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Abstract

Accretion discs are fluid-dynamical entities which surround many black holes. Observa-
tions reveal that these systems exhibit variability on a range of time scales. This thesis
investigates phenomena occurring in black-hole accretion discs which are likely to induce
high-frequency quasi-periodic variability. Two classes of pseudo-relativistic theoretical
models are investigated.

The first is based on the stability of transonic accretion flows and its connection to
a disc instability that takes the form of propagating waves (viscous overstability). The
time-dependent study looks at the conditions under which the transition between subsonic
disc-like accretion, which occurs at large radii, and the supersonic flow characteristic of the
immediate vicinity of the black hole is stable. In agreement with previous findings, results
indicate that the system reaches a steady state for low viscosity. Above that threshold the
transonic solutions are unstable to viscous overstability. The overstable inertial-acoustic
waves appear to be excited near the maximum of the epicyclic frequency and are global
in the sense that their frequency is maintained for a wide range of radii.

The second class of models looks at accretion-disc oscillations which are trapped due
to the non-monotonic variation of the epicyclic frequency in relativistic flows. In partic-
ular, it focuses on inertial waves trapped below the maximum of the epicyclic frequency
which are excited in deformed, warped or eccentric, discs. The excitation mechanism
involves a non-linear coupling between the global deformation, an intermediate wave and
the inertial mode and results, under a variety of conditions, in growth of the latter. Ex-
citation is only effective when global deformations are capable of reaching the inner disc
with non-negligible amplitude. With that in mind, the conditions favourable to the prop-
agation of warped and eccentric modes from the outer to the inner regions are analysed.
Another aspect that is taken into account is the influence of a transonic background,
ignored in the coupling calculations, on the propagation of modes in the disc. It is found
that, under certain conditions, inertial waves may be severely affected or destroyed in this
background. On the other hand, results indicate that the decay rate of inertial waves due
to the presence of the radial inflow is small in sufficiently thin discs. In this case, the
coupling mechanism can still work to excite trapped inertial modes.
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Chapter 1

Introduction

Variability is a defining feature of astrophysical objects. Jupiter has a constantly changing
atmosphere and its satellite Io sees its surface modified by over 400 active volcanoes. The
Sun changes its spots during the 11-year cycle while other stars vary strongly in brightness
as they pulsate. In the solar case, variability is intrinsic to the astrophysical object. It can
also be extrinsic if, e.g., caused by an eclipsing star in a binary which produces luminosity
variations as seen by an observer on Earth. Io’s variability is indirectly caused by Jupiter
— tidal effects are responsible for the planet’s internal heating and consequent geological
activity. Whether intrinsic or extrinsic, variations can be sporadic, irregular, semi-regular
or periodic and may occur at a myriad of time scales even in a single object.

One of the most spectacular examples of variability is that of active galactic nuclei
(AGN). Observations show that these compact regions, located at the centre of some
galaxies, are not only abnormally luminous but also show extremely rapid variations.
These phenomena have long (Lynden-Bell 1969) been attributed to the presence of a
supermassive black hole which releases energy as it accretes matter in its surroundings.

The discovery of the first AGN and galactic X-ray sources in the 60s and the theoret-
ical studies that followed established accretion as a major energy production mechanism.
Subsequently, accretion around black holes was the target of a series of ground-breaking
studies, some of which established the basis of accretion disc theory and remain the
standard reference today (Pringle & Rees 1972; Shakura & Sunyaev 1973; Novikov &
Thorne 1973). Other important developments in the theoretical modelling of accretion
flows arrived scatteredly in the following 20 years or so with the identification of accretion
solutions beyond the standard thin disc (e.g. Ichimaru 1977; Rees et al. 1982; Narayan
& Yi 1994) and with the re-discovery of an efficient mechanism for angular momentum
transport (fundamental for accretion) by Balbus & Hawley (1991).

The decades of 60 and 70 also saw major improvements in observational astronomy.
New techniques were developed and telescopes and satellites able to capture the light
emitted by astrophysical objects at the full spectral range began to operate. Of particular
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4 Introduction

importance was the development of X-ray astronomy. This highly energetic emission is
expected in accreting compact objects, such as neutron stars or black holes, where the
surrounding gas is heated to very high temperatures as it falls in the gravitational field
of these bodies.

The first galactic X-ray source, Scorpius X-1, was detected in the early 60s and
the studies of Shklovsky (1967) connected the X-ray emission from the object to gas
accretion onto a neutron star. More X-ray objects were discovered with the launch of
various satellites in the 70s. Most sources were believed to be in binaries where a normal
star provided the material to be accreted by the neutron star or black hole; the term X-ray
binaries was coined to describe such systems. The presence of a normal star permits a
lower limit for the mass of the compact object to be determined, providing evidence for
the very existence of black holes. Another X-ray source, Cygnus X-1, was the first strong
candidate and is now widely believed to be one of these relativistic objects.

Variability in the X-ray emission of galactic sources has been a constant from the
very beginning of the observational burst of such systems. For example, Cygnus X-1 has
long been known to exhibit variability on time scales down to a millisecond as shown
by Rothschild et al. (1974). The same authors suggested this could be related to the
turbulence in the accretion disc surrounding the source. At longer time scales, variability
may be due to changes in the mass accretion rate (e.g. Prendergast & Burbridge 1968, in
the case of Scorpius X-1).

X-ray astronomy had another major impulse in the last couple of decades with the
launch of several X-ray observatories, including NASA’s Rossi X-ray Timing Explorer
(RXTE). It is mainly thanks to these satellites that, so far, about 20 X-ray binaries be-
lieved to contain a black hole have been identified and analysed in detail. These new
observatories also contributed to important developments in the field of X-ray variabil-
ity, in particular at very short time scales. One of the most exciting discoveries was
that of quasi-periodic oscillations (QPOs) with frequencies up to 450 Hz. The very high
frequencies connect these oscillations to the inner regions of the accretion disc, making
them fundamental in the study of the relation of relativistic compact objects with their
surroundings.

Measurements of X-ray variability and theoretical studies of black-hole disc accretion
have therefore been intimately related for the past 30 or 40 years. Combined, they provide
a unique window to the physics of strong gravitational fields, allowing for properties of
both the accretion disc and the black hole to be inferred. Moreover, the development of
X-ray observations and black-hole accretion disc theory is fundamental to test not only
stellar evolution theories but also general relativity.

The launch of new satellites provided a significant boom in the field of observational
X-ray astronomy and X-ray variability but black-hole accretion disc theory is, at present,
far from being up-to-date with its observational counterpart. With this thesis, I aim
to contribute to the development of the theory of accretion discs around black holes
with a particular emphasis on the rapid variability of such objects. The research done
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focuses on two major topics. The first concerns the stability of models that describe the
transition between the region where accretion is disc-like and subsonic to the region inside
the marginally stable orbit where typical radial velocities are supersonic (Part II). The
second focuses on the study of oscillations in black-hole accretion discs with emphasis on
an excitation mechanism involving global deformations and on wave-reflection properties
at the inner disc boundary (Part III). A relation with quasi-periodic variability is explored
in both parts.

In the current chapter, I present the general background of black-hole accretion disc
theory and observations and underline the importance of studying the variability of these
objects. A more detailed outline of the research described in this thesis is given at the
end of Part I.

1.1 Fundamentals of accretion disc theory

According to the Oxford English Dictionary accretion can be defined as “the assimilation
of external matter by a growing body”. This physical process is of key importance in
astrophysics. When the “growing body” (the central object) is compact, accretion is
an extremely efficient energy release mechanism believed to power some of the most
fascinating objects in the Universe. The basic idea is simple: a particle in orbit in the
gravitational field of a body of mass M and radius R∗, located at a distance R from
the central object radiates away potential energy as it moves to smaller radii eventually
reaching the central body. The radiated energy is proportional to M/R∗, making accretion
more efficient the heavier and more compact the central object is.

In more realistic situations, accretion of a gas as opposed to accretion of a point mass
is considered. Early calculations described such process as being spherically symmetric
(e.g. Bondi 1952). However, it is now widely accepted that, in most cases of astrophysical
interest, accretion occurs by means of a disc: the accreted material becomes rotationally
supported as it approaches the central mass (aside, possibly, from the very inner region).
The reason is that the accreted matter will generally possess nonzero angular momentum
which has to be removed for accretion to occur.

This can easily be understood by going back to the point mass accretion case for a
moment. It is clear that energy is released when the particle moves inwards. If the point
mass moves around the central object in a circular orbit (the lowest-energy trajectory for
a given angular momentum) it possesses a nonzero specific angular momentum equal to√

GMR, G being the gravitational constant. It is therefore straightforward to see that if
the particle is to move inwards, angular momentum needs to be removed. An accretion
disc is an example of a flow where energy is released by transferring angular momentum
outwards and mass inwards. The outward transport of angular momentum occurs due to
the action of viscous torques (friction) within the disc. The exact mechanism in the origin
of this transport is still a central issue in accretion-disc theory and is discussed further
below.
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A disc-like structure is indeed the preferred shape originating from a rotating cloud
of gas. Most astrophysical objects form from the gravitational collapse of such gas clouds.
If gravity is the main force in the problem, the gas collapses onto a point in a spherically-
symmetric fashion. However, if the cloud is initially rotating, the centrifugal force —
which mainly acts in the plane perpendicular to the axis of rotation — should also be
taken into account. The balance between gravity and centrifugal force is such that the
result of the collapse is a disc instead of a point. Even if the cloud is initially slowly
rotating, by conservation of angular momentum rotation becomes faster and faster as the
object collapses.

There are many examples of accretion discs in astrophysics. They are believed to
exist around most young stellar objects similar to the primordial Sun, in interacting binary
stars and AGNs just to name a few. In addition, direct imaging has been obtained of
protoplanetary discs (Wood et al. 2002) and of an obscuring disc surrounding an AGN
(Gallimore et al. 1997). The existence of accretion discs is beyond question.

The focus of this thesis is on black-hole accretion discs typically present in close
binary systems. In the case of interest, the more massive (primary) star in the binary
evolves more rapidly than the secondary, reaching the end of its life cycle as a black hole.
If the normal star, still evolving, and the compact object are close enough, the secondary
may fill its Roche lobe and start transferring matter to its companion. Due to the rotation
of the binary, the transferred material has too much angular momentum and is unable
to fall directly onto the hole. Instead, the matter is spread around the compact object
forming an accretion disc which allows for angular momentum to be reduced before the
material is accreted. The disc is thought to be thin enough so that packets of gas or fluid
elements move in approximately Keplerian orbits (except very close to the black hole or
neutron star, where general relativistic effects have to be taken into account). Part of the
orbital energy is converted into heat by dissipative processes and eventually some of it is
radiated away. Viscosity can provide efficient dissipation and enable angular momentum
transport: neighbouring rings orbiting at slightly different velocities rub against each other
and the viscous stresses cause the matter in the ring to be spread and to dissipate energy,
causing the gas to slowly spiral inwards. Angular momentum is transferred outwards and
eventually removed from the outer disc and given to the binary orbit through tidal torques
exerted by the secondary.

1.1.1 Viscosity

As seen before, for the gas in a disc to sink further into the gravitational potential, and
eventually be accreted by the central object, it needs to lose angular momentum by means
of viscous torques. What remains unknown, and is to date not completely understood, is
the exact nature of this “viscosity”. The time for the gas to spiral in from the secondary
to the object in the centre of the disc can be estimated from observations of dwarf novae
and X-ray transients (e.g. King et al. 2007). This gives an indication of how efficient the
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angular momentum transport mechanism needs to be to explain the measured accretion
times. Such estimates ruled out natural viscosity (related to the momentum transport
due to thermal motion of particles), which provides a coefficient of kinematic viscosity ν
several orders of magnitude smaller than that required to explain the observed accretion
times. A promising idea to interpret the rate of removal of angular momentum considers
an additional form of viscosity: that coming from the turbulent motions in the gas. This
“turbulent viscosity” νT takes into account the momentum transport due to turbulent
eddies which can be thought of as large-scale molecules. This enhanced viscosity provides
the main contribution to the total coefficient of kinematic viscosity which, as a result, has
the necessary magnitude to agree with observational measurements.

The idea that turbulent motions would enable outward transport of angular momen-
tum was considered by von Weizsäcker (1948) and later by Shakura & Sunyaev (1973).
However, a full discussion of the origin of such turbulence was avoided. Instead of attempt-
ing to derive νT from a turbulence model, Shakura & Sunyaev adopted a ground-breaking
parametrisation for the viscosity based on dimensional considerations: νT = αcsH. (Here
cs is the isothermal sound speed in the disc and H is the vertical semi-thickness or typical
scale-height). The magnitude of the viscosity and the efficiency of angular momentum
transport are therefore characterised by only one dimensionless parameter, α, which is less
than, or possibly comparable to, unity for subsonic turbulence. This simple prescription is
valid regardless of the nature of the stress tensor and allowed for accretion disc (α-)models
to be constructed by bypassing the discussion on the origin of turbulent viscosity.

In years that followed the publication of Shakura and Sunyaev’s influential paper,
many attempts to isolate instabilities capable of giving rise to turbulent processes were
carried out (see review by Papaloizou & Lin 1995). However, only in 1991 a promising
mechanism was re-discovered and applied to accretion discs. The idea of Balbus & Hawley
(1991) involves the action of a hydromagnetic instability originally discovered by Velikhov
(1959) and Chandrasekhar (1960). The magnetorotational instability (MRI) is the process
by which weak magnetic fields are amplified by differential rotation via axisymmetric
disturbances to the circular motion. The principles and action of this process can be
understood by analysing the behaviour of two fluid elements of masses m1 and m2 moving
in two Keplerian orbits (angular velocity Ω = ΩK ∝ R−3/2) around a central body. The
element m2 is slightly further away from the centre and therefore has a smaller orbital
speed and larger angular momentum than m1. If the system is permeated by a magnetic
field, the magnetic forces will act in such a way that the fluid elements can be thought
of as being connected by a spring. If the elements are displaced away from each other
perpendicularly to a field line, the attractive magnetic tension acts to return the elements
to their original position in a fashion similar to a spring under tension. This force acts
to pull back the element rotating faster, m1, while m2 is pushed forward. The torque
acting on the former/latter is therefore negative/positive implying a loss/gain of angular
momentum, that is, the angular momentum of m1 is transferred outwards to m2. This
process is unstable because the loss of m1 makes it move closer to the central mass while m2

moves further away since l ∝
√

R. The tension becomes stronger, the torques larger, and
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the outward transfer of angular momentum unstoppable (until, of course, reconnection and
other forms of dissipation enter the picture and control the amplification of the magnetic
field). A more detailed explanation of the MRI and its role in the outward transfer of
angular momentum can be found in, e.g., Balbus & Hawley (1998).

Notwithstanding this important step towards the understanding of accretion, in
practice it is common to simply use the traditional Shakura–Sunyaev formula to describe
viscous torques. It is widely accepted that discs are indeed turbulent, permeated by mag-
netic fields and dynamically unstable to axisymmetric disturbances. However, in many
problems of interest, it is enough to keep these ideas in the back of one’s mind and use a
simple viscosity prescription (which, should be noted, is not incompatible with MRI tur-
bulence) and hydrodynamic equations to describe accretion discs. Indeed, magnetic fields
and turbulence are not directly taken into account in the calculations made throughout
this thesis. (The range of length- and time-scales addressed could not be covered by the
3D numerical simulations required to account for MRI turbulence.) Despite its many sim-
plifying assumptions, including the ones just mentioned, the Shakura–Sunyaev model is
still the standard reference for the structure of steady accretion discs today. It is described
in detail in the following section.

1.1.2 Standard model

The description of the Shakura & Sunyaev (1973) model made here is a short review of the
work presented in the original paper, in Frank et al. (2002), Pringle (1981), Blaes (2003)
and in Ogilvie (2005). The basic equations and assumptions of the model are described
but the reader should refer to the mentioned articles for a more detailed discussion. In this
section (and throughout this thesis), cylindrical coordinates (R, φ, z) are used to describe
discs. The mid-plane is at z = 0 while the central mass is at R = z = 0.

Set of equations and assumptions

In the famous Shakura & Sunyaev (1973) hydrodynamic model, the disc is assumed to
be geometrically thin. This is the natural assumption originating from the qualitative
picture of a rotating cloud of gas: the gravitational attraction of the central mass and the
centrifugal force provide the dominant balance. The collective effects of the fluid, such as
pressure, viscosity or turbulence, are weak and as a result particles in the gravitational field
follow approximately Keplerian orbits, assumed to be circular and coplanar. Standard
discs are non-self-gravitating with a total mass negligible when compared to the mass of
the central object (which is not significantly altered due to accretion). The mass accretion
rate is taken to be constant or slowly varying and the time for accretion is slow compared
to other characteristic time scales in the disc. Therefore, Shakura–Sunyaev discs are
cool and optically thick since there is enough time available for the gravitational energy
released due to accretion to dissipate.
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Many astrophysical objects can be treated as fluids because the typical collisional
mean free path of microscopic particles is considerably smaller than the macroscopic
length scale associated with such objects. Accretion discs are no exception and are typi-
cally described using fluid-dynamical equations. In general, the hydrodynamic equations
describing mass and momentum conservation in the flow can be written as

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −ρ∇Φ−∇p +∇ ·T, (1.2)

where ρ, p and u are the density, pressure and velocity of the fluid, respectively, Φ is the
gravitational potential and T is the stress tensor. The only stress component relevant in
an axisymmetric system characterised by circular orbital motion is TRφ = µRdΩ/dR, i.e.,
it is given by the dynamic viscosity, µ = ρν, times the shear rate. The radially-outward
transfer of angular momentum is described by the azimuthal component of (1.2). This is
the angular momentum conservation equation.

The thin-disc approximation is equivalent to assuming that the disc material lies
very close to the mid-plane z = 0. The hydrodynamic equations are then dramatically
simplified. The small H/R ratio of the disc implies that vertically-integrated quanti-
ties can be used to describe its radial structure. In an axisymmetric flow, the vertical
integration of equations (1.1) and the φ component of (1.2) results in (e.g. Pringle 1981)

∂Σ

∂t
+

1

R

∂

∂R
(RΣūR) = 0, (1.3)

R
∂

∂t

(
ΣR2Ω

)
+

∂

∂R

(
ΣR3ΩūR

)
=

∂

∂R

(
ν̄ΣR3 dΩ

dR

)
, (1.4)

where

Σ(R, t) =

∫ ∞

−∞
ρ(R, z, t)dz, (1.5)

ūR(R, t) =
1

Σ

∫ ∞

−∞
ρ(R, z, t)uR(R, z, t)dz, (1.6)

ν̄(R, t) =
1

Σ

∫ ∞

−∞
µ(R, z, t)dz (1.7)

are the vertically-integrated (surface) density, the (density-weighted) mean radial velocity
and the (density-weighted) mean kinematic viscosity, respectively1. In practice the inte-
grals will extend from the lower disc boundary −z0 to the upper boundary z0. Throughout

1Note that equation (1.4) assumes uφ = Ω(R)R. The consistency of this approximation is verified
later on in this section.
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this section, z0 = H but the reader should be aware that this is not the case in general
since H is a pressure or density scaleheight while z0 is the actual disc vertical boundary;
the exact relation between z0 and H is dependent on the disc’s vertical structure.

The time for accretion may be taken to be much larger than the dynamical (orbital)
time, tdyn ∼ Ω−1, so that the disc can be treated as quasi-steady for the purpose of
determining its radial structure. (Note that this is just a simplifying assumption and
does not hold in every system.) The equations (now in R only) then simplify to

ν̄Σ =
Ṁ

3π
f, with f = 1−

√
Rin

R
, (1.8)

where Ṁ = 2πRΣ(−ūR) > 0 is the constant mass accretion rate. To obtain this equation
a couple of assumptions were made. The angular velocity Ω was taken to be Keplerian,
ΩK =

√
GM/R3, implying

TRφ = µR
dΩ

dR
= −3

2
µΩK. (1.9)

In addition, to integrate the angular momentum equation, the location where viscous
torques vanish was taken to be the inner disc radius, Rin.

For a general rotation curve, Ω, the 1D angular momentum conservation equation
(1.4) in the steady state may be integrated to

Ṁ(l − lin) = 2πR2(−τRφ), (1.10)

where l = ΩR2 is the specific angular momentum and τRφ =
∫

TRφdz; lin is the angular
momentum constant, that is, the value of l at the radius where the viscous torque is zero.
Throughout this thesis I assume that this is indeed the location where the disc terminates
(Paczyński 2000; Afshordi & Paczyński 2003).

The remaining components of the momentum equation (1.2) are simple. In the
vertical direction the dominant balance is gravity vs. pressure,

0 = −ρ
∂Φ

∂z
− ∂p

∂z
. (1.11)

By expanding the gravitational potential about z = 0, it is simple to verify that the
equation of hydrostatic equilibrium can be written as

∂p

∂z
≈ −ρΩ2

zz, (1.12)

where Ω2
z(R) = Φ,zz(R, 0) is the square of the vertical epicyclic frequency. This is the

frequency at which a particle oscillates about its original orbit when it suffers a verti-
cal perturbation; if the perturbation is radial, the characteristic frequency is the radial
epicyclic frequency κ. In a Keplerian disc,

Φ = − GM√
R2 + z2

, (1.13)
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and

Ω ≡
(

1

R

∂Φ

∂R

)1/2

z=0

= ΩK = Ωz = κ. (1.14)

An order of magnitude analysis of (1.12) shows that an appropriate formula for the
typical scaleheight of the disc is H = cs/Ωz = cs/ΩK. From this definition for H it is
easy to see that µ = αp/ΩK. This means that angular momentum is transferred radially
outwards at a rate which is taken to be proportional to the total pressure, with the
efficiency of the process being parametrised by a dimensionless quantity α. Moreover, (1.9)
implies TRφ = −(3/2)αp. This definition for the stress tensor is a common modification to
that presented in the original Shakura–Sunyaev paper where TRφ = −αp. The difference
between the two stress prescriptions, T SS

Rφ = −αp and T shear
Rφ = µRΩ′, is even more evident

when the angular velocity is not Keplerian in which case

T shear
Rφ = αp

R

ΩK

dΩ

dR
= αp

(
d ln Ω

d ln R

) (
Ω

ΩK

)
. (1.15)

The use of this expression for TRφ may result in significant changes in the mathematical
character of the sonic critical point of steady flows (Abramowicz & Kato 1989). This
critical point is present when the radial inflow velocity, neglected in the Shakura–Sunyaev
model, is considered. The differences between the two types of stress tensor will be
discussed in Part II of the thesis where I’ll refer to T SS

Rφ as the αp type stress tensor and

to T shear
Rφ as the diffusion-type stress (Kato et al. 1993).

In the radial direction, the thin disc approximation results in the dominant balance
being centrifugal,

u2
φ

R
=

∂Φ

∂R
≈

(
∂Φ

∂R

)
z=0

, (1.16)

since the radial pressure gradient is negligible and uR ∼ α(H/R)2uφ � uφ. This implies
that the azimuthal component of the velocity is, to a good approximation, equal to the
orbital velocity of a test particle: uφ = RΩ as assumed previously. In a Keplerian disc,
the thin disc assumption then implies

H

R
=

cs

uφ

� 1, (1.17)

i.e., the azimuthal flow is supersonic which justifies the neglect of the radial pressure
gradient term since

1

ρ

∂p

∂R

/
u2

φ

R
∼ c2

s

u2
φ

� 1. (1.18)
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To fully determine the disc’s radial structure, energy considerations have to be taken
into account. In traditional models, the gas in the disc is heated by viscous dissipation
and cooled effectively by radiative diffusion through the vertical boundaries. The energy
balance can be written in the form (Frank et al. 2002)

∂F

∂z
= µ(RΩ′)2 ⇔ F (H)− F (0) =

1

2
ν̄Σ(RΩ′)2, (1.19)

where F is the radiative flux. Owing to the thin disc approximation, the temperature
gradient ∇T is essentially vertical so F can be written as (e.g. Kippenhahn & Weigert
1996),

F (z) = −16σT 3

3κRρ

∂T

∂z
, (1.20)

where σ = 5.67×10−5 g s−3 K−4 is the Stefan-Boltzmann constant and κR is the Rosseland
mean opacity.

Another characteristic feature of the Shakura–Sunyaev analysis is the crude treat-
ment of the disc’s vertical structure, which is in fact neglected for the purpose of calcu-
lating the radial variation of fluid’s quantities. If the disc is isothermal in the vertical
direction, integration of (1.12) shows that the density drops rapidly with height. This
justifies a local treatment of the disc’s structure which is taken to be governed by the
fluid’s quantities in the mid-plane. In this case: Σ = 2ρH, P =

∫
pdz = 2pH (with P

and Σ related by the isothermal sound speed, P = c2
sΣ) and

F ∼ 4σT 4

3ΣκR

, (1.21)

where ρ and T can be interpreted as the disc’s density and temperature in the mid-plane,
respectively. The energy balance equation can then be written as

4σT 4

3ΣκR

=
1

2
ν̄Σ(RΩ′)2, (1.22)

where it was assumed that the disc’s central temperature is significantly larger than its
surface temperature.

In summary, in the traditional model, the disc’s radial structure is described by the
following set of equations:

ρ = Σ/2H, (1.23)

P = 2Hp = c2
sΣ, (1.24)

H = cs/ΩK, (1.25)
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ν̄Σ =
Ṁ

3π
f, (1.26)

4σT 4

3ΣκR

=
1

2
ν̄Σ(RΩ′)2, (1.27)

ν̄Σ =

∫
µdz = αP/ΩK. (1.28)

Before going on to solve these equations, a discussion regarding the inner disc bound-
ary is in order since Rin is present in f and a mention to its exact location was avoided.
In fact, discs around different objects have different inner radii. A disc surrounding a
weakly magnetised star may extend to the stellar surface where a thin viscous boundary
layer mediates the transition between the disc’s angular velocity and the stellar rotation.
On the other hand, when the star is strongly magnetised, the disc terminates at the
magnetospheric radius beyond which the accretion flow follows the magnetic field lines.
In accretion discs around black holes the situation is once more different. One of the
fundamental results of the theory of general relativity is the existence of an innermost
stable circular orbit (ISCO) or marginally stable orbit, Rms, for test particles around a
black hole; e.g. for a non-rotating black hole, Rms = 6GM/c2 (three Schwarzschild radii).
This implies that a black-hole accretion disc cannot extend to the event horizon2. For
radii larger than Rms the orbits are stable and a viscous torque is required to transport
mass inwards. On the other hand, for R < Rms orbits are unstable and no viscosity is
necessary to make the gas spiral rapidly towards the black hole. The inner boundary can
therefore be assumed to be Rin ≈ Rms (the equality is only exact in a pressureless disc
where H ∼ 0). This is the radius where the specific angular momentum and binding
energy of a test particle reach a minimum.

The three disc regions

To close the system of equations two final ingredients are needed: a relation for the
opacity κR = κR(ρ, T ) and an equation of state p = p(ρ, T ). The former will depend
on the processes that contribute to the opacity: if electron scattering is dominant, κR

is given by the constant Thomson opacity, κT = 0.33 cm2 g−1. On the other hand, if
free-free absorption is dominant, opacity is approximately determined by the Kramers
formula, κK = 5 × 1024ρT−7/2 cm2 g−1 (e.g. Frank et al. 2002; Kippenhahn & Weigert

2The work of Kluźniak & Wagoner (1985) showed that in the case of neutron stars with “soft” equations
of state, the marginally stable orbit may lie outside the stellar surface in which case the disc would
terminate there as it happens with black holes. The exact equation of state of real neutron stars is,
however, uncertain. Therefore, here I will assume that neutron stars are described by “stiff” equations
of state in which case the classic picture of the disc extending to the stellar surface holds.
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1996). In general, a combination of the two should be considered. As for the equation of
state, discs may be assumed to be composed of both gas and radiation in which case

p = pg + pr =
kB

µmmp

ρT +
4σ

3c
T 4, (1.29)

were kB = 1.38× 10−16 cm2 g s−2 K−1 is the Boltzmann constant, µm = 0.615 is the mean
molecular weight and mp = 1.67× 10−24 g is the proton mass.

The full consideration of all the processes that contribute to the opacity and to
the total pressure gives rise to a complicated disc structure. In the Shakura–Sunyaev
approach the analysis is simplified by considering the disc to be composed of three parts:
in the innermost regions, (a) and (b), electron scattering is the main contribution to the
opacity while free-free absorption is dominant in the outer region (c). In (a) the pressure
is determined by the radiation pressure (p ∝ T 4) while gas pressure (p ∝ ρT ) dominates in
(b) and (c). The radiation-dominated region exists only at very high temperatures, when
the accretion rate is larger than a few percent of the Eddington accretion rate (necessary
to sustain the Eddington luminosity LEdd), being important in accretion discs around
black holes.

Assuming that in all three regions the stress scales with the total pressure, the disc
structure may be described by

Region (a):

H = 6.1× 106ṁ m f, (1.30)

Σ = 0.03 α−1 ṁ−1 r3/2 f−1, (1.31)

P = 5.0× 1022 ṁ α−1 f r−3/2, (1.32)

Region (b):

H = 3.0× 103 α−1/10 ṁ1/5 m9/10 r21/20 f 1/5, (1.33)

Σ = 1.6× 105 α−4/5 ṁ3/5 m1/5 r−3/5 f 3/5, (1.34)

P = 5.0× 1022 ṁ α−1f r−3/2, (1.35)

Region (c):

H = 1.3× 103 α−1/10 ṁ3/20 m9/10 r9/8 f 3/20, (1.36)

Σ = 7.5× 105 α−4/5 ṁ7/10 m1/5 r−3/4 f 7/10, (1.37)
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P = 5.0× 1022 ṁ α−1 f r−3/2, (1.38)

where all quantities are in CGS units, m = M/M�, r = R c2/GM = R/Rg (in units of
the gravitational radius) and ṁ = Ṁ/ṀEdd. The Eddington accretion rate is given by
ṀEdd = LEdd/ηc2 = 4πGMmp/ηcσT , and is calculated assuming an “accretion efficiency”
η = 0.06 appropriate for a Schwarzschild black hole; σT = 6.65 × 10−25 cm2 is the cross-
section for Thomson scattering. The fluid’s quantities have exactly the same dependencies
in m, ṁ, α, r and f as in the original Shakura–Sunyaev model. The differences in the
numerical factors are due to the small difference in the values used for κT and µm, to
the different normalization of radius, and also because here I consider the rφ component
of the stress tensor, Trφ = µrΩ′, to be −(3/2)αp instead of the usual −αp value. The
remaining quantities, p, ρ and T , may be easily determined from the formulas above.

Despite neglecting to treat the vertical structure of the disc, not considering other
contributions to the cooling and heating rates of the gas besides radiation and viscous
heating, and despite the simple parametrization for the angular momentum transfer, the
Shakura–Sunyaev model is still the standard reference for the radial structure of accretion
discs if gas pressure is dominant. Region (a) has always been more problematic. In fact,
the assumption that stress scales with the total pressure in the radiation pressure domi-
nated regime leads to viscous and thermal instabilities, analysed further in the following
section.

Instabilities

Soon after the publication of the standard thin disc models, some authors (Lightman
& Eardley 1974; Shakura & Sunyaev 1976) pointed out that, with the usual viscosity
prescription, the very inner (a) region is subject to instabilities acting on the viscous and
thermal timescales of the disc.

To study instabilities the time-dependence of the hydrodynamic equations needs to
be restored. Equations (1.3) and (1.4) may then be combined into a diffusion equation
describing the viscous evolution of a thin disc,

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
ν̄ΣR1/2

)]
, (1.39)

where Keplerian rotation was assumed. From equation (1.26) it can be seen that, at fixed
radius, the viscosity depends only on the surface density, ν̄ = ν̄(Σ, R). Therefore, if Σ
(initially independent of t for a disc in equilibrium) is perturbed slightly, Σ(R, t) → Σ(R)+
δΣ(R, t), the viscosity ν̄Σ(R, t) → ν̄Σ(R)+δ(ν̄Σ)(R, t) with δ(ν̄Σ) = (∂(ν̄Σ)/∂Σ)δΣ. The
viscous evolution equation can then be written as (Pringle 1981)

∂

∂t
δ(ν̄Σ) =

3

R

∂

∂R

[
R1/2 ∂

∂R

(
δ(ν̄Σ)R1/2

)] ∂

∂Σ
(ν̄Σ), (1.40)
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where the variation of ∂(ν̄Σ)/∂Σ with R was assumed slow. If ∂(ν̄Σ)/∂Σ < 0, the
diffusion coefficient is negative implying that overdense regions are constantly fed with
more material while underdense regions become more and more rarified, i.e., the disc
breaks up into rings; this is the condition for instability. In region (a) of the Shakura and
Sunyaev model, it is simple to see from equations (1.23)–(1.28) that, at fixed R,

cs ∝ Σ−1 ⇒ ν̄Σ =
const

Σ
, (1.41)

where const > 0 showing that the region is indeed viscously unstable.

The characteristic timescale for this secular instability is the timescale for the radial
motion (accretion) in the disc (Pringle 1981),

tν ∼
R

ūR

∼ R2

ν̄
∼ α−1

(
H

R

)−2

tdyn. (1.42)

In a thin disc, a faster timescale corresponds to the time for establishing vertical thermal
balance which can be estimated by dividing the thermal energy content per unit area by
the dissipation rate,

tth =
c2
sΣ

ν̄ΣΩ2
∼ α−1tdyn. (1.43)

This is the characteristic timescale of the thermal instability; for α � 1, tth � tdyn.

During the very short thermal time, the surface density remains practically constant
and the disc is maintained in hydrostatic equilibrium. Therefore, it may be considered
that in equations (1.23)–(1.28) only H and T (and therefore p) vary with time. From the
energy balance equation (1.27), the heating and cooling rates may be defined to be

Q+ =
1

2
ν̄Σ(RΩ′)2 (1.44)

and

Q− =
4σT 4

3ΣκR

, (1.45)

respectively. In region (a) the opacity is constant so that Q− ∝ T 4. On the other hand,
using (1.28) and the first part of (1.24), the heating rate can be written as

Q+ =
9

4
αΩKHp. (1.46)

The dependence of H on p can be determined from the hydrostatic equilibrium equation
and (1.23), H = 2p/ΣΩ2

K, and therefore Q+ ∝ p2 ∝ T 8 when the radiation pressure
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dominates. From the dependence of Q− and Q+ it is seen that a small increase in tem-
perature will lead to a thermal runaway since the heating rate increases much faster than
the cooling rate. This is the basis of the thermal instability.

According to the Shakura–Sunyaev model, these instabilities would be expected in
discs with a luminosity larger than a few percent of the Eddington luminosity. How-
ever, and despite attempts to explain the variability of some observational objects using
these instabilities (Blaes 2003, and references therein), their presence in real systems has
never been proven. With the exception of GRS 1915+105, a very unusual and extremely
luminous source, observations of X-ray binaries with 0.01 . L/LEdd . 0.5 have failed
to identify such instabilities (Gierliński & Done 2004). Pringle (1981) pointed out that
they are not necessarily physical and may rather be regarded as “self-inconsistencies”:
some of the approximations made in order to construct the steady disc model may not
be consistent with the assumption of steadiness. Indeed, these can be avoided by simply
assuming that the stresses scale with the gas pressure (Sakimoto & Coroniti 1981), or
with a combination of both gas and radiation pressure (e.g. Taam & Lin 1984; Merloni &
Fabian 2002). Still, recent magnetohydrodynamic simulations by Hirose et al. (2009) sug-
gest that turbulent stresses (magnetic in nature) may indeed be correlated with the total
pressure as predicted in the original model. However, fluctuations in stress are the ones
driving pressure fluctuations, contrary to the usual assumption that changes in pressure
give rise to changes in stress; this seems to avoid thermal instability (which has a faster
growth rate than viscous instability). With these results in mind, throughout this thesis,
I consider the α viscosity prescription in the form

µ = α
p

ΩK

, (1.47)

so that the viscosity µ and total pressure p correlate, as in the original Shakura & Sunyaev
model.

