards a ‘real’ physical solution of the equations of motion. Secondly, these

tests are designed to demonstrate that MOBILE can be applied to a variety of

standard fluid problems for which there is ample existing experimental or numerical

data and theoretical understanding in the literature, and shown to compare well with

this material. The cases considered herein are

• Single-mode Rayleigh-Taylor instability

• High-aspect-ratio Rayleigh-Taylor instability

• Kelvin-Helmholtz instability

• Lock-exchange gravity currents
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A.2 Grid convergence verification

A.2.1 Single-mode Rayleigh-Taylor instability

Single-mode Rayleigh-Taylor instability is an idealised test case, which is easy to

define numerically, but very challenging to achieve experimentally. Some theoret-

ical results exist, indeed as discussed in §4.2.2, the potential flow approach has

been widely used, and provides the basis for many models of multi-mode interac-

tion. The calculations presented here are intended to compare against Ramaprabhu

et al. (2006), which explores the limitation of potential flow theory to single-mode

Rayleigh-Taylor instability, using a number of numerical codes from various research

institutions. The problem specification has been recycled and forms ‘Test Problem

One’ announced for the 11th International Workshop on the Physics of Compress-

ible Turbulent Mixing (Santa Fe, July 2008), which should eventually accumulate a

community-wide repository of directly comparable simulation data on this and other

easily defined, if far from simple problems.

Buoyancy-drag models predict saturation of individual bubble or spike structures

towards a terminal velocity,

u∞ = Fr

√
Agλ

1 +A
, (A.1)

re-expressed in terms of a body Froude number Fr from equation 4.15, where λ

is the wavelength of the structure. However, Ramaprabhu et al. (2006) discovers

that the single-mode instability undergoes the expected exponential initial growth

(though numerical evidence for this is not conclusive), reaches a terminal velocity

as predicted by potential flow theory (Fr = 0.56), but subsequently re-accelerates.

Figure A.1 shows MOBILE prediction of bubble rise in a 32×32×256 doubly periodic

domain, where the perturbation is aligned so the spike penetrates downwards in the

middle of the box. These images are reconstructed from two half-slices out of phase

by π in both of the periodic directions. The Atwood number chosen for this study

was A = 0.25, to demonstrate the non-Boussinesq capability of MOBILE (which was

not required when comparing simulations with laboratory experiments in previous

chapters).

The most obvious parameter on which to demonstrate convergence with increas-
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(a) t =

1.5s

(b) t =

2.0s

(c) t =

2.5s

(d) t =

3.0s

(e) t =

3.5s

(f) t =

4.0s

(g) t =

4.5s

Figure A.1: Single-mode bubble growth with Atwood number A = 0.25. Scalar
concentration is represented in greyscale, and spatial resolution is 32× 32× 256.

ing resolution, is the non-dimensional bubble and spike height as a function of non-

dimensional time. Figure A.3 shows these results ranging in resolution from 4× 4 to

64× 64 cross-section. The 4× 4 simulation is very poorly resolved so one would not

expect it to capture many of the features of the instability, and indeed the 8, 16 and

32 simulations appear to establish a trend for the growth of the bubbles and spikes.

The non-Boussinesq Atwood number gives rise to more quickly growing spikes than

bubbles, and this accords with predictions from potential flow theory. Spikes tend

to have smaller frontal area so their terminal velocity is expected to be higher.

The 64× 64 simulation is somewhat anomalous in this regard, and diverges from

the trend established by lower resolution simulations. Examination of the data sug-
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gests that with increasing resolution (decreasing numerical dissipation), symmetry

is broken progressively earlier, and by 64× 64, symmetry is lost while the bubble is

still forming. The strong planar symmetry present initially can be observed in the

image sequence in figure A.2.

The deviation of bubble and spike trajectories from the trend established by 8×8,

16×16 and 32×32 cases corresponds to the point where the net vorticity associated

with the loss of symmetry causes the bubble to break down. The reason symmetry

breaks in the first place is a sensitivity in the numerical algorithm to changes in

direction of upwinding. Currently the code uses conditional branching to decide

which direction in which to acquire upwind information for the advection stencil.

Code such as

if(u_face>0.0) { u_upw=u_left; }

else { u_upw=u_right; }

is sensitive to numerical noise at the axis of symmetry where horizontal velocities

should be exactly zero, and it appears that rapid changes in upwinding decisions

can lead to exponential growth of asymmetry. One possible solution is to use a

blending function to interpolate between the current upwind scheme and a new

centred scheme as ±u → 0, but this would greatly complicate and slow down exe-

cution of the advection routine, and may risk violation of monotonicity. In almost

all real-world problems, exact preservation of an unstable symmetry is of negligible

importance, and the effort required to develop such a scheme purely for this patho-

logical case could not be justified. It should be noted that the RTI-3D code results

in Ramaprabhu et al. (2006) also exhibit an anomalous trend in its 64× 64 test (see

figure 11(a) in that paper) and, in common with RTI-3D, the advection algorithm

for MOBILE is based on the principles outlined in Andrews (1995).
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(a) t = 1.5s (b) t = 1.8s (c) t = 2.1s

(d) t = 2.4s (e) t = 2.7s (f) t = 3.0s

Figure A.2: Horizontal section of scalar concentration at mid-height plane, show-
ing patterns of increasing complexity with time. The Atwood number is A = 0.25.

In the presentation of subsequent data, the 64 × 64 case is discarded for the

reasons outlined above, and the 4 × 4 case is discarded for aesthetic reasons since

both its trend and the spatial quantisation of the data make further comparison

unproductive. The behaviour of bubble and spike velocity is shown in figure A.4,

normalised for Atwood number and gravity in the same manner as a terminal velocity

with a Froude number of unity. Clearly good convergence is exhibited, and the re-

acceleration reported in figure 3(b) of Ramaprabhu et al. (2006), is observed.

A more stringent test is to compare non-dimensional velocity against the non-

dimensional height, since this gives a better indication that the bubble and spike

structures have the correct buoyancy and drag when they have reached a given

aspect-ratio. Bubble data from Ramaprabhu et al. (2006) made available for ‘Test

Problem One’, is cross-plotted in black in figure A.5. This sits reassuringly closely

over the MOBILE 32 × 32 data through the initial growth, deceleration/terminal
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Figure A.3: Convergence of single-mode instability growth evolution with in-
creasing resolution.

velocity, and re-acceleration phases, though it is less clear why codes using similar

methods should mis-match at later time.

Taken together, the MOBILE results in themselves demonstrate convergence on

a solution with increasing resolution until breakdown of symmetry, and performance

relative to other codes is comparable, even to the extent that problems appear at

the same points.

A.2.2 High-aspect-ratio Rayleigh-Taylor instability

A second grid convergence study was performed on high-aspect-ratio Rayleigh-Taylor

instability, since it provides contrast in time- and velocity-scales, and the problem

setup is more representative of real-world mixing applications where the code is

intended to be used. Chapter 6 examines in some detail the comparison between

simulation, theory and experiment. Here the same initial density profile is used, but

the focus is on the convergence of solution with increasing resolution, and confirma-

tion that simulations match previously published experimental data. The feasible

limit on resolution for a dual core 2GB single memory computer was 64× 64× 2560.

However, as already remarked in §6.2.3, the data storage requirements to retain

for presentation satisfactory time-resolution of the simulation exceeded the available
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Figure A.4: Convergence of single-mode instability growth velocity with increas-
ing resolution.

hard drive capacity, so data for this case is only available at 20s intervals, instead of

every 2s on lower resolution cases.

The main parameter on which to demonstrate grid convergence is the envelope

growth. The 4× 4 and 8× 8 cases are inaccurate and grossly overpredict the initial

growth. The 16×16 case and thereafter appear to approximate well the analytically

predicted h ∼ t 2
5 functional form; an experiment matching this form is cross-plotted

in black in figure A.6. This data is from Dalziel et al. (2008), but because of the ex-

perimental overturning leading to a significant region of mixing around the interface

height, a virtual origin correction has been applied to visually match the computa-

tional data. The scalar concentration threshold taken to define the instability front is

0.98, as chosen in chapter 6. There appears to be some oscillatory component to the

grid convergence, since 16× 16 and 64× 64 cases appear to correspond closely, with

the 32× 32 undershooting somewhat. The computational cost of doing simulations

at yet higher resolution to confirm this was prohibitive, and since the 64× 64 case is

poorly under-resolved in time, it is difficult to be certain exactly how the trend lies

relative to the other cases.