Another instability of viscous flows, one potentially relevant for explaining quasi-
periodic variability, was investigated by Kato (1978). This pulsational instability or vis-
cous overstability (since it takes the form of propagating waves) has a growth rate lower
than that of thermal instability by a factor (H/λ)2, where λ > H is the wavelength of
the perturbations. Viscous overstability is further discussed in Part II of this thesis.

1.1.3 Beyond the standard model

Radial inflow: steady transonic accretion

In the standard thin disc model, the gravitational attraction of the central object is
balanced by rotation and the radial inflow is ignored to lowest order. The disc structure
calculated within these assumptions is singular at the inner boundary (f = 0) where
the disc is forced to terminate since the density in region (a) goes to infinity there [cf.
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equation (1.31)]. The singularity is removed if the radial inflow is taken into account.
This is particularly important in discs around black holes: as noted by (e.g.) Novikov &
Thorne (1973), accretion is always transonic in this case since the flow must be subsonic
at large radii and supersonic close to the compact object. As a result, the radial velocity
is dynamically important in the inner disc.

Liang & Thompson (1980) developed a more correct treatment of the innermost
region of steady flows and demonstrated that the solution for the radial velocity of thin-
disc accretion onto a black hole is transonic and analogous to Bondi (1952) spherical
accretion. It should be noted that the transonic accretion model is only relevant very
close to the marginally stable orbit and in the plunging supersonic region. The Shakura–
Sunyaev model is still applicable a certain distance away from the inner boundary and the
transonic solution should be matched with the classical thin-disc solution at large radii.

The point where the modulus of the radial inflow equals the sound speed is a critical
point of the hydrodynamic equations describing 1D steady accretion; a physically accept-
able solution must pass through this sonic point regularly. In a thin disc, this critical
location is close to the marginally stable orbit and it is approximately where the gas tran-
sits from being in stable orbits to freely falling into the black hole. The exact location of
this inner boundary is dependent on the flow parameters such as mass accretion rate and
viscosity (Muchotrzeb & Paczyński 1982).

As it will be seen in chapter 2, transonic accretion is constrained by boundary con-
ditions and regularity demands at the sonic point. For some values of the flow parameters
such as sound speed and α, steady transonic solutions obeying realistic conditions cannot
be found, implying the time variability of the accretion process. Indeed, e.g., Paczyński
(1987) attempted to relate the unsteadiness of the flow to the X-ray quasi-periodic phe-
nomena. This hypothesis is studied in Part II of this thesis where I analyse the transition
from subsonic to supersonic accretion in a time-dependent flow.

Thick discs and ADAFs

The Eddington luminosity is the limit at which the inward gravitational force is exactly
balanced by the outward radiation force. This concept is particularly meaningful in the
inner regions of accretion flows around neutron stars or black holes where the gas is heated
to high enough temperature for radiation pressure to dominate over gas pressure. In this
case, the equations derived to describe region (a) are applicable and (1.30) appropriately
conveys the dependency of the disc thickness on the mass accretion rate, independently
of the viscosity prescription. It is then clear [since H/R = 41.5ṁf/r in region (a)] that
if the accretion rate is close to Eddington, the thin disc approximation must break down.

The interest in thick discs arose in an attempt to explain these “puffed up” structures
or tori relevant for high luminosity accretion flows or that may result from thermal and
viscous instabilities in thin discs (Paczyński & Wiita 1980; Abramowicz et al. 1980).
Accretion tori were used to model the very inner accretion flow in AGNs and seemed to
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provide the necessary energy by accretion for jets and a mechanism for their collimation
without the need for magnetic fields (Lynden-Bell 1978). These thick structures may also
be relevant in inefficiently cooling flows where the gas is heated to temperatures such that
the local sound speed becomes comparable to the azimuthal velocity [cf. equation (1.17)].

Since radiation pressure forces are important in defining the radial equilibrium of
the disc, there is no reason to assume that the rotation is Keplerian [cf. equation (1.16)].
In principle, there is freedom to chose the distribution of specific angular momentum,
provided it does not decrease outwards so that Rayleigh’s criterion for stability to axisym-
metric perturbations is satisfied. The typical assumption was that of constant angular
momentum; this is not only the simplest distribution but is also the one for which the to-
tal luminosity of the flow is maximal (Abramowicz et al. 1980). Models constructed with
this assumption are, however, dynamically unstable to global non-axisymmetric modes as
discovered by Papaloizou & Pringle (1984).

The key location for the development of the Papaloizou-Pringle instability (PPI) is
the corotation radius, located within the torus for non-axisymmetric modes. If a wave of
frequency ω and azimuthal number m (cf. chapter 4) propagates in a disc rotating with
angular velocity Ω, the wave pattern will appear, to an inertial observer, with a Doppler-
shifted wave frequency ω̂ = ω −mΩ; the location where ω̂ = 0 is the corotation radius,
Rc. Waves propagating outside corotation have ω̂ > 0 while ω̂ < 0 for waves propagating
inside Rc. Because the flow is rotating and there is kinetic energy stored in the disc as
a result of this rotation, it is possible for a wave propagating in such a medium to have
negative energy. This simply means that the total energy of wave+disc is smaller than
the energy of the disc on its own; the wave passage decreases the mechanical energy of the
gas. This is the case for waves propagating inside their corotation radius as opposed to
positive-energy waves that propagate outside (cf. chapter 5). At the corotation resonance,
energy exchanges may occur. If negative-energy waves lose energy there their amplitude
is increased since they become more energetically negative. Positive-energy waves may
collect this energy left at corotation and grow in amplitude as a result. The process leads
to instability if negative-energy waves are reflected at the inner boundary of the torus so
that the energy exchange at corotation is maintained (Balbus & Hawley 1998).

The instability acts on the very fast dynamical timescale and persists even in flows
with non-constant distributions of specific angular momentum (Papaloizou & Pringle
1985). The growth is maximal for constant l (Ω ∝ r−2) and decreases rapidly as the
Keplerian distribution (Ω ∝ r−3/2) is approached (Goldreich et al. 1986). The discovery
of the PPI was striking and threw into doubt the very existence of thick discs. However,
it was later shown by Blaes (1987) and confirmed by numerical simulations (Balbus &
Hawley 1998, and references therein) that the growth of the instability may be reduced
or even halted in accreting flows where an inward radial velocity is taken into account.
Thick accretion discs may indeed be astrophysically relevant but there are still theoretical
uncertainties regarding their structure and stability.
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Figure 1.1: Schematic representation of the accretion flow in different spectral states with

the ADAF indicated by dots and the thin disc by horizontal bars. The transition between

different states (from low to very high) occurs as the mass accretion rate increases and

the disc gets closer to the marginally stable orbit (from Esin et al. 1997).

Another interesting accretion solution is that of advective-dominated accretion flows
or ADAFs. They are important when the accreting gas is unable to cool efficiently and
most of the thermal energy is advected inwards by accretion of entropy instead of being
radiated away. They are expected to have astrophysical relevance in situations where the
mass accretion rate is either very low or very high (see examples in Narayan & Yi 1994).
Although these solutions are “thick” in the sense that H/R is not necessarily small and
the pressure gradient should be included in the radial momentum equation, they may not
be unstable to PPI due to the presence of radial advection.

The most widely accepted model for accretion flows around black holes involves
both an ADAF and a thin disc (Narayan et al. 1996). Accretion at large radii occurs
by means of a thin disc (possibly surrounded by a hot corona) which then switches, at
a transition radius Rtr, to an advection-dominated flow which dominates in the inner
regions; the exact location of Rtr is dependent on the mass accretion rate. This model
has spectral characteristics in agreement with those observed for X-ray binaries (Narayan
et al. 1998, and references therein). Moreover, and despite the complications involved
in defining black-hole states and transitions from one to another (cf. section 1.3.1), an
elegant and simple theoretical model differentiates the various states by using different
transition radii for each of them. The highest state, dominating close to the Eddington



Astrophysical black holes 21

limit, has the highest accretion rate and smallest Rtr with accretion occurring almost
exclusively by means of a thin disc (Esin et al. 1997, and Fig. 1.1). A more recent version
of this state-transition model is presented in Done et al. (2007).

Warped and eccentric discs

In the classical theory of accretion discs the gas is assumed to rotate around a massive
central object following coplanar, circular and approximately Keplerian orbits. Although
this is the simplest solution for the motion of fluid elements placed in a Newtonian poten-
tial well, external forces can give rise to non-planar discs composed of non-circular rings.
In fact, the general solution allows for discs to be twisted or tilted, with their orbits pre-
senting a smoothly varying eccentricity and/or inclination. The literature offers strong
observational and theoretical evidence (Bardeen & Petterson 1975; Ogilvie 2000, 2001;
Fragile et al. 2007, and references therein) to believe that under various conditions discs
can become either warped or eccentric. In particular, the precession of deformed discs
has been used to explain several phenomena in X-ray binaries (e.g. Gerend & Boynton
1976; Whitehurst 1988; Stella & Vietri 1998; Lai 1999).

Warped and eccentric discs are described further in chapter 4, where warping and
eccentricity are described as global modes, and in chapter 6 where the conditions under
which global deformations may appear and propagate to the inner disc region are analysed
in more detail.

1.2 Astrophysical black holes

The short discussion on the location of the inner disc boundary of the previous section,
emphasised the importance of accretion discs in distinguishing between neutron stars and
black holes. More importantly, because black holes themselves cannot emit light (apart
from Hawking radiation), observations can only reveal the emission from the accretion
discs. Therefore, accretion flows are fundamental tools in the search for black-hole candi-
dates and they also provide means to determine properties of the central object, namely,
black-hole mass and spin. In this section I discuss the search for, and characterisation of,
astrophysical black holes and the importance of accretion discs in this process.

1.2.1 Black-hole candidates

To a certain extent stars come in all shapes and sizes or, more precisely and contrary to
the popular belief, they are not necessarily exactly spherically or axially symmetric since
magnetic fields and rotation may affect their symmetry. However, according to stellar evo-
lution, some stars will end their lives as black holes and the vacuum solutions of Einstein’s
general relativity equations that describe these objects are highly symmetric. If the star
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is sufficiently massive and non-rotating it is expected to collapse to a Schwarzschild black
hole which is spherically symmetric. On the other hand, a rotating massive star is ex-
pected to end its life as a Kerr black hole which is characterised by the electrically-neutral
axially-symmetric solution of Einstein field equations. (Charged black holes described by
the Reissner-Nordström solution are not expected to exist in nature as such a body would
attract opposite charges and be neutralised as a consequence.) Is there a contradiction
between the theories of stellar evolution and general relativity or can a non-symmetric
star collapse onto a highly symmetric body? General relativity provides a solution for
the apparent contradiction by stating that during the collapse the compact object gets
rid of its asymmetry by radiating away gravitational waves. This can be proved mathe-
matically by studying the evolution of small non-axially symmetric perturbations of the
gravitational field during the collapse process. While this provides a theoretically satisfy-
ing solution for the paradox between stellar evolution and general relativity, both theories
are yet to be fully tested observationally. The proof of the existence of Kerr black holes
(the Schwarzschid solution can be included as a special case) in nature constitutes one
of the fundamental observational tests of these theories. A more detailed description of
black holes in general relativity can be found in, e.g., Raine & Thomas (2005).

Astrophysical black holes may be divided in four categories depending on their mass
(see Raine & Thomas 2005, and references therein). Cosmology theorises mini-black holes
with M < 1M� to have formed in the early Universe when very high densities prevailed.
These objects could presumably be detected since they are predicted to emit gamma
rays during evaporation due to Hawking radiation, which would contribute to the cosmic
gamma-ray background. Measurements so far are limited and inconclusive. Stellar-mass
black holes, M = O(1− 10M�), are the endpoint of stellar evolution of massive stars and
the earliest observational evidence of such type of objects comes from X-ray observations
of binary star systems. Intermediate-mass black holes, M = O(100 − 1000M�), are
probably formed by collision and/or merging of stellar-mass black holes. Highly luminous
compact X-ray sources emitting 10-100 times more power in X-rays than stellar-mass black
hole candidates have been identified. Such a release of energy can be explained if black
holes power these objects. They have mostly been identified in starburst (rapid stellar
formation) galaxies. Finally, the most spectacular supermassive black holes power active
galactic nuclei or AGN (M > 105M�). In the so-called “active galaxies” an enormous
amount of energy is released from a small volume at their centres and their high luminosity
can only be reasonably explained by accretion onto a black hole.

The earliest and probably strongest evidence of the existence of black holes in the
Universe comes from observations of binary stars. From the number of binaries known in
our Galaxy that consist of a visible (normal) star and an invisible (dark) companion in
close orbit, in approximately 20 the dark star is believed to be a black hole (McClintock
& Remillard 2006). When fusion of elements in the stellar interior ceases to release energy
the star begins to die. According to the theory of stellar evolution, a lower-mass star sheds
its envelope into a planetary nebula and the resulting compact degenerate remnant is a
white dwarf. Higher-mass stars produce a supernova as a result of collapse. The remnant
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from this violent explosion is either a neutron star of black hole. In a white dwarf the
inward pulling gravity is balanced by electron degeneracy pressure while a neutron star is
supported by neutron degeneracy pressure. If the mass of the neutron star is larger than
2 − 3M� the pressure is insufficient to prevent gravitational collapse, the radius of the
star eventually becomes smaller than its Schwarzschild radius and a black hole forms.

The invisible companion in a close binary system can be one of the three endpoints
of stellar evolution. If its observationally-determined mass is larger than 3M�, it is con-
sidered a black-hole candidate (BHC). From orbital theory, the mass-function of a binary
may be found to be given by

F (M) ≡ PV 3
s

2πG
=

M sin3 φ

(1 + Ms/M)2
, (1.48)

where P is the orbital period, Vs is the amplitude of the line-of-sight velocity, Ms and
M are the masses of the normal star and its dark companion, respectively and φ is the
angle between the line-of-sight and the normal to the orbital plane. The mass function
can be determined observationally and is a lower limit to the mass of the dark companion.
Therefore, if F (M) > 3M� an object is considered a black-hole candidate.

A high X-ray luminosity originating from the inner accretion flow is also a good
indication of the existence of a black hole. In the strong-field region (approximately
between 1 − 10Rg) where most of the gravitational energy is released, temperatures are
of O(107 K) and emission is in the X-ray part of the spectrum. If the high-energy spectra
and temporal variability of an object are similar to other BHC, it can also be identified
as a candidate. X-ray variability is discussed further in section 1.3.

The absolute proof of the existence of black holes would be the detection of an event
horizon. Even if such a region cannot be “seen”, observations of neutron-star binaries
and black-hole binaries (BHB) may be compared to look for signatures of a surface in
the former. Because the accretion disc extends to the surface of neutron stars, once the
gas reaches it, it accumulates there and its kinetic energy is converted into heat. Then it
eventually undergoes thermonuclear burning due to the gravitational compression of the
gas onto the surface. The burning can be unstable in which case thermonuclear bursts
occur. This phenomenon has been observed in neutron star binaries but not in black hole
candidates (McClintock et al. 2003), re-inforcing its identification as such (since black
holes have no surface thermonuclear burning cannot happen).

1.2.2 Measuring black-hole spin

For general relativity to be tested observationally, the identification of black holes isn’t
enough. It is necessary to show that the space around them may be described by the
Kerr metric which is characterised fully by only two parameters, the mass and the spin
of the black hole. Given that most BHCs have determined or constrained masses, the
next logical step is to measure spin, which is of more fundamental importance than mass.
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The latter simply gives a scale while the former changes the geometry of the space-time
in the vicinity of the black hole; knowing the spin is essential to model how an accreting
black hole interacts with its surroundings. Besides being important in testing general
relativity, spin measurements would, e.g., allow us to build more realistic models of black-
hole formation and black-hole binary evolution, to make models of relativistic jets which
suggest a dependence on spin and to test stellar-collapse models of gamma-ray bursts.

However, measuring the spin of a black hole is much harder than determining its
mass. While the latter can be measured in the Newtonian limit (using the stellar compan-
ion), the effects of spin are only revealed in the strong gravity regime, i.e., very close to the
black hole in the very inner region of the accretion disc. According to general relativity,
only certain values are expected for the spin of a black hole. Defining a dimensionless
spin parameter a = cJ/GM2 where J is the angular momentum of the hole, the cosmic
censorship hypothesis (which says that naked singularities cannot exist in the Universe)
limits the values of a to be between −1 and 1. Negative values correspond to a black hole
rotating retrogradely with respect to the accretion disc (or binary rotation) and can be
excluded for simplicity. If a = 1, the event horizon of a black hole rotates at the speed
of light. In reality, “extreme-Kerr holes” are impossible: Thorne (1974) proved that the
maximum rotation value is limited to 0.998.

The location of the marginally stable orbit and the accretion efficiency are dependent
on spin. In a non-rotating black hole the binding energy released when a particle spirals
inwards to the marginally stable orbit is 6 per cent and Rms = 6Rg. On the other hand,
in a maximally-rotating hole the efficiency is 30 per cent and Rms = Rg which is also the
radius of the event horizon. As a result, the orbital frequencies associated to Rms are also
dependent on spin. For a Schwarzschild black hole fms = Ωms/2π = 220(M/10M�)−1 Hz;
for a maximally rotating Kerr black hole this value increases to 1615(M/10M�)−1 Hz.
These differences are crucial for some observational determinations of spin.

Methods of spin measurement

There are currently four promising methods for the observational determination of black-
hole spin. I summarise each one in what follows.

X-ray polarimetry: Polarisation features can be strongly affected by general rela-
tivistic effects (Connors et al. 1980). The idea is based on the assumption that high
energy photons are expected to come from closer to the black hole than low energy ones.
Because of the strong gravitational bending of light rays, as the photon energy increases,
the plane of linear polarisation swings gradually through an angle which is dependent on
spin. Therefore, spin can be determined from the parameters characterising the polarised
accretion disc spectra.

Iron line profile: The prominent Fe Kα X-ray spectral line has its origin in the gas
orbiting close to the hole and is relativistically broadened. Doppler and general relativis-
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tic redshifts, frame-dragging and relativistic beaming contribute to create an asymmetric
line profile. In principle, mass, angular momentum of the black hole and orientation of
the accretion disc can be determined from these line profiles (Reynolds & Nowak 2003).

Continuum fitting: Thin discs around black holes are truncated at the marginally
stable orbit, which is dependent on mass and spin. If mass is known in advance, a measure
of Rms provides a measure of spin (Zhang et al. 1997). Using blackbody radiation theory,
radii of stars can be determined from the radiation flux F received from the star and the
temperature T of the continuum radiation, provided the distance D is known (luminosity
L = 4πD2F = 4πR2σT 4 ⇔ (R/D)2 = F/σT 4). In a similar way, Rms can be measured
from the radius of the “hole” of the disc emission. But it should be mentioned that a
slightly more complicated formula is used to determine this radius to, e.g., consider the
T (R) profile of discs and take into account the disc inclination i.

High-frequency QPOs: These high-frequency modulations seen in the light curve of
some black-hole candidates have spectra characteristic of the inner disc and very stable
frequencies, insensitive to luminosity variations. This suggests that their frequencies are
primarily dependent on the fundamental properties of the black hole, M and a, rather
than the properties of the accretion flow. Provided there is a theoretical model for the
frequencies of QPOs, only the mass of the hole is necessary to determine its spin (see,
e.g., van der Klis 2006, and section 1.3.3).

Spin-measurement critique

X-ray polarimetry is one of the methods for spin measurement where theoretical methods
are developed the most, with computational models that compute the Stokes parameters
of a polarised accretion disc spectrum already available (Dovčiak et al. 2004). However,
very sensitive instruments need to be built to measure polarimetric information and thus
far this method has produced no results.

The iron line profile method, on the other hand, has already produced some results.
Observations indicate that, e.g., the black-hole candidate GRS 1915+105 is slowly spin-
ning while XTE J1650–500, XTE J1655–40, XTE J1550–564 have nearly maximal spin
(see Remillard & McClintock 2006, and references therin). However, this method has
some caveats and it is unclear if the reported spin measurements are reliable. The deter-
mination of spin from iron line profiles is dependent on disc models, the contribution to
the line profile coming from R < Rms is uncertain, and it is useful to know the inclination
of the disc to better fit the continuum. Moreover, non-relativistic effects such as scattered
radiation may also contribute to line broadening and observations have limited resolution
(Reynolds & Nowak 2003).

The model which as, so far, produced more spin measurements is that of continuum
fitting and, from an observational point of view, is the most promising. The values of
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F and T (R) can be obtained from X-ray observations; therefore, given precise measures
of M , i and D (from ground-based observations) as inputs, it is possible to fit X-ray
spectral data to a fully relativistic model of the disc emission and get a as a fit parameter.
State-of-the-art theoretical models include corrections from gravitational redshift, ray
deflections and disc atmosphere, just to name a few. Spins measured by this method
include GRO J1655–40: 0.65 < a < 0.75, 4U 1543–47: 0.7 < a < 0.8 and GRS 1915+105,
0.98 < a < 1.0 (Remillard & McClintock 2006, and references therein).

The contrasting difference between the spins measured for GRS 1915+105 using the
iron-line and the continuum-fitting methods should remind the reader that both are far
from being reliable. Indeed, the X-ray continuum fitting is not free from caveats. Once
again it is a model-dependent method and assumes the disc to be thin and non-warped
which may not necessarily be the case, particularly close to the black hole. It requires the
inclination of the disc as a fitting parameter, and as pointed out by Maccarone (2002), the
orbital inclination may differ significantly from that of the black-hole spin axis, relevant
in the inner region. An accurate spin determination also requires the disc to be in the
thermal (high-soft) state where the spectra is black-body like and the disc is expected to
terminate at Rms (see next section for more details on these observational characteristics
or McClintock & Remillard 2006). Indeed, different fits to the data give rise to contrasting
spin measurements. For example, Reis et al. (2009) measured a spin larger than 0.9 for
GRO J1655–40 different from the value mentioned above. In addition, a different estimate
for the spin of GRS 1915+105 is reported by Middleton et al. (2006) who found a ∼ 0.7.

The possibility of measuring black-hole spin using high-frequency QPOs provides sig-
nificant stimulus for research amongst the community of theoretical astronomers. These
mysterious oscillations, a prime example of black-hole accretion disc variability, are clearly
a general relativistic phenomenon. Unfortunately, their origin and observational proper-
ties are yet to be explained. However, once the correct model providing a relation between
QPO frequency and black-hole spin and mass is determined, they offer the most reliable
method for spin measurement, almost independent of observational parameters.

One of the motivations behind the research described in this thesis is precisely the
search for a high-frequency QPO model. Although these oscillations are quasi-periodic,
they are usually explained by periodic models: the damping caused by viscous-turbulent
effects in the disc or the superposition of frequencies are factors of aperiodicity, trans-
forming periodic oscillations into quasi-periodic. In Part III of this thesis I will discuss a
model based on relativistic wave trapping: if QPOs are identified with trapped waves and
if the trapping is not perfect, the “leakage” out of the region where these waves propagate
may also explain the aperiodicity.

In order to construct realistic theoretical models for high-frequency QPOs, it is im-
portant to know about the observational characteristics of these modulations. Therefore,
in the next section, I summarise the current understanding of X-ray variability phenomena
where quasi-periodic oscillations are included.
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1.3 Observations

Accretion flows are expected to be inhomogeneous due to, e.g., turbulence, magnetic
fields and density fluctuations. These phenomena may result in time variations in the
emission coming from accretion discs. Although these variations happen on a wide range
of timescales, here and throughout this thesis the interest will go to the fastest variability
components (in particular quasi-periodic phenomena but broad-band noise is also included
in this category) detected in black-hole candidates.

1.3.1 Timing properties and black-hole states

Timing is the study of X-ray variability. Since rapid variations are a stochastic phe-
nomenon (due to the turbulent nature of accretion), statistical techniques are appropri-
ate for its study and Fourier analysis is the tool commonly used for it. A very detailed
explanation of X-ray variability is given by van der Klis (2006).

The power density spectrum (PDS)3 is formed from the group of power-spectral
components or X-ray lightcurve [Fourier power density, Pf (f)] segments: after taking the
discrete Fourier transform of each of the components, the squared amplitudes of each
transform are averaged together resulting in the PDS. The PDS of BHCs often shows
transient peaks, discrete, subtle features that can be modelled using Lorentzian profiles,

Pf (f) ∝ λ

(f − f0)2 + (λ/2)2
, (1.49)

where λ is the full-width at half maximum (FWHM) of the feature and f0 is its cen-
troid frequency. If the feature has a relatively high coherence4 or, equivalently, a high
quality factor Q ≡ f0/λ (typically, Q & 2), it is considered a QPO instead of peaked
noise. Therefore, QPOs are sharp, narrow features in the PDS while broad structures are
identified as noise. The range of centroid frequencies for QPOs is 0.01− 450 Hz. Another
important property is the strength or variance of the signal which is typically expressed in
terms of its fractional root-mean-squared amplitude, rms ∝ (

∫
Pf (f)df)1/2, often given

in percentage.

3The PDS is a measure of variability of energy with time. It shouldn’t be confused with energy
spectrum [S(E) = E ×N(E), where E is the energy and N(E) the photon number or photon spectrum]
taken at each time t. If there is variability, S(E)[t = t0] 6= S(E)[t = t1] and a “variability spectrum” can
be constructed by selecting a range of energies and comparing the differences in S(E) at different times.
As a result, a variability feature may be stronger at, e.g., a lower range of energies rather than a higher
range.

4Note that the coherence of QPOs is only high when compared to the coherence of peaked noise. In
fact, the quality factor of QPOs in BHCs is much lower than the quality factor of other modulations such
as the dwarf nova oscillations or QPOs in neutron stars.
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The energy spectra of BHCs can display thermal and non-thermal components as
well as transitions between the two, where either one can dominate. The thermal com-
ponent is blackbody-like (kT ∼ 1 keV) with origin in the inner, optically-thick part of
the accretion disc. The non-thermal component is usually well-fitted by a power law,
characterised by a photon index Γ (photon spectrum ∝ energy−Γ) and it is thought to
have origin in an accretion disc “corona” or an ADAF (Done et al. 2007, and references
therein) composed of high-energy photons. Black-hole states can, roughly, be defined
according to the type of component that dominates in the X-ray spectrum. Remillard &
McClintock (2006) present the following classification:

Thermal or high/soft5 state: X-ray flux is dominated by the thermal component;
QPOs are either not observed or very weak in this state.

Hard or low/hard state: energy spectrum is dominated by a power-law compo-
nent with Γ ∼ 1.7; QPOs may be present.

Steep power law (SPL) or very high state: a power-law component with
Γ ∼ 2.5 dominates; QPOs are frequent. This is the dominating state close to the
Eddington limit.

Intermediate states between these three can be considered as well. Of particular impor-
tance is the SPL-hard intermediate state where low-frequency QPOs are often detected.
QPOs of high frequency prefer the very high state.

Most BHBs are X-ray novae that remain in a faint, quiescent state most of their
lifetime. When the first outburst occurs, they are detected since the luminosity increases
by many orders of magnitude. It is in the outburst that the above “active” states are
used to classify the black hole.

Quasi-periodic oscillations have different properties depending on their centroid fre-
quency. Very low frequency QPOs (f0 < 0.1 Hz) are extremely rare and poorly under-
stood. Low-frequency QPOs have values of f0 between 0.1 and 40 Hz while high-frequency
ones have f0 > 40 Hz. These are the centroid frequency limits defined by Remillard &
McClintock (2006); van der Klis (2006) considers that high-frequency phenomena have
f0 & 100 Hz and that the low-frequency features have 0.01 Hz < f0 < 100 Hz.

1.3.2 Low-frequency quasi-periodic oscillations (LFQPOs)

LFQPOs are very strong and coherent oscillations: their rms amplitudes can be consid-
erable (rms > 0.15) and the quality factor is typically of O(10). The maximum values

5The terms soft and hard refer to X-ray colours. A photometric approach to the study of the X-ray
broad-band spectrum quantifies it using X-ray colours: a hard colour is related to the photon count in a
higher energy band while a soft colour is referent to a lower energy band.
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Object f0 (Hz) Commensurability M/M�

GRO J1655–40 300,450* 2:3 6.0–6.6

XTE J1550–564 184,276* 2:3 8.4–10.8

GRS 1915+105 [41,67], [113,168] ∼3:5, ∼2:3 10.0–18.0

H 1743–322 165,241 ∼2:3 N/A

XTE J1859+266 190 N/A 7.6–12*

XTE J1650–500 250 N/A N/A

4U 1630–47 184 ** N/A

Table 1.1: Confirmed detections of high-frequency QPOs in black hole candidates and

mass estimates (Remillard & McClintock 2006, and references therein). The * denotes

uncertainty — in the case of frequencies the error is of O(±20 Hz) (Remillard et al.

2002). For the object 4U 1630–47, Klein-Wolf et al. (2004) claim to have found a pair of

HFQPOs with frequencies in a 4:1 ratio: 170, 42 Hz. However, these features have a very

low quality factor and therefore this commensurability (**) is not included in the table.

Spin estimates are not included due to the lack of agreement between measurements made

by different methods (cf. section 1.2.2).

of rms are observed when the steep power law contributes significantly (more than 20%)
to the flux at energies between 2–20 keV, with the peak in rms being for 6–10 keV, but
LFQPOs are also observed at much higher energies.

If the power law needs to have a considerable contribution in order for the oscilla-
tions to be detected, it is reasonable to assume that they are related to the non-thermal
component of the spectrum. However, as argued by Remillard & McClintock (2006), this
does not necessarily mean that the LFQPOs don’t have origin in the accretion disc and
can even be considered important tools to understand the relation between the thermal
and power-law components of the spectrum as their properties possibly have origin in this
relation.

Another property of the oscillations that suggests a relation between them and the
accretion flow is the fact that they are quasi-stable features: often they can be observed
in the PDS over several weeks, although they can have some variability in frequency on
short-time scales. However, it is complicated to connect LFQPOs with the inner accretion
disc since their frequencies are much lower than the ones expected for the orbits in this
region. McClintock & Remillard (2006) also mention that the distinctiveness and strength
of the oscillations require the emitting region to have global properties.
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1.3.3 High-frequency quasi-periodic oscillations (HFQPOs)

Unlike LFQPOs, the HFQPOs are considered one of the fundamental tools in the study
of the relation of relativistic compact objects and their surroundings. Although they are
not as strong as their low-frequency “siblings” (rms ∼ 0.01), their frequencies are the
ones expected for orbits in the inner region of the accretion disc. They are considerably
more stable than LFQPOs since substantial changes in luminosity only result in minor
variations in frequency.

With the exception of the X-ray binary XTE J1550–564 where an HFQPO was
detected at a photon count rate below the very high state (see van der Klis 2006, and
references therein), all BHBs where QPOs of this type have been detected were in this
high-luminosity state. This may be indicative of a relation between high-frequency QPOs
and high mass accretion rate.

An interesting property of HFQPOs is the fact that, in some objects, they are
observed (most often not simultaneously) in pairs with frequencies in a ratio of n1:n2, with
n1, n2 integers. The first discovery of these “twin” high-frequency QPOs in black hole
candidates revealed a 3:2 ratio for the frequencies of the oscillations; there are currently
4 objects with QPOs frequencies with this ratio (table 1.1). When pairs of HFQPOs
are detected, the one with higher frequency is the more stable to luminosity variations
(Remillard & McClintock 2006, and references therin).

The stability and range of frequencies led various authors (e.g. McClintock & Remil-
lard 2006, and references therein) to connect these oscillations to fundamental properties
of the black hole and to oscillations in the inner accretion disc. In fact, a plot of the
highest-frequency QPOs observed in some objects versus the mass of the black hole (Bel-
loni et al. 2006), reveals an approximate 1/M relation. This agrees with the relativistic
prediction that the frequencies of inner disc oscillations vary with 1/M if the values of a of
the analysed black holes are alike. A model for HFQPOs should, therefore, be intrinsically
relativistic so that characteristic frequencies scale with c3/GM .

Provided that they are understood theoretically, high-frequency QPOs are one of
the most attractive tools to measure black hole parameters, to understand the behaviour
of the accretion flow in strong field regions and to scrutinize the validity of the theory of
general relativity in these regions. Theoretical models for this variability phenomena are
presented in the following section.

1.4 Variability of black-hole accretion discs

Rapid X-ray variability is a ubiquitous phenomenon in systems thought to be powered by
accretion onto a black hole and the accretion flow is the most obvious source of variability.
Although similar occurrences are also observed in, e.g., cataclysmic variables or discs
around neutron stars, theoretical modelling of rapid variability is particularly attractive



Variability of black-hole accretion discs 31

in the case of black-hole accretion flows. They are thought to be less complicated, in the
sense that there is no surface or stellar magnetic fields to account for, and there is an
interesting mass scaling relation between stellar-mass and supermassive systems. Indeed,
the 1/M dependence for the frequency of quasi-periodic oscillations suggests that they
might also be commonly present in AGNs, although with considerably longer periods, and
may provide an estimate for the mass of such systems. Despite the difficulties involved
in detecting long-period oscillations, Gierliński et al. (2008) reported the detection of
a strong QPO with a period of ∼ 1 hour in the X-ray emission of active galaxy RE
J1034+396. This discovery, together with previous analysis of similarities between broad-
band variability in AGNs and galactic X-ray sources (McHardy et al. 2006), corroborates
the idea that physical processes occurring in accretion discs are the same at all mass scales
(see King et al. 2004, and references therein).

In this dissertation the focus goes to physical processes that may result in rapid ape-
riodic variability, namely high-frequency QPOs. The theoretical work presented here is, in
principle, applicable to both AGNs and X-ray binaries (and even weakly-magnetised neu-
tron stars) although observational comparison is made essentially with data from galactic
X-ray sources which are more widely available. It should be noted, however, that the
main motivation for the research described here is not that of explaining observational
phenomena in all their complexity. I acknowledge the importance of building theoretical
models that correctly explain all the observational characteristics of X-ray variability phe-
nomena, but the existing data are complex and evolving fast while accretion flow models
are few and based on a variety of simplifications. The theoretical modelling of variability
in accretion discs is complicated and the progress consequently slow. Many state-of-the-
art high-frequency QPO models mainly focus on explaining the typical values for the
frequencies of these oscillations using general relativistic effects of some sort (McClintock
& Remillard 2006, and references therein). The reason for this is that the theoretical
community is mostly interested in finding a relation between such frequencies and the
fundamental parameters of black holes. Indeed, according to Rebusco (2008) “All models
of QPOs are essentially dynamical models, that miss any emission mechanisms and any
connections to the spectral states of the sources.”. Moreover, many QPO models are too
crude to include a proper hydrodynamical treatment. There is yet to be an agreement on
the basic dynamics involved in explaining high-frequency oscillations and my contribution
is that of providing a strong backup on the dynamical level to some of the models by, e.g.,
showing how a particular oscillation frequency may be excited in the accretion flow.

The dynamical frequencies characteristic of accretion discs around black holes are
presented next, and a review of current high-frequency QPO models follows.

1.4.1 Characteristic frequencies

The bulk of the X-ray emission from BHCs originates in the very inner region of accretion
flows and HFQPOs have frequencies proportional to 1/M and approximately independent
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of luminosity (or equivalently accretion rate). Therefore, relativistic effects are expected
to be important in modelling rapid variability phenomena and the relevant timescales are
likely to be dynamical. In this section I introduce the most relevant frequencies of thin,
pseudo-Newtonian or relativistic discs. It is assumed that characteristic frequencies in
the accretion flow can be approximated by particle-orbit expressions.

In previous sections, some frequencies relevant for test particles orbiting an object
of mass M were discussed. In Newtonian dynamics, the azimuthal frequency of orbiting
particles is Keplerian, ΩK =

√
GM/R3. In this case, other relevant frequencies such

as the vertical and radial epicyclic frequencies have the same variation in radius as ΩK.
However, using the Paczyński & Wiita (1980) pseudo-Newtonian potential,

ΦPW(R, z) = − GM

(R2 + z2)1/2 −RS

, (1.50)

where RS = 2GM/c2 = 2Rg is the Schwarzschild radius, the angular and epicyclic fre-
quencies are different and the latter is no longer a monotonically decreasing function of
radius. Indeed,

Ω2
PW ≡

(
1

R

∂ΦPW

∂R

)
z=0

=
GM

R(R−RS)2
, (1.51)

κ2
PW ≡ 2Ω

R

d(R2Ω)

dR
=

GM(R− 3RS)

R(R−RS)3
, (1.52)

and is easily seen that κ has a maximum at R = (2 +
√

3)RS.

The difference between the pseudo-Newtonian and Keplerian cases is due to the
fact that the Paczyński–Wiita potential simulates relativistic effects. In fact, for a
Schwarzschild black hole, the relativistic expression for the epicyclic frequency is (Okazaki
et al. 1987):

κ2
S =

GM(R− 3RS)

R4
, (1.53)

which also has a maximum but at R = 4RS. The presence of a maximum in the epicyclic
frequency is a characteristic of relativistic discs and its value, only dependent on the mass
and spin of the black hole, may be of great importance to the phenomena of high-frequency
QPOs as will be seen later on in this thesis. As R decreases, the epicyclic frequency
increases, reaches a maximum and then goes to zero at the radius of the marginally stable
orbit. For R > Rms, κ2 > 0 and a particle will oscillate at the epicyclic frequency when
it suffers a radial perturbation. For R < Rms, κ2 < 0 and the orbits are unstable since a
small radial perturbation will cause the particle to depart exponentially from its original
trajectory. Fig. 1.2 shows the variation of Ω2

K, Ω2
PW, κ2

PW and κ2
S with radius.
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Figure 1.2: Profiles of some characteristic frequencies squared. In a Keplerian disc, Ω2 =

κ2 and the variation with radius is monotonic (dotted line). In a Paczyński-Wiita disc, the

profile of the angular velocity squared is that represented by the dash-dotted line while

the epicyclic frequency varies non-monotonically with R as showed by the dashed line.

When a relativistic expression is used for this frequency the variation with R is similar

but with a maximum at a different radius (full line).

When a rotating black hole is considered, the location of the marginally stable orbit
moves inwards. In this case the angular velocity and relativistic epicyclic frequency may
be written as (Okazaki et al. 1987; Nowak & Lehr 1998)

Ω = (r3/2 + a)−1, (1.54)

κ = Ω

√
1− 6

r
+

8a

r3/2
− 3a2

r2
, (1.55)

where the lengths have been normalised to Rg = GM/c2 and the frequencies to c3/GM . In
this case, the vertical epicyclic frequency, equal to the angular velocity for a non-rotating
black hole, is given by (Kato 1990)

Ωz = Ω

√
1− 4a

r3/2
+

3a2

r2
. (1.56)

Another important frequency is the Lense–Thirring precession frequency which is
different from zero only for a rotating black hole. In this case, gas falling towards the
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compact object is dragged due to the rotation of the latter. The frequency at which this
frame dragging process occurs is the Lense–Thirring precession frequency given by

ΩLT = Ω− Ωz ≈
2a

r3
, (1.57)

for small a.

Even though relativistic effects are likely to be important in the theoretical mod-
elling of rapid variability phenomena, they are only partially included in the research
described in this thesis. A fully relativistic model is not necessary since most important
effects can be included by supplementing a Newtonian treatment with the correct rela-
tivistic expressions for the characteristic frequencies in the disc (Kato 2001). In Part II
relativistic effects are mimicked by using a pseudo-Newtonian Paczyński–Wiita potential
while in Part III, where the influence of spin is taken into account, relativistic expres-
sions for Ω, κ and Ωz are used. These expressions correctly reproduce the position of the
marginally stable orbit, appropriately describe apsidal and nodal relativistic precession
rates, related to Ω2

z−Ω2 and κ2−Ω2, and rightly represent the frequency and stability of
orbits in the Kerr metric. Although some information related to the metric coefficients is
lost in the pseudo-relativistic approach, many important physical processes may be cor-
rectly described in this approximation. Reference to work done using purely relativistic
calculations to describe similar phenomena to those I attempt to model in this thesis will
be made when appropriate.

1.4.2 Theoretical models for high-frequency QPOs

In this section I present the existing theoretical models for rapid X-ray variability in black-
hole accretion discs. Although kHz QPOs in neutron stars were discovered a few years
earlier, high-frequency QPOs in black-hole candidates only started being detected in the
late 90s and early 2000s (van der Klis 2006, and references therein). Most of the current
models applicable to high-frequency aperiodic variability in black-hole accretion discs have
therefore been developed in the past decade or so. Despite hints that a common physical
mechanism could operate in both neutron stars and black-hole candidates and explain
both kHz QPOs and HFQPOs (Psaltis et al. 1999), current observations indicate that the
rapid aperiodic oscillations of neutron stars are more complex, e.g., their frequencies vary
systematically. Since, at present, a correlation between the two phenomena is unclear
(van der Klis 2006; Rezzolla et al. 2003), I will focus mainly on models which are only
applicable to HFQPOs detected in accretion flows surrounding black holes.

Instability of transonic flows

There are, however, some models developed in the 80s and 90s to explain QPOs in neutron
stars that may be of interest for HFQPOs in BHCs that have been left out of modern
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reviews on the subject. Of interest is the flow model of Kaaret et al. (1997) that involves
instabilities at the marginally stable orbit. [The reader should recall that Kluźniak &
Wagoner (1985) showed that in some situations Rms may lie outside the stellar surface
(cf. footnote 2).] Although it was initially developed to explain those kHz QPOs in
neutron stars where the frequency was not correlated with the source count rate, the same
mechanism can operate in black-hole accretion discs and offers a possible explanation for
HFQPOs which have a frequency almost independent of luminosity variations.

The QPO mechanism of the model by Kaaret et al. (1997) was originally proposed
by Paczyński (1987) and is based on the finding of Muchotrzeb-Czerny (Muchotrzeb 1983;
Muchotrzeb-Czerny 1986) that steady flows are not supported near the inner boundary,
where the flow changes from subsonic to supersonic, for high values of viscosity. The
unsteadiness of the flow could give rise to observable oscillations (“via Doppler beaming
or eclipses”) at the Keplerian orbital frequency at the sonic point (see also Kluźniak et al.
1990; Miller et al. 1996).

The idea is interesting and has, to my knowledge, not been developed further in
the literature in connection to HFQPOs in BHCs. There are some aspects of this theory
which are not clear: the exact nature of the luminous structure giving rise to observable
oscillations is not specified and the physical process in the origin of the instability is not
studied. The problem is of considerable theoretical interest and of possible observational
relevance and therefore merits further study. This is carried out in Part II of this thesis.

Diskoseismology

The most developed set of theoretical models aiming at explaining quasi-periodic vari-
ability in BHCs relies on hydrodynamic disc oscillations. Part III of this dissertation is
dedicated to this class of models and will provide further insight; here I only summarise
the key results and aspects of this theory.

Kato & Fukue (1980) first realised that accretion discs could support discrete modes
of oscillation and also shown that some of these waves, the inertial-acoustic (f or inner-p)
modes, can be trapped in a region which has the marginally stable orbit as its inner bound-
ary due to general relativistic effects. The trapping occurs because the radial epicyclic
frequency has a maximum at a particular radius and is of fundamental importance for
real disc oscillations as the lack of reflective boundaries forbids their growth (Kato 2001).
The field was developed further by Okazaki et al. (1987) who found that another class of
oscillations, the inertial (r or g) modes, could also be trapped but in the region below the
maximum of the epicyclic frequency (if the modes are axisymmetric). The term “disko-
seismology” was coined by Nowak & Wagoner (1991, 1992) who noticed that both classes
of modes could be described by the same dispersion relation.

The frequencies of all classes of trapped modes scale with the inverse black-hole
mass for similar spins, are only weakly affected by changes in density or pressure when
the disc is thin, and are in the range expected for high-frequency QPOs (e.g. Nowak &
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Lehr 1998). The inertial trapped modes are particularly attractive since they don’t rely
on a reflective inner disc boundary and may give rise to large luminosity modulations
(Perez et al. 1997). These facts led Nowak et al. (1997) to associate the 67 Hz feature
detected in GRS 1915+105 with a trapped inertial mode which has a frequency close to
the maximum of κ. The idea can also be applied to other stable high-frequency oscillations
which were detected in subsequent years (Nowak & Lehr 1998). The authors suggested
that the modes could be excited by the “negative radiation damping mechanism” but
they noted that large mode amplitudes were still required to make them observable.

3:2 resonance models

A potential drawback of diskoseismic models came with the discovery of commensurate
frequencies QPOs since models to date were only taking into account the trapping of
axisymmetric r modes (all of similar frequency). Following these detections, Abramow-
icz, Kluźniak and their collaborators (e.g. Kluźniak & Abramowicz 2001; Abramowicz
& Kluźniak 2001) dedicated their attention to models involving resonances between two
oscillation modes of disc fluid elements. A possible explanation for the commensurate
frequencies is that n1:n2 resonances are excited near radii in the disc where the epicyclic
and the orbital frequencies are in a ratio of n1:n2 (1:3, 1:2, 2:3). The coupling between
the two oscillations is suggested to occur due to gravity and pressure effects but the exact
location and mechanism for excitation is rather arbitrary (Abramowicz et al. 2004).

The “resonance model” suffers from several caveats. To start there is no special
feature in both the epicyclic and orbital frequencies at the resonant radii, apart from the
integer ratio coincidence, to justify having them as key locations. The exact excitation and
coupling mechanisms are never described in the theory. Indeed, the models are simplistic,
only analyse the motion of a single particle, rely on an ad-hoc parameter which is added to
the equations to artificially increase the modes’ amplitudes and the coupling between the
resonant modes provided by gravity and pressure is too weak to transfer energy between
the oscillations (Rebusco 2008). The too localised description of the models doesn’t allow
for wave propagation and, as noted by Rezzolla et al. (2003), the radial extent where the
resonance occurs may be too small to result in the observed modulation in emissivity.

An interesting model combining features of both the diskoseismic and resonance the-
ories was proposed by Rezzolla et al. (2003). They theorise the existence of an oscillating
torus surrounding the black hole and identify QPOs with inertial-acoustic modes of this
structure. The torus is considered to have a finite extent L and provides the resonant
cavity necessary for mode growth. The fundamental and first overtone modes of frequency
are approximately in a 3:2 ratio if L is small, are within the expected range for HFQPOs
if the spin is large but depend on the size of the torus. Moreover, it is not clear that such
a structure dominates the accretion flow in the very high accretion states (Done et al.
2007, and cf. Fig. 1.1). Observational constraints were, however, not what most hindered
this theory. The crucial drawback came from numerical simulations of fluid tori which
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found the inertial-acoustic oscillations to be significantly damped by the PPI (despite the
radial inflow) and particularly by MRI turbulence (Fragile 2005).

Attempts at models involving orbital motions of density clumps or “hot spots”
were made by Schnittman & Bertschinger (2004) and Schnittman (2005) (see also Stella
et al. 1999). These models use relativistic ray-tracing to explain the spectra of X-ray
lines produced by oscillating test particles and do not treat the disc as a fluid-dynamical
entity. The frequencies depend on the size and luminosity, and radial positions of the hot
spots and it is unclear if these elements can survive the disc’s differential rotation and
turbulent motions.

Excitation mechanisms

The last few years saw the return of diskoseismic models. However, state-of-the-art mag-
netohydrodynamic (MHD) simulations, now available, indicate that MRI turbulence does
not excite, and may indeed damp, the inertial modes while inertial-acoustic modes are
more likely to exist in discs threaded by magnetic fields (Arras et al. 2006; Reynolds &
Miller 2009). This may be explained by the fact that the power spectrum of MRI tur-
bulence peaks at a frequency close to the maximum of κ, making axisymmetric trapped
inertial modes likely to be affected by this instability. Moreover, Fu & Lai (2009) showed
that the trapping region of r modes is modified or destroyed when strong poloidal mag-
netic fields are taken into account. It is however unclear if the magnitude of poloidal
magnetic fields in real discs is large enough to modify the trapping region significantly.

These facts led some authors to set the inertial modes aside and look for excitation
mechanisms for inertial-acoustic modes instead. A particularly interesting hydrodynamic
instability is that studied by Lai & Tsang (2009) which relies on wave absorption at the
corotation resonance. Their linear analysis shows that non-axisymmetric f modes with
frequencies ω ≈ (0.5− 0.7)mΩms, where m is the azimuthal wave-number and Ωms is the
angular velocity at the marginally stable orbit may be excited by means of this instability
being likely candidates to explain the HFQPOs.

Varnière, Tagger and their collaborators (Rodriguez et al. 2002; Varnière et al. 2002;
Tagger & Varnière 2006) developed a complicated theory based on unstable versions of
the diskoseismic modes to explain both low-frequency and high-frequency QPOs. In the
case of HFQPOs, the instability responsible for the excitation of inertial-acoustic modes
combines features of the accretion-ejection and MHD Rossby wave instabilities and may
result in significant growth of these modes in magnetised discs. The predicted QPO
frequencies are of the same order of magnitude as those of Lai & Tsang (2009).

Two important caveats accompany these models. First, if the spin of the black hole
is significant, the predicted frequencies are too high to explain the range of frequencies
of rapid quasi-periodic oscillations particularly if m > 1. Second, and most importantly,
both instabilities require the inertial-acoustic modes to be reflected at the inner boundary.
As shown by Blaes (1987), the rapid radial inflow at the marginally stable orbit damps
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these modes, making them unlikely relevant in realistic discs. Moreover, in the very high
state where HFQPOs are almost exclusively detected, the disc is expected to extend to
the marginally stable orbit and accretion rate and radial inflow are likely to be significant.
Wave reflection at the sonic point will be analysed further in chapter 7.

On the other hand, and following the studies of Abramowicz and Kluźniak which em-
phasised the importance of resonances in the physical processes giving rise to HFQPOs,
Kato (2004, 2008) proposed that oscillations could be resonantly excited in deformed
(warped or eccentric) discs. The first study of local wave excitation in a tidally dis-
torted disc via the parametric instability was made by Goodman (1993). The idea of
using a warp as an excitation mechanism for disc oscillations goes back to Papaloizou &
Terquem (1995), who mentioned the possibility of parametric generation of inertial waves.
Detailed calculations are reported by Gammie et al. (2000). Kato, using a different ap-
proach, studied this problem analytically for thin, relativistic discs with non-rotating
central objects. He made simple estimates for the growth rates of inertial-acoustic modes
and inertial modes, which are of considerable interest. As he pointed out, the only os-
cillations with observational relevance are those which are trapped and are resonantly
excited in their propagation region. According to Kato, these would be the axisymmetric
inertial mode with frequency close to max(κ), and two non-axisymmetric inertial-acoustic
modes trapped between the inner boundary of the disc and the resonant radius located
at R ≈ 4RS for a = 0 (see, e.g., Kato 2007). The m = 1 f mode would have a frequency
ω1 = (Ω − κ)r while the m = 2 would have ω2 = (2Ω − κ)r, where the subscript indi-
cates that the frequencies are measured at the resonance radius. Owing to the location of
the resonance, (Ω − κ)r ≈ max(κ) so that only two frequencies remain significant. Kato
then proceed to identify the 3:2 HFQPOs with the two non-axisymmetric inertial-acoustic
modes. However, to account for the fact that the frequencies had to be in a 3:2 ratio,
he argued that the one-armed oscillation would be detected with a frequency 2ω1 due to
observational effects so that ω2 : 2ω1 ≈ 3 : 2 (see, e.g., Kato & Fukue 2006).

Although interesting and worth further attention, many details of Kato’s model are
dubious. To start, there are many uncertainties in his calculations of growth rates and
he did not discuss the origin or nature of the global deformations. Despite the fact that
calculations were done only in the zero-spin case, Kato attempted to use its predictions
to calculate spins of BHCs. Also, the oscillation frequencies involved, 2ω1 and ω2, may
be too high in a black hole with small mass and significant rotation. Indeed, an estimate
of the spin of GRS 1915+105 using these frequencies to explain its HFQPOs results in a
possibly (depending on the mass used) negative a (Kato & Fukue 2006). On the other
hand, as in the models of Tagger & Varnière (2006) and Lai & Tsang (2009), identification
of QPOs with inertial-acoustic modes requires a reflective boundary at Rin.

Taking these factors into account, I go back to the suggestion that inertial modes,
trapped away from the inner boundary, are more significant to explain HFQPOs within
this model. In chapter 5 I develop and generalize Kato’s ideas on this excitation mecha-
nism and make detailed numerical calculations of trapped inertial modes and their growth
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rates for rotating black holes. A simple dynamical treatment of the warp and eccentricity
is presented in chapter 4 and used in 5, while a broader discussion of the origin and global
propagation of these deformations is given in chapter 6.

A preliminary confirmation of the possible excitation of modes with frequencies at
or below the maximum of the epicyclic frequency, which are partially inertial in nature,
came with the fully relativistic MHD simulations of Henisey et al. (2009) of warped discs.
In agreement with previous simulations, the authors find no signs of inertial waves in the
case where the disc is untilted. However, when a deformation is present, the presence of
inertial variability is clear. It is complicated to identify this variability with an inertial
mode because the disc is highly deformed, the background flow is complex and the mode
structure may be partially modified through the coupling mechanism. The structure
analysed in the paper seems to be a composite oscillation with signatures of both inertial
and inertial-acoustic modes of frequency close to max(κ). These results show that inertial
modes may indeed exist in flows with MRI turbulence provided an excitation medium,
such as a deformation in the disc, is present.

Viscous overstability and the return of the unsteady transonic flow

The attentive reader will have noticed that the simulations of Henisey et al. (2009) show
both inertial and inertial-acoustic signatures at a frequency close to the maximum of the
epicyclic frequency. Although the modes’ frequencies are not in a 3:2 ratio and the inertial-
acoustic oscillations are likely to be absorbed at the inner boundary, this, together with the
results of Lai & Tsang (2009) and Tagger & Varnière (2006), turns my attention back to
the f modes. However, I’m interested in a different excitation mechanism, not investigated
by these authors and yet to be mentioned, as it may be related to the unsteadiness of
the transonic flow mentioned previously. Chen & Taam (1995) suggested that inertial-
acoustic waves may be relevant to explain HFQPOs in a viscously overstable flow. These
waves are globally viscously overstable if the viscosity parameter is sufficiently high. The
investigations of Kato et al. (1988a) and Afshordi & Paczyński (2003) suggested that
the global character of this instability and the presence of viscously overstable inertial-
acoustic waves in realistic discs may be connected with the unsteadiness of the transonic
flow, which happens at high viscosity. A more thorough study of both physical processes
and the possibility of a connection between them is the topic of Part II of this thesis.

1.4.3 Thesis outline

The core of this dissertation is divided in two parts. In Part II I investigate the problem
of isothermal transonic accretion in a time-dependent framework with the aim of studying
the stability of such solutions beyond local analysis. Part III focuses on different types of
oscillations in black-hole accretion discs and different problems related to this topic. Part
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II is composed of two chapters while four constitute Part III; a detailed outline of each of
them follows.

In chapter 2 I extensively review the work done previously on the structure and
stability of transonic accretion flows. I start by considering the literature on steady
transonic accretion, with particular emphasis on the work of Afshordi & Paczyński (2003),
and go on to the articles where the stability of these accretion solutions is investigated,
both locally and globally with the aid of numerical simulations. The topic of viscous
overstability naturally arises in these stability considerations and is also assessed.

In chapter 3 I solve the time-dependent version of the equations solved in Afshordi
& Paczyński (2003) which describe a thin, 1D transonic flow with isothermal equation of
state and essentially an αP -type stress tensor. I thoroughly analyse the solutions obtained
for different values of sound speed and a range of viscosities with particular importance
given to the region of the parameter space where global inertial-acoustic oscillations are
visible in the simulations. These are most likely due to the onset of viscous overstability.
Since stable solutions are obtained for low values of α (in agreement with the findings of
the steady problem), I discuss the possibility of a relation between the unsteadiness of
transonic accretion and the presence of viscously overstable waves in the disc. A relation
between these phenomena and high-frequency QPOs is briefly alluded to.

In chapter 4 I introduce the fundamentals of disc oscillations with a particular focus
on the trapping regions of inertial and inertial-acoustic waves characteristic of black-hole
accretion discs. The dependence of perturbed quantities in all three coordinates (R, φ, z)
is considered and, for simplicity, viscosity and the background radial inflow are neglected
although the latter is considered in chapter 7. I also examine disc deformations such as
warping and eccentricity in the context of global modes.

Chapter 5 is dedicated to an excitation mechanism for trapped inertial waves. In
the basis of this mechanism is the coupling between the mentioned oscillations, a global
deformation and an intermediate wave. The mathematical analysis involves solving non-
linear equations for the inertial and intermediate oscillations coupled by the warp or
eccentric mode. Excitation occurs because the intermediate waves resulting from the
coupling have negative energy; if they are damped as they approach the inner boundary
of the disc or their corotation resonance, positive energy becomes available for the growth
of the inertial mode. The dependence of the growth rate on the spin of the black hole,
the sound speed and deformation amplitude are determined, showing that this excitation
mechanism can be effective under a wide variety of conditions. Provided the global modes
reach the inner region with a non-negligible amplitude, inertial modes can be excited,
being likely candidates to explain HFQPOs.

Chapter 6 focuses precisely on the conditions under which global modes may reach
the inner region of black-hole accretion discs. The radial dependence of eccentricity and
warp tilt is considered within a more realistic viscous disc model and taken to be described
by less simplistic equations than those used in chapter 4. Propagation from the outer re-
gions is facilitated for high accretion rate and low viscous damping. Results show that the
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high and very high states of black-hole accretion where the mass accretion rate is probably
close to the Eddington limit are likely to be the ones where the global deformations reach
the inner disc more easily.

In chapter 7 I connect the work done in both Part II and Part III. In the former,
I emphasised the importance of considering a non-negligible radial inflow in the inner
regions of black-hole accretion discs and determined stable transonic solutions for low
values of viscosity. However, in most of Part III this transonic background was ignored,
despite being important close to the inner boundary of the disc (defined by the sonic point
when the radial inflow is considered). This final core chapter is therefore dedicated to
the influence of the transonic background on the propagation of waves. Results relating
to trapped inertial modes are particularly interesting as they show that, under some
conditions, their structure may be severely modified or destroyed by the background
inflow.

Finally, conclusions are presented in the only chapter of Part IV where I summarise
the work described in this dissertation and refer to its observational and theoretical rele-
vance.
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Chapter 2

Introduction

This part of the thesis is dedicated to the structure and stability of transonic accretion
flows and to the onset of viscous overstability in these models. In this chapter I provide
a thorough introduction to both topics and extensively review the model of Afshordi &
Paczyński (2003) for steady transonic accretion in a thin, isothermal disc onto a black
hole. Their work reveals the existence of an upper value for the viscosity parameter α
above which no physically acceptable steady state solutions are found. Motivated by
this finding, in chapter 3 I study the equivalent time-dependent flow to understand what
happens when α is above that threshold value. The results obtained show viscously
overstable waves propagating in the disc when the viscosity is above that limit, hinting a
possible relation between the two phenomena.

In this part of the thesis different symbols will be used to represent different limits
for the viscosity parameter α. The reader should refer to Table 2.1 for a glossary.

2.1 Steady transonic accretion

2.1.1 Introduction

The Shakura & Sunyaev (1973) steady disc model introduced in the previous chapter is
singular at the inner disc boundary. If the disc surrounds a black hole, it is assumed to
terminate at the marginally stable orbit of a test particle where the Keplerian angular
momentum is minimum and a “no torque boundary condition” (which defines Rin) is
taken to be valid at that radius. Therefore, Rin = Rms and accretion is disc-like for
R > Rin while the matter is free-falling onto the black hole for R < Rin (e.g. Paczyński
& Bisnovatyi-Kogan 1981).

The singularity at the inner disc boundary is artificial and is removed if the radial
velocity, dynamically important in the inner region of black-hole accretion discs, and the

45
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Symbol Meaning: value of α above which:

α∗ physically acceptable steady state, transonic accretion solutions
cannot be found

α1 the time-dependent system no longer settles into a steady state

αsn the flow goes through a critical point of nodal type (for α < αsn

the point is a saddle)

αnn the passage through a nodal point is no longer made in the dire-
ction of the eigenvector corresponding to the largest eigenvalue

αsp the sonic point is unstable according to local analysis

αvo global viscous overstability sets in

Table 2.1: Glossary of the different symbols used to represent different (but possibily

equivalent) limits for the viscosity parameter α used throughout this part of the thesis.

radial pressure gradient are not neglected in the radial momentum equation. This was
first done in the thin disc case by Liang & Thompson (1980) who found that, when uR is
included, the solution has one or more critical points where uR changes from subsonic to
supersonic. Indeed, the radial momentum equation, combined with the mass conservation
equation, can be written as (Muchotrzeb & Paczyński 1982)

duR

dR
=

f

u2
R − c2

s

, (2.1)

where f is a function of R, uR and of the parameters of the flow (e.g., viscosity, accretion
rate, etc.). This equation has critical points R0 where u2

R = c2
s . Although more than one

point is mathematically possible, a physically acceptable accretion solution is subsonic in
the outer disc, passes through only one of these critical points, and becomes supersonic
close to the compact object (e.g. Novikov & Thorne 1973).

When the radial drift and pressure gradient terms are important, the distribution of
angular momentum deviates from the Keplerian one and the disc can no longer be taken to
terminate exactly at Rms. The disc per se can be thought of as the region where accretion
is driven by angular momentum transfer. Since turbulent processes cannot transport
angular momentum at supersonic speeds (i.e. α < 1), it makes sense to think of the disc
as existing only in the subsonic region and terminating at R0. Accretion is a free-fall
process occurring at constant angular momentum for R < R0. Indeed, the “no torque
boundary condition” should be valid there since no information can propagate from the
supersonic region to the subsonic (Paczyński & Bisnovatyi-Kogan 1981; Paczyński 2000)
except possibly by magnetic stresses (Krolik 1999; Gammie 1999). In summary, in the
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transonic thin-disc accretion scenario Rin ≈ R0 and this location is close to, but not
necessarily at, Rms (Muchotrzeb & Paczyński 1982).

The case of isothermal thin-disc accretion, i.e., cs = constant, c2
s/c

2 � 1, uR < 0,
with an αP stress tensor is simple yet illustrative. In this model the vertically-integrated,
steady state hydrodynamic equations can be reduced to a single ordinary differential
equation of the form (2.1) which has, in general, two critical points. These sonic points
are localised near the marginally stable orbit: one has R0 ≤ Rms and another R0 ≥ Rms

(Matsumoto et al. 1984). By linearising the equations around the critical points and
determining the eigenvalues of the Jacobian matrix one finds that the points can be
either of nodal, saddle or spiral type. The topology of the flow is dependent on the
parameters of the problem, namely the angular momentum constant [lin, cf. equation
(1.10), or equivalently the location R0], the sound speed and the viscosity parameter α
(Muchotrzeb-Czerny 1986).

For a transonic solution to be globally acceptable it should extend all the way from
the outer disc to the centre going through the sonic point regularly. Realistic boundary
conditions at large radii are Keplerian, i.e., the transonic solution should match to the
subsonic Shakura–Sunyaev model with the disc rotating with angular velocity ΩK (or,
more appropriately for a pseudo-Newtonian disc, ΩPW) for R � R0. For R � R0 the
flow is supersonic. Furthermore, the critical point should be either of nodal or saddle
type since spirals are unphysical. For each point of the parameter space (lin or R0, cs or
Ṁ , α), these boundary conditions and regularity demands select the relevant solution.
According to Liang & Thompson (1980), although without a rigorous proof, “the critical
transonic solution whenever it exists is unique in relevant situations”. The uniqueness of
the transonic solution is also verified by Afshordi & Paczyński (2003) for low viscosity.

Constraints

However, there may be points in the parameter space for which no unique solution regular
at the sonic point satisfies the boundary conditions. Steady transonic black hole accre-
tion is, therefore, constrained (Abramowicz & Kato 1989, and references therin), i.e., in
principle, it may only exist as a physically acceptable solution in certain regions of the pa-
rameter space. Of particular interest is the result of Muchotrzeb (1983) who found steady
transonic solutions (going through a saddle-type critical point) only for α < α∗, and sug-
gested that accretion would probably be unsteady for larger viscosities. (She worked with
a non-isothermal disc model — with a rather arbitrary vertical structure — and found α∗

to be approximately 0.02 and weakly dependent on the mass accretion rate.)

On the contrary, Matsumoto et al. (1984) stated that accretion is possible for values
of α above the limit of Muchotrzeb (1983) but with differences in the disc structure and
in the nature of the sonic point relative to the low α case. In the small viscosity regime,
the gas infall in the transonic region is caused by the pressure gradient force and the
critical point, R0 . Rms, is of saddle type. On the other hand, in the high viscosity case,
accretion is due to viscous effects and the sonic point is a node and is located outside
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Rms. The limiting value of α at which the type of critical point changes, αsn, is roughly
0.05 (according to the authors’ estimates, made within a model different to that used by
Muchotrzeb 1983).

Analytical considerations by Muchotrzeb-Czerny (1986) confirmed this result that
both types of solutions with (α < αsn and α > αsn) are physically acceptable. Further-
more, she noticed another fundamental difference in the low- and high-viscosity regimes.
In the case of saddle-type points, only one curve going through the sonic point can match
with the Keplerian solution at large radii, while an infinite number is possible in nodal-
type points. In the saddle case, the boundary conditions uniquely define a value for the
angular momentum constant lin for fixed (α, cs). On the other hand, for fixed viscos-
ity and sound speed at high α, a range lin,min < lin < lin,max may be obtained such that
boundary conditions are satisfied. In this case where the sonic point is nodal, the physical
constraints don’t seem to uniquely determine an accretion solution.

The paper by Muchotrzeb-Czerny (1986) goes further and is, to my knowledge,
the first dealing with the stability of transonic solutions at the sonic point. Within an
isothermal model, she finds that perturbations at the sonic point are damped if the point is
a saddle, while they can either decay or grow if the point is nodal. This, together with the
nonuniqueness discussed in the previous paragraph, might indicate that accretion doesn’t
proceed in a stationary way for α > αsn because “the solution may travel in a regular or
irregular way between the external values of lin,min and lin,max”. As a consequence, the
sonic point would oscillate between Rms and the outermost nodal critical point possible
for a given α and cs.

The isothermal transonic accretion problem was revisited by Abramowicz & Kato
(1989) who, in opposition to Muchotrzeb (1983), were able to find solutions satisfying
boundary and regularity conditions for any value of α (even though such conditions forbid
some regions of the parameter space of the problem). It is however unclear if their solutions
are unique for all viscosity parameters. Another important novelty of this work was the
classification of critical points in the case where the stress tensor has a diffusion form,
i.e., when it is proportional to the gradient of angular velocity rather than to the pressure
only. Interestingly, the authors find that the only physical critical points are of saddle
type; nodal points do not exist in an isothermal flow characterised by TRφ ∝ dΩ/dR
[this is, however, not true of non-isothermal flows (Chen & Taam 1993)]. This is to show
that different expressions for the stress tensor may indeed result in different mathematical
characters of the sonic point for the same value of α, as previously indicated in Part I.

The more recent investigation of Afshordi & Paczyński (2003) saw the return of the
α∗ limit. Within an isothermal, thin disc model, the authors find physically acceptable
unique steady state solutions for α < α∗ = 0.14(100cs/c)

1/3. Moreover, the authors find
that steady accretion is possible whether the sonic point is saddle or nodal1. The authors

1Note that a slightly different form of the stress tensor was used in this work. The results of Afshordi
& Paczyński (2003) and Matsumoto et al. (1984); Muchotrzeb-Czerny (1986) can be compared, in the
isothermal case, by noting that αSS = 2 Ω

ΩPW
αAP ∼ 2αAP, where αSS refers to the viscosity parameter

used in the 80s works while αAP refers to that used by Afshordi & Paczyński (2003).
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point out that steady solutions no longer exist or are unstable when the viscosity is such
that the flow passes through a nodal critical point in the slow direction. This is the
direction of the eigenvector associated with the smaller absolute-valued eigenvalue of the
Jacobian, as opposed to the (fast) direction related to the largest eigenvalue in modulus.
Therefore, it seems that αsn and α∗ are not necessarily related as believed by Muchotrzeb-
Czerny (1986) since in this more recent work α∗ = αnn. As it will be seen in section 2.1.2,
the differences between the two works relate to the fact that Muchotrzeb-Czerny (1986)
did not take into account the differences between the passage through a nodal point in
the fast and slow directions.

Observations

From an observational point of view, Paczyński (1987) suggested that the unsteady flow
at high viscosity would be responsible for variations in the luminosity of the boundary
layer between a neutron star and the accretion disc. Moreover, and as mentioned in Part
I, he proposed that these variations could give rise to X-ray quasi-periodic oscillations
(QPOs). On the other hand, Abramowicz & Kato (1989) suggested that the constraints
on steady disc accretion could be relevant in explaining the transient behaviour of X-ray
sources, which switch from low to high states. Since steady accretion is only possible in a
certain region of parameter space, if the situation is such that the flow is located in one
of the forbidden regions, it cannot be stationary and could presumably keep on switching
between different accretion states.

2.1.2 The Afshordi–Paczyński model

In this section I analyse in more detail the most recent model for steady, thin-disc transonic
accretion, that of Afshordi & Paczyński (2003) since a time-dependent version of their
equations is solved in the next chapter.

Equations and assumptions

In the Afshordi–Paczyński model, the flow is isothermal and vertically-integrated quanti-
ties are used to represent fluid variables. The sound speed in the disc is, therefore, constant
and it remains much smaller than the speed of light so as to maintain the thinness of the
flow. The model is simple but useful to understand the key features of transonic accretion
flows, namely the nature of the critical point, the uniqueness of the passage through this
point and the region of the parameter space where physically acceptable (stable) steady
solutions are possible.

An important point to notice regards the form of the viscous stress used by Afshordi
& Paczyński (2003). The inattentive reader may believe that the viscous stress is assumed
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proportional to both the total pressure and the shear rate,

τRφ = −αP

(
−d ln Ω

d ln r

) (
Ω

ΩPW

)
, (2.2)

where α is constant, as indicated by equation (6) in the paper. (Note that they use the
symbol ΩK to represent the particle-orbit pseudo-Newtonian angular velocity.) However,
further down, the authors make an approximation that effectively changes the character of
the viscous stress. They assume, as in the classical theory, that the angular momentum is
conserved near and inward of Rms (which, the reader should recall from the introduction,
is close to the sonic point and inner boundary). Since the interest is in studying the flow
passage through R0, and for simplicity, the authors assume

l = ΩR2 ≈ constant ⇒
(
−d ln Ω

d ln r

)
≈ 2 (2.3)

in the expression for the stress tensor. As a result,

τRφ ≈ −2αP

(
Ω

ΩPW

)
. (2.4)

In a thin disc where Ω ≈ ΩPW (this will be shown to be valid in chapter 3), the stress used
is equivalent to that of the original Shakura & Sunyaev (1973) paper with α ≈ αSS/2.
Since the stress tensor is essentially αP and not of diffusion type, both saddle and nodal
points are expected.