The experimental results from Dalziel et al. (2008) show that the horizontally

averaged vertical profile of density has a self-similar form after the initial transients
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Figure A.5: Plot of instability growth against instability velocity.

have died away. In figure A.7 the profiles for the adequately resolved simulations (16,

32 and 64 cases) are cross-plotted with one another and the experimental data, on

normalised scales of height and scalar concentration. Normalised height is defined as

the range between the 2% and 98% contour, which explains why the profiles extend

beyond this range. This figure establishes that the experimental and simulation

vertical profiles have a similar structure, and the time-variation of the structure

is insignificant. However, it is difficult to extract any direct confirmation of grid

convergence because the density of information on the plot.

Figure A.8 resolves this by making the (very reasonable) assumption based on

the evidence in figure A.7 that the functional form is invariant with time, so the

time-mean of the self-similar form is plotted for each resolution. The results clearly

demonstrate not only that the simulations are grid convergent on this fairly exacting

metric, but also that they compare well with the experimental results once adequately

resolved.
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Figure A.6: Convergence of instability growth evolution with increasing resolu-
tion, and compared with experiment.

A.3 Validation on other mixing problems

A.3.1 Stratified Kelvin-Helmholtz instability

Shear across an interface gives rise to a very beautiful instability known as Kelvin-

Helmholtz , where small disturbances on the interfacial surface grow exponentially

in amplitude at first, then at later time roll up into vortical structures.

In the ideal case, the shear interface between opposing flows is an unbounded

two-dimensional vortex sheet in unstable equilibrium; by the Biot-Savart law each

point on the vortex sheet is experiencing induced velocities applied by all other

points on the sheet, and these integrate to zero. However, any distortion of the

interface modifies the distance between the mis-positioned points and neighbouring

vorticity, such that the net induced velocity is non-zero. Since this velocity is di-

rected perpendicular to the sheet, the system is unstable and exponential growth

can be expected. Non-linear development occurs where the vortex sheet self-advects

perturbations towards one-another. These perturbed regions tend to clump together

and form mutual orbits, inducing yet more vorticity into them and reducing the vor-

ticity density elsewhere. The vortical regions organise themselves in to recognisable

finite-sized billow-like features.

In the laboratory, a tank with an initially horizontal stable density stratification
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Figure A.7: Demonstration of self-similarity of scalar concentration profile from
MOBILE simulation at three resolutions, and compared with experiment.

is tilted to a small angle. The dense fluid accelerates downwards, and the light

fluid rises. Except at the tank ends, the interface initially remains aligned with the

tank after tilting. In the case where the interface sits at half-height in the tank,

the fluid on both sides of the interface accelerate equally in opposite directions and,

subject to a Richardson number stability criterion, any initial perturbations on the

interface grow without being displaced in either direction. Fluid reaching the tank

ends has nowhere to escape, and encroaches on the other density layer. As the Froude

number increases, the fluid building back forms a hydraulic jump. Fortunately, the

fluid ahead of the travelling jump is unaware in advance of its arrival and, although

the region exhibiting the instability diminishes, the instability itself is unaffected.

For these reasons, the rotation rate, final tilt angle and upper and lower densities

were selected such that the instability could fully develop before the hydraulic jumps

meet in the middle.

Previous research on the instability provided a benchmark for expected outcomes,

but the precise development of the instability is (naturally) a strong function of

the initial conditions, and to obtain a high quality match between experiment and

MOBILE simulation, a characterisation of an experimental setup was required. As

an illustration of the influence initial conditions have on the instability development,
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Figure A.8: Convergence of mean normalised scalar concentration profile with
increasing resolution. MOBILE simulations are compared with experiment.

two simulations are shown in figure A.9, with the upper image in each pair showing

the instability growth where there is no explicit perturbation to the interface, and

the lower image where the perturbation was chosen to match an experiment.