When the pressure gradient and radial velocity are taken into account, the vertically-
integrated steady-state radial momentum equation can be written as (Matsumoto et al.
1984)

uR
duR

dR
− l2 − l2PW

R3
+

1

Σ

dP

dR
+

P

Σ

d ln ΩPW

dR
= 0. (2.5)

Here uR is the vertically-integrated radial velocity (comparing with the notation used in
the previous chapter, ūR, the bar has been dropped for convenience) and lPW = ΩPWR2.
As before, P = c2

sΣ and the mass and angular momentum conservation equations are in
the form Ṁ = 2πRΣ(−uR) and Ṁ(l − lin) = 2πR2(−τRφ), respectively. Note that the
last term on the LHS of (2.5) is frequently not included in the vertically-integrated radial
momentum equation (e.g. Muchotrzeb 1983; Chen & Taam 1993; Milsom & Taam 1996).
However, according to Matsumoto et al. (1984), it is a correction for the decrease of the
radial component of ∇Φ away from the disc mid-plane and should be included as it is of
the same order in H/R as the radial pressure gradient. In any case, it is a constant term
in isothermal discs that doesn’t significantly change the system of vertically integrated
equations describing an accretion flow.
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These equations can all be combined into the form (2.1) which can then be written
as a two-dimensional autonomous dynamical system,

dur

dϑ
= f(r, ur, lin, α, cs) and

dr

dϑ
= u2

r − c2
s , (2.6)

where the velocities are now in units of c, the lengths are scaled to Rg and frequencies are
in units of c3/GM and

f =
l2inu

3
r/r

2

[−urr1/2 + 2(2− r)αc2
s ]

2 −
ur

(r − 2)2
+ urc

2
s

(
3

2r
+

1

r − 2

)
. (2.7)

Here ϑ is a dummy variable and the components of (2.6) are equivalent to equations
(17a) and (17b) of Afshordi & Paczyński (2003). A solution of this system representing
a realistic accretion flow should satisfy the following boundary conditions: |ur| � cs and
ur Keplerian at large radii, ur = −cs at the critical point and |ur| � cs at small radii.
Afshordi & Paczyński (2003) further assume the physical solution to be analytic, i.e., with
ur(r) single-valued at each location and infinitely differentiable; in particular, regularity
at the sonic point demands f = 0 there.

Solution topology

At the critical points of (2.5), the right-hand sides of equations (2.6) vanish. The nature of
these critical points can be determined by linearising the system around each of them and
calculating the eigenvalues λ of the Jacobian matrix. Phase portraits in the plane (r, ur)
can then be plotted. This procedure is standard [although not simple in the particular
case of system (2.6)] and more details about it can be found in any good textbook on
differential equations. A thorough discussion on the nature of critical points is presented
in Ferrari et al. (1985).

Depending on the values of α, cs and lin adopted, Afshordi & Paczyński (2003) find
that the equations have, in general, two fixed points of saddle and spiral or saddle and
nodal type. The physical solution can only go through one of these critical points, of
saddle or nodal type. The authors solve equations (2.6) numerically everywhere except
near the fixed points where an analytic expansion is used. Examples of phase portraits
corresponding to system (2.6) where the parameters of the problem are such that a physi-
cal solution is possible are presented in Fig. 2.1. The physical solution is found by looking
for a combination of parameters such that the (outer) Keplerian solution passes through a
sonic point regularly. It is, however, unclear that the thick curve in the lower right panel
may represent a realistic stable solution due to the sharp change in slope immediately
after the sonic point. This will be discussed in more detail in a few paragraphs.

For cs = 0.01 and α < 0.08 = αsn the Keplerian solution matches onto a saddle-type
sonic point and a physical solution is found for all values of the viscosity parameter. In
this case, the analyticity of the solution is directly implied by the passage of the flow
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Figure 2.1: Phase portraits corresponding to system (2.6) with v = −ur, a = cs and

x = r/2 for cs = 0.01 and various values of α. The curve that all solutions merge with at

x > x0 is the Keplerian trajectory. The thick curve represents the solution of the system

that obeys boundary and regularity conditions. In the top panel, α = 0.04, x0 = 2.930 and

the solution goes through a saddle critical point. In the bottom left, α = 0.1, x0 = 3.047

and the flow crosses the nodal sonic point in the fast direction. In the bottom right panel,

α = 0.3, x0 = 3.183 and the solution goes through the critical point in the slow direction.

The thick curve in this last figure doesn’t represent a realistic steady solution: a sharp

change in the slope of ur(r) is evident (from Afshordi & Paczyński 2003).
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Figure 2.2: Behaviour of the flow near different types of critical points represented in the

(r,−ur) phase plane or, equivalently, in the (x, log[v/a]) phase plane of the panels of Fig.

2.1. (a) Vicinity of a nodal-type critical point: the eigenvalues of the Jacobian matrix,

λ1 and λ2, are both positive or both negative; λ2 is the largest eigenvalue in modulus

while λ1 is associated with the slow direction. The S-shaped, multiple-valued curves are

represented by dashed lines while the single-valued curves are represented by solid lines.

(b) Saddle-type critical point: λ2 > 0 > λ1 and only the curves in the direction of the

eigenvectors go through the sonic point. (c) Spiral-type critical point: λ1, λ2 complex;

unphysical case (adapted from Muchotrzeb-Czerny 1986).

through the sonic point because only the two solutions in the direction of the eigenvectors
of the Jacobian matrix can pass through this point [Fig. 2.2 (b)]. Furthermore, only one
of these two curves satisfies |ur| < cs at large radius. Therefore, and in agreement with
the qualitative analysis of Muchotrzeb-Czerny (1986), the boundary conditions pick an
unique solution, i.e., for fixed cs, α, the value of lin such that the flow goes through the
sonic point regularly is determined uniquely.

For the same sound speed but larger values of α, the Keplerian curve connects to
a nodal-type point. In this case, an infinite number of solutions obeying |ur| < cs at
large r can go through the critical point and satisfy |ur| > cs at small radii. There is,
however, a possibility for a unique passage through the sonic point. As it can be seen
in Fig. 2.2 (a), all solutions merge with the slow direction near the critical point, except
for the solution in the fast direction. Therefore, if the flow is to cross the sonic point in
this direction the passage is unique and similar to the saddle point case. According to
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Afshordi & Paczyński (2003), this happens for 0.08 < α < 0.14 = αnn when cs = 0.01,
i.e., for these values of α the Keplerian solution matches onto the fast direction. In this
sense, a solution with a nodal-type critical point can be unique provided it goes through
the sonic point in the fast direction. The differences between the two types of passage
weren’t taken into account by Muchotrzeb-Czerny (1986).

What happens for α > 0.14, when the passage is no longer made in the fast direction,
is unclear. In the interpretation of Afshordi & Paczyński (2003), the analyticity of the
solutions restricts the passages through the sonic point to the slow and fast directions.
Therefore, a physical solution could still be determined by requiring, for α > αnn, the
passage to be made in the direction of the eigenvector associated with the smaller eigen-
value. The problem with this type of analytic passage would then be the sharp change in
slope just after the sonic point, as seen in the lower right panel of Fig. 2.1, which seems
to be unphysical. However, it is not straightforward that the requirement of analyticity
is enough to choose only one direction. Indeed, as argued by Muchotrzeb-Czerny (1986),
there may be other curves besides the fast and the slow directions which are single-valued
near the critical point [full lines in Fig. 2.2 (a)]. The requirement of infinite differentia-
bility at the critical point would restrict the possibilities even more. Even though, while
one can’t actually ensure that the full lines of Fig. 2.2 (a) are analytic at the sonic point,
it is also not possible to exclude every single one of them for every possible combination
of parameters in the system (2.6) (see also discussion in Matsumoto et al. 1984).

In any case, it is clear that the passage through a nodal point in the slow direction is
problematic. To verify the uniqueness of the physical solutions of (2.6) picked in the phase
diagrams, Afshordi & Paczyński (2003) used two methods. In one of them they started
the integration with a Keplerian model at large radii (for fixed cs, α) and fine-tuned lin
until the solution passed through the sonic point. Alternatively, a guess for the location
of the critical point is made and then adjusted until the Keplerian solution at large radii
is found, providing an unique value of lin for fixed α and cs = 0.01. It should be noted
that the integration method used is the same whether the critical point is a saddle or a
node. For α < 0.14, an unique value of lin and R0 was determined for given α and cs with
both methods providing similar results. For larger viscosity the authors state that they
were unable to find steady state solutions. Unfortunately, it is not mentioned if this was
because more than one value of lin was possible (as in the analysis of Muchotrzeb-Czerny
1986) or no value at all was found.

Limiting viscosity

The calculations of Afshordi & Paczyński (2003) show that αnn = α∗ = 0.14(100cs)
1/3 is a

limiting value for steady state accretion. This may be because physical solutions cannot
pass a nodal point in the slow direction because of the sharp change in the slope of the
curve ur(r) at the sonic point (due to the instability of the Keplerian curve, Afshordi &
Paczyński 2003, and see bottom right of Fig. 2.1). Alternatively, the limiting viscosity
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may be due to the possible nonuniqueness of the passage through the critical point when
α > αnn (Muchotrzeb-Czerny 1986).

Notwithstanding these mathematical details, what is relevant is what actually hap-
pens to the time-dependent accretion solutions when α is such that a steady state flow
cannot be found. Muchotrzeb (1983) mentions that the most probable scenario is that
accretion cannot proceed in a stationary fashion for α > α∗ possibly due to some “new
kind of instability”. In fact, the most likely possibility is that the instability that sets in
for α > α∗ is not completely new even for the 80s. This is the topic of the following sec-
tions and a more thorough investigation of this problem, in a time-dependent framework,
will be presented in the next chapter.

2.2 Viscous overstability and the stability of tran-

sonic accretion

2.2.1 Introduction

Although often regarded as “self-inconsistencies” the classical thermal and viscous insta-
bilities mentioned in Part I can be used to explain dwarf nova outburst variability and the
light-curves of soft X-ray transients. However, more regular, periodic and quasi-periodic
variability demand for different theoretical models where an oscillation of some sort is
considered. In an attempt to connect disc instabilities to periodic phenomena, and to
find possible explanations for hydrodynamic turbulence leading to viscosity, Kato (1978)
studied the stellar pulsational instability in the context of accretion discs.

Local analysis

Local analysis reveals that radial axisymmetric oscillations (inertial-acoustic modes) cause
density changes and consequently variations in the viscous stress, which can potentially
draw out rotational kinetic energy from the disc. Some of this energy is then available for
the inertial-acoustic modes to grow, i.e., the pulsational instability sets in as oscillations
of increasing amplitude being more appropriately designated as viscous overstability.

More precisely, both thermal and dynamical processes due to shear motion of the
disc are important in the generation of this instability. Most (if not all) of the thermal
energy in Shakura–Sunyaev discs is supplied via viscous dissipation with the efficiency of
the process taken to be proportional to the local pressure. As a result, in the compressed
phase of radial oscillations the viscous energy generation rate increases and oscillations are
amplified. From a dynamical point of view, the instability occurs when the oscillations
of the azimuthal (longitudinal) component of the viscous force are in phase with the
longitudinal motion of the wave, in which case the work done on the oscillations by the
viscous force is positive (Kato 1978).



56 Introduction

The study of overstability of axisymmetric oscillations by Blumenthal et al. (1984)
generalised Kato’s analysis to include different ratios of gas and radiation pressure and
different opacities. Their results show that geometrically thin discs are overstable under
a variety of conditions and that regions that are both secularly and thermally stable,
can be pulsationally unstable. In this sense, viscous overstability is more robust than
the classical instabilities and is widely agreed to be a physical instability that cannot be
avoided by, e.g., changing the viscosity prescription.

Global instability

Nonetheless, and despite the attempts to attribute quasi-periodic variability of real sys-
tems to viscously overstable axisymmetric modes (e.g. Blumenthal et al. 1984), caution
must be taken when generalising results obtained through a local analysis to a global disc.
A local model doesn’t account for stabilising effects such as the possibility of the escape
rate for perturbations being larger than the growth rate due to viscous overstability, or
damping due to phase mixing between modes (Kato et al. 1988a; Wallinder 1990). More-
over, since this instability is intimately related to travelling waves, it is unlikely to be
relevant in systems with open boundaries where the waves can only grow by some finite
factor before leaving the disc.

As noted by Papaloizou & Stanley (1986), who used a Navier-Stokes viscosity,

T = µ
[
∇u + (∇u)T

]
, (2.8)

(in which case the viscous force in the radial direction is non-zero) in their calculations,
viscous instabilities disappear for large wavenumber k. Since the dispersion relation for
inertial-acoustic waves in a Keplerian disc [cf. equation (2.9) below with κ = Ω] dictates
that k increases as the angular velocity Ω decreases, the waves dissipate as they propagate
outwards, being unlikely to grow in real discs. Even if the viscous stress is such that
viscous overstability survives for small wavelengths, a confined propagation region able to
work as a resonant cavity is still required for the instability to be effective in exciting the
waves before they escape through the system’s boundaries. Alternatively, a region where
inertial-acoustic oscillations slow down (e.g. near a turning point where the direction of
wave speed changes) would in principle be susceptible to pulsational instability.

While real Keplerian discs are unlikely to reveal pulsationally unstable phenomena
(due to propagation characteristics and confinement limits of inertial-acoustic waves, Pa-
paloizou & Stanley 1986; Kley et al. 1993), certain regions of black-hole accretion discs
are potential hotspots for viscous overstability. In relativistic discs, the angular velocity
and epicyclic frequency have distinct radial variation. While the former is monotonic,
the latter increases inwards up to a maximum value and then decreases in the very inner
region, being zero at the marginally stable orbit (see Fig. 1.2). The potential of this non-
monotonic variation of κ(r) and its possible relation to periodic and quasi-periodic events
was realised by Kato & Fukue (1980). These authors showed that inertial-acoustic waves
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with frequencies smaller than the maximum of κ can be trapped in the region between
the marginally stable orbit and the epicyclic curve, or more precisely, their Lindblad res-
onance where the wave frequency ω equals κ. This is easily understood by analysing the
dispersion relation for such modes. In a geometrically thin, inviscid and isothermal disc
with sound speed cs, this relation has the familiar form (cf. Part III)2,

ω2 = κ2 + c2
sk

2. (2.9)

It is evident that a wave can only propagate where ω2−κ2 > 0 (see chapter 4 and Fig. 4.1).
The mode is evanescent in other regions where k2 < 0, with k2 = 0 at the Lindblad
resonance (turning point). Therefore, an inertial-acoustic mode can be trapped in the
very inner region of a relativistic disc and be potentially excited by viscous overstability
(Fig. 2.3, option 1). However, due to the uncertain behaviour near the marginally stable
orbit where the waves might be transmitted or absorbed, it is not clear if this trapping
region can be pulsationally unstable.

An alternative is to consider a wave with a frequency just above max(κ), which is not
trapped anywhere in the disc. However, since the group velocity of inertial-acoustic waves
is proportional to k, there is a region close to the radius where the epicyclic frequency peaks
where this oscillation slows down. In principle, viscous overstability could be effective
there and such wave could acquire a global character (Fig. 2.3, option 2).

Moreover, since the inner region is where most gravitational energy is released due
to accretion, variations in the energy output due to overstable waves propagating there
would, in principle, be observable. Indeed, these waves, which have a characteristic time-
scale much shorter than the classic thermal-viscous instabilities, may be related to high-
frequency quasi-periodic oscillations detected in X-ray binaries (Chen & Taam 1995).

2.2.2 Sonic-point instability

It should be noted that the first few analytical calculations of viscous overstability (Kato
1978; Blumenthal et al. 1984) ignored radial velocity and radial pressure gradients in the
equilibrium state of the disc. They are therefore not directly applicable in the case of
transonic black-hole accretion. The axisymmetric stability of these solutions was firstly
addressed by Muchotrzeb-Czerny (1986) and later on by Kato et al. (1988a,b), Abramow-
icz & Kato (1989) and Chen & Taam (1993). In the context of the work of Kato and his
collaborators on the stability of transonic flows, a new form of viscous overstability was
discovered. It was designated sonic-point instability.

2This dispersion relation is obtained from imposing linear perturbations with frequency ω and lo-
cal wavenumber k to a steady disc. The perturbed quantities are, therefore, assumed proportional to
e−iωt+i

R
k(r)dr. Details of this process can be found in chapters 3 and 4.
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Figure 2.3: Waves susceptible to global viscous overstability and how their frequencies

are related to the square of the epicyclic frequency in a Paczyński–Wiita disc (full line).

The oscillation with frequency below the maximum of κ (option 1) is likely to attain a

global character since it is trapped in a small region. On the other hand, the wave with

frequency just above max(κ) (option 2) may also be globally overstable since it slows

down near the maximum of the epicyclic frequency (single-headed arrows represent the

wave’s group velocity).

Perturbations at the sonic point

When steady accretion solutions are perturbed and the time dependence of perturbed
quantities is assumed ∝ e−iωt, the ordinary differential equations describing the radial
variation of perturbations are singular at the sonic point (Muchotrzeb-Czerny 1986). Far
from this location, the local stability analysis can be done in the usual fashion by simply
assuming the dependence in R to be of the form ei

R
k(R)dR and analysing the solutions of

the dispersion relation. By perturbing the transonic solutions of Matsumoto et al. (1984)
(isothermal disc, standard αP viscosity prescription), the following dispersion relation is
obtained (adapted from Kato et al. 1988a):

i(ω − kuR)
[
(ω − kuR)2 − c2

sk
2 − κ2

]
= −2αΩc2

sk
2, (2.10)

where uR is the background radial velocity. (2.10) describes the propagation of two,
outward- and inward-propagating, viscously overstable waves [the third solution is the
classical viscous or secular instability of Lightman & Eardley (1974) which acts on a



Viscous overstability and the stability of transonic accretion 59

much slower timescale]. This equation shows that, far from the sonic point, inertial-
acoustic waves are locally unstable (in the sense that Im(ω) > 0 for real k) to viscous
overstability for all values of viscosity, as in Shakura–Sunyaev discs. [This conclusion is
also valid, although the dispersion relation is changed slightly, when the stress tensor is
of diffusion type (Abramowicz & Kato 1989).] However, (2.10) is not valid at the sonic
point since certain terms neglected in deriving this formula are important close to that
location.

The stability of transonic solutions at, and in the immediate vicinity of, the critical
point needs to be analysed by expanding the perturbed quantities around R0 (Muchotrzeb-
Czerny 1986; Kato et al. 1988a). This process reveals the presence of two different types of
modes: a propagating one which is the analytical continuation of the waves obtained from
local analysis far from R0, and a standing wave localised at the sonic point. The presence
of the standing mode can be understood from the fact that the outward propagation
velocity of perturbations relative to the flow equals the radial inflow at the sonic point.
That is, the two modes of perturbation are essentially the usual viscously overstable
inertial-acoustic modes, although one of them is standing at the critical point. This is
the mode responsible for the sonic-point instability which is revealed when (Kato et al.
1988a)

αΩ(R0) >

∣∣∣∣duR

dR

∣∣∣∣
R0

. (2.11)

Numerical calculations by Matsumoto et al. (1988) confirmed that both standing and
propagating modes are revealed around R0 when (2.11) is satisfied. They also mentioned
that, in the non-linear stage of the instability, the amplitude of the sonic-point viscously
overstable modes is modulated quasi-periodically with a period comparable to that of
QPOs observed in low-mass X-ray binaries.

Relation to the topology of the flow

For the viscosity law used in Kato et al. (1988a), the criterion (2.11) indicates that a flow
which goes through a saddle critical point is stable while one with a nodal critical point
is unstable. [Although the correspondence between the stability-instability transition and
the saddle-nodal transition isn’t exact, owing to a discontinuity in duR/dR across the
critical point, (2.11) effectively states that nodal-type flows are unstable while those with
a saddle point are stable (Abramowicz & Kato 1989)]. Calculations in non-isothermal
discs show that the criterion for the sonic-point instability is modified slightly but still
corresponds to the transition between saddle and nodal-type points (Kato et al. 1988b).
These results seem to indicate that the sonic-point instability is related to the topology
of the flow around the critical point.

In 1988, the situation seemed clear: there is a value of α∗, which corresponds to
αsn, above which no unique steady solution can be found because nodal-type points are
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unstable to the sonic-point instability. Indeed, the analysis of Kato et al. (1988a) reveals
that the sonic point has no essential effects on the character of the propagating mode,
while the presence of a standing growing perturbation at R0 is intimately related to the
critical point. In this sense, it is understood that the stationary mode should be the one
connected to the regular passage of the flow through the critical point, and be the main
cause of the instability of transonic accretion.

Unfortunately, the work of Afshordi & Paczyński (2003) shows that α∗ 6= αsn, which
either means that the criterion (2.11) doesn’t correspond to the saddle-nodal transition
in their problem or, alternatively, that the existence of α∗ is not related to the sonic-point
instability. This problem will be explored further in the next chapter.

In addition, shortly after 1988, the very existence of the sonic-point instability in
realistic discs was challenged by Abramowicz & Kato (1989), Kato et al. (1993) and
Kato (1994). They found that the presence or absence of a nodal-type critical point in
the accretion flow and of the sonic-point instability is intimately related to the viscosity
prescription adopted, as discussed in the following section.

2.2.3 Different types of stress tensor and viscosity laws

The work of Abramowicz & Kato (1989) hinted that the sonic point was probably stable
in isothermal discs with a diffusion-type stress tensor, as the nodal-type sonic point isn’t
present in that case. This possibility was confirmed by Kato et al. (1993) who analysed
the stability of the sonic point for different types of the stress tensor and concluded that
the critical point is stable when the diffusion-type stress tensor is adopted. On the basis
of their results they speculated that, even in more general non-isothermal cases, a saddle
point is always stable to local perturbations while a nodal point is always unstable.

Calculations with a modified form of viscosity for which ν vanishes at the sonic
point and for R < R0 (to avoid viscous transport at supersonic speed and causality
violation, see Narayan 1992), are also of particular interest to the stability of the sonic
point. Kato (1994) analysed the stability of transonic accretion solutions using a causality-
limited viscosity prescription and a stress tensor proportional to dΩ/dR and confirmed
that the sonic point, of saddle type, is stable. However, Chen & Taam (1993) found
nodal-type points in their non-isothermal transonic flows with diffusion-type stress and
causal viscosity but no sonic-point instability, putting in doubt a relation between the
topology and instability of the critical point in a general case.

Before performing a stability analysis, Chen & Taam (1993) numerically calculated
the structure of their transonic flows, similarly to what had been done before for αP
flows (see also Papaloizou & Szuszkiewicz 1994). A limiting value α∗ above which such
solutions can’t be found is never mentioned, either because the viscosity was never high
enough or because α∗ doesn’t exist when the stress has a diffusion form. If the latter
option is valid, a relation between α∗ and the sonic-point instability is likely.

While the existence of the sonic-point instability is deeply model dependent, the vis-
cous overstability of modes satisfying the local dispersion relation (2.10) — or equivalent
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for a non-isothermal disc — isn’t. In fact, even when the stress tensor is of diffusion type
and a causality-limited viscosity is employed, the disc is still locally unstable to viscous
overstability (Abramowicz & Kato 1989; Kato et al. 1993; Kato 1994). The question is
whether or not this instability can attain a global character as discussed in the following
chapter (see also Wallinder 1990).

In the next section, I’ll consider the topic of global viscous overstability which is
most easily probed within a numerical framework. I will also comment on the influence
of radial viscosity on the stability of the disc.

2.2.4 Time-dependent numerical calculations

As mentioned in section 2.2.1, care must be taken when generalising the results of lo-
cal analysis to real discs. Numerical simulations are required to test if inertial-acoustic
oscillations can be pulsationally unstable beyond local analysis. Here, the focus goes to
numerical calculations concerning axisymmetric instabilities of black-hole accretion discs.

Global oscillations

The first paper on this matter is perhaps that of Matsumoto et al. (1988) which revealed
the presence of viscously overstable modes in the inner region of transonic isothermal discs
for α > 0.05−0.1 (using an αP stress). The authors claim this result to be a confirmation
of the existence of the sonic-point instability beyond local analysis. However, the initial
conditions may have influenced this outcome: since their work was geared towards finding
instabilities at the sonic point, the disc was initiated with a small perturbation at R0. In
any case, the basic result seems to be that overstable oscillations are visible in the time-
dependent simulations when α is large enough.

In rough agreement with the previous paper, the global non-linear investigation of
Chen & Taam (1995) revealed nonsteady behaviour of the inner disc for high enough α
and low enough mass accretion rate. To avoid classic instabilities, the authors used a
viscously and thermally stable viscosity prescription with the kinematic viscosity given
by

ν =
2

3
αβgt

c2
s

ΩPW

, (2.12)

where βgt is the ratio of gas to total pressure. According to their equation (3) (but not their
abstract) the stress tensor used is proportional to the gradient of angular velocity. The
disc is initiated with the transonic solution of Chen & Taam (1993). Using a piecewise
parabolic method, they solved the 1D hydrodynamic time-dependent equations to find
variability at a range of timescales for α & αvo ≈ 0.2 and Ṁ . 0.3ṀEdd. Since the local
analysis predicts instability for all values of viscosity, independently of the accretion rate
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(e.g. Blumenthal et al. 1984; Chen & Taam 1993), Chen & Taam (1995) attribute the
stability of the disc at small α and high Ṁ to global effects. Namely, they claim that in
those conditions the growth rate of perturbations cannot overcome the escape rate.

A particularly interesting result of Chen & Taam (1995) is the oscillation with global
characteristics found at a frequency close to the maximum of the epicyclic frequency (115
and 135 Hz) in two of their test runs. A similar oscillation with frequency ∼ max(κ) was
also found by Honma et al. (1992) (although they initiated their calculations with a small
perturbation at R0 as in Matsumoto et al. 1988).

Milsom & Taam (1996) extended the previous study to a larger region of the param-
eter space (Ṁ, α), and used two different viscosity prescriptions: ν constant or given by
(2.12). Their results indicate that the feature at max(κ) is expected for 0.01ṀEdd . Ṁ .
0.25ṀEdd, 0.2 . α . 1 and that the amplitude of the oscillations increases for large α and
small Ṁ . The authors point out that the global mode is produced at ∼ 7.5Rg, i.e., the
radius where κ is maximum in the Paczyński–Wiita potential used in their calculations,
and affects the disc for R . 32Rg. The discs are stable for higher accretion rates because,
according to the authors, “the sound speeds are high and perturbations quickly diffuse
away before they have time to grow”. When Ṁ is reduced substantially for fixed α, the
global feature disappears, the disc exhibits local inertial-acoustic oscillations at all radii at
frequency equal to κ(r) and the spectra is rather noisy. Finally, the paper concludes that
the stability is dependent only on the magnitude of the viscosity and not on its functional
form. Moreover, they predict oscillations to be present in a finite region of the parameter
space in any disc where the dynamic viscosity increases when the density ρ increases.

More recently, O’Neill et al. (2009) solved hydrodynamic equations in cylindrical co-
ordinates with α-viscosity (ν ∼ αc2

s/Ω) using a 2.5 dimensional model, i.e., which enforces
azimuthal symmetry but allows the azimuthal velocity to be non-zero. Their simulations
are representative of a pseudo-Newtonian accretion disc with p ∝ ρ5/3. They find axisym-
metric waves generated near the maximum of the epicyclic frequency that can propagate
outwards up to R ∼ 18Rg for α ≥ αvo = 0.05. These oscillations have frequencies at
or just below max(κ) and can either be inertial or inertial-acoustic waves or “continuous
extensions in frequency and power” of the previous in the cases where they propagate
to forbidden regions where, according to the dispersion relation, the modes should be
evanescent (see, e.g., Kato 2001). As the authors point out, the inertial (r or g) and
inertial-acoustic (f or inner p) modes are apparently indistinguishable in their simula-
tions due to the possibility of exchange of power between different velocity components.

Reanalysing the results table of Milsom & Taam (1996), it is easy to see that an
oscillation (although very weak) is detected in a simulation with α as low as 0.05 in
agreement with O’Neill et al. (2009), as also pointed out in the latter paper. It should
be noted, however, that different calculations, with distinct viscosity prescriptions and
equations of state will naturally result in slightly different limiting values of α above
viscously overstable waves are detected.
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Stress tensors

Although the results presented indicate that inertial-acoustic waves with a frequency ∼
max(κ) can be viscously overstable even when global effect are considered, it is important
to note that, in all cases mentioned, the stress tensor was assumed to have a rather simple
form. In the works of Matsumoto et al. (1988) and Honma et al. (1992), the only non-
zero stress component is TRφ which is assumed to have the standard αP form. In Chen
& Taam (1995) and Milsom & Taam (1996), the stress tensor is of diffusion-type and,
similarly, TRφ is the only non-zero component. The radial component of the viscous force
wasn’t included in any of the simulations mentioned.

Previous studies focusing on Keplerian discs show that the radial viscous force may
have a stabilising effect on the global outcome of pulsational instability. The paper by
Chen & Taam (1992) on radial oscillations in discs around neutron stars where the au-
thors compare the results of Papaloizou & Stanley (1986) and Okuda & Mineshige (1991)
is particularly interesting. While the latter work, which did not include the effect of vis-
cous forces in the radial direction, claims that Keplerian discs with α-viscosity generally
exhibit overstable radial oscillations, the former shows that propagation characteristics of
such modes prevent viscous overstability. Indeed, Chen & Taam (1992) found overstable
oscillations to depend sensitively on the magnitude of both azimuthal and radial viscosi-
ties, with the modes being damped when the two are comparable (in accordance with
the results of Papaloizou & Stanley 1986). Despite the prediction from linear analysis of
instability even in presence of viscosity in the radial direction (Blumenthal et al. 1984),
the simulations show that non-linear effects can have a stabilising outcome. This is an
indication that viscous overstability may not be able to operate in a real Keplerian disc.

The results from black-hole accretion disc simulations are more encouraging. The
2D (R, z) time-dependent equations solved by Milsom & Taam (1997) ignore radiative
and bulk viscosity but include all components of the stress tensor defined by,

Tik = 2ρν

(
Dik −

δik

3
Djj

)
where Dik =

1

2

(
∂ui

∂xk

+
∂uk

∂xi

)
. (2.13)

Their results confirm the instability of discs to global modes with frequency max(κ) for
low accretion rate and high enough viscosity (although the threshold value of α is signif-
icantly higher), strengthening the possibility of inertial-acoustic oscillations introducing
variability in real discs.

The numerical results collated in this section show that viscously overstable modes
can definitely occur in discs around black holes when an α viscosity is used. The oscil-
lations are excited when the mass accretion rate is low and the viscosity is high and are
axisymmetric and most likely of inertial acoustic type. The simulations of O’Neill et al.
(2009) show that it might also be possible for inertial modes (which have a non-zero verti-
cal component of the velocity) to be viscously overstable, as previously shown analytically
by Ortega-Rodŕıguez & Wagoner (2000). It is, however, unlikely for these modes to be
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excited by viscous overstability as the action of shear on their vertical structure would act
to damp them. The result of Ortega-Rodŕıguez & Wagoner (2000) is indeed believed to
be incorrect as it is in direct contradiction with the findings of Latter & Ogilvie (2006).
These authors made a full treatment of a 3D shearing-sheet disc model and analysed the
possibility of different modes growing due to viscous overstability. Their numerical results
show that only inertial-acoustic modes have the potential to grow.

2.3 Summary and open questions

The body of literature on the structure and stability of transonic accretion flows is over-
whelming and, understandably, a reader of this dissertation will probably have skipped
some (if not all) parts of my extensive review on the subject. Fortunately, a bullet-point
summary is presented below:

• Flows around black holes are transonic being subsonic at large radii and supersonic
at small radii. In a thin disc, the sonic point R0 (which is a critical point of the
hydrodynamic equations) is located close to the radius of the marginally stable orbit.

• In the case of isothermal discs with standard αP viscosity, there is a limiting
value of α, α∗ ∝ (cs/c)

1/3, above which no unique, stable, physically acceptable
steady state transonic accretion solutions can be found. The existence of α∗ seems
to be related to the unphysicalness or nonuniqueness of the regular passage of the
flow in the slow direction of a nodal-type point. It is unclear if α∗ exists in discs
with a diffusion-type stress tensor as studies so far have not mentioned such a limit.

• Local analysis around the sonic point of isothermal discs reveals that saddle-
type points are stable while nodes are unstable. More precisely, this sonic-point
instability kicks in when αspΩ(R0) = |duR/dR|R0

, if the disc is isothermal and
the stress is αP . This form of viscous overstability is weak in the sense that it
doesn’t exist in isothermal discs with diffusion-type stress tensors (which have only
saddle critical points). Furthermore, it is unlikely to exist when a causality-limited
viscosity, null at the sonic point, is used. When it exists according to local analysis,
it is also revealed in time-dependent numerical simulations although possibly only
when the disc is initialised with a perturbation at the sonic point.

• In general, the instability of transonic solutions seems to be related, not to this
sonic-point instability, but to propagating overstable modes. According to local
analysis these modes may be present under a wide variety of conditions. When global
effects are considered, inertial-acoustic waves are only excited when the viscosity is
sufficiently high (α > αvo) and the sound speed or mass accretion rate is sufficiently
low. In other words, αvo is dependent on cs, being lower for lower sound speed.
(Presumably this is because perturbations propagate away faster in thick discs and
are unable to grow before escaping through the system’s boundaries.) Overstable
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modes are present in simulations modelling discs with different equations of state
and stress tensors, i.e., αvo exists even in the cases where αsp and α∗ probably don’t.

• In αP , isothermal discs, α∗ = αnn while αsp = αsn (but see section 6.2 of
Afshordi & Paczyński 2003, for a different view on this last correspondence). To
my knowledge, the global behaviour of viscous overstability and its limiting value
αvo have never been analysed in an αP disc with the flow being initialised without
a perturbation at R0.

Unfortunately, the summary is rather inconclusive and many questions remain unan-
swered. What happens to the solutions of the time-dependent equations describing a
transonic flow when α > α∗? If nodal-type points are unstable, how did Afshordi &
Paczyński (2003) manage to find steady state solutions for α > αsn? Can the sonic-point
instability be revealed in time-dependent αP calculations if a perturbation isn’t imposed
at the sonic point to start with? How does viscous overstability develop in that case?
What is the relation αvo(cs) in an isothermal αP disc? In the case where α∗ exists, is
there any relation between it and the onset of global viscous overstability? If so, why?

One of the reasons why some of these questions remain unanswered relates to the
difficulty in comparing the different works on these subjects. More precisely, the most
recent paper where a value of α∗ is found (Afshordi & Paczyński 2003) applies a rather
unusual form of the viscosity prescription (although the stress tensor is essentially αP )
and considers an isothermal, thin disc. On the other hand, most of the work on global
viscous overstability models non-isothermal discs with a diffusion-type stress tensor.

In conclusion, a direct comparison between both problems where the same assump-
tions and approximations are used in the steady and time-dependent hydrodynamic equa-
tions is lacking. This is the topic of the next chapter where I solve the time-dependent
version of the Afshordi & Paczyński (2003) problem for various values of the viscosity
parameter α. In my calculations, I won’t impose any perturbation at the sonic point to
initialise the disc so that I can analyse the behaviour of global viscous overstability in this
case. I’ll also look for signs of the sonic-point instability in the case where α > αsp. Most
importantly, I’ll see what happens to the solution of the time-dependent equations when
α > α∗ and I’ll be able to tell if any relation between α∗ and αvo exists. My attempt at
answering the questions presented above is described in the next chapter.





Chapter 3

Time-dependent transonic accretion

The aim of this chapter is to revisit the problem described in the introductory section
of this part of the thesis and attempt to answer the questions posed at the end of the
previous chapter. The main goal is to look for a relation between the unsteadiness of
transonic flows and the presence of instabilities in the disc: either viscously overstable
propagating modes or the sonic-point instability (see chapter 2 and references therein).