Clearly, and unsurprisingly, the hydraulic jump velocities are unaffected by the

perturbation; this suggests that the perturbation does not affect the acceleration

of fluid in the middle region during the initial, pre-onset phase. Since floating-

point error will inevitably lead to some small perturbation of the interface even in

the nominally unperturbed case, Kelvin-Helmholtz instability has the potential to

develop. The MOBILE code uses a multi-grid convergence acceleration, described in

some detail in §3.3.1, for the pressure correction calculation, and in these simulations

is converged according to a global residual criterion

|resn
res0
| < 1e−4, (A.2)

on the finest grid level (where n is the iteration counter). The coarsest grid level

is also forced to satisfy this criterion, to ensure that low wavenumber (potentially

larger amplitude) pressure corrections are applied quickly, minimising the number of

V-cycle sweeps that are required. Since only global measures of error are available as

convergence criteria, there is ample freedom to satisfy these constraints but develop,

from numerical noise, an arbitrarily large interfacial perturbation. Indeed Kelvin-
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Helmholtz billows emerge in the initially unperturbed case with a most-unstable

mode period which equates with the coarsest grid scale, 32 cell-widths.

In attempting to match the experiment, care was taken to model the whole

process of tilting the tank, obviously by rotating the gravitational acceleration com-

ponent, but also by modifying the velocities with source terms to account for the

change of reference frame, i.e. the Coriolis term (2Ω × x) centripetal acceleration

(Ω×Ω× x) and angular acceleration (∂Ω∂t × x). Additionally, the interface was ob-

served to have a slow gravity wave residual from the filling and stratifying process,

and this was found to be instrumental in setting the size and period of the billows,

which varied along the tank. Theoretical considerations (Thorpe (1985)) highlight

the importance of the initial (non-zero) interface thickness in determining the most

unstable mode. Unfortunately the thickness cannot be reliably estimated from the

experiment because the gradients of refractive indices in the interfacial region act

such that the apparent dye gradient is steepened, hence the interface thickness is

underestimated. Trial and error was required to find a thickness for the simulation

interface that favoured the growth of modes observed in the experiment. The chosen

profile was given by

ρ = ρl +
1
2

(ρu − ρl)
(

1 + erf

(
2(z − zi)
25.4
√
πH

))
(A.3)

where H is the tank height. The interfacial height variation that emerged in the

experiment was measured, scaled in amplitude and used as a representative initial

condition for the simulation. The image sequences in figure A.10 show a direct

comparison of the simulation and experiment in the restricted domain that was

captured on video during the experiment. For clarity the tilt angle of the tank is

shown.
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(a) t = 1s

(b) t = 5s

(c) t = 9s

(d) t = 13s

(e) t = 17s

(f) t = 21s

(g) t = 25s

Figure A.9: MOBILE simulations of Kelvin-Helmholtz instability comparing no
interfacial perturbation (upper image of each pair) with one (lower image of each
pair) perturbed to closely match an experiment. For ease of presentation the
tank inclination is not shown.
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The features that the simulation captures well are the diameter and period of

the billows in the imaging region, and their apparent growth rate. It was found,

through numerous trial simulations, that the spatial variation of the size of the

billows is due to a gravity wave oscillating in the tank before the experiment was

initiated. Towards the left of the imaging region the interface sits approximately at

the tank half-height, towards the right, it is substantially lower than half-height, and

this seems to promote growth of larger billows. The larger wavelength appears to

arise particularly where there is a dominant perturbation among weaker neighbours,

which leads the weaker vortices by mutual induction to be engulfed into the larger

ones. In the third pair of images in the sequence, such a merging event can be seen

in both experiment and simulation. Predicting exactly which vortices will become

dominant and which will become engulfed is a poorly conditioned problem, and since

the simulation initial condition only approximates the observed initial conditions,

achieving a precise match between simulation and experiment is challenging. A

rigorous, systematic reverse-engineering of the experimental outcome was beyond

the scope of this validation exercise.