As mentioned before, to facilitate the comparison between the two phenomena I solve
the time-dependent equations of the Afshordi & Paczyński (2003) steady state model.
These authors were unable to find unique solutions obeying both realistic boundary con-
ditions and regularity constraints at the sonic point for α > α∗ = 0.14(100cs/c)

1/3. The
model considered in the present chapter represents an approximately isothermal, axisym-
metric, 1D hydrodynamic flow with essentially a standard αP viscosity. The only input
parameters of the problem are the sound speed, cs, and the magnitude of the viscosity, α.

As it will be seen in the remainder of the chapter, numerical simulations show that
physically acceptable steady state thin disc solutions exist for α . 0.14(100cs/c)

1/3 = α∗,
therefore confirming the results of the above-mentioned paper. Moreover, it is found that
for higher viscosity (up to a certain limit) the disc settles into an oscillatory state where
global oscillations with frequencies close to the maximum of the epicyclic frequency are
present. The waves excited at high viscosity have all characteristics of viscously overstable
inertial-acoustic waves. These results seem to indicate that, at least in the simple model
considered, α∗ = αvo.

This chapter is organised as follows. In section 3.1 I present the equations to be
solved and the numerical method used in the process. The results obtained are described
and interpreted in section 3.2 and discussed in 3.3. Conclusions and possible observational
relevance of the results obtained are presented in section 3.4.

67
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3.1 Equations and numerical method

3.1.1 Assumptions

In this study of the stability of accretion flows surrounding black holes, the approx-
imations made and assumptions used are basically the same as those of Afshordi &
Paczyński (2003). The vertical thickness of the flow is assumed to be much less than
R so that vertically-averaged quantities can be used in the hydrodynamic equations. Fur-
thermore, relativistic effects are mimicked by the Paczyński–Wiita potential and the flow
is assumed axisymmetric, reducing the problem to one spatial dimension. Particles in
this gravitational field move around the black hole in circular orbits characterised by a
pseudo-Newtonian angular velocity ΩPW and epicyclic frequency κPW. The square of these
frequencies is given by [cf. equations (1.51,1.52)],

Ω2
PW =

1

r(r − 2)2
, (3.1)

κ2
PW =

(r − 6)

r(r − 2)3
, (3.2)

where r = R/Rg and the frequencies are in units of c3/GM (typical velocities are given in
units of c). Because the flow has a finite thickness, Ω 6= ΩPW in general. However, since
the disc is assumed thin, these particle orbit expressions should approximately represent
the characteristic frequencies for r > rms.

The epicyclic frequency is maximum at r = 2(2 +
√

3) ≈ 7.5 where it reaches a
value of 112(10M�/M) Hz. At the marginally stable orbit rms = 6, κPW = 0 and the
particle-orbit angular momentum (per unit mass),

lPW =
r3/2

r − 2
, (3.3)

and binding energy,

ePW = Φ +
r2Ω2

PW

2
= − r − 4

2(r − 2)2
, (3.4)

reach a minimum. For radii smaller than rms matter can no longer be kept in stable
orbits around the black hole and spirals inwards eventually reaching the event horizon.
As discussed in chapter 2, the inner boundary of the disc is expected to be close to this
location. In the numerical problem described here, the innermost radius is taken to be
located at r = 3 < rms to better study the transition from the subsonic disc to the
supersonic region. (Readers are reminded that the critical sonic point of the flow may be
located slightly inside the marginally stable orbit.) As in Afshordi & Paczyński (2003) it
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is assumed, although only to initialise the flow, that as the matter spirals inwards from
rms it approximately conserves its angular momentum and binding energy, i.e.,

l ≈ lms = 3
√

1.5, e ≈ ems = −1/16, for r . rms. (3.5)

Similarly to Afshordi & Paczyński (2003), the viscous stress is assumed to be given
by equation (2.4). Despite the breakdown of assumption (2.3) outside the marginally
stable orbit, it is taken to be valid throughout the disc as this greatly simplifies the
structure of the equations describing the accretion flow. It is also the assumption made
by Afshordi & Paczyński (2003) so it should be regarded as valid to better compare the
results obtained here with those of the paper. The important aspect to retain about the
form of the stress tensor is that it is essentially an αP stress with α ≈ αSS/2, where αSS

is the usual Shakura–Sunyaev α parameter.

As in Afshordi & Paczyński (2003), the vertically-integrated pressure P is assumed
to be equal to c2

sΣ but here the disc is taken to be only approximately isothermal in
the radial direction. If the disc was regarded as strictly isothermal, the thickness H
would become too large in the outer disc where ΩPW is small. To avoid the numerical
complications associated with this problem I take

cs(r) = cs,AP

√
106

r + 100
, (3.6)

which decays with radius but is slowly varying in the inner region. This function is prac-
tically equal to the constant Afshordi–Paczyński sound speed cs,AP near the marginally
stable orbit r = 6 and gives constant H/r at large r. The thin-disc approximation is
assured if cs,AP, an input parameter, is small.

3.1.2 Hydrodynamic equations

Within the previous assumptions, the partial differential equations describing the con-
servation of mass, momentum and angular momentum can be written in the form (Mat-
sumoto et al. 1984)

∂Σ

∂t
+

1

r

∂

∂r
(rΣur) = 0, (3.7)

∂ur

∂t
+ ur

∂ur

∂r
+

c2
s

Σ

∂Σ

∂r
=

u2
φ

r
− dΦ

dr
− dc2

s

dr
− c2

s

d ln ΩPW

dr
, (3.8)

∂uφ

∂t
+ ur

∂uφ

∂r
= −uruφ

r
+

1

2πr2Σ

∂

∂r

(
2πr2τrφ

)
, (3.9)

where ur < 0 is the radial drift while uφ = l/r = Ωr is the azimuthal velocity. Note that
if Σ is multiplied by an arbitrary constant the remaining quantities are unchanged. Apart
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from the dc2
s/dr term, these equations are the time-dependent version of the ones solved

by Afshordi & Paczyński (2003).

Defining ζ = ln Σ, (3.7)–(3.9) can be written in the non-conservative form:

∂tU + A∂rU = B, (3.10)

where U (r, t) is the column vector whose components are the vertical-integrated quantities
describing the flow (ζ, ur, uφ). The matrix A(r, t) is given by

A =

 ur 1 0
c2
s ur 0

2αc2s
rΩPW

uφ 0 ur + 2αc2s
rΩPW

 , (3.11)

and the “source-terms” vector B(r, t) can be written as

B =


−ur

r
u2

φ

r
− dΦ

dr
− c2

s

d ln(ΩPWc2s)
dr

−uruφ

r
− uφ

r2
d
dr

(
2αc2s r2

rΩPW

)
 . (3.12)

Here Φ = −1/(r−2) is the Paczyński & Wiita (1980) potential and ΩPW and cs are given
by equations (3.1) and (3.6), respectively while α and cs,AP are input parameters of the
problem.

3.1.3 Numerical method

The system (3.10) of quasilinear partial differential equations in r and t is hyperbolic
since the square matrix A is diagonalizable and has real eigenvalues. To solve for U ,
I use a numerical code originally written by Dr. Gordon Ogilvie and modified by me
that employs a wave-speed splitting method with second-order upwind differencing. The
scheme is explicit and uses a first-order forward-time differencing with a variable time
step.

Upwind wave-speed splitting

In a one-dimensional system with waves propagating to the right/left, a point in the
space-time diagram is only influenced by the points to its left/right. In other words,
if the information in a flow field is propagating to the right/left, the physical domain
of dependence lies to the left/right; this is the so-called upwind direction. Numerical
methods that correctly model this physical behaviour are designated upwind schemes and
tend to enhance stability, at least for simple forward- or backward-time stepping methods,
and are generally stable if the CFL condition is satisfied (Laney 1998). Hyperbolic partial
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differential equations are discretised using more upwind than downwind points, i.e., the
differencing is biased in the direction opposing wave propagation. For example, if the
wave speed is positive, the information propagates to the right and therefore a backward
finite difference should be used to represent spatial derivatives. Upwind schemes which
use second-order finite differences are less diffusive and have better spatial accuracy than
first-order methods.

The concept of upwind direction is complicated in subsonic flows with waves propa-
gating both to the left and to the right. In problems of this nature, upwinding is achieved
by using flux or wave-speed splitting techniques. The former uses the governing equations
in conservative form while the latter uses a non-conservative form. Flux splitting is prefer-
able in most cases as it yields conservative numerical equations but for the Navier-Stokes
equations the two methods are essentially equivalent (Laney 1998). The code uses the
wave-speed splitting scheme since (3.10) is in non-conservative form.

The basic idea of the method is simple. The system under consideration has three
equations and therefore three families of waves [cf. dispersion relation (2.10)] with different
characteristic speeds given by the eigenvalues of the matrix A. The numerical code
uses the dgeev routine of lapack to calculate the eigenvalues and the left- and right-
eigenvectors at each radius and time step. If the wave speed is positive/negative, the
upwind direction lies on the left/right and a backward-/forward-biased finite difference
formula is used to calculate spatial derivatives. The time step is variable and depends on
the wave speeds in order to ensure that the CFL condition is satisfied.

Since this study focuses on the inner region of the disc, where the transition from
subsonic to supersonic occurs, a logarithmic spatial grid is used. Within this non-uniform
grid, a non-standard finite-difference formula is required to represent derivatives. For
example, when the eigenvalue is positive, the derivative (dy/dr)i is approximated by a
backward finite difference formula of the form:

(ri − ri−2)
2(yi − yi−1)− (ri − ri−1)

2(yi − yi−2)

(ri − ri−1)(ri − ri−2)(ri−1 − ri−2)
, (3.13)

which reduces to the standard formula if the grid is uniform. 1601 grid points logarith-
mically distributed between the inner boundary at r = 3 and the outer boundary placed
at r = 800 are used in the calculations.

Initial and boundary conditions

In order to set up an approximate analytical initial profile for the disc, the following
simple assumptions are made. In the initial state, the mass conservation is expressed in
the form ζ = ln(−1/rur). The disc (r ≥ rms) is assumed to be Keplerian, uφ = rΩPW,
with the angular momentum conservation expressed as ur = −αc2

s/uφ (this is based on
the solution for steady Keplerian discs). In the plunging region (r < rms), the angular



72 Time-dependent transonic accretion

momentum is taken to be approximately constant so that uφ = lms/r while

ur = −max
[
αc2

s/uφ,
√

2(ems − Φ)− u2
φ

]
. (3.14)

This formula is based on the solution for a particle spiralling inwards from the marginally
stable orbit. The square-root term comes from the definition of Keplerian binding energy
and lms and ems are given by (3.5). The final state of the disc is not expected to depend on
these initial conditions since the flow is evolved for t ∼ 5×104tdyn, where tdyn is the orbital
timescale at the marginally stable orbit. Characteristic modulations in the disc would be
captured on a much shorter timescale, but such a long integration time is necessary since
the time required for the flow to reach steady-state equilibrium (expected for low α) is
much larger than tdyn.

Since a second-order finite-difference expression for the spatial derivatives is used,
it is necessary to specify the value of all three quantities at the two innermost and two
outermost grid points. At the inner boundary, the fluid quantities are specified by as-
suming that the second derivative vanishes at the two innermost grid points. Because
the sonic point is located near r = 6, the inner boundary of the problem is placed in the
supersonic region and therefore these conditions don’t affect the structure of the subsonic
disc or of any part of the domain away from the boundary. At the two outermost points,
uφ is taken to be Keplerian while the vertically-integrated density is assumed constant
and d2ur/dr2 = 0. Once again, the structure of the inner disc is not particularly sensitive
to these conditions since a wave-damping region is placed near the outer boundary. More
specifically, for r > 100, a friction term is added to the radial equation which damps the
waves at a rate γ(r) given by

γ(r) =
ΩPW,o

2

[
1 + tanh

(
r − 500

100

)]
, (3.15)

where ΩPW,o ≈ 0.0001 is the angular velocity in the wave-damping region.

The initial and boundary conditions presented here ensure that the quasilinear hy-
perbolic initial-value problem to be solved is well-posed. Also, as mentioned in the pre-
vious section, the CFL condition is satisfied in the numerical scheme used ensuring the
stability of the method. These two conditions are necessary for the convergence of the
method.

3.2 Results

The system (3.10) was solved for four different values of cs,AP, 0.003, 0.005, 0.01 and 0.02
and a range of α. Note that the vertical averaging done to obtain the equations solved in
the code is appropriate only when the disc is thin, hence the choices of small sound speed
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values. In the analysis of the results I only considered the last half of the integration time
to assure the system had reached its final state. Moreover, and because I am interested in
studying the inner region of the disc, I focused only on the inner half of the spatial grid
(801 points) which extends up to about r = 50 and where the resolution is considerably
higher than in the outer half. The contour plots shown in this section are zoomed in
to a time interval of about 5 × 103 in units of GM/c3. This interval is chosen in order
to capture variations with frequencies larger than about 25(10M�/M) Hz (but note that
time averages are calculated using the entire last half of the integration time).

For all four values of sound speed used in the problem the system reaches a steady
state if the viscosity parameter is sufficiently small, in accordance with Afshordi &
Paczyński (2003). As α is increased, accretion stops being steady and oscillations with a
frequency close to the maximum of the epicyclic frequency are present in the disc. This
phenomenon is global in the sense that the waves approximately conserve their frequency
for a wide range of radii. If the viscosity is increased further, the system reaches a fairly
chaotic state where no clear global oscillations are visible. In summary, the final state of
the system is strongly dependent on the viscosity:

α < α1 steady;

α1 < α < α2 oscillatory;

α > α2 chaotic.

When α < α1 the transonic solutions are stable and the sonic point is well defined
since the radial inflow is independent of time. In addition, the numerical profile obtained
for the radial inflow is in agreement with that expected from the time-independent cal-
culations of Afshordi & Paczyński (2003), serving as a test of the numerical scheme used
when α < α1. Fig. 3.1 shows how the flow parameters vary with radii in this stable con-
figuration for cs = 0.01 and two different values of α. As it can be seen, the subsonic disc
remains thin in both cases as Ω/ΩPW ≈ 1 everywhere. The disc structure is not changed
significantly when the sound speed is changed between the values used in the simulations.

The differences in viscosity only result in minor changes in the disc structure: small
changes are visible in the epicyclic frequency in the supersonic region and the density is
higher in the inner disc when the viscosity is higher. Most importantly, the location of
the sonic point changes, being located at r0 < rms for small α and at r0 > rms for large
viscosity. This is expected from previous steady state studies in isothermal discs with αP
viscosity. Although I don’t directly investigate the topology of the flow around the sonic
point, the results of Afshordi & Paczyński (2003) indicate that the low α flow has a point
of saddle type while the high α has a nodal-type critical point.

Interestingly, the simulations show that α1 ≈ α∗ = 0.14(100cs)
1/3 as seen in Table

3.1. This is a numerical confirmation of the result of Afshordi & Paczyński (2003) that
physically acceptable steady state solutions only exist for α < α∗. In the next section I



74 Time-dependent transonic accretion

Figure 3.1: Example of the variation of disc characteristics with radii in the case where the

system reaches a steady state and the transonic solution is stable. The full lines represent

a solution with cs = 0.01 and α = 0.1 while the dash-dotted lines represent a flow with the

same value of sound speed and α = 0.01. The square indicates the location of the sonic

point, r0, in the lower α case (r0 = 5.64) while the cross marks the critical point when

α = 0.1 (r0 = 6.05). The dashed line corresponds to the particle-orbit expression for the

epicyclic frequency κ; the fluid’s epicyclic frequency was determined from the numerical

Ω using the usual Newtonian relation.

focus on the cases where the input parameters are such that the final state is oscillatory
to understand what happens when the viscosity is increased above α∗.

The limit α2 is difficult to define in a quantitative way since the transition between
oscillatory and chaotic states happens gradually. As α is increased above α1 the wave
amplitude becomes larger and larger until the oscillations become highly non-linear and
the results show signs of wave interactions. Individual oscillations are increasingly difficult
to perceive as the system transitions to the chaotic state. For example, for cs = 0.01 the

cs,AP α1 α∗ = 0.14(100cs)
1/3

0.003 ∼ 0.095 0.094

0.005 ∼ 0.110 0.111

0.01 ∼ 0.140 0.140

0.02 ∼ 0.175 0.176

Table 3.1: Viscosity parameter α1 above which oscillations are visible in the simulations

vs. the Afshordi & Paczyński (2003) α∗ above which the transonic solution is unsteady.
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Figure 3.2: Surface density divided by its time-averaged value for cs,AP = 0.01 and α =

0.25 > α2. The dashed line indicates the location of the marginally stable orbit. Localised

black regions appear in the figure because Σ/ < Σ >t was limited to a maximum value

for clearer visualisation of the contours.

passage from oscillatory to chaotic occurs at α2 with 0.18 < α2 . 0.2. Fig. 3.2 shows
contours of surface density divided by its time-averaged value for α > α2. It is clear
that the response of the flow to the instability becomes chaotic in this state and global
oscillations are no longer visible. Possibly, the disc breaks into segments which oscillate
at a local average of the epicyclic frequency.

Given the difficulty in restricting α2 to a single value and in characterising the
chaotic state, throughout the rest of this chapter I’ll focus on the limit α1 only and on the
oscillatory state present for α1 < α < α2. It should be noted that in the parameter-space
region of interest discontinuities or shocks are not present in the solutions.

3.2.1 Oscillatory state

As mentioned in the previous section, when the viscosity parameter α is increased above
the threshold value α1 = α∗ = 0.14(100cs)

1/3, oscillations are visible in the simulations.
These can be seen by, e.g., looking at the contours of surface density Σ(r, t) divided by
its time-averaged value; typical results are shown in Figs. 3.3 and 3.4.
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Figure 3.3: Surface density divided by its time-averaged value for different values of sound

speed and α. The dashed line indicates the location of the marginally stable orbit.
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Figure 3.4: Surface density divided by its time-averaged value for cs,AP = 0.01 and two

different values of α. The dashed line indicates the location of the marginally stable orbit.
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Figure 3.5: Smoothed power spectra of Σ(rp, t) at rp = rms (full line), rp = 12 (dashed

line) and rp = 18 (dotted line). The vertical line indicates the maximum value of κ.

The top left and top right panels correspond to the top and bottom panels of Fig. 3.3,

respectively while the bottom left and bottom right panels correspond to the top and

bottom plots of Fig. 3.4.

It is particularly clear in the panels of Fig. 3.3 that density fluctuations are prac-
tically inexistent in a region RE between r ≈ 7 and r ≈ 9. (For reference, the reader
should recall that rms = 6 and the maximum of the epicyclic frequency is at r ≈ 7.5 in
the units used.) As the waves propagate away from this region — inwards for r < 7 and
outwards for r > 9 — their amplitude increases. The inward-travelling waves quickly
disappear onto the plunging region while the outward-propagating oscillations are visible
at an approximately constant frequency for a wide range of radii.

To determine the frequency of the waves visible in the contour plots it is useful
to calculate the Fourier Transform. However, since the simulations have a variable time
step and the data are, consequently, unevenly spaced, the Lomb normalised Periodogram
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(LP) is determined instead using the fasper routine. The LP of the surface density is
calculated at three different radii; the power spectra, given by |Σ(rp, t)LP|2 = |Σ(rp, f)|2,
where the frequency f = ω/2π is in Hz, are shown in Fig. 3.5. The dominant frequency
for radii outwards from RE is very close to the maximum of the epicyclic frequency for
all values of cs,AP and α shown. Peaks at harmonic values of max(κ) are also visible but
this is an artefact of the Lomb normalised Periodogram since the waves with frequency
close to max(κ) are not perfectly sinusoidal. The spectra at the marginally stable orbit,
possibly influenced by the transonic flow, are more complicated and have a maximum at
a frequency slightly higher than max(κ) when a broad peak is visible. The oscillations
visible in Figs. 3.3 and 3.4 are clearly quasi-periodic since the spectral peaks have a finite
width.

The isolated influence of viscosity in the oscillations is obvious in both Fig. 3.4
and the corresponding power spectra at the bottom of Fig. 3.5, where the sound speed
is kept constant at cs,AP = 0.01 and α = 0.145, 0.16. When the viscosity parameter is
just slightly above the threshold value at 0.145, the oscillations are only visible in the
outer disc, r & 20. For higher viscosity, α = 0.16, fluctuations are evident with higher
amplitude for r & 10. It is also clear from the power spectra in Fig. 3.5 (and Figs. 3.3
and 3.4) that the amplitude of the waves increases as they propagate away from region
RE. The amplitude of the waves seems to decrease in the outer disc but this may be
a numerical artefact: because the grid is logarithmic it becomes increasingly difficult to
resolve oscillations as r increases. On the other hand, physically, these waves are expected
to dissipate through shocks which would also explain the decrease in amplitude.

The effect of the sound speed can be most easily analysed by comparing the top
right (cs,AP = 0.005) and the bottom left (cs,AP = 0.01) panels of Fig. 3.5. Although the
viscosity parameter is different in both plots, it is just slightly above the corresponding
threshold value so that the influence of viscosity can be understood as equivalent in both
cases. Based on these considerations, a comparison of the dotted and dashed curves shows
that, at the same radius, waves have larger amplitude and are evident closer to the RE
region when the sound speed is smaller.

Before going on to interpret the results described here, it should be noted that
there are strong arguments favouring the physical, as opposed to numerical, nature of the
oscillations visible in the simulations. They are a robust feature of the calculations: waves
are present and have similar characteristics when the resolution or the courant value are
changed. Also, similar results are obtained when first-order finite differences are used in
the numerical scheme. Moreover, as seen in the introduction, similar oscillations have
been seen in simulations which rely on numerical methods very distinct from the one
used here. For example, Chen & Taam (1995) found oscillations at similar frequencies
using a code based on an explicit piecewise parabolic method to solve the hydrodynamic
equations. This serves as a test of the numerical method employed when α1 < α < α2.
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3.3 Discussion

3.3.1 Local stability analysis

In this section I’ll focus on interpreting the results shown previously for α1 < α < α2. The
oscillatory state plots show clear signatures of viscous overstability. To better understand
this phenomenon, and for completeness, I’ll start by doing a local stability analysis of
the Afshordi & Paczyński (2003) problem. The idea is to study the evolution of small
perturbations to a transonic steady background.

The local dispersion relation can be determined by imposing linear perturbations
to a steady disc and see, using equations (3.7)–(3.9), how they evolve. In practice this
means that quantities such as surface density, radial velocity and azimuthal velocity may
be written as q → q + q′, where terms of O(q′2) or higher are assumed much smaller than
terms of O(q′).

In the steady background state, Σ = Σb, uφ = Ωr and ur < 0; these quantities
satisfy the time-independent version of equations (3.7)–(3.9). Contrary to the standard
theory of oscillations in accretion discs (Lubow & Pringle 1993; Kato 2001, and Part III
of this thesis) here I assume ur 6= 0 in the basic state given the focus on the transonic
nature of the flow. The perturbations acting on this steady state may be written as

q′(r, t) = Re
[
q̃′(r) exp(−iωt)

]
. (3.16)

Assuming that the radial variation of perturbed quantities is much faster than that
of equilibrium quantities, the equations may then be written as(

−iω + ur
d

dr

)
Σ′ = −Σb

du′r
dr

, (3.17)

(
−iω + ur

d

dr

)
u′r − 2Ωu′φ = − c2

s

Σb

dΣ′

dr
, (3.18)

(
−iω + ur

d

dr

)
u′φ +

κ2

2Ω
u′r = − 2αc2

s

rΩPW

du′φ
dr

− 2αc2
s

Σb

Ω

ΩPW

dΣ′

dr
, (3.19)

where the tildes were dropped for simplification1. Note that these equations are not valid
very near the sonic point where the radial variation of ur is important. They are, however,
approximately valid in the region where κ is maximum and beyond, i.e., where the waves
are most prominent.

1Note that I’ve assumed Trφ = −2αc2
sΣΩ/ΩPW = −2αc2

sΣuφ/rΩPW and perturbed uφ. Hence the
presence of a term involving u′φ on the RHS of equation (3.19).



Discussion 81

From the equations above it is easy to verify that perturbations with local wavenum-
ber k (q′ ∝ ei

R
k(r)dr) satisfy(

k2c2
s − ω̃2 + κ2

)
ω̃ = −2αc2

sk

rΩPW

(
2iΩ2kr − k2c2

s + ω̃2
)
, (3.20)

where ω̃ = ω − kur. Recalling that αSS ≈ 2 Ω
Ωk

αAP = 2 Ω
Ωk

α, this formula is almost

equivalent to that obtained by Kato et al. (1988a) [cf. (2.10)]. The extra terms showing
up on the RHS of (3.20) are due to the slightly different stress tensor used here.

In the limit of no viscosity, equation (3.20) has a trivial solution corresponding
to the classical viscous mode (which will be ignored in the remainder of this analysis)
and two solutions corresponding to two inertial-acoustic waves propagating in opposite
directions in the disc. When viscosity is taken into account, equation (3.20) can be solved
in two fashions: one can either consider the wave number k to be real and solve for the
complex frequency, or take ω to be real and determine the complex wave number. In
the former case, Im[ω(r)] gives the (positive) growth rate of the inertial modes due to
viscous overstability while in the latter case, e−

R
Im[k(r)]dr gives the variation of the mode

amplitude due to the instability.

I solve (3.20) numerically by both methods to understand the radial dependence of
local viscous overstability. When k is assumed real it is taken to be ±(max(κ)2 − κ2)/c2

s

[cf. equation (2.9) with ω = max(κ)]; when ω is real it is equal to the maximum of the
epicyclic frequency. These choices are related to the fact that the oscillations present in
the simulations have a frequency close to max(κ). For the purpose of the calculations, I
take ur and Ω to be given by the solutions of equations (3.7)–(3.9) for parameters such
that a steady state is obtained. Solutions are presented in Fig. 3.6.

As it can be seen, both inward- and outward-propagating waves grow in time by the
same amount in practically all regions in the disc. This result differs from the findings
of Chen & Taam (1993) and Wallinder (1995) who predicted the outgoing wave to be
more unstable in certain regions and the ingoing in others. The difference is due to the
fact that here the disc is isothermal while heating and cooling rates are considered in the
works mentioned. The difference between the outward- and inward-propagating waves is
revealed in the lower right panel: at a fixed point in time, the amplitude of the latter
decreases with radius while the former suffers no amplitude changes.

In conclusion, the local analysis reveals that the inertial-acoustic modes are unstable
practically everywhere in the disc and for all values of α, as already stated in previous
studies on the stability of transonic discs.

3.3.2 Oscillatory state and viscous overstability

It is clear from the analysis of the previous section that the modes that arise in the
accretion flow modelled in the simulations are, aside from a small modification due to
viscosity, inertial-acoustic in nature. Moreover, according to the local dispersion relation,
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Figure 3.6: Variation of the complex frequency and complex wave number with radius

for cs = 0.01 and α = 0.16. The lower right panel shows the variation of the wave’s

amplitude with r. The dash-dotted line corresponds to the outward-travelling waves

(positive frequency, positive wave number) while the full line corresponds to the inward-

propagating waves (positive frequency, negative wave number). The curves coincide in

the upper right panel.

they grow due to viscous overstability for all values of α with a growth rate (adapted from
Kato et al. 1988a),

ωi ≈
2αΩ2

ΩPW

c2
sk

2

c2
sk

2 + κ2
. (3.21)

Global outcome

As it was seen in the introduction, viscous overstability is a propagating instability that
relies on mode confinement to effectively excite the inertial-acoustic waves before they
escape through the boundaries of the system. Waves with a frequency close to the max-
imum of κ spend a long time near the region where the epicyclic frequency peaks as the
wave speed is minimum there. Potentially, viscous overstability may be effective only
where these waves slow down. As the newly excited oscillations propagate away from the
excitation region RE (to both the innermost and outer parts of the disc) their amplitude
is expected to grow due to the very nature of the propagating instability.
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Viscous overstability may be qualitatively understood as a convective instability
(e.g. Huerre & Monkewitz 1990). If an amplifying impulse acts on the flow at a certain
location (xsr, the source), the perturbations may respond in two fashions. The localised
disturbances may be kept close to the source, in which case they grow in amplitude at a
fixed point in space and the system is said to be locally absolutely unstable. Alternatively,
they may be swept away from xsr in which case the flow if locally convectively unstable.
In the latter case, the part of the response that stays at the source dies away while the
part that travels away from xsr grows in amplitude.

In the problem under study, the source2 of the convective instability may be consid-
ered to be the region around the max(κ) where the group velocity vg ∝ k/ω is minimum.
Although the local dispersion relation predicts a zero (temporal) growth rate at the max-
imum of the epicyclic frequency for waves with ω = max(κ) (see upper right panel of
Fig. 3.6), it quickly increases just on either side of this point. The global outcome of the
process then depends on a competition between the local growth rate (3.21), proportional
to α, and the speed at which waves are driven away from it. For frequencies close to
max(κ), inertial-acoustic waves travel with a group velocity

vg ∼ cs

√
max(κ)2 − κ2

max(κ)2
, (3.22)

that is, the global instability should be favoured for high α (large growth at the source)
and low sound speed (waves remain closer to the source for longer periods).

Discussion

The results presented in the section 3.2.1 are consistent with this scenario. The excited
waves have indeed a frequency close to max(κ), as seen in Fig. 3.5 and fluctuations are
weak in the RE region around the maximum of the epicyclic frequency at r ≈ 7.5. Their
amplitude increases and the frequency is kept constant as the waves propagate to the
outer disc. Moreover, the growth is more effective for large α and small cs,AP. Even
though both an inward- and an outward-propagating wave are excited where the group
velocity is minimum, the wave going outwards reaches higher amplitudes because it can
travel further away from its origin. The wave going inwards is transmitted (partially
or completely, depending on the reflection properties at the sonic point, Lai & Tsang
2009, see also chapter 7) to the plunging region. Wave power is manifested at a range of
frequencies at and beyond the disc boundary — presumably due to the supersonic speeds
— as indicated by the complicated power spectra at rms.

A different idea is that the excitation source is not at the maximum of the epicyclic
frequency but at the sonic point (Matsumoto et al. 1988). Presumably, for high enough α,

2Here source simply refers to the location in the disc where the waves are amplified. The ultimate
source (cause) of the disturbances will be discussed later on.
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the flow coming for large radii has difficulty in passing through the sonic point regularly
and undergoes small perturbations that spread throughout the disc. Although this would
be a more convenient way of relating α∗ and αvo, this explanation doesn’t seem to be
borne out in the results as these perturbations would propagate outwards everywhere in
the subsonic region. For frequencies lower than max(κ) they could reflect at the epicyclic
barrier and return to the sonic point effectively creating inward-propagating waves in the
inner region. Unfortunately, the modes seen there have a frequency slightly higher than
max(κ) (see full curve of Fig. 3.5), making reflection at the epicyclic barrier impossible.
The most likely explanation for the results obtained is that mentioned before: the source
of the instability is located close to the maximum of κ and waves propagate inwards and
outwards from there.

Preliminary results of a simulation where a modified gravitational potential was
used, making the epicyclic frequency peak at a radius further away from rms = 6, confirm
that excited waves propagate inwards and outwards from the region around max(κ).
Oscillations with frequency close to the maximum of the epicyclic frequency propagating
inwards for radii smaller than max(κ) and outwards for large radii were also found by
Honma et al. (1992) and by Taam and collaborators, as mentioned in the chapter 2 (see
also O’Neill et al. 2009).

3.3.3 Sonic-point instability

In the simulations of isothermal discs with a standard αP stress of Matsumoto et al.
(1988), the authors claim the sonic-point instability to be the cause of the disturbances
seen in their flow. Hence the idea that the critical point is the excitation source. However,
the results described in the previous section clearly show that oscillations are excited in
the inner region but not at the sonic point hinting that the sonic-point instability isn’t in
action.

To test this, I directly verify from the simulations for cs = 0.01 and various values
of α, when the criterion

αSSΩ(R0) >

∣∣∣∣duR

dR

∣∣∣∣
R0

, (3.23)

is satisfied. The stress tensor used in this problem is slightly different from that used
by Kato et al. (1988a) to derive this instability condition. However, (3.23) should still
be valid if one recalls that αSS ≈ 2αΩ/ΩPW which is still a constant in the thin discs
modelled in the simulations (see right panel of Fig. 3.1).

When α < α1, the sonic point is well defined and the values of Ω(R0) and |duR/dR|R0

can be easily obtained. The simulations show very clearly that (3.23) is satisfied when
α > 0.08 = αsp, that is, the sonic point should be unstable for values of α well below α1.
However, no signs of instability are visible for αsp < α < α1.
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It should be mentioned at this stage that Afshordi & Paczyński (2003) say that (2.11)
is satisfied for α & 0.18, according to Fig. 6 in their paper. Unfortunately, it is unclear
where this value comes from as they give no details of their calculations of |duR/dR|R0

.
They only point out that, “contrary to the conventional picture”, |duR/dR|R0

is small
only when the passage is made in the slow direction of a nodal-type point and not for
every node. But the results from the current simulations seem to be in favour of the
“conventional picture”: 0.08 is precisely the value of α where the point changes from
saddle to nodal, i.e., αsp = αsn. This result is in agreement with the idea of Kato (1994)
that saddle points are stable to the sonic-point instability while nodes are unstable.

Notwithstanding these differences, it is relevant to recall that none of the values (0.08
and 0.18) corresponds to the value of α above which the numerical solutions are unstable.
I believe that the sonic-point instability is not present in the current simulations, perhaps
because it cannot exist beyond local analysis. Although Matsumoto et al. (1988) claim
to see the sonic-point instability in their simulations, the reader should recall that they
initialised the disc with a perturbation placed at the sonic point. Most importantly, they
analysed the very inner region only and no other simulations show any signs of this mode.

3.3.4 State transitions and unanswered questions

When the viscosity is such that the system reaches a physically acceptable steady state,
“the flow is subsonic and the disc is Keplerian at large radii, the flow passes through a
critical point, and it becomes supersonic at small radii” (Afshordi & Paczyński 2003).
The fluid is in a stable equilibrium and, as seen before, axisymmetric oscillations are
supported. Moreover, the system is locally viscously overstable to these type of pertur-
bations, i.e., according to the local dispersion relation waves can grow in the disc for
any given value of α > 0. However, previous works and the current simulations indicate
that local instabilities may not result in global variations of the fluid parameters, as local
perturbations may propagate away before attaining reasonable amplitudes. Therefore, it
seems qualitatively plausible that a higher value of viscosity is required to see viscously
overstable modes in the system, i.e., stable solutions are possible for small values of α.

The studies of Afshordi & Paczyński (2003), indicate that a steady state transonic
flow that satisfies physically acceptable boundary conditions can only exist for α < α∗ =
0.14(100cs)

1/3. In addition, the results reported here show that viscously overstable global
oscillations exist for α1 < α < α2 with α1 = α∗. This numerical coincidence seems to
indicate that the non-steadiness of a physically acceptable steady state flow is indeed
related to the onset of viscous overstability, that is, α∗ = αvo. But how? Why would
viscous overstability be triggered when the parameters in the disc are such that the
passage through the nodal sonic point is made in the slow direction? The onset of viscous
overstability cannot simply be seen as a competition between viscosity (∝ α) and the

escape rate for perturbations (∝ cs) since numerical results indicate that αvo ∝ c
1/3
s and

not simply αvo ∝ cs.
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Afshordi & Paczyński (2003) suggest a relation to the instability of the Keplerian
curve in the supersonic region (although the cause of this instability is never addressed).
When the flow goes through a nodal critical point in the slow direction the slope of ur

changes sharply after passing this point and no steady solutions can be found. According
to Afshordi & Paczyński (2003), the explanation for the sharp change is related to the
Keplerian curve, which is connected to the slow direction for α > α∗. The flow follows this
curve at large radius where it is stable. However, the Keplerian curve becomes unstable in
the supersonic regime which results in the physical solution departing from it and changing
its slope sharply, as seen in the lower right panel of Fig. 2.1. The numerical results shown
here indicate that viscous overstability is triggered at this stage. However, the simulations
also show that the instability visible for α > α∗ takes the form of propagating waves which
are excited near the maximum of the epicyclic frequency. It is therefore unlikely for such
an instability to be directly triggered by what’s happening at the sonic point.