Qualitatively however, the smaller billows on the left break down into incoherent

mixed fluid at an earlier time than those on the right - as can be seen in the fourth

experimental image of the sequence. The larger vortices protrude further into the

‘freestream’ flow and their extremities are advected, giving a distinctive elongated

‘cats-eye’ shape. The simulated vortices preserve their coherence for longer than

the experiment, and there are two contributing causes. Firstly, the maximum af-

fordable resolution was 32 × 64 × 1280 and this gives a somewhat lower ‘effective’

Reynolds number than the experiment, and secondly, the experimental apparatus

was retro-fitted with a turbulator mesh along its base, since in a carefully conducted

experiment it is entirely possible for interfacial perturbations to be too small to fully

develop Kelvin-Helmholtz instability in the required time. The turbulator adds high

wavenumber velocity disturbances to the flow which help initiate the instability, but

may also be hastening its breakdown. To reduce the discrepancy between simulation

and experiment, low amplitude noise of random phase was added to the density field

initial condition at the interface, but this has been rather less effective than hoped
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at assisting vortex breakdown. Interestingly, because the vorticity density is higher

in the simulation than the experiment, a secondary instability has time to develop

before the hydraulic jumps arrive. Given appropriate conditions, such secondary

instabilities have previously been observed in experiments (Thorpe (1985)). The ar-

rival time of the hydraulic jumps (as seen at the edges of the final image pair, figure

A.10(g)) is also correctly predicted.

The exchange of energy in the tilting tank is the key to understanding the mix-

ing taking place in Kelvin-Helmholtz billows and previous work uses the concept

of decomposing potential energy into two components, available and background

potential energy. As discussed in §8.3, changes in background potential energy are

uniquely associated with mixing events since adiabatic rearrangement of an unmixed

density field cannot produce the same stratification (and hence potential energy) as

one in which some mixing has occurred. The graphs of figure A.11 show how energy

is exchanged in the tilted tank simulation. The measurements of potential energy

are made in the reference frame of gravity once the tank is stationary in its tilted

state, so while the tank is rotating, there is an error of O(1 − cos(θ0 − θ)). Kinetic

energy is measured in the tank reference frame (for convenience), so during unsteady

rotation a force is applied by the tank to the fluid, and as shown in the figure, this

manifests itself as an increase in the fluid kinetic energy, after rotation has stopped.
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(a) t = 11s (b) t = 11s

(c) t = 12s (d) t = 12s

(e) t = 13s (f) t = 13s

(g) t = 14s (h) t = 14s

(i) t = 15s (j) t = 15s

(k) t = 16s (l) t = 16s

(m) t = 17s (n) t = 17s

Figure A.10: Comparison of experiment and MOBILE simulation of Kelvin-
Helmholtz instability. The tank tilt angle is 7.58o and the upper and lower layer
densities in both cases are ρu = 998.2kgm−3, ρl = 1012.5kgm−3. The experimental
sequence runs down the left column, and simulation down the right.
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The non-dimensional time-scale is based on freestream velocity at onset, Uonset,

and the density-layer depth, H2 . All the energies have been normalised by the poten-

tial energies of the initial state in its tilted configuration, and the minimum energy

final state - an unmixed stable stratification. The total available energy (the sum

of kinetic and available potential) shown in black rises above 1 at the point where

the tank rotation ceases, since this additional energy arises from work done by an

externally imparted force. Elsewhere, as one would expect, the total available en-

ergy monotonically decreases as energy either leaves the system by dissipation or by

contributing to raising of the background potential energy by doing mixing.

Until the onset of Kelvin-Helmholtz instability, the kinetic energy in the system

increases as Ek ∼ t4. Available potential and kinetic energies are simply being

exchanged as the dense layer falls and lighter layer rises. The system is approximately

in freefall with a gravitational component g sin θ and dissipative mechanisms are

insignificant at this stage, so the total available energy is approximately constant.