An attractive way of thinking about this problem is as follows. Transonic solutions
are always locally pulsationally unstable. However, they only become visibly unstable,
i.e., only attain a global character, when α and cs are such that steady solutions are no
longer possible due to the unphysicalness or nonuniqueness of the passage in the slow
direction of a nodal-type sonic point. The system is then forced to chose a different state,
that where global viscous overstability exists. Transonic solutions are unstable to global
overstable modes when accretion cannot proceed in a physically acceptable way.

If no steady solution is possible, some may argue that instability (or overstability)
is meaningless given that the system can never adjust itself to equilibrium. Nonetheless,
this situation can be analysed from a different viewpoint: the absence of a steady solution
enforces perpetual disturbances on the flow resulting in overstable growth even in a system
with open boundaries.

More calculations are needed to understand whether or not the explanation given
before to justify the fact that α∗ = αvo in isothermal discs with αP viscosity can be
applied to discs with different stress tensors. In an isothermal disc with a diffusion-type
stress the sonic point is always saddle (Abramowicz & Kato 1989). However, this does not
necessarily mean that physically acceptable steady solutions are always possible. Even
in this case there should be differences in the accretion process at low and high α, with
viscous effects (as opposed to the pressure gradient) being the main cause of infall of
matter to the black hole in the latter situation, in which case the critical point is located
outside rms. Presumably, a limit α∗ may exist in the diffusion-type stress tensor case,
e.g., in association with the different accretion scenarios and different locations of the
sonic point in the low- and high-viscosity regimes. Therefore, a connection between the
existence of α∗ and the onset of global viscous overstability could still be possible.
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3.4 Conclusions

In this chapter, I solved the time-dependent version of the Afshordi & Paczyński (2003)
transonic accretion problem where a thin, isothermal disc with essentially a standard
αP viscosity is considered. The aim was to answer some, if not all, of the questions that
originated from an extensive review of the existing literature on steady transonic accretion
and viscous overstability.

In particular, I wished to understand what happens to the transonic time-dependent
solutions in the limit above which Afshordi & Paczyński (2003) were unable to find physi-
cally acceptable, unique steady state solutions. The answer to the first of those questions
is clear: steady solutions cannot be found for α > α∗ because accretion is unstable in
those cases. For α above α∗ (up to a certain limit), oscillations of frequency close to
max(κ) propagate throughout the disc, inwards and outwards from the radius where the
epicyclic frequency peaks.

The discussion of the previous section indicates that the oscillations visible in the
simulations for α > α∗ are, in all likelihood, overstable inertial-acoustic modes. Therefore,
it seems that in isothermal discs with standard αP viscosity, αvo = α∗ = 0.14(100cs)

1/3

where cs in units of c. This result indicates that, at least in these flows, there is a relation
between the lack of a steady solution and the onset of global viscous overstability. It is
however unclear if this is the case for discs characterised by non-isothermal equations of
state and/or different stress tensors where the very existence of α∗ is disputed.

Other questions concerned the sonic-point instability which relates to an inertial-
acoustic viscously overstable mode which stands at the critical point where its outward
escape velocity equals the radial inflow. The simulations done show no signs of such
instability casting doubts on its existence beyond local analysis. This would explain why
Afshordi & Paczyński (2003) were able to find steady solutions for values of viscosity
larger than αsp which is determined to be 0.08 from the simulations with cs = 0.01.

The results obtained here are possibly relevant to explain observations of high-
frequency QPOs in black-hole systems. According to King et al. (2004), observations
indicate that the viscosity parameter αSS in real systems should be between 0.1 and 0.4,
that is, well within the range where steady accretion is no longer possible3. In addition,
there is numerical evidence coming from MRI simulations that α increases as rms is ap-
proached because of the increase in the shear/vorticity ratio due to the different angular
velocity profile in the inner disc (Abramowicz et al. 1996). Therefore, in some systems,
viscously overstable oscillations should be detectable. In addition, and similarly to the
models involving trapped inertial oscillations, the frequency of such modes is approxi-
mately max(κ) and is therefore within the range of high-frequency QPOs. In this model,
QPOs would only be detected in states where the cool disc reaches the marginally stable
orbit since viscous overstability is triggered only when the sound speed in the region close

3The values 0.1 to 0.4 correspond to the usual Shakura–Sunyaev α. For this viscosity, the Afshordi &
Paczyński (2003) limit translates to ≈ 0.28(100cs/c)1/3.
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to the maximum of the epicyclic frequency is low. Indeed, high-frequency QPOs are al-
most exclusively detected when the black hole is in the very high state where, according
to the model of Esin et al. (1997), the thin disc reaches rms.

A caveat of the model presented in this chapter is related to the fact that viscously
overstable oscillations prefer low mass accretion rates. As shown by Milsom & Taam
(1996), inertial-acoustic modes are visible in the simulations when Ṁ . 0.25ṀEdd. In
the very high state where HFQPOs are detected the luminosity is expected to be close to
its Eddington value, suggesting that viscous overstability is probably not visible. In any
case, the typical values of α and Ṁ in this state are unknown and, therefore, the presence
of overstable inertial-acoustic modes can’t be ruled out.

Regardless of the observational applications of the unsteadiness of transonic accre-
tion and viscously overstable waves, the problems discussed in this section are of consider-
able theoretical interest. A connection between both phenomena and the understanding
of the conditions under which a disc may become viscously overstable merits further
investigation.
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Chapter 4

Introduction

4.1 Motivation

One of the most important examples of astrophysical variability is that concerning periodic
or quasi-periodic variations intrinsic to astrophysical objects, namely stars and accretion
discs. The development of the theory of stellar pulsation or of the theory of disc oscillations
is fundamental to understand the origin of such variations and, together with observational
studies of these objects, allows for the properties of stars or black holes in the centre of
discs to be inferred.

Classic variable stars such as the Cepheids and RR Lyrae have long been observed to
have periodic variations in luminosity. Current theoretical models state that these objects
vary in brightness because the stars pulsate radially, that is, they expand and contract
while keeping their spherical shape. On the other hand, stars such as our Sun have
considerably more complicated (and with much lower amplitude) modes of oscillation.
Not only more than one mode may be excited at the same time but oscillations that don’t
preserve the spherical symmetry of the object may also be present. Current observations
indicate that several thousands of individual radial and nonradial modes exist in our star
(Christensen-Dalsgaard 2002).

Observational studies of classic Cepheids allowed for the discovery of a precise
period-luminosity relation of high importance to measure distances in astronomy. On
the other hand, theoretical analysis of the solar nonradial oscillations provides informa-
tion about the Sun’s interior. Asteroseismology is the study of stellar oscillations: interior
properties of stars can be inferred by analysing the frequency spectra of these oscillations
(Christensen-Dalsgaard 2003). This is one of the main stimuli for the research done on
periodic variability in stars.

From a theoretical point of view, oscillations are often studied using a fluid-dynamical
treatment. Mathematically, oscillations are viewed as small perturbations to the fluid
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quantities such as density and velocity. This analysis can in principle be applied to any
fluid and, therefore, to any astrophysical object that can be treated as such.

Oscillations are expected to exist not only in planets and stars but also in galaxies
and accretion discs. In the case of spiral galaxies, which can be modelled as collisionless
self-gravitating discs, the spiral structure can be explained in terms of propagating density
waves (see review by Toomre 1977). On the other hand, the study of oscillations in
collisional and non-self-gravitating accretion discs is expected to provide information not
only about the discs themselves but also their central objects.

However, it should be taken into account that a parallel with asteroseismology is not
straightforward since whether or not oscillations in accretion discs can be observed is much
more controversial than for stars. Not only are accretion discs far away in comparison to
the Sun making small amplitude perturbations hard to detect, but friction in the disc is
likely to damp these modes. In both the case of spiral density waves in galaxies and that
of pulsations in collisional discs, excitation mechanisms should be taken into account.
In the former case, forcing by an external potential or a central bar may be required
to maintain the spiral structure (Goldreich & Tremaine 1979). Alternatively, the spiral
structure may be self-excited by gravitational instability (Lin & Shu 1964). As for non-
self-gravitating discs, oscillations can only be detected from Earth if some mechanism or
instability capable of exciting waves to observable amplitudes is present.

Nevertheless, observations indicate that oscillations likely to originate in discs are
indeed detected. As pointed out by Kato in the first paper where pulsations of viscous
accretion discs were studied (Kato 1978), some X-ray sources and quasars are observed
to have periodic or quasi-periodic variability. Since these objects are modelled as black
holes surrounded by accretion discs, the variability must originate in the disc (or possibly
in a jet), which, contrary to the hole, is visible. One of the theoretical motivations behind
the study of viscous overstability was precisely the need to corroborate such models of
X-ray sources and active galaxies. Within the viscous overstability scenario, oscillations
in the disc can be detected because they are excited by viscosity.

The motivation behind some of the first papers focused on pulsations of viscous
discs (Van Horn et al. 1980; Cox & Everson 1983), was the discovery of quasi-periodic
oscillations in dwarf novae. This type of variability is found in addition to the short-
period coherent oscillations observed previously. The latter type results in a narrow peak
in the spectra and is thought to have origin in nonradial pulsations of the white dwarf.
The quasi-periodic oscillations show up as broad peaks in the spectra of these objects and
have properties coherent with a stochastic origin. The extensive study of the observational
characteristics of these oscillations by Robinson & Nather (1979) concluded that they
must originate in the accretion disc. Even though the field has developed since then,
current non-magnetic models for QPOs in cataclysmic variables still invoke oscillations
of the accretion disc; different explanations are possible in magnetic stars (Warner 2004,
and references therein). Given the possibility of quasi-periodic variability components
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originating in the disc, their decay times may contain information about the magnitude
of the accretion flow viscosity (Cox & Everson 1983).

In the past decade or so, quasi-periodic oscillations were detected in some black
hole candidates. As mentioned in the introduction of this thesis, some authors (Nowak
et al. 1997; Wagoner 1999; Nowak & Lehr 1998; Kato 2001) argued that these oscillations
can be explained in terms of modes arising in the accretion disc that surrounds the black
hole. Turbulent viscosity, characteristic of accretion flows, generally prevents waves from
propagating across the disc to form coherent global modes. As mentioned previously, a
possible way for such modes to exist is for them to be trapped in a small region in the
inner part of the disc which would work as a resonant cavity. Although trapped waves
may reveal relatively little about the properties of the accretion disc itself, they are a
promising tool in the study of the central object.

As summarised by Kato (2001), there are important distinctions between the the-
ory of stellar oscillations and that of discs. One of the main differences concerns the
force balance in both classes of objects. While in stars rotation is typically regarded
as a small correction to their structure, accretion discs are centrifugally supported in
the radial direction. As a consequence, disc rotation is the major restoring force of disc
oscillations and the epicyclic frequency provides the characteristic frequency of inertial
and long-wavelength inertial-acoustic modes. The radial distribution of κ influences not
only the properties of the waves but also their trapping regions and, possibly, excitation
mechanisms. Viscous processes are also relevant when it comes to exciting or damping
oscillations, as hinted by the studies of viscous overstability. Viscosity and rotation are,
therefore and contrary to the stellar case, two fundamental ingredients in the analysis of
pulsations in accretion discs.

The importance of viscosity in exciting disc oscillations was emphasised in Part II
of this thesis. The study described in that section and the introduction provided here,
motivate a more in-depth study of oscillations in black-hole accretion discs. Important
background on the subject is given by Lubow & Pringle (1993); Nowak & Lehr (1998);
Kato (2001). In this part of the thesis I consider the simple case of isothermal motions of
non-self-gravitating thin inviscid discs. These approximations are justified in discs with
mass negligible when compared to the central object and where the timescales relevant
for oscillations are much faster than the viscous timescale.

The emphasis of Part III goes to the influence of rotation and relativistic effects on
disc oscillations. The effects of radial inflow are considered only in chapter 7 where the
reflection of waves at the inner disc boundary is studied. The excitation of trapped waves
and the propagation of global deformations in relativistic discs is analysed in chapters
5 and 6 respectively. A more detailed outline is given below. Throughout this part of
the thesis, relativistic effects are included in a pseudo-relativistic fashion by applying the
relativistic expressions (1.54), (1.55) and (1.56) to an otherwise Newtonian model.
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4.1.1 Outline

In the remainder of this chapter, I provide a summary of the basic theory of oscillations
in black-hole accretion discs. The different modes of oscillation are described and their
trapping regions are analysed. I also look into deformations of discs such as warping and
eccentricity in the context of global modes.

In chapter 5 I work out in detail a non-linear coupling mechanism suggested by
Kato in which a global warping or eccentricity of the disc has a fundamental role. These
large-scale deformations combine with trapped modes to generate “intermediate” waves
of negative energy that are damped as they approach either their corotation resonance or
the inner edge of the disc, resulting in amplification of the trapped waves. The results
obtained indicate that this coupling mechanism can provide an efficient excitation of
trapped inertial waves, provided the global deformations reach the inner part of the disc
with non-negligible amplitude.

Since chapter 5 revealed the importance of warped and eccentric discs, chapter 6 is
dedicated to these global deformations. I’ll consider the inward propagation of warping
and eccentric disturbances in discs around black holes under a wide variety of conditions.
The calculations done use secular theories of warped and eccentric discs and assume the
deformations to be stationary and occurring in a disc model similar to regions (a) and
(b) of Shakura and Sunyaev discs. Results show that the propagation of deformations to
the innermost regions of the disc is facilitated for low viscous damping and high accretion
rate.

In the final chapter, I dedicate my attention to the influence of a non-negligible
basic-state radial inflow on the propagation of waves. I start by analysing perturbations
of a one-dimensional flow of an isothermal gas under the action of a potential Ψ which has
a maximum where the flow passes from subsonic to supersonic. I determine the reflection
of waves at that point where the equations describing the behaviour of linear perturbations
proportional to exp(−iωt) are singular. The implications of the results obtained within
this toy model are analysed taking into account the more general case of inertial-acoustic
waves propagating in a steady transonic flow. I further investigate how a radial inflow
and a sonic point modify the structure of trapped inertial modes and their “leakage” from
the trapping region to the inner boundary.

4.2 Mathematical analysis of disc oscillations

As seen previously, the theoretical analysis of oscillations starts with the equations of fluid
dynamics. For simplicity and clarity I consider a strictly isothermal disc with a ratio of
specific heats γ = 1. Ignoring viscosity and magnetic fields and considering isothermal
oscillations, equations describing the flow read,

∂u

∂t
+ u · ∇u = −∇Φ−∇h, (4.1)
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∂h

∂t
+ u · ∇h = −c2

s∇ · u, (4.2)

where h = c2
s ln ρ is the enthalpy. Throughout this part of the thesis, self-gravitation

is neglected and a fixed axisymmetric gravitational potential Φ(r, z) is considered where
(r, φ, z) are cylindrical polar coordinates. (Since, as in previous sections, frequencies are
normalized to c3/GM and radii are normalized to GM/c2, I use the symbol r to represent
the radial coordinate.)

As in the case of stars, to study oscillations one needs to analyse what happens to
this system of equations when enthalpy and velocity are perturbed, q = q0 + q′. Similarly
to the analysis of section 3.3, non-linear terms in the perturbed quantities are ignored.
In the equilibrium state, the radial inflow is neglected, u0 = Ω × r = rΩ(r, z)eφ and
∇h0 = rΩ2er − ∇Φ. Since the basic state is independent of time and azimuth, the
perturbations acting on it can be written as

q′(r, φ, z, t) = Re
[
q̃′(r, z) exp(imφ− iωt)

]
, (4.3)

where m is the azimuthal mode number and ω is the oscillation frequency. Neglecting
self-gravitation and dropping, for simplicity, the tildes and zeros, the linearised equations
for the perturbed quantities read

−iω̂u′r − 2Ωu′φ = −∂h′

∂r
, (4.4)

−iω̂u′φ +
1

r

(
u′r

∂

∂r
+ u′z

∂

∂z

)
(r2Ω) = −imh′

r
, (4.5)

−iω̂u′z = −∂h′

∂z
, (4.6)

−iω̂h′ + u′r
∂h

∂r
+ u′z

∂h

∂z
= −c2

s

[
1

r

∂(ru′r)

∂r
+

imu′φ
r

+
∂u′z
∂z

]
, (4.7)

where ω̂ = ω −mΩ is the Doppler-shifted wave frequency.

In thin accretion discs, the angular velocity Ω(r, z) can be regarded as independent
of height since the variation of Ω with z is of order (H/r)2; within this approximation,
∂h/∂z = −Ω2

zz. Further neglecting the term u′r∂h/∂r in the last equation, (4.4)–(4.7)
can be written as

−iω̂u′r − 2Ωu′φ = −∂h′

∂r
, (4.8)

−iω̂u′φ +
κ2

2Ω
u′r = − imh′

r
, (4.9)
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−iω̂u′z = −∂h′

∂z
, (4.10)

−iω̂h′ − Ω2
zzu

′
z = −c2

s

[
1

r

∂(ru′r)

∂r
+

imu′φ
r

+
∂u′z
∂z

]
, (4.11)

where the square of the epicyclic frequency was defined as usual, κ2 = (2Ω/r)d(Ωr2)/dr.

Furthermore, it can be assumed that the azimuthal variation of the perturbed quan-
tities is slow compared with the radial and vertical variations so that the terms imu′φ/r
and imh′/r can be neglected. Another approximation frequently used in the literature
is the WKB one: the radial wavelength of perturbed quantities is assumed to be much
smaller than the characteristic scale for radial variations of the equilibrium quantities,

λ ∼
∣∣∣∣ q′

∂q′/∂r

∣∣∣∣ � ∣∣∣∣ q

∂q/∂r

∣∣∣∣ ∼ r. (4.12)

Using this simplification the term u′r/r can be neglected when compared with ∂u′r/∂r and
equations can be combined as

− ∂

∂r

(
1

ω̂2 − κ2

∂h′

∂r

)
= Lh′, (4.13)

where

L =
1

ω̂2

∂2

∂z2
− Ω2

zz

c2
s ω̂

2

∂

∂z
+

1

c2
s

, (4.14)

is a second-order (partial) differential operator in z acting on h′ that depends on the
azimuthal wave number m only through the dependence in ω̂.

Equation (4.13) is also valid in discs with more general equations of state provided
the operator L takes a different form. In a polytropic disc with general γ,

L =
∂

∂z

[
1

ω̂2 −N2
z

(
∂

∂z
− N2

z

g

)]
− ρ

γp

g

ω̂2 −N2
z

[
∂

∂z
− ω̂2

g

]
. (4.15)

The quantities

N2
z = g

(
1

γp

dp

dz
− 1

ρ

dρ

dz

)
and g = zΩ2

z = −1

ρ

dp

dz
, (4.16)

are the vertical buoyancy frequency (squared) and gravitational acceleration, respectively.

Note that (4.13) is (locally) separable in r and z as the z-dependent quantities in
L are regarded as independent of the radial coordinate, due to the approximations made
before. (The issue of separability is discussed further in the next section.) In what follows,
I analyse equation (4.13) in different locations in the disc. Although I focus on isothermal
γ = 1 discs, the discussion is kept general and the results obtained are valid also for a
polytropic flow [provided L is given by (4.15)] except where otherwise indicated.
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4.2.1 Far from a Lindblad resonance — dispersion relation

The WKB approximation is valid everywhere except close to the “turning points” or
singularities of the problem. In the case under analysis, the approximation doesn’t work
close to the so-called Lindblad and corotation resonances where the equilibrium quantities
ω̂2 − κ2 and ω̂ are small, and their radial variation cannot be neglected. The Lindblad
resonance is the point where the waves change from a region where they are able to
propagate to one where they are evanescent. At this location, the group velocity and wave
number are zero. Far from this turning point, the WKB approximation is appropriate
and the ansatz

h′(r, z) = h̃′(r, z) exp

[
i

∫
k(r)dr

]
, (4.17)

where the variation of h̃′ with r is slow, can be used. Equation (4.13) can then be written
as

k2h̃′ = (ω̂2 − κ2)Lh̃′, (4.18)

which can be effectively considered an ordinary differential equation in z at each r, sepa-
rately. Designating Λn,ω̂ the eigenvalue of the operator L associated with the eigenfunction

h̃′,

Lh̃′ = Λn,ω̂h̃′, (4.19)

the dispersion relation can be written as k2 = (ω̂2−κ2)Λn,ω̂. Λn,ω̂ is a constant or possibly
slowly varying function of r and is, in general, unknown and the dispersion relation
partially undetermined. The eigenvalue equation was solved numerically by Korycansky
& Pringle (1995) in the case of a vertically polytropic disc.

Equation (4.18) has a simple analytic solution, resulting in a dispersion relation
independent of z, if the disc is locally isothermal in the vertical direction. In the particular
case of γ = 1 (the case of general γ is treated in Lubow & Pringle 1993), L takes the form

(4.14) and the equation for h̃′ reads

d2h̃′

dz2
−Az

dh̃′

dz
+ Bh̃′ = 0, (4.20)

with A = Ω2
z/c

2
s = 1/H2 and B = ω̂2/c2

s − ω̂2k2/(ω̂2 − κ2) constants in z. Looking for a
solution in terms of a power series and requiring it to be finite, the following dispersion
relation is found (Okazaki et al. 1987),

k2 =
(ω̂2 − κ2)(ω̂2 − nΩ2

z)

ω̂2c2
s

, n ∈ N0. (4.21)
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The dispersion relation is local, i.e., it is different at each radius since the characteristic
frequencies (1.54), (1.55) and (1.56) depend on r, and is valid only where the wavelength
λ = 2π/k � r.

Requiring the series to be finite is equivalent to requiring1∣∣∣∣exp

(
−A

4
z2

)
h̃′(z)

∣∣∣∣ → 0 as |z| → ∞, (4.22)

which implies (as noted by Okazaki et al. 1987) that the energy density for perturbations
is bounded at large distances. The solution of (4.20) that obeys this condition is

h̃′(z) ∝ Hen

(√
Az

)
= Hen

( z

H

)
, (4.23)

where Hen is the modified Hermite polynomial of order n (Abramowitz & Stegun 1972),
with n = 0, 1, 2, 3, . . . being the vertical mode number. For odd/even n the mode will

have odd/even parity, i.e., h̃′(z) = 0 or ∂zh̃′(z) = 0 at z = 0.

It should be noted that the separation of variables in r and z is not exact since
H depends on r. [As described by Kato (2001), this separation is valid to lowest WKB
order; Nowak & Wagoner (1992) use a slowly varying function of r to separate variables.]
The variation of H with r couples different vertical modes (Tanaka et al. 2002) but this
effect is weak when the radial wavelength is short, and is neglected here and in chapter 5.

Diskoseismic modes and trapping regions

The simple dispersion relation (4.21) obtained in the isothermal disc γ = 1 approximation
already contains very relevant information. Its solutions for different values of n can be
analysed as follows:

n = 0 In this case, the dispersion relation for the non-trivial mode becomes ω̂2 =
k2c2

s +κ2 and waves can propagate where ω̂2 > κ2; this is the inertial-acoustic mode.
In non-isothermal discs the closest equivalent of this mode behaves like a surface
gravity wave or stellar f mode (Ogilvie 1998; Lubow & Ogilvie 1998) but here it is
referred as n = 0 mode or 2D mode, since it involves a purely horizontal motion
independent of z.

n 6= 0 The dispersion relation admits two types of solutions: a high-frequency
one with ω̂2 > max(κ2, nΩ2

z) = nΩ2
z (p modes) and a low-frequency one with ω̂2 <

min(κ2, nΩ2
z) = κ2 (r modes). Therefore, both classes of waves propagate in different

regions in the disc.

1Note that equation (4.20) is similar to the one obtained when solving the Schrödinger equation for
the 1D harmonic oscillator, after assuming the wave function to be proportional to f(z)e−const×z2

. The
requirement used here is equivalent to the one used in the quantum mechanics case for the wave function
to be finite.
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Figure 4.1: Square of the orbital (dash-dotted line), vertical (dotted line) and epicyclic

(full line) frequencies for particles orbiting a black hole with spin a = 0.9. If the accretion

disc is thin, the particle orbit expressions for the characteristic frequencies are appropriate,

and the three different types of axisymmetric disc modes propagate in the regions indicated

by the arrows: f modes have n = 0 and ω2 < κ2, while r, p modes have n > 0 and ω2 < κ2,

ω2 > nΩ2
z, respectively. The vertical dashed line represents the marginally stable orbit.

The inertial or r modes (so called by Korycansky & Pringle 1995) are nearly incom-
pressible since they are restored by inertial forces, avoiding acoustic effects. (They are
often called g modes in the literature, but they are not related to internal gravity waves
or stellar g modes.) Acoustic or p modes have pressure as their main restoring force and
are essentially compressible. In an isothermal disc, the 2D mode is a purely horizontal
compressible mode with rotation modifying its otherwise acoustic nature.

The propagation regions of the p and r modes allow us to define important radii
in the disc, the resonant radii (e.g. Lubow & Ogilvie 1998). Non-axisymmetric waves
can have three types of resonances: corotation where ω̂ = 0, Lindblad resonances where
ω̂2−κ2 = 0, and vertical resonances where ω̂2−nΩ2

z = 0 (for n 6= 0). Lindblad resonances
are turning points for the r and 2D modes, while vertical resonances are turning points
for p modes.

The three different types of modes propagate in different regions in the disc (Fig. 4.1).
If the epicyclic frequency has a maximum at some particular radius (as it happens in
black-hole discs), r and 2D modes can be trapped in the inner part of the disc, while
p modes always propagate to the outer boundary beyond the outer vertical resonance.
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As mentioned in chapter 1, Kato & Fukue (1980) originally considered the trapping of
2D modes in the very inner region of the disc. These modes can be trapped between
the radius of the marginally stable orbit and the inner Lindblad resonance. However, the
conditions at rms are not well understood and it is not clear if this trapping region can
work as a resonant cavity. Therefore, in section 4.2.3 and chapter 5 I focus on the trapping
of r modes, which happens below the maximum of the epicyclic frequency between two
Lindblad resonances, a resonant cavity naturally created by the non-monotonic variation
of κ with radius (Okazaki et al. 1987).

Of particular importance is the axisymmetric trapped wave with frequency ω ≈
max(κ), and with the simplest possible radial structure. This mode is trapped in a small
region close to the maximum of the epicyclic frequency and it is of relevance for several
reasons. It is naturally confined and therefore more probable to occur in the presence of
turbulent viscosity. In addition, its simple structure makes this mode likely to be observed
as it may produce a net luminosity variation of the disc without cancellations. Finally,
its frequency can be identified with max(κ) which depends only on the properties of the
black hole: its mass M and angular momentum a. Therefore, by measuring the frequency
of this mode and determining the mass of the central object (e.g. through binary orbital
dynamics) its spin can be determined.

4.2.2 Close to a Lindblad resonance, rL

When r is close to rL, ω̂ is close to κ and therefore the variation of ω̂2 − κ2 cannot be ig-
nored. Therefore, near a Lindblad resonance the WKB approximation is not appropriate.
To study this case, it is useful to define a new radial coordinate

x = r − rL � 1. (4.24)

The quantity ω̂2−κ2 can be expanded in a Taylor series around r = rL ⇔ x = 0. Keeping
only linear terms in x,

ω̂2 − κ2 ≈ D1Lx, (4.25)

where D1L = [d(ω̂2 − κ2)/dr]r=rL
. Using (4.24) and (4.25) on equation (4.13) and sepa-

rating variables,

− d

dx

(
1

x

dA

dx

)
= Λn,ω̂D1LA, (4.26)

where h′(x, z) = h̃′(z)A(x) and h̃′ satisfies (4.19) or (4.20) in the γ = 1 simplified case.
Locally, Λn,ω̂ does not depend on x (Λn,ω̂ ≈ Λn,ω̂L

) and therefore Airy (prime) functions
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solve this equation. Since A(x) should tend to zero at large x so that the solutions close
to the Lindblad resonance and far from it can be asymptotically matched, the solution is

A(x) ∝ Ai′ (X) , X = (−Λn,ω̂L
D1L)1/3 x. (4.27)

Note that the wave is evanescent for X > 0, and propagates where X < 0.

4.2.3 Close to a stationary point of ω̂2 − κ2, rs

As mentioned previously, an inertial mode of interest is the one with frequency ω ≈
max(κ + mΩ). This mode is trapped near the maximum of κ + mΩ, or equivalently near
the stationary point of ω̂2−κ2, and can avoid being absorbed at the corotation resonance
if m is relatively small. In this case, the two Lindblad resonances are very close to each
other and therefore a different treatment from the one used before is required. In this
case, it is more convenient to combine equations (4.8)–(4.11) into a single equation for u′r
instead of h′,

−∂2u′r
∂r2

= (ω̂2 − κ2)Lu′r. (4.28)

The two Lindblad resonances are very close to the stationary point of ω̂2 − κ2, rs. To
study this region it is useful to define a coordinate

x = r − rs � 1. (4.29)

As before, ω̂2 − κ2 can be expanded in a Taylor series around r = rs ⇔ x = 0. However,
the linear term in x is now zero by definition of stationary point and, therefore, it is
necessary to keep the O(x2) term to take some relevant information out of (4.28). The
expansion then reads

ω̂2 − κ2 ≈ C +D2sx
2, (4.30)

where D2s = (1/2)[d2(ω̂2 − κ2)/dr2]r=rs and C = ω̂2
s − κ2

s is the value of ω̂2 − κ2 at its
stationary point.

Using (4.29) and (4.30) on equation (4.28) and separating variables,

−d2B

dx2
=

(
C +D2sx

2
)
Λn,ω̂B, (4.31)

where u′r(x, z) = h̃′(z)B(x) and h̃′ satisfies (4.19) or (4.20) in the simplified case. The
solutions to this equation are parabolic cylinder functions (Abramowitz & Stegun 1972)
since, locally, Λn,ω̂ does not depend on x:

Λn,ω̂ ≈ Λn,ω̂(r = rs) = Λn,ω̂s . (4.32)
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If CΛn,ω̂s > 0 and D2sΛn,ω̂s < 0, equation (4.31) has trapped non-diverging solutions. In
this case, the equation can be written in the standard parabolic cylinder form (Abramowitz
& Stegun 1972)

d2B

dy2
−

(
y2

4
+ b

)
B = 0, (4.33)

with

y = x
(
2
√
−D2sΛn,ω̂s

)1/2

and b = − CΛn,ω̂s

2
√
−D2sΛn,ω̂s

< 0. (4.34)

Using a boundary condition similar to the one used before, i.e., assuming that the energy
density for perturbations is bounded at large distances, the solution of (4.33) is

B(y) ∝ exp

(
−y2

4

)
Hel(y), (4.35)

where l = −b− 1/2 is a nonnegative integer.

For every mode trapped near the stationary point of ω̂2−κ2, (4.35) is valid. There-
fore, these waves can be labelled by their three wave numbers (l,m, n), where l is the
radial wave number, m the azimuthal number and n the vertical number. An implicit
expression for the frequency ω = ω̂(r) + mΩ(r) = ω̂s + mΩs of these modes can be found
using the definitions of l and b:

l = −b− 1

2
=

CΛn,ω̂s

2
√
−D2sΛn,ω̂s

− 1

2
=

(ω̂2
s − κ2

s )Λn,ω̂s

2
√
−1

2
[d2(ω̂2 − κ2)/dr2]r=rsΛn,ω̂s

− 1

2
(4.36)

In the simple case of an isothermal disc with γ = 1, Λn,ω̂s = (ω̂2
s − nΩ2

zs)/c
2
s ω̂

2
s , and the

frequency of the trapped r modes with ω̂s close to κs is given by

(
ω −mΩs

κs

)2

≈ 1− δ, δ =
−C
κ2

s

= (2l + 1)
cs

κs

√
− D2s

κ2
s − nΩ2

zs

� 1. (4.37)

In chapter 5, I describe an excitation mechanism for inertial trapped waves in the
disc by focusing on the simplest mode with (l,m, n) = (0, 0, 1). The analysis presented
here provides insight on the properties of this axisymmetric oscillation. According to
equation (4.37), this mode has a frequency ω2 ≈ (1− δ)κ2

s , where δ ∝ cs. Therefore, the
larger the sound speed in the disc, the wider is the trapped region and the frequency shift
below the maximum of κ. Furthermore, the simplest possible trapped inertial wave has a
Gaussian form centred on rs and horizontal velocities proportional to z.
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Figure 4.2: Potential U(r) in a disc with cs = 0.01 and a = 0 for an axisymmetric, n = 1

wave of frequency close to max (κ). The r mode is trapped between the two Lindblad

resonances (crosses) where the potential is similar to that of a 1D harmonic oscillator.

The wave is evanescent between the Lindblad and vertical resonances where a potential

barrier is present and propagates as a p mode outside the vertical resonance (asterisk).

4.2.4 Potential analogy

A very interesting analogy between this problem and a quantum particle/wave being acted
by a potential was noted by Li et al. (2003). In the isothermal γ = 1 case, this potential
is

U(r) = −k(r)2 = −(ω̂2 − κ2)(ω̂2 − nΩ2
z)

ω̂2c2
s

. (4.38)

Using this description it can be seen that oscillations exist where U(r) < 0. Otherwise,
potential barriers are present and waves are evanescent in agreement with both the quan-
tum mechanical description and the analysis of the dispersion relation done before. The
potential for a m = 0, n = 1 wave with frequency close to max (κ) is shown in Fig. 4.2.

In the above mentioned paper, the authors analyse wave propagation in this potential
within the WKB approximation and compare the amplitudes of reflected and incident
waves at Lindblad and corotation resonances. Their aim is to see whether or not trapped
oscillations can be amplified at these locations. They conclude that n = 0 modes can be
amplified while nonaxisymmetric waves with nodes in the vertical direction (r or p modes)
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Figure 4.3: (a) r modes propagate between their two Lindblad resonances where ω inter-

sects the dotted curves, mΩ− κ and mΩ + κ, with the exception of the corotation radius

(rcr), where ω intersects the dashed curve, mΩ. If the frequency is high enough (full thick

line), the corotation resonance is outside the trapping region. (b) If the corotation reso-

nance is not avoided (thick dash-dotted line), the potential is singular (U(r) → −∞) at

rcr (marked with a square). (c) If the frequency is high enough, the form of the potential

is different: there is no singularity for r > rms (= 6 for the case a = 0 represented) since

rcr < rms (rcr again marked by a square). (d) Close-up of the potential well in the case

where the corotation resonance is avoided — the potential in the inner region of the ac-

cretion disc is roughly equivalent to the harmonic oscillator one. The modes represented

have m = 2 and n = 1 and the disc has cs = 0.01.
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are strongly damped at corotation. The authors also argue that the growth rates attained
by n = 0 modes are unlikely to be high enough to allow detection.

The conclusions of this paper shouldn’t discourage the supporters of diskoseismic
modes as candidates for HFQPOs. Even if the waves aren’t amplified at corotation, if
they aren’t strongly damped they can still rely on an external mechanism to be excited.
In particular, axisymmetric waves which don’t have a corotation resonance in the disc,
or nonaxisymmetric inertial modes that are trapped in a region such that corotation is
avoided, can still be promising candidates.

In fact, the analysis of the paper does not strictly apply in the case of interest: close
to the stationary point of ω̂2−κ2. In Li et al. (2003), the frequency of n 6= 0 waves is taken
to be such that the corotation resonance is in the propagation region [Fig. 4.3 (b)] and
the potential is singular at that resonance. However, for m low enough (m = 0, 1, 2, ...)
it is possible to consider a frequency, very close to the stationary point of ω̂2 − κ2 — or
equivalently very close to the maximum of κ + mΩ — such that corotation is avoided. In
other words, the radius rcr where the resonance occurs is not in the accretion disc since
rcr < rms [Fig. 4.3 (c)]. In this case, r modes can propagate without being absorbed at
the corotation resonance; the potential has no singularities in the trapping region.

Interestingly, in the case where the wave frequency is close to the maximum of
κ + mΩ, the potential in the trapping region is approximately that of a 1D harmonic
oscillator potential [Fig. 4.2 and Fig. 4.3 (d)]. This means that stationary states with
wave function

Φ(x) ∝ exp

(
−K

2x2

4

)
Hel(Kx), K = constant (4.39)

are expected, in agreement with the previous analysis [cf. (4.35)].

4.3 Global oscillations

Low-frequency modes with azimuthal mode number m = 1 have been widely studied in
the context of (quasi-)Keplerian accretion disc theory. As showed by Kato (1983, 1989)
these oscillations are global, and have relatively long wavelengths when compared to the
other modes described by the local dispersion relation, being the most likely to exist in a
turbulent disc. A global m = 1 mode with one node in the vertical direction (n = 1) is
typically identified with a warp (Papaloizou & Lin 1995), while n = 0 modes correspond
to eccentric discs. This is easily seen by focusing on the action of each of these modes
on a ring. The vertical displacement of a m = 1, n = 1 mode is independent of z and
proportional to cos(φ− constant) at fixed r and t, which corresponds to a tilting, as the
displacement with respect to the disc plane is different at each azimuthal angle. In the
case of the n = 0 mode, the radial displacement is the one that is independent of z, and
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Figure 4.4: Local wavelength of (a) (ω,m, n) = (0, 1, 1) and (b) (0, 1, 0) modes (stationary

warp and eccentricity, respectively) in units of H for several values of black-hole spin. The

inner edge of the disc is taken to be the marginally stable orbit where κ = 0.

proportional to cos(φ − constant) at fixed r and t. This means that the displacement
within the disc plane varies with φ, creating an elliptical orbit.

In this section, I briefly discuss how these global deformation modes can be produced
by the presence of a binary companion or by instabilities. In addition, I calculate the
variation of disc tilt and disc eccentricity with radius using a simple treatment of warp
and eccentric deformations as global modes. Such description is used in chapter 5 in the
context of mode coupling in the inner disc region.

4.3.1 Local wavelength

Warped or eccentric disturbances of small amplitude can be thought of as linear pertur-
bations of a circular and coplanar disc, as mentioned previously. In the simplest case of
a vertically isothermal disc with unit ratio of specific heats, these wave modes obey the
dispersion relation calculated before [cf. equation (4.21)] with ω ≈ 0 and (m, n) = (1, 1)
and (m, n) = (1, 0) in the case of the warp and eccentricity, respectively.

The m = 1 modes are global in the sense that only they can have a wavelength
much larger than the semi-thickness of the disc over a wide range of radius. This can be
confirmed in Fig. 4.4 where I show the variation with r of the local wavelength in units
of H, for several values of a, for both the warp and eccentricity.
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4.3.2 Warped discs

It is believed that warps exist in many astrophysical discs. Precessing warped discs
have been used successfully to explain long-term light-curve variations in Her X-1 and
some other X-ray binaries (Katz 1973; Gerend & Boynton 1976). If the central object is
a compact radiation source, warps can be induced by radiation pressure forces (Pringle
1996; Wijers & Pringle 1999). However, this mechanism is less likely to operate in systems
containing a black-hole primary because the disc needs to be very large (Ogilvie & Dubus
2001). The exception is GRS 1915+105 which has a disc extending to large enough radii
(Rau et al. 2003).

If the central object is a rotating black hole, its axis of rotation might not be
perpendicular to the plane of the binary orbit in which the accretion disc forms. The
disc is then said to be misaligned or tilted. There is both theoretical and observational
evidence for this tilting (see Fragile et al. 2007, and references therein). The misalignment
of the orbital angular momentum of the disc and the spin angular momentum of the black
hole results in important changes in the structure of the inner disc as it will be subject to
Lense-Thirring precession (Bardeen & Petterson 1975). This differential precession tends
to twist the disc, which may adopt a stationary warped shape. Depending on the “amount
of viscosity”, the induced warps can propagate either diffusively, roughly speaking if the
Shakura & Sunyaev (1973) viscosity parameter α is greater than H/r, or in a wave-like
manner if α is smaller than H/r. Ivanov & Illarionov (1997) showed that the warp has
an oscillatory radial structure in a low-viscosity disc [with wavelength varying with radii
as shown in Fig. 4.4 (a)], and this was investigated further by Lubow et al. (2002).

Variation of disc tilt with radius

In a vertically isothermal (pseudo-)relativistic disc with γ = 1, a zero-frequency mode
with n = 1, m = 1 can propagate at all radii if a > 0 (i.e. if the disc and black hole rotate
in the same sense). This can be seen from the dispersion relation (4.21) and expressions
(1.55) and (1.56): in this case ω̂2 = Ω2 is greater than both κ2 and Ω2

z and therefore
k2 > 0. Such a stationary warp can be described by linear perturbations of the form

(u′Wr, u
′
Wφ, h

′
W) = [uWr(r), uWφ(r), hW(r)] z, (4.40)

u′Wz = uWz(r), (4.41)

where the subscript W refers to warp quantities, and the dependence eiφ is understood.
The simplest possible warp solution is the rigid tilt, valid for a non-rotating black hole
(a = 0, Ω = Ωz). It is described by uWz = WΩr, uWr = −WΩ, uWφ = −iWd(rΩ)/dr and
hW = −iWΩ2r, where W is the constant tilt inclination [see Papaloizou & Lin (1995) but
note that they use g instead of W to represent the disc tilt]. If W varies with r, equations



108 Introduction

(4.8)–(4.11) with m = 1, ω = 0 admit a solution of the form

u′Wr = −ΩWz + rz
dW

dr

Ω3

Ω2 − κ2
, (4.42)

u′Wφ = −iWz
d

dr
(rΩ) + i

Ωκ2

2(Ω2 − κ2)
zr

dW

dr
, (4.43)

u′Wz = ΩrW, (4.44)

h′W = −iΩ2Wrz, (4.45)

where W (r) is the solution of

d

dr

(
Ω2

κ2 − Ω2

dW

dr

)
+

1

r

dW

dr
=

Ω2 − Ω2
z

c2
s

W. (4.46)

This equation2 is closely related, but not identical, to equation (17) of Lubow et al.
(2002), which was derived from an analysis of global warps in discs that are not necessarily
isothermal. I solve this equation numerically, using a 4th order Runge–Kutta method with
the boundary condition dW/dr(rin) = 0, corresponding to zero torque at the inner edge.
The amplitude of this linear solution may be fixed by specifying the value W0 = W (rin)
at the inner boundary, i.e., at the marginally stable orbit; this corresponds to the (small)
inclination of the inner edge of the disc with respect to the equator of the black hole. A
typical solution is shown in Fig. 4.5 (a).

The warp has an oscillatory behaviour, as found by Ivanov & Illarionov (1997), with
the wavelength increasing with radius, consistent with the local dispersion relation. This
non-monotonic behaviour of the inclination contrasts with the Bardeen–Petterson effect
(Bardeen & Petterson 1975), which was derived using an incorrect equation for the warp.
One would normally expect W (r) to tend to a constant value at large r, corresponding
to the inclination of the outer part of the disc with respect to the equator of the black
hole. Unfortunately this is not true of the approximate equation (4.46), which does not
hold accurately at large r because the wavelength becomes comparable to the radius.
However, I’ll only use this simplified description of the warp in the next chapter, where
the interaction of the warp with waves that propagate in the inner disc is considered, so
this is not expected to significantly affect the final results.

2The above analysis uses the relation κ2 = 4Ω2+2rΩ dΩ/dr, which is not exactly true of the relativistic
expressions because r2Ω is not quite the specific angular momentum in relativity. On the other hand,
since the pseudo-relativistic treatment is not fully self-consistent, if this Newtonian relation is not used
here, the rigid tilt solution is not obtained for a = 0, contrary to what is expected physically. Therefore,
I choose to use the Newtonian relation in this simplified treatment of the warp.
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Figure 4.5: (a) Warp function W (r) and (b) eccentricity function E(r) for a = 0.5. The

sound speed is 0.01 in units of c, W (rin) = W0 = 0.003, and E(rin) = E0 = 0.003.

4.3.3 Eccentric discs

Interacting binary stars with mass ratio q . 0.3 are believed to have eccentric accretion
discs. This phenomenon is well documented in the case of cataclysmic variable stars,
where superhumps are observed during the superoutbursts of the SU UMa class of dwarf
novae (Patterson et al. 2005) and in other systems of low mass ratio. In these systems,
a resonant interaction of the orbiting gas with the tidal potential of the companion star
allows a growth of eccentricity (Whitehurst 1988; Lubow 1991a,b). Superhumps are also
observed in an increasing number of low-mass X-ray binaries, and systems exhibiting
black-hole HFQPOs are likely to have mass ratios q . 0.3 and therefore to have eccentric
discs during at least some phases of their outbursts.

Variation of eccentricity with radius

As before, consider the set of equations (4.8)–(4.11). A global eccentric mode corresponds
to a zero-frequency wave with m = 1 and n = 0. (If the global eccentric mode precesses
freely, the frequency is not exactly zero but is completely negligible compared to the char-
acteristic frequencies in the inner part of the disc.) In this case, variables are independent
of z and equations (4.8)–(4.11) are reduced to

iΩuEr − 2ΩuEφ = −dhE

dr
, (4.47)

iΩuEφ +
κ2

2Ω
= −i

hE

r
, (4.48)

iΩuEz = 0, (4.49)
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iΩhE = −c2
s

[
1

r

d

dr
(ruEr) + i

uEφ

r

]
, (4.50)

where the subscript E refers to eccentric mode quantities. This system admits a solution
of the form

uEr = iEΩr, (4.51)

uEφ =
c2
sr

2Ω

Ω2r2 − c2
s

dE

dr
− κ2

2
rE, (4.52)

uEz = 0, (4.53)

hE = − c2
sr

2Ω

Ω2r2 − c2
s

dE

dr
, (4.54)

where E(r) is the eccentricity of the disc at radius r, and satisfies

(κ2 − Ω2)E =
1

r3

d

dr

(
r5c2

sΩ
2

Ω2r2 − c2
s

dE

dr

)
. (4.55)

Again, this equation is closely related, but not identical, to equation (21) of Goodchild
& Ogilvie (2006), which was derived from an analysis of global eccentricity in a two-
dimensional disc. Radially propagating solutions are obtained because κ2 < Ω2 in a
relativistic disc. As for the warp tilt W (r), I solve this equation numerically, using a 4th
order Runge–Kutta method with boundary conditions E(rin) = E0, and dE/dr(rin) =
0, where E0 is an arbitrary value for the eccentricity at the inner boundary, i.e., at
the marginally stable orbit. A typical solution for E(r) is shown in Fig. 4.5 (b). The
eccentricity has an oscillatory behaviour, with the wavelength decreasing with radius,
consistent with the local dispersion relation.

4.4 Summary

In this chapter, I introduced the topic of oscillations in black-hole accretion discs. A
dispersion relation for diskoseismic modes in a simple isothermal disc with γ = 1 was
derived and the properties and propagation regions of the different types of oscillations
represented by this dispersion relation were analysed. This treatment is useful to better
understand the trapping of inertial modes; an excitation mechanism for these waves is
presented in the next chapter. The mechanism relies on the presence of global deforma-
tions in the disc. These were introduced in section 4.3 where warping and eccentricity
disturbances were treated as global m = 1 oscillations. In the next chapter, the ex-
pressions for (uWr, uWφ, uWz, hW) and (uEr, uEφ, uEz, hE) determined here are used in the
equations representing the coupling mechanism between inertial modes and these global
deformations. A more realistic treatment of the propagation of warp and eccentricity into
the inner part of the disc is deferred to chapter 6.
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Excitation Mechanism

5.1 Introduction

The theoretical study of periodic variability in black-hole accretion discs is particularly
relevant in the context of high-frequency quasi-periodic oscillations detected in several
X-ray binaries. The characteristics of such variability phenomena suggest a connection to
the inner accretion flow (Remillard & McClintock 2006) and these oscillations are thought
of as fundamental tools to the study of strong gravitational fields. Their relativistic prop-
erties indicate that their frequencies may depend only on the mass and spin of the central
object. A model capable of explaining HFQPOs and relating their frequencies to the
characteristics of the black hole would, therefore, be a key method for spin measurement.

As emphasised in the introduction of this thesis, diskoseismic modes are promising
candidates to explain HFQPOs. In this chapter, I focus on the theory that these oscilla-
tions can be identified with inertial modes trapped below the maximum of the epicyclic
frequency (e.g. Nowak et al. 1997; Kato 2001). For trapped oscillations to explain HFQ-
POs, an excitation mechanism for these modes is required, as their amplitudes need to
reach values high enough to allow detection. A possibility can reside in the interaction
between waves in the disc and a global deformation (warping or eccentricity), as suggested
by Kato (2004, 2008).

Kato’s calculations are of interest but, as mentioned in section 1.4.2, they have many
uncertainties. One of the main inconsistencies relates to the prediction of growth of the
inertial modes in a warped disc around a non-rotating black hole. In this case, the metric
is spherically symmetric and the “warp” is only a rigid tilt, which means that nothing
changes in the disc except its inclination angle. If there are no relevant changes in the
disc, there should be no relevant changes in the oscillations, i.e., a rigid tilt should not
work to excite diskoseismic modes. This property is not regarded in Kato’s results.

In this chapter, Kato’s ideas on this coupling mechanism are developed and gener-
alised for discs around rotating black holes. I use the simple dynamical treatment of the
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warp and eccentricity presented previously and make numerical calculations of both cou-
pled and uncoupled inertial modes. In the case where inertial modes couple with global
deformations and are excited as a result, the variation of the growth rate with various
parameters, namely black-hole rotation, is calculated.

In section 5.2 I review the trapping of inertial oscillations in a simple, pseudo-
relativistic disc model and make numerical calculations of uncoupled r modes. In section
5.3 I describe the excitation mechanism for trapped inertial modes, which relies on a
coupling between waves in the disc and global deformations. In section 5.4 I discuss the
dependence of the inertial modes’ growth rates on disc parameters and black hole spin.
Conclusions are presented in section 5.5.

5.2 Trapped inertial oscillations

5.2.1 Linearized equations and wave modes

As seen in the previous chapter, the trapping of oscillations can be easily understood by
analysing the fluid equations in a simple isothermal disc model (Lubow & Pringle 1993;
Kato 2001). In this chapter, I use the same disc model as in section 4.3. As argued
before, the most important relativistic effects on wave propagation can be included by
using the relativistic expressions for the characteristic frequencies presented in equations
(1.54), (1.55) and (1.56).

Here I start by considering the set of equations (4.8)–(4.11). Variables can be further
separated in r and z, using (as in section 4.2.1)

(u′r, u
′
φ, h

′) = [ur(r), uφ(r), h(r)] Hen

( z

H

)
, (5.1)

u′z = uz(r)Hen−1

( z

H

)
. (5.2)

(Since He−1 is not defined, u′z = 0 for n = 0.) As noted in section 4.2.1, this separation of
variables is not exact since H depends on r but is valid to lowest WKB order. The final
set of ordinary differential equations in r for the perturbed quantities reads

−iω̂ur − 2Ωuφ = −dh

dr
, (5.3)

−iω̂uφ +
κ2

2Ω
ur = − imh

r
, (5.4)

−iω̂uz = −n
h

H
, (5.5)
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−iω̂h− Ω2
zHuz = −c2

s

[
1

r

d(rur)

dr
+

imuφ

r

]
. (5.6)

These equations will be solved numerically for an axisymmetric, n = 1 inertial mode in
the next section.

As seen before, the dispersion relation for wave modes in the disc can be determined
by further assuming that the radial wavelength of the perturbed quantities is much smaller
than both the azimuthal wavelength and the characteristic scale for radial variations of
the equilibrium quantities. It can then be verified that perturbations with local radial
wavenumber k obey the dispersion relation (4.21).

5.2.2 Numerical calculation of trapped r modes

To find the radial structure of trapped modes it is necessary to solve the system of
equations (5.3)–(5.6) subject to appropriate boundary conditions. Numerical calculations
of waves trapped near the maximum of the epicyclic frequency were first performed by
Okazaki et al. (1987). Here I focus on the simplest possible trapped inertial modes, with
m = 0 and n = 1. The approximate analysis of equations (5.3)–(5.6) close to the maximum
of the epicyclic frequency performed in the previous chapter shows that, between the two
Lindblad resonances, these solutions are described by parabolic cylinder functions. These
involve Hermite polynomials of order l = 0, 1, 2, . . . , centred at the maximum of κ, like the
solutions of the quantum harmonic oscillator (Perez et al. 1997, see also section 4.2.4)1.
The lowest order mode (l = 0) has a Gaussian structure in r. In this section I solve the
same problem using numerical methods and fewer approximations, as a prelude to an
analysis of the non-linear mode couplings that cause these modes to grow.

Since trapped modes are only expected for some discrete values of the oscillation
frequency, I solve the set of equations as a generalized eigenvalue problem, of the form

AU = −iωBU. (5.7)

Here U is the column vector whose components are the r mode quantities (ur, uφ, uz, h)
evaluated at a set of discrete points, A is the matrix representing the system of equations
(5.3)–(5.6), and B can be different from the identity matrix depending on the boundary
conditions used. To solve this problem numerically, I apply a pseudo-spectral method
with Chebyshev polynomials. I use a Gauss–Lobatto grid, x(i) = cos(πi/N), where N is
the number of grid points, and the Chebyshev coordinate −1 < x < 1 is related to the
radial coordinate by

r = −x
rout − rin

2
+

rout + rin

2
. (5.8)

1It should be noted that Perez et al. (1997) use n as the radial mode number. Here the three quantum
numbers are (l,m, n) corresponding to the three coordinates (r, φ, z).
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Therefore, rin < r < rout, where rin = rms and rout is an outer radius chosen to be
larger than the outer Lindblad resonance for the r mode. The representation of the first
derivatives in the matrix A is achieved using the Chebyshev collocation derivative matrix,
defined by (Boyd 2001)

Dij =


(1 + 2N2)/6 i = j = 0

−(1 + 2N2)/6 i = j = N

−xj/[2(1− x2
j)] i = j, j 6= 0, N

(−1)i+jpi/[pj(xi − xj)] i 6= j

, (5.9)

where p0 = pN = 2, and pj = 1 otherwise. The generalized eigenvalues and eigenfunctions
of A are then calculated numerically, using idl’s eigenvalue solver, la eigenproblem,
which uses a qr decomposition, and is based on lapack routines. The boundary condi-
tions used are the following:

At rin ur = 0. According to the dispersion relation, the r mode is expected to
be exponentially decaying for radii smaller than its innermost Lindblad resonance
and therefore its velocity is supposed to be approximately zero at the marginally
stable orbit, which justifies the choice of this boundary condition. A more realistic
analysis of the behaviour of this mode at the inner boundary is done in chapter 7.

At rout dur/dr = ikur, where k is given by the dispersion relation (4.21) for
m = 0, n = 1 at rout, and using ω ≈ max(κ). Since the r mode can propagate
again as a p mode outside the vertical resonance (Fig. 4.2), I choose an outer radius
beyond this location, so that the mode is oscillatory there, i.e., k is real. In addition,
the outgoing wave solution is selected by choosing k > 0 so that the group velocity of
the waves at rout is positive. This condition allows the wave to lose energy through
the outer boundary and minimizes artificial wave reflection there.

The frequency ω is possibly complex, in which case its imaginary part is the growth
rate of the disturbance. In fact, in the absence of non-linear mode couplings, slowly
decaying solutions with Im(ω) < 0 are obtained as a result of the outgoing-wave outer
boundary condition.

Fig. 5.1 shows the variation of ur with radius for two typical trapped solutions,
corresponding to two different radial mode numbers l = 0 and l = 1. (Since I’m solving
an eigenvalue problem, solutions are multiplied by an arbitrary amplitude.) The complex
frequencies of the modes represented in Fig. 5.1 are 0.03196−3.6884×10−7i and 0.02989−
1.1846 × 10−7i (in units of c3/GM), respectively. In these units, and for the value of a
used, the maximum of κ is 0.03312. These modes are slightly damped because of the
boundary condition used at the outer radius, which selects the outgoing wave only. If the
sound speed is smaller, the frequency of the modes is closer to the value of the epicyclic
frequency at its maximum, and the trapping region and damping rate are smaller (see
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Figure 5.1: Variation of the real part of the radial component of the axisymmetric, n = 1

r mode velocity with radius for cs/c = 0.01 and a = 0.5 for (a) l = 0 and (b) l = 1. The

triangle indicates the radius where the epicyclic frequency is maximum, and the crosses

and asterisks the Lindblad and vertical resonances, respectively.

Table 5.1). Very similar results are obtained when the two-point boundary-value problem
is solved using a shooting method.

As seen in section 4.2.4, these inertial modes can be thought of as waves trapped in
a potential, U(r) = −k(r)2 (Li et al. 2003), which for a frequency close to the maximum of
κ is similar to the harmonic oscillator potential. If U(r) < 0 waves can propagate, being
evanescent in the regions where potential barriers exist. Also, as in quantum mechanics,
these trapped inertial waves can escape through the potential barriers and propagate on
the other side, as p modes (Fig. 4.2). The inertial modes are evanescent between the
inner radius and the first Lindblad resonance and between the second Lindblad resonance

cs/c frequency

0.002 0.03289 + 0.0i

0.005 0.03254− 1.276× 10−10i

0.01 0.03196− 3.688× 10−7i

0.02 0.03079− 2.417× 10−5i

Table 5.1: Dependence of the real and imaginary part of the l = 0 r mode frequency (in

units of c3/GM) on the sound speed cs, for a = 0.5. Values obtained with the shooting

method are very similar to the ones shown. I use 150 collocation points and a value of

18.2331 for the outer radius, in units of GM/c2 (rin = rms = 4.2331).
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and the vertical one. The “leakage” through the potential barrier is also verified, as
the results show small-amplitude oscillations after the vertical resonance (Fig. 5.1). The
larger the sound speed, the larger the width and smaller the height of the barrier, and
more “leakage” through the barrier is expected, which is verified numerically (Table 5.1).
This “leakage” was first predicted by Okazaki et al. (1987).

As described above, the inertial mode characterized by (l,m, n) = (0, 0, 1) is likely to
be relevant to the interpretation of observed oscillations. In the next section I describe an
excitation mechanism for this mode, based on non-linear wave coupling. If the modes are
not strongly coupled, the mechanism is expected to mainly affect the growth rate Im(ω),
so that the structure of the wave still resembles a Gaussian centred at the maximum of
κ, as shown in Fig. 5.1 (a).

5.3 Growth of oscillations in deformed discs

5.3.1 Warped discs

In this section I describe a mechanism, first suggested by Kato (2004), where a (m = 1, n =
1) warp wave couples with the simplest trapped inertial mode. The warp is described by
the quantities (uWr, uWφ, uWz, hW) determined in section 4.3.2.

Coupling mechanism

The non-linearities in the basic equations (4.1) and (4.2) provide couplings between the
different linear modes of the system. The interest goes to those couplings that lead to
amplification of the trapped modes. The basic idea of the excitation mechanism in warped
discs (Kato 2004) is that the warp interacts with an oscillation in the disc (the trapped
r mode) giving rise to an intermediate wave. This intermediate wave can then couple with
the warp to feed back on the original oscillations (see Fig. 5.2), resulting in growth of the
latter.

For the r mode to be excited, it needs to gain energy in this coupling. Since the
warp has null frequency, its energy is essentially zero and so the energy exchanges only
happen between the r mode and the intermediate wave and the disc. It is widely agreed,
and certainly true in the short-wavelength limit, although a general proof is lacking, that
a wave that propagates inside its corotation radius has negative energy. (As explained
in chapter 1, the wave energy is negative in the sense that the total energy of the disc is
reduced in the presence of the oscillation; this is possible because the disc is rotating.) On
the other hand an axisymmetric wave such as the r mode, or one that propagates outside
its corotation radius, has positive energy. Suppose that, through coupling with the warp,
the r mode generates an intermediate wave that propagates inside its corotation radius
and therefore has negative energy. In the process of generating this wave, the r mode gains
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Figure 5.2: Diagram representing the interactions involved in the coupling mechanism

involving a warped disc.

energy and is amplified. For sustained growth of the r mode, the intermediate wave must
be damped so that its negative energy is continually replenished by the r mode. (The
damping process itself draws positive energy from the rotation of the disc.) Therefore a
dissipation term should be included in the equations for the intermediate wave. Here I
choose to damp this wave locally at a rate βΩ, where β is a dimensionless parameter.
The origin of this term is not discussed here but if interpreted as some type of viscous
dissipation or friction in the disc, the intermediate wave, which propagates in a larger
region in the disc, is expected to be more affected by it than the r mode, as the latter is
trapped in a small region, and has a simpler radial structure. Also, the intermediate wave
approaches its corotation radius (or rms), where it is expected to be absorbed, and this
effect is implicitly included in the intermediate wave equations when the friction term
is included. Therefore, I neglect the dissipation term in the equations for the r mode.
The growth rate obtained for the trapped mode should be compared with estimates of its
damping rate due to turbulent viscosity or to a non-negligible radial inflow (chapter 7).

For the coupling to occur the waves need to propagate in the same region in the
disc and the parameters ω and m for the 3 oscillations need to follow some basic coupling
rules,

ωR ± ωW = ωI, mR ±mW = mI, (5.10)

where the subscripts R, W and I refer to r mode, warp and intermediate wave quantities,
respectively. These rules follow from the quadratic nature of the non-linearitites in the
basic equations (4.1) and (4.2). Also, it is simple to get information about the vertical
mode number nI of the intermediate wave by remembering that the vertical dependence
is given by Hermite polynomials. The warp quantities are proportional to z and the
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Figure 5.3: Propagation regions of the waves participating in the interaction with a warp

when a = 0.5 and the frequency is chosen to be ω = 0.03 (dashed line). The axisymmetric

r mode is trapped in between its two Lindblad resonances where the frequency equals

κ (full curve). The m = 1, n = 0 intermediate wave propagates where ω < Ω − κ and

ω > Ω+κ where the dotted lines indicate the curves Ω±κ. The m = 1, n = 2 intermediate

wave propagates where Ω− κ < ω < Ω + κ with the exception of its corotation resonance

indicated by a square. Note that, for the purpose of this diagram, I assumed that the

propagation regions are those of uncoupled waves.

simplest possible r mode has one node in the vertical direction, therefore its quantities
are proportional to He1 ∼ z. When the warp and this r mode interact, the coupling terms
will be proportional to z2/H2 = (z2/H2 − 1) + 1 ∼ He2 + He0, i.e., they give rise to two
intermediate waves, one with 2 nodes in the vertical direction, nI = 2, and a 2D wave
with nI = 0. I consider both possibilities. Note that the frequency of these intermediate
waves is that of the r mode, and they are present because they are forced through the
couplings. They could not exist as free waves satisfying the boundary conditions at this
frequency.

According to rules (5.10), if ωR = ω, then ωI = ω. In the case of the azimuthal
mode numbers, mI = mR ± 1. By analysing the propagation regions for these waves,
and considering ω ≈ max(κ + mΩ), it is possible to conclude that the n = 0 mode with
mI = mR − 1 and frequency ω does not have any Lindblad resonance, i.e., the point
where the wave should be excited, in the disc. On the other hand, the mode with mR + 1
and frequency ω has an inner Lindblad resonance close to the region of propagation
of the r mode (Fig. 5.3). For these reasons, I choose the azimuthal mode number of
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the intermediate wave to be mR + 1 = 1, if the r mode is axisymmetric. This mode
propagates inside its corotation resonance, while the r mode has positive energy. The
presence of an inner Lindblad resonance means both that the intermediate wave attains
a larger amplitude than it would in the case of non-resonant forcing, and that the flow of
energy is such as to amplify the r mode.

If the vertical mode number of the intermediate wave is chosen to be 2 instead
of 0, the r mode with (ω,m, n) = (ω, 0, 1) interacts with a (ω, 1, 2) intermediate wave.
The former propagates where ω2 < κ2, while the latter propagates where (ω − Ω)2 <
min(κ2, 2Ω2

z), where ω is slightly less than max (κ). The propagation regions overlap close
to the maximum of the epicyclic frequency since Ω ≈ 2κ in this region (Fig. 5.3).

The interaction of the r mode with the n = 2 intermediate wave in a warped disc
must be treated carefully because in this case the intermediate wave propagates between
its Lindblad resonances and is absorbed at the corotation resonance. This is a radius in
the disc where the potential U(r) = −k2 tends to infinity and is therefore difficult to treat
numerically because the wavelength tends to zero. One way of solving this problem is by
including a relatively strong dissipation term in the equations for the intermediate wave.
In this way the wave excited at the inner Lindblad resonance is damped before reaching
corotation. This also works for the energy exchanges between the oscillations and the
disc, since the n = 2 wave has negative energy in the region where it is damped.

Equations

The following system of equations [cf. equations (4.1)–(4.2)] describes the propagation of
the r mode and n = 0 intermediate wave, coupled by the warp, and needs to be solved
for the growth rate to be determined:(

∂

∂t
+ Ω

∂

∂φ

)
u′Rr − 2Ωu′Rφ = −∂h′R

∂r
+ fRr, (5.11)

(
∂

∂t
+ Ω

∂

∂φ

)
u′Rφ +

κ2

2Ω
u′Rr = −1

r

∂h′R
∂φ

+ fRφ, (5.12)

(
∂

∂t
+ Ω

∂

∂φ

)
u′Rz = −∂h′R

∂z
+ fRz, (5.13)

(
∂

∂t
+ Ω

∂

∂φ

)
h′R − Ω2

zzu
′
Rz = −c2

s

[
1

r

∂(ru′Rr)

∂r
+

1

r

∂u′Rφ

∂φ
+

∂u′Rz

∂z

]
+ fRh, (5.14)

(
∂

∂t
+ Ω

∂

∂φ

)
u′Ir − 2Ωu′Iφ = −∂h′I

∂r
− βΩu′Ir + fIr, (5.15)

(
∂

∂t
+ Ω

∂

∂φ

)
u′Iφ +

κ2

2Ω
u′Ir = −1

r

∂h′I
∂φ

− βΩu′Iφ + fIφ, (5.16)
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(
∂

∂t
+ Ω

∂

∂φ

)
h′I = −c2

s

[
1

r

∂(ru′Rr)

∂r
+

1

r

∂u′Iφ
∂φ

]
− βΩh′I + fIh, (5.17)

where

fR = (fRr, fRφ, fRz) = −u′I · ∇u′W − u′W · ∇u′I, (5.18)

fRh = −u′I · ∇h′W − u′W · ∇h′I, (5.19)

fI = (fIr, fIφ, fIz) = −u′R · ∇u′W − u′W · ∇u′R, (5.20)

fIh = −u′R · ∇h′W − u′W · ∇h′R (5.21)

are the coupling terms, arising from non-linearities in the basic equations.

Since I’m interested in studying the axisymmetric r mode, the azimuthal mode
number for the intermediate wave is 1. Also, since the simplest possible r mode has one
node in the vertical direction and the intermediate wave has n = 0, I use the following
separation of variables:

(u′Rr, u
′
Rφ, h

′
R) = Re

[
(uRr(r), uRφ(r), hR(r)) He1

( z

H

)
e−iωt

]
, (5.22)

u′Rz = Re
[
uRz(r)He0

( z

H

)
e−iωt

]
, (5.23)

(u′Ir, u
′
Iφ, h

′
I) = Re

[
(uIr(r), uIφ(r), hI(r)) He0

( z

H

)
eiφ−iωt

]
, (5.24)

u′Iz = 0 (2D wave), (5.25)

(u′Wr, u
′
Wφ, h

′
W) = Re

[
(uWr(r), uWφ(r), hW(r)) z eiφ

]
, (5.26)

u′Wz = Re
[
uWz(r) eiφ

]
. (5.27)

This separation of variables results in having the coupling terms (5.18) and (5.19)
proportional to He1 only, while the coupling terms (5.20)–(5.21) give rise to terms pro-
portional to both He0 = 1 and He2 = z2/H2 − 1. Since I’m interested in the terms that
influence the mode with n = 0, I need to project these forcing terms on to He0. Also, the
separation of variables results in coupling terms of the form

Re(A)Re(B) =
1

2
Re(AB + AB∗), (5.28)

which means that the interaction of the m = 0 r mode with the m = 1 warp results in
two new waves, one with m = 1 and one with m = −1:

r mode (A) ∝ e−iωt and warp (B) ∝ eiφ
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⇒ r mode × warp ∝ AB + AB∗ ∝ eiφ−iωt + e−iφ−iωt.

Since I’m only interested in the action of this coupling on the intermediate wave with
m = 1, because the one with m = −1 does not have any Lindblad resonances (location
where the wave should be excited) in the disc, these forcing terms are projected on to
eiφ−iωt. Similarly, the interaction of the intermediate wave with the warp gives rise to a
m = 2 mode in addition to the axisymmetric r mode of interest:

intermediate wave (A) ∝ eiφ−iωt and warp (B) ∝ eiφ

⇒ intermediate wave × warp ∝ AB + AB∗ ∝ ei2φ−iωt + e−iωt.

Therefore, these forcing terms should be projected on to e−iωt, which means that complex
conjugates of warp quantities will appear in the equations.

After separating variables, and projecting the forcing terms appropriately, the equa-
tions to be solved can be written as

−iωuRr = 2ΩuRφ −
dhR

dr
− uIr

2

du∗Wr

dr
H + iuIφ
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2r
H, (5.29)
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, (5.31)
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−iωhI = −(i + β)ΩhI −
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. (5.35)

This system is linear in the unknowns for the r mode and the intermediate wave. The
warp, which couples these waves together, is assumed to be known (cf. section 4.3.2).

For the interaction with the n = 2 intermediate wave, similar equations need to
be solved. After separating variables and projecting forcing terms appropriately, the
equations describing this interaction read
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H
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−iωuIr = −(i + β)ΩuIr + 2ΩuIφ −
dhI

dr
− uRr

2

duWr

dr
H − iuRφ

uWr

2r
H

+uRφ
uWφ

r
H − uWr

2

duRr

dr
H, (5.40)

−iωuIφ = −(i + β)ΩuIφ −
κ2

2Ω
uIr −

ihI

r
− uRr

2

duWφ

dr
H − iuRφ

uWφ

2r
H

−uRφ
uWr

2r
H − uWr

2

duRφ

dr
H − uWφ

uRr

2r
H, (5.41)
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As before, the system is linear in the unknowns for the r mode and the intermediate
wave. It should be noted that although the same notation is used in the systems (5.29)–
(5.35) and (5.36)–(5.43) to represent the intermediate wave quantities, they refer to two
different waves: both with the same frequency and azimuthal mode number m = 1, but
with different vertical mode number (n = 0 in the first system and n = 2 in the second).

Method and results

To find the r mode growth rate resulting from these interactions I solve the systems of
coupled equations (5.29)–(5.35) and (5.36)–(5.43) for the interactions of the r mode with
the n = 0 and n = 2 intermediate wave respectively. By considering the warp to have a
fixed amplitude and neglecting the feedback of the r mode and intermediate waves on the
warp, a linear system of equations is still obtained, although now the r mode and inter-
mediate waves are coupled through the warp. The n = 0 and n = 2 intermediate waves
are treated separately, although in practice both coupling mechanisms act simultaneously
and the net growth rate is the sum of the rates due to the individual mechanisms.

These systems are solved numerically, using the Chebyshev method described in
section 5.2. For the r mode the same boundary conditions as before are used. Similar
conditions are applied to the intermediate waves, i.e., uIr = 0 at rin and duIr/dr = ikIuIr

at rout, where kI is given by the dispersion relation (4.21) at rout for m = 1 and n = 0
or n = 2, depending on the intermediate wave under consideration. As for the r mode, I
choose the sign of kI so that the outgoing or exponentially decaying wave at rout is chosen.
The choice of the inner boundary condition for the radial component of the velocity of
the n = 2 mode is justified by the fact that this mode is exponentially decaying there.
This choice is harder to justify for the n = 0 mode since it is oscillatory at rin. This
means that if uIr = 0 there then the wave is reflected at the inner boundary. Since the
conditions at the marginally stable orbit are not clear, one cannot be sure of the physical
validity of this condition; it is chosen because of its simplicity. (Note that this problem is
revisited in chapter 7.) Rigorously more boundary conditions would be needed to solve
this problem, since more than 4 derivatives appear in each system. However, since the
coupling terms are expected to be small, uRφ is roughly proportional to uRr (and similarly
for other quantities), thus the boundary conditions imposed for the latter will be indirectly
imposed to the former.

The aim is to find the frequencies ω for which the solutions corresponding to the
r mode are trapped, i.e., for which uRr resembles the parabolic cylinder functions as in
Fig. 5.1 (a), which is expected if the coupling terms are small when compared to the other
terms in the equations. The imaginary part of ω then gives the growth rate (or damping
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Figure 5.4: Variation of the real part of the radial component of the (a) m = 1, n = 0,

and (b) m = 1, n = 2 intermediate wave velocity with radius for cs/c = 0.01, a = 0.5,

W (rin) = 0.003, and β = 0.1. The triangle indicates the radius of the corotation resonance,

and the crosses the Lindblad resonances.

rate, if it’s negative) of the trapped r mode. In Fig. 5.4 I show the n = 0 and n = 2
intermediate waves involved in the coupling process, when the dissipation is strong. It
should be noted that when the dissipation is weak, the n = 2 intermediate wave develops
a very short wavelength as it approaches the corotation resonance. If β is too small,
the length-scale on which this wave dissipates is not resolved by the numerical method
employed. The variation of the growth rate with several parameters is shown in Fig. 5.5.
These results are discussed in section 5.4.

5.3.2 Eccentric discs

Recently, Kato (2008) argued that one-armed global oscillations (eccentric modes), sym-
metric with respect to the z = 0 plane, can also excite trapped oscillations. His conclusions
are based on analytical, Lagrangian calculations and are too crude to allow for more than
simple estimates for the growth rates. In this section I describe an excitation mechanism
similar to the one reported previously, but where an (m = 1, n = 0) eccentric mode has
the role that previously belonged to the (m = 1, n = 1) warp wave. I calculate the trapped
r mode growth rates using the same numerical method as before.

Coupling mechanism

The excitation mechanism is somewhat similar to the one discussed in the previous sec-
tion: a global deformation mode, which is now the eccentricity mode, characterized by
(ω,m, n) = (0, 1, 0), interacts with a trapped r mode (ω, 0, 1) giving rise to an interme-
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Figure 5.5: Variation of the growth rate of the simplest trapped r mode, (l,m, n) =

(0, 0, 1), with (a) dissipation factor β, (b) warp amplitude, W , at inner boundary, (c)

sound speed in the disc, and (d) spin of the black hole. The triangles show the results for

the interaction with the n = 2 mode, while the stars are due to the interaction with the

n = 0 mode. For the former, the variation of the growth rate with the dissipation factor

is not shown for small values of β because of the influence of the corotation resonance in

that case.
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Figure 5.6: Diagram representing the interactions involved in the coupling mechanism

involving an eccentric disc.

diate wave. The latter then couples with the global mode to feedback on to the trapped
r mode.

Coupling rules require the intermediate wave to have the same frequency as the
trapped oscillation and, as before, mI = 1 in the case where the trapped r mode is
axisymmetric. As for the vertical dependence, since the eccentric mode has n = 0, the
intermediate wave can only have the same vertical mode number as the trapped mode,
i.e., nI = 1 (Fig. 5.6). The propagation region for this wave is the same as for the (ω, 1, 2)
intermediate wave, present in the interaction of the r mode with the warp. As in that case,
a relatively large damping term must be included in the equations for the intermediate
wave so that it dissipates on a resolved scale before reaching the corotation resonance. In
this case the energy exchanges are similar to the ones discussed for the interaction in a
warped disc.

Equations and results

After separating variables, and projecting the forcing terms appropriately, as done before
for the interactions in a warped disc, the equations describing the coupling between the
trapped r mode, eccentric disc and n = 1 intermediate wave read

−iωuRr = 2ΩuRφ −
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− uIr

2

du∗Er

dr
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2
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−iωuIz = −(i + β)ΩuIz −
hI

H
− uEr
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2r

−uEr

2

dhR

dr
. (5.51)

To find the growth rates that result from this interaction, I solve equations (5.44)–(5.51),
using the same numerical method and boundary conditions as before.

The variation of the growth rate with the inner eccentricity, sound speed, spin of
black hole and dissipation factor is shown in Fig. 5.7. The values of the growth rate
achieved in the interaction of the trapped wave with the eccentric mode are, in general,
similar to the values obtained in the interaction with the warp, if the inner inclination
and eccentricity are similar.

5.4 Discussion

In this section I discuss the results shown in Figs 5.5 and 5.7, where the dependence of
the l = 0 r mode growth rate with several parameters is represented.

5.4.1 Growth rates in warped discs

In the variation of the growth rate with the dissipation factor, two regimes can be con-
sidered. In the weak dissipation case (β . 0.05), the variation is approximately linear,
while in the strong dissipation regime (β & 0.05), the growth rate remains approximately
constant when β varies [Fig. 5.5 (a)]. In the former case, the n = 0 intermediate wave
is launched at its inner Lindblad resonance and propagates, being slightly attentuated,
until it reaches the inner boundary where it is reflected. Owing to the attenuation, the
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Figure 5.7: Variation of the growth rate of the simplest trapped r mode, (l,m, n) =

(0, 0, 1), with (a) dissipation factor β, (b) eccentricity amplitude, E, at inner boundary,

(c) sound speed of the disc, and (d) spin of the black hole.
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reflected wave amplitude is smaller than the incident one, and therefore the intermediate
wave does not cancel itself, leaving a small amount of energy available for the r mode to be
excited. In the strong dissipation regime, the n = 0 mode is dissipated before reaching the
marginally stable orbit. In this case, all the energy carried by this wave becomes available
to excite the trapped mode. As for the n = 2 intermediate wave, in the strong dissipa-
tion regime, the wave is completely dissipated before reaching the corotation resonance.
Physically, no dissipation term is expected to be necessary in this case. An arbitrarily
small amount of dissipation should lead in principle to the complete absorption of the
wave at the corotation resonance. However, this cannot be verified numerically because
of the difficulty in resolving the wavelength of the intermediate wave as the singularity at
the corotation resonance is approached.

For small warp amplitudes, i.e., before the coupling terms start affecting the struc-
ture of the eigenfunctions, the growth rate grows with the square of the warp amplitude
at the inner boundary [Fig. 5.5 (b)]. This is expected since the coupling mechanism relies
on the “use” of the warp twice: first on the interaction with the r mode to give rise to
the intermediate waves, and then again on the interaction with the latter to feed back on
the former (Fig. 5.2).

The excitation mechanism discussed here is similar to the well known parametric
instability, in the case where one of the modes is strongly damped. The parametric
instability is a type of resonant coupling between three modes satisfying ωp ≈ ωd1 + ωd2,
where the subscripts p and d refer to parent and daughter modes, respectively. The
parametric instability results in the transfer of energy from the former to the latter, when
the daughter modes have small amplitude. The equations describing the evolution of the
mode amplitudes read (adapted from Wu & Goldreich 2001),

dAp

dt
= +δpAp − iωpAp + iωpσAd1Ad2, (5.52)

dAd1

dt
= −δd1Ad1 − iωd1Ad1 + iωd1σApA

∗
d2, (5.53)

dAd2

dt
= −δd2Ad2 − iωd2Ad2 + iωd2σA∗

d1Ap, (5.54)

where δj > 0 is the linear amplitude growth/damping rate of mode j and σ is the non-
linear coupling constant. I’ll consider a simplified case where the amplitude of the parent
mode is approximately constant in time (because the daughter modes are of small ampli-
tude), and ωd1 = −ωd2 = ω, δp = δd1 = 0 and δd2 = δ. In this case, the parent mode can
be compared to the warp while the daughter modes 1 and 2 can be compared with the
r mode and intermediate wave, respectively. Assuming Ad1 ∝ exp (st), the growth rate is

Re(s) = −δ

2
+

(
δ2

4
+ |Ap|2σ2ω2

)1/2

. (5.55)
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If δ � |Ap|σω, Re(s) ≈ |Ap|σω− δ
2
, i.e., the growth rate is linearly related to the amplitude

of the parent mode. On the other hand, if δ � |Ap|σω, Re(s) ≈ |Ap|2σ2ω2/δ, i.e., the
growth rate is proportional to the square of the amplitude of the parent mode. The latter
case is the one similar to the excitation mechanism under discussion here. It should be
noted that this parametric instability analysis gives a dependence of the growth rate in
δ which is not in agreement with the numerical results (considering δ to be equivalent
to β), because the dependence of the spatial structure of the intermediate wave on the
dissipation is not considered in this simplistic analysis. Also, the parametric instability
analysis suggests that the daughter modes gain energy from the parent mode. This is not
true of the coupling mechanism under consideration since here the differential rotation of
the disc, and not the warp, is the ultimate source of energy for the r mode. Although the
parametric instability analysis gives a dependence of the growth rate on the disturbance
amplitude in agreement with the numerical results, it is simplistic and does not consider
all the details of the coupling mechanism. A parallel between the parametric instability
and the excitation mechanism is therefore not straightforward.

In the strong dissipation regime, the intermediate wave dissipates completely, and
does not influence the variation of the r mode growth rate with both the sound speed of
the disc and the spin of the black hole. In this regime, the growth rate decreases with
increasing cs, as expected. The hotter the disc is, the wider the modes get, which means
that if the sound speed is high, the modes are not as well trapped. More importantly,
the shape of the warp changes when the sound speed changes since its wavelength λW is
proportional to cs. The interaction relies on the use of the warp twice, therefore it can
be argued that the growth rate is proportional to |dW/dr|2 (|W | only represents the tilt
and not the “true” warp). Since |dW/dr|2 ∝ W 2

in/λ
2
W ∝ W 2

in/c
2
s , for fixed sound speed the

growth rate is proportional to the square of the inner warp amplitude [Fig. 5.5 (b)] and
for fixed Win, the growth rate varies with 1/c2

s [Fig. 5.5 (c)]. The small changes to the
1/c2

s law are justified by the fact that, for large sound speed, the decay rate due to the
“leakage” at rout is considerable.

As for the variation of the growth rate with the spin of the black hole, an important
conclusion is that, in fact, as argued in the beginning of this chapter, there is no mode
excitation if the black hole is non-rotating. This was not evident in Kato’s simple estimates
for the growth rates. The fact that the growth rate increases with a is also expected, not
only because the waves are better confined for larger values of a, but mainly because the
average warp amplitude in the trapped region is larger for larger a. Also, the wavelength
of the warp decreases as a increases because the Lense–Thirring frequency [cf. equation
(1.57)] increases. Therefore, for the same inner W , a larger dW/dr is achieved. In light of
these very preliminary results, it could be argued that HFQPOs would preferentially be
detected in black hole candidates with large spin, if the interaction of the trapped r mode
with a warped disc is the mechanism responsible for the excitation of the former.
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5.4.2 Growth rates in eccentric discs

For the interaction between the r mode and the intermediate wave in an eccentric disc,
the variation of the growth rate with the dissipation factor is similar to the same variation
for the interaction in a warped disc [Figs 5.7 (a) and 5.5 (a)]. Also, the change of the
growth rate with the inner eccentricity [Fig. 5.7 (b)] is very similar to the variation of the
growth rate with the warp tilt at the inner radius, i.e., there is a square dependence on the
eccentricity amplitude at rin. This is expected as the eccentric mode plays, in the wave
interaction described in this section, the role of the warp in the interactions described
previously. Similarly, the variation with the sound speed [Fig. 5.7 (c)] is also the expected
one.

The main difference between the interaction with the warp and the interaction with
the eccentric mode is in the variation of the growth rate with the spin of the black hole
[Fig. 5.7 (d)]. The warp, being a n = 1 mode, has a variation with radius that strongly
depends on the Lense–Thirring precession frequency, and therefore, that strongly depends
on a. On the other hand, the variation of the eccentricity amplitude with radius, given by
equation (4.55), is less dependent on the spin of the black hole. Therefore, the variation
of a only causes variations of a factor of, at maximum, two in the growth rate obtained for
the interaction in an eccentric disc. A very important difference is the fact that, in this
interaction, a reasonable growth rate can be obtained in the case where a = 0. Therefore,
in slowly rotating black holes, HFQPOs might be detected if the disc is eccentric, and if
this excitation mechanism is responsible for the increase in the amplitude of oscillations.

5.5 Conclusions

In this chapter I have described an excitation mechanism for trapped inertial modes,
based on a non-linear coupling mechanism between these waves and global deformations in
accretion discs. It was seen that the interaction of a trapped r mode with an intermediate
wave and a deformation in the disc, results in growth of the trapped mode, if there is
some process capable of making the intermediate wave dissipate into the disc. Dissipation
is required so that this mode can remove rotational kinetic energy from the disc, which
becomes available for the r mode to grow. Depending on the values of the sound speed,
spin of the black hole and amplitude of the deformation at the inner radius, reasonable
growth rates can be obtained for warps of modest amplitude. In a warped disc, since the
growth rate varies significantly with the spin of the compact object, growth rates as large
as ω/10, where ω is the oscillation frequency, can be obtained. If a = 0, no oscillations
are excited in these discs. However, it is still possible to detect HFQPOs in non-rotating
black holes, if the discs around them are eccentric.

The coupling process described here works as an excitation mechanism for trapped
inertial waves, under a wide range of conditions, provided global deformations reach the
inner disc region with non-negligible amplitude. The propagation of global modes in a
more realistic disc model is the subject of the next chapter.
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Here I considered the excitation of trapped waves due to a non-linear coupling mech-
anism with global deformations in a simple disc model. While this effect is responsible for
the growth of these modes, it has to compete with others that contribute to the damping
of these waves. For example, since the conditions at the marginally stable orbit are un-
known, it is possible for a “leakage” of the trapped mode (similar to the one considered
in the potential barrier analogy) through rms to exist. This effect is to be considered in
chapter 7. Also viscous dissipation in the disc can cause damping of these modes. A sim-
ple estimate gives a damping rate of αΩ. For small enough values of α and large enough
warp or eccentricity, net growth can occur.

Another point to be discussed is the applicability of the results obtained here to
observed discs. A very simple, isothermal disc model and wave perturbations for which
γ = 1 was considered. In a more realistic disc, the vertical structure of the waves is
changed while they propagate radially. The wave energy concentrates either near the
surface of the disc (Lubow & Ogilvie 1998) or towards the disc mid-plane (Korycansky
& Pringle 1995), which could potentially difficult the propagation of intermediate waves
away from the Lindblad resonance, where they are excited, and make the coupling less
efficient. However, the process of “wave channelling” mentioned by Lubow & Ogilvie
(1998) is only relevant at a distance from the resonance of ∼ rL/m, where rL is the radius
of the Lindblad resonance. Since the intermediate waves have m = 1, this effect is not
important in the region where wave coupling occurs. The same is expected for discs
where the energy concentrates towards the disc mid-plane. Therefore, I believe that the
results of this chapter, obtained in a simple disc model, are still qualitatively valid in
more realistic, observed discs. This matter is discussed further in chapter 8, where the
fully-relativistic, MHD simulations of tilted discs of Henisey et al. (2009) are commented
on.



Chapter 6

Warp and Eccentricity

6.1 Introduction

6.1.1 Background

Discs around black holes are warped if the spin axis of the central object and the angular
momentum of the accreting matter are misaligned. The fluid elements in tilted orbits will
be subject to Lense–Thirring (gravitomagnetic) precession which tends to twist and warp
the disc (Bardeen & Petterson 1975). In several X-ray binaries, jets (which are thought
to be aligned with the rotation axis of the black hole) are observed to be misaligned
with respect to the binary rotation axis (e.g. GRO J1655-40, Maccarone 2002). This is
strong evidence for a warped disc around the compact object in the binary (Martin et al.
2008). As mentioned previously, warping might also be induced by radiation pressure
forces (Pringle 1996). Despite being more likely for discs around neutron star primaries
(Ogilvie & Dubus 2001), radiation-driven warping might also occur around black holes
provided the disc extends to large enough radius, as in the case of GRS 1915+105. Rau
et al. (2003) report the discovery of a possible, long-term periodicity in this X-ray binary
which may be interpreted as the precession of a radiation-induced warp in the disc.

Eccentric accretion discs are also believed to exist in black hole binaries or, more
generally, systems with mass ratio q . 0.3 (section 4.3.3). Eccentricity can result from an
instability involving the orbiting gas and the tidal potential of the companion star. Discs
may become eccentric if they are large enough to extend to the 3:1 resonance, the radius in
the disc where its angular velocity equals three times that of the binary (Lubow 1991a,b).
The strongest observational evidence for eccentric discs is the detection, in the light
curves of accreting binary systems, of long-period modulations known as superhumps,
which can be explained by the action of tidal stresses on a precessing eccentric disc
(Whitehurst 1988). Although this phenomenon is usually associated with cataclysmic
variable stars, superhumps have been detected in an increasing number of black hole
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binaries (O’Donoghue & Charles 1996; Haswell et al. 2001; Uemura et al. 2002; Neil et al.
2007; Zurita et al. 2008). In fact, black hole binaries are likely to have mass ratios q . 0.3
and therefore to have eccentric discs during at least some stages of their outbursts. Haswell
et al. (2001) noted that the mechanism responsible for superhump luminosity variations
differs in X-ray binaries and cataclysmic variables, but the underlying dynamics is the
same.

The goal of this chapter is to describe the propagation of global eccentric and warping
disturbances, under a variety of conditions, from the outer parts of the disc where they
originate to the inner parts. In the outer parts of the disc, the motion is Keplerian
and stationary or slowly precessing global deformations are supported. Since the Lense–
Thirring precession frequency increases with decreasing r, tilted orbits at different radii
will tend to precess at different rates, which tends to twist the disc. Hydrodynamic
stresses counteract this effect, resulting in wavelike warp propagation from the outer disc
to the inner region. Similarly, for eccentric discs a transition has to be made between
the Keplerian region where eccentric instabilities are driven, and the inner region where
general relativistic effects dominate the precession of elliptical orbits. It is this connection
between different regions of the disc, with different characteristics, that I attempt to
describe.

In chapter 4 I worked with a simplified set of hydrodynamic equations to describe
the warp and eccentricity as propagating global modes. Such a simplified description
was introduced in order to deal with the non-linear couplings of different wave modes
of chapter 5. Within this framework an equation for the warp tilt W at each radius
(similar to the one given by Papaloizou & Lin 1995) was obtained assuming the warp
to be a zero-frequency mode propagating in a strictly isothermal, relativistic disc. In
addition to being valid only where cs is constant and where viscous effects are negligible,
the equation derived does not hold for large radius, where the wavelength of the warp
becomes comparable to r, since some terms were omitted in the local approximation
applied. A similar method was used to derive an equation for the eccentricity at each
radius E valid only for an inviscid and strictly isothermal disc.

Here I consider the more general description of a stationary, wave-like warp and
eccentricity given by Lubow et al. (2002) and Goodchild & Ogilvie (2006), respectively.
These theories are less general than the ones formulated by Ogilvie (2000, 2001) since
they consider deformations to have small amplitude, and not all viscous or turbulent
effects are included. Also, the Goodchild & Ogilvie (2006) calculation uses a simplified,
2D disc model. However, the secular theories of Lubow et al. (2002) and Goodchild &
Ogilvie (2006) are appropriate for thin discs of any given structure, and allow for viscous
(turbulent) damping of deformations.
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6.1.2 Black hole states and high-frequency QPOs

As seen in the introduction of this thesis, observations indicate that black hole systems can
be found in different spectral states, going from the quiescent state to low, intermediate,
high and very high states as the mass accretion rate increases (see McClintock & Remillard
2006, and introduction of this thesis). The very high state, dominating close to the
Eddington limit, is the one where high-frequency QPOs are almost exclusively detected.

The accretion flow has different characteristics in different black hole states. If
the disc properties are such that the warp and eccentricity can propagate to the inner
region, the interaction between relativistic effects and global deformations can give rise to
interesting phenomena. In particular, the warp and eccentricity can have a fundamental
role in exciting trapped inertial modes, which may explain high-frequency QPOs (Nowak
et al. 1997), as previously suggested by Kato (2004, 2008) and by the results of chapter
5.

Here I show that the inward propagation of warp and eccentricity is facilitated for
high accretion rate. For fixed viscosity, global deformations reach the inner region of
the disc with a modest amplitude when the accretion rate is high, and can take part
in the excitation mechanism for inertial modes trapped in this region. If high-frequency
QPOs can be identified with these trapped inertial waves, it can be argued that they
are predominantly detected in the very high state, where the accretion rate is close to
Eddington, because only in this case global deformations can reach the inner region with
non-negligible amplitude and excite the trapped modes.

6.1.3 Chapter outline

In section 6.2, I introduce the disc model in which the propagation of global deformations
is studied. I consider a disc with a polytropic structure in the vertical direction, constant
opacity, and with gas and radiation contributing to the total pressure. In section 6.3 I
describe the propagation of global disturbances by solving equations for the warp tilt and
eccentricity at each radius. To mimic several possible conditions in a disc with a fixed
viscosity α around a black hole of a given mass and spin, I vary the accretion rate and
the damping of the warp and eccentricity. The results obtained are discussed in section
6.4. Conclusions are presented in section 6.4.

6.2 Disc model

The disc model considered in this section is similar to the innermost regions of the model
introduced by Shakura & Sunyaev (1973). The flow is assumed to be geometrically
thin and optically thick with constant opacity but the vertical structure is treated more
carefully than in the standard model. The reason for this is that a rather accurate
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treatment of the vertical structure is necessary since, e.g., a factor 2 error in the disc
thickness makes a considerable difference to the propagation of global deformations to
the inner region. I use the traditional viscosity prescription, µ = αp/ΩK, that is, as in
the original model, the viscous torques responsible for angular momentum transfer are
taken to be proportional to the total pressure. Even though such discs are believed to be
viscously (Lightman & Eardley 1974) and thermally (Shakura & Sunyaev 1976) unstable
in the radiation pressure dominated regime, simulations (Hirose et al. 2009) don’t show
signatures of such instabilities (see discussion at the end of section 1.1.2). In any case,
and for comparison, I also calculate a disc model where the stress scales with the gas
pressure only.

It should be noted that the model presented in this section is Newtonian. The
effect of the black hole gravity shows up only in the choice of the inner radius, which is
taken to be the marginally stable orbit and is, therefore, dependent on the rotation of
the compact object. The relativistic correction factors of Novikov & Thorne (1973) are
not of great significance here since the most important relativistic effects in the study
of warp and eccentricity propagation are the apsidal and nodal precession. Therefore,
throughout this section, Ω = ΩK = Ωz =

√
GM/R3. However, relativistic expressions for

the characteristic frequencies are employed in the remainder of the chapter to correctly
represent the apsidal and nodal precession in the equations for warp and eccentricity.

6.2.1 Vertical structure

Independently of the viscosity prescription, the radiation-pressure dominated region might
suffer from another type of instability aside from the classic thermal and viscous instabili-
ties. In the Shakura & Sunyaev model, the dissipation rate per unit volume is independent
of z. If the dissipation rate per unit mass is also vertically constant, then the density is
independent of z, vanishing abruptly at the vertical boundaries of the disc, z = z0(R)
(Shakura & Sunyaev 1973). A disc with these properties is subject to convective insta-
bility (Bisnovatyi-Kogan & Blinnikov 1977).

Simulations of radiation-dominated discs by Turner (2004) indicate that neither is
the dissipation per unit mass constant nor is the density independent of z. In fact, the
computed density profile resembles more that of a polytropic model with index s = 3 (see
also Agol et al. 2001). Using the polytropic law, p ∝ ρ4/3, in the hydrostratic equilibrium
equation (1.12) it is straightforward to get

ρ = ρ0(R)

[
1−

(
z

z0

)2
]3

(−z0 < z < z0). (6.1)

This result was used by Bisnovatyi-Kogan & Blinnikov (1977), who argued that convection
in the radiation-pressure dominated region would establish a vertically isentropic structure
(T 3/ρ = constant in z).
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The s = 3 polytropic structure has the convenient property of allowing for a ratio
of radiation to gas pressure,

βrg =
pr

pg

=
4σµmmp

3ckB

T 3

ρ
, (6.2)

that is independent of z. Using (6.1) in the hydrostratic balance equation it is simple to

get p = p0(R)
[
1− (z/z0)

2]4
, where

p0 =
Ω2

zz
2
0

8
ρ0 =

Ω2z2
0

8
ρ0. (6.3)

This is consistent with the equation of state (1.29) provided T = T0(R)
[
1− (z/z0)

2],
and independently of the variation of βrg with radius. Therefore, the polytropic vertical
structure with s = 3 can be used to model not only the radiation pressure dominated
regime but also the gas pressure dominated region. In fact, a full treatment of the vertical
structure of a gas pressure dominated disc indicates that the resulting profiles are very
similar (except perhaps F (z) for large z) to those obtained for a polytropic model with
s ≈ 2.7 (Ogilvie 2005). This result, and the simulations in radiation-pressure dominated
regions, indicate that assuming a polytropic vertical structure with s = 3 throughout the
radial extent of the disc is a good approximation, provided the opacity remains constant.
This is true of the innermost regions [(a) and (b) in the Shakura & Sunyaev model] of the
disc. Since I’m most interested in the propagation of global deformations in these regions,
I take the opacity to be constant throughout the disc, i.e., region (c) is neglected in the
model presented. In fact, the physics of region (c) is more complicated than assumed by
Shakura & Sunyaev (1973), because of the presence of different sources of opacity and the
importance of irradiation and partial ionisation.

6.2.2 Radial structure

The assumptions of hydrostatic equilibrium and vertical isentropy (or equivalently, s = 3
polytropic structure in z), together with the equation of state, are enough to determine
the vertical structure of the disc. In other words, it is possible to determine the variation
of ρ, p and T with z without the requirement of radiative balance (see discussion in section
3.1 of Agol et al. 2001). However, to fully determine the radial structure, ρ0(R), p0(R),
T0(R) and z0(R), two more equations are needed since the polytropic relation is not valid
in the radial direction.

Since matter is being accreted in the disc, there are radial drift motions which
transport mass and angular momentum. In steady thin discs the conservation of both mass
and angular momentum can be expressed in the form (1.8): ν̄Σ = (Ṁ/3π)(1−

√
Rin/R).



138 Warp and Eccentricity

Here, Rin is taken to be the marginally stable orbit and the (density-weighted) mean
kinematic viscosity ν̄(R) is defined as usual by

ν̄Σ(R) =

∫ z0

−z0

µ(R, z)dz = α
P

Ω
, (6.4)

where

Σ(R) =

∫ z0

−z0

ρ(R, z)dz =
32

35
ρ0z0, (6.5)

P (R) =

∫ z0

−z0

p(R, z)dz =
256

315
p0z0. (6.6)

The final equation comes from energy considerations. It is traditional to assume that
the disc is in radiative equilibrium. However, convection, turbulence or other motions can
also contribute to the transport of energy to the disc surface. In fact, if the disc has a
polytropic vertical structure with s = 3, the radiative diffusion law gives Frad proportional
to z. If F = Frad, i.e., if radiative diffusion carries the entire energy flux, then (1.19) gives
a dissipation rate per unit volume independent of z. This is neither consistent with the

α viscosity prescription assumed here since p = p0(R)
[
1− (z/z0)

2]4
, nor is in agreement

with simulations of radiation-pressure dominated discs (Turner 2004). Therefore, here I
use the energy balance equation in the form∫ z0

0

∂

∂z
(Frad + Fextra) dz =

∫ z0

0

µ (RΩ′)
2
dz, (6.7)

where the energy transport by other motions rather than by radiative diffusion is en-
compassed in Fextra. Since radiation is supposed to carry the entire heat flux at the
photosphere z = z0, I assume that the extra term integrates to zero so that the energy
balance can be written as

Frad(R, z0) =
1

2
(RΩ′)2

(
α

P

Ω

)
, (6.8)

since Frad(R, z = 0) = 0 by symmetry.

In summary, the equations necessary to fully determine the radial structure of the
disc (hydrostatic equilibrium, equation of state, energy balance, conservation law) can be
written in the form

P

H2Σ
=

GM

R3
, (6.9)
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βrg(1 + βrg)
3 Σ4

HP 3
=

729

140

σ

c

(
µmmp

kB

)4

, (6.10)

P 4

Σ5(1 + βrg)4
=

35

1458π

κT

σ

(
kB

µmmp

)4
GM

R3
Ṁf, (6.11)

P =

√
GM

R3

Ṁ

3πα
f. (6.12)

Here I take µm = 0.615, κT = 0.33 cm2g−1, and use non-dimensional parameters to
represent the dependence on mass, accretion rate and radius. The radial structure of the
disc can be represented in terms of Σ(R), P (R), βrg(R) and H(R), the (density-weighted)
scale-height of the disc defined by

H2 =

∫ z0

−z0
ρz2dz∫ z0

−z0
ρdz

=
z2
0

9
. (6.13)

The equations read:

Σ = 2.5× 105 ṁ3/5α−4/5m1/5f 3/5r−3/5(1 + βrg)
−4/5, (6.14)

P = 3.0× 1022 ṁ α−1fr−3/2, (6.15)

βrg(1 + βrg)
−3/5 = 3.6× 102 ṁ4/5α1/10m1/10f 4/5r−21/20, (6.16)

H = 1.7× 103 ṁ1/5α−1/10m9/10f 1/5r21/20(1 + βrg)
2/5, (6.17)

where m is the mass in units of M�, ṁ is the accretion rate in units of the Eddington
accretion rate assuming an efficiency1 of 0.1, f = 1−

√
rin/r, where rin is the dimension-

less, spin dependent, radius of the marginally stable orbit; H, Σ and P are in cgs units.
It should be noted that in the limits βrg � 1 (Pr dominates) and βrg � 1 (Pg dominates)
the same dependencies in m, ṁ, α, r and f as in regions (a) and (b), respectively, of the
Shakura–Sunyaev model are recovered [cf. equations (1.30)–(1.38)]:

(a) βrg � 1:

Σ = 1.9 α−1ṁ−1r3/2f−1, (6.18)

βrg = 2.4× 106 ṁ2α1/4m1/4f 2r−21/8, (6.19)

1Here the “accretion efficiency” is assumed slightly higher than assumed in chapter 1 (0.06) as black
holes of non-zero spin are being considered.
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H = 6.1× 105ṁ m f. (6.20)

(b) βrg � 1:

Σ = 2.5× 105 α−4/5ṁ3/5m1/5r−3/5f 3/5, (6.21)

βrg = 3.6× 102 ṁ4/5α1/10m1/10f 4/5r−21/20, (6.22)

H = 1.7× 103 α−1/10ṁ1/5m9/10r21/20f 1/5. (6.23)

The expression for the total pressure in both regions is the same and is given by (6.15).
The differences in the numerical factors are mainly due to the treatment of the vertical
structure.

In order to get a smooth transition between the two regions, and to allow for a
combination of gas and radiation pressure throughout the disc, equation (6.16) is solved
numerically. The resultant function, βrg(r), is then used in (6.17) and (6.14) in order
to get expressions for H(r) and Σ(r). The radial disc structure obtained here is used in
the study of the warp and eccentricity propagation, which is described in the following
section.

Care is taken over the basic disc model because it is important to obtain a smooth
density profile for the disc in order to calculate the propagation of the warp and eccen-
tricity. Also, since H2 appears in the equations for those quantities, the factor of 1/9 in
equation (6.13) makes a significant difference.

For comparison, I also include in this section the expressions obtained for region
(a), if the stress scales with the gas pressure instead of total pressure (µ = αpg/Ω). The
semi-thickness of the disc is independent of the viscosity prescription, so that (6.20) is
still valid. The surface density is given by (6.21) while βrg and P are given by

P = 3.9× 1027 ṁ13/5α−4/5m1/5f 13/5r−18/5, (6.24)

βrg = 1.3× 105 ṁ8/5α1/5m1/5f 8/5r−21/10. (6.25)

Fig. 6.1 shows how βrg, the surface density, the vertically integrated pressure and
the isothermal sound speed (squared), c2

s = p0/ρ0 = 9
8
Ω2H2, vary with radius for a disc

with α = 0.1, a = 0.5 and m = 10, for two different values of the accretion rate. The
differences in the disc structure when the stress scales with the total pressure or with the
gas pressure are more evident in the innermost region of the disc, and for higher accretion
rate, i.e., where radiation pressure is more important. The exception is the sound speed,
proportional to the thickness of the disc, since H in the radiation-pressure dominated
region is independent of the viscosity prescription.
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Figure 6.1: Log-log plot of the variation of (a) βrg = Pr/Pg, (b) surface density, (c)

vertically integrated pressure and (d) sound speed in units of c with radius for ṁ =

0.1, 0.5, α = 0.1, a = 0.5 and m = 10. The full lines represent the disc model with a

combination of gas and radiation pressure when the stress scales with total pressure, while

the dashed lines correspond to solutions in regions (a) and (b) when the stress scales with

the gas pressure only.



142 Warp and Eccentricity

6.3 Stationary propagation of warp and eccentricity

In the general case, the warp tilt and the eccentricity are not only functions of space but
also of time, and their evolution has been studied by (e.g.) Lubow et al. (2002) and Ogilvie
(2001), respectively. However, the characteristic time-scale for the precession of a global
warp or eccentricity is small when compared to the orbital frequency in the binary system,
which implies that the frequency of these global deformations is negligible compared to
the characteristic frequencies in the inner part of the disc. Therefore, I choose to study
the steady shape of a warped or eccentric disc around a black hole.

6.3.1 Equations

In this section I introduce the equations that are used to describe the stationary wave-like
propagation of warp and eccentricity in the disc model presented in the previous section.

The variation of the tilt of the disc, W , with radius can be obtained from (Lubow
et al. 2002)

d

dR

[(
PR3Ω2

Ω2 − κ2 + 2iαWΩ2

)
dW

dR

]
= ΣR3(Ω2

z − Ω2)W. (6.26)

This equation describes how propagating bending waves communicate the warp through
the disc and is valid for small-amplitude warps; W describes the amplitude and phase of
the inclination of the disc. The local wavelength of these bending waves is approximately
the one given by the dispersion relation (4.21) for (ω,m, n) = (0, 1, 1), if αW = 0. The
warp propagation is subject to viscous decay, which is described here by a dimensionless
viscosity parameter designated αW. In the general case of non-isotropic viscosity, αW 6= α
as the former is related to the Trz and Tφz components of the stress tensor T while the
latter is related to Trφ (see Lubow et al. 2002, and references therein).

The stationary propagation of a small eccentricity through the disc can be described,
in the simplest case, by (e.g. Goodchild & Ogilvie 2006)

d

dR

[
(γ − iαE) PR3 dE

dR

]
+ R2 dP