After the onset of Kelvin-Helmholtz instabilty, kinetic energy is being removed from

the freestream to fuel the instability growth and lift dense fluid upwards. This

reduces the rate of exchange of potential with kinetic energy, and as dissipative

mechanisms become more important, the supply of available energy declines, and in

consort the background potential energy increases. Unfortunately, since both Kelvin-

Helmholtz billows and the hydraulic jumps give rise to mixing and dissipation, it is

difficult with this analysis to attribute increases in background potential energy to

either feature individually.

Patterson et al. (2006) isolated the Kelvin-Helmholtz instability by examining

billows in a small intermediate region of the tank and computing the total, back-

ground and available potential energies in the reference frame of the tank. While this

analysis neglects the fluxes of energy into and out of the small region, increases in

the background potential energy can be exclusively attributed to the mixing caused

by the Kelvin-Helmholtz billows.

As discussed in detail in §8.3, the mixing efficiency is a measure of the relative

flux of energy lost to heat by dissipation relative to the flux that does mixing and

raises the background potential energy. Unfortunately, it is far from straightforward

181



A. Validation exercises on MOBILE A.3

0.0 5.0 10.0 15.0 20.0 25.0

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ise
d 

en
er

gy

−80.0 −60.0 −40.0 −20.0 0.0 20.0 40.0 60.0 80.0 100.0

Non-dimensional time (τ  = 
t−tonset

H/(2Uonset)
 )

 
Kinetic energy
Total potential energy
Background potential energy
Total available energy

Figure A.11: Time-evolution of total potential, background potential, kinetic
and available energy in the tilting tank experiment, measured in the reference
frame of gravity once the tank is stationary in its tilted state.

to calculate a Kelvin-Helmholtz mixing efficiency from a tilted tank experiment,

because the instantaneous measure requires knowledge of the velocity field and the

density field simultaneously, and the aggregate measure includes mixing due to other

artefacts such as hydraulic jumps. However, the relative behaviour of the total

potential and the background energies gives some insight into when mixing takes

place in a billow’s evolution. For the purposes of code validation, existing data from

Patterson et al. (2006) is plotted against the experiment and matching simulation

shown earlier in figure A.10. To maintain consistency between studies, the potential

energies have been evaluated in the reference frame of the (tilted) tank, and no

correction for energy fluxed into and out of the imaging region has been made. The

results are shown in figure A.12, where the energies are normalised arbitrarily.

The onset time is consistent between experiment and matching simulation, and

the growth rates of the energies are comparable. The delay between growth of

total potential energy and the corresponding background potential energy indicates

that in both cases mixing is not the dominant process in the early stages of the

Kelvin-Helmholtz instability, and develops only later, once the billow has overturned

and dense fluid overlies light fluid. A delay in production of background potential
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Figure A.12: Time-evolution of total potential, available potential and back-
ground potential energy in Kelvin-Helmholtz billows, measured in the reference
frame of the tank.

energy is a feature common to both experiment A and B reported in Patterson

et al. (2006). However, despite a qualitative visual similarity between all three

experiments, and some degree of quantitative agreement in the energy statistics,

many features are inconsistent. Mixing occurs much sooner after onset in experiment

B than in experiment A (indeed the measure of background potential energy in A

dips erroneously below the zero axis for a time), and the total potential energy

increases monotonically in A, but peaks in B. Given that this variance occurred

just in a small corner of the parameter space {density difference, tilt angle, interface

thickness} and therefore in a very limited range of Reynolds numbers (O(300)),

it is not so surprising that the experiment to which the simulation was nominally

matched followed the characteristics of experiment A, but the simulation followed

the characteristics of experiment B. Despite the obvious and incompletely explained

discrepancies, the simulation statistics sit well within the range of experimental

variation, and this offers reasonable confidence that MOBILE does indeed perform

well on the Kelvin-Helmholtz problem.
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A.3.2 Lock-exchange gravity currents

Gravity currents are a class of flow that occur when a density difference between two

fluids under the influence of gravity gives rise to a predominantly horizontal motion

along a boundary or interface. In nature these can be witnessed in powder snow

avalanches, pyroclastic flows emanating from erupting volcanoes, turbidity currents

over continental shelves in the deep oceans, the arrival of sea fog at the coast, and

wind associated with the arrival of cold fronts.

In the laboratory it is most common to perform Boussinesq experiments with

fresh and salt water, and to use a swiftly removed lock between the two fluids to

initiate the gravity current. This approach has been used since O’Brien & Cherno

(1934), and particularly in more recent work, e.g. Huppert & Simpson (1980); Shin

et al. (2004). To determine the validity of MOBILE in this context, three gravity

current cases have been selected for simulation and compared against our theoretical

understanding from the literature. All the cases examined are so-called ‘full depth’

releases of buoyant fluid, where a lock divides the 2.85m tank into a more dense

and a less dense segment. By moving the position of the simulated lock release, the

eventual depth to which the gravity current settles is altered, and the ratio of these

depths is an important parameter in predicting the form of the flow. The depth ratio

(or equivalently, the ratio of lock length to tank length) of the sequence of images

in figure A.13 is 50%. The images show vertical slices through the current, and the

Kelvin-Helmholtz billows that arise from the velocity difference across the interfacial

surface can be seen clearly.

It turns out that the details of the front and mixing induced across the inter-

face plays only a secondary role in the development of the flow. The underlying

system is well modelled by the one-dimensional shallow water approximation, and

so Bernoulli’s principle and conservation of mass can be enforced. In a reference

frame moving with the front, the front tip is a stagnation point, and by considering

Bernoulli, it is a reasonable to expect that the front should have a constant Froude

number Fr. Conservation of mass can be written down for late times (once initial

transients associated with the lock release are no longer important) if one assumes

a self-similar form for the height h(x, t) = h(t)f(x/L) of the gravity current in rela-
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(a) t = 0s

(b) t = 6s

(c) t = 12s

(d) t = 18s

(e) t = 24s

(f) t = 30s

(g) t = 36s

Figure A.13: Boussinesq half-depth gravity current evolution predicted by MO-
BILE simulation, ρleft = 1000kgm−3, ρright = 1003kgm−3.

tion to its length L. Taking both these elements together, we can construct a simple

box-model system for the release of a finite volume of relatively buoyant or dense

fluid into an unbounded one-dimensional domain,

∂L

∂t
= Fr

√
g′h = ufront (A.4)

L(t)h(t) = L(0)h(0) = V0/b, (A.5)

where g′ is a reduced gravity, V0 is the initial volume and b is the tank width.

Eliminating h,
∂L

∂t
= Fr

(
g′
L0h0

L

) 1
2

, (A.6)

and integrating,
2
3
L

3
2 = Fr

(
g′L0h0

) 1
2 t, (A.7)
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we recover

L ∼ t 2
3 . (A.8)

This functional form is found at late time, when initial transients associated with

the lock release have become negligible.

Early time behaviour can also be predicted. One might expect a perfect lock

release between Boussinesq fluids to evolve with buoyant fluid occupying approxi-

mately the upper half of the depth of the enclosing tank near the lock, and the denser

fluid to occupy the lower half, i.e. h(0, ε) = 1
2H where H is the tank height. In a

strictly energy conserving flow, this can indeed be shown to happen, though there

are several caveats to this detailed in Benjamin (1968). Should the fluids indeed

occupy the tank in this manner, then application of Bernoulli’s principle to the flow

with velocity uwake in the wake just behind the head of one of the currents yields,

1
2
ρbu

2
wake = g(ρu − ρl)h, (A.9)

and by considering continuity for the wake flow uwake compared with the freestream

ufree well ahead of the front, in the reference frame travelling with one of the fronts

we have,

ufree =
H − h
H

uwake

=
1
2
uwake

(A.10)

and substituting for uwake from Bernoulli,

ufree =
1
2

√
2g
ρu − ρl
ρb

h

=
1√
2

√
g′h

(A.11)

so there is a clear prediction for the Froude number of the front under conditions

of energy conservation. This can only be valid in the early stages of the flow, since

dissipative mechanisms, including mixing, play a role at later time. However, it

does provide an unambiguous estimate of the front velocity immediately after the

lock release. This appears to contradict the earlier prediction of L ∼ t
2
3 , which

by definition implies that the initial front travels infinitely quickly, a state that is

clearly not physically realisable. A study into the transition between the early- and
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Figure A.14: Time-series image of an asymmetric lock release with 4% depth
ratio, showing progress of the front and internal characteristics reflected off the
endwall.

late-time behaviours was conducted by Rottman & Simpson (1983) who examined

the lock exchange problem by considering the full two-layer shallow water equations.

The initial lock release is an expansion fan centred on the lock position, but in

cases where an endwall is present on one side of the lock, the wave reflects back

into the flow and forms a backward facing hydraulic jump (bore) which travels more

quickly than the front itself (which has Fr = 1√
2
< 1). When the jump reaches

the front, the front can no longer travel at a constant velocity, and thereafter the

late-time behaviour is a better estimate of the evolution. Figure A.14 shows just

such a case. The initial expansion and reflected jump are clearly visible in the colour

plot - which represents both depth averaged pressure and scalar concentration, and

the demarcation between early-time L ∼ t and late-time L ∼ t
2
3 front behaviour is

very clearly the arrival point of the jump. Wave-like streaks behind the front at later

time are Kelvin-Helmholtz billows on the approximately horizontal portion of the

interface behind the front, and they tend to move with the mean velocity of upper

and lower layers.

The front position for this case has been extracted from the time-series image

of figure A.14, and is shown in green in figure A.15 together with the early-time

and late-time predictions. A virtual origin correction is necessary for the late-time

behaviour since the early-time analysis predicts a finite initial velocity that persists

for a substantial period and this is inconsistent with L ∼ t 2
3 . Two other depth ratios

(h(t=∞)
H ) are also shown in this figure, tending towards the limiting cases. No virtual
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Figure A.15: Front velocity as a function of time for three depth ratios, and
compared with appropriate theoretical predictions for early and late time.

origin correction has been made in the 1% depth ratio case, to illustrate how the

initial transient behaviour becomes insignificant at late time. The 50% depth ratio

case does not reach a state where endwall wave reflections can interfere with the

front velocity, so the front remains close to its early-time prediction until it reaches

the end of the simulated tank.

From the above results it is clear that MOBILE has accurately captured the fea-

tures of gravity currents that are well established in the experimental and theoretical

literature, not only the predictions made on energy conserving assumptions, such as

initial front velocity, the expansion fan at the lock, the late-time L ∼ t
2
3 behaviour,

but also the transient, dissipative elements such as the hydraulic jump and interfacial

Kelvin-Helmholtz billows.

A.4 Summary

This appendix contains validation and verification studies, which demonstrate that

the MOBILE code used elsewhere in this thesis is grid convergent, and correctly

predicts fluid behaviour in variable density flows for which there is a well-established

knowledge-base in the literature. The single-mode Rayleigh-Taylor instability is a

standard test-case for such codes, and the IWPCTM11 Test Problem 1 was per-
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formed and compared against an available data-set. To demonstrate capability be-

yond the Boussinesq regime, the Atwood number was A = 0.25. Symmetry break-

down at high resolution was explained, and to provide supplementary evidence of grid

convergent behaviour, the high-aspect-ratio Rayleigh-Taylor instability was investi-

gated. This is a less pathological test case, and demonstrates grid convergence very

clearly. A study of the stratified Kelvin-Helmholtz instability was performed to as-

certain that MOBILE can perform well in other flows and configurations. To ensure

that comparison between experiment and simulation was as fair as possible, a new

experiment was conducted, and the initial conditions and interfacial perturbation

carefully measured and implemented in the simulation. Qualitatively the two match

reasonably well, but some inconsistencies remain. Quantitative comparison with

published experiments using the same apparatus provided a benchmark. The vari-

ability between experiments is large, but the simulation falls well within the accept-

able range, when considering instability onset time, total potential energy growth,

and background potential energy growth. Lock-exchange gravity currents were also

studied, and the front position compared very successfully with well-understood the-

oretical predictions for early- and late-time behaviour. The results taken together

suggest strongly that MOBILE is an effective and reliable tool for modelling a wide

variety of variable density, non-Boussinesq and rotating flows.
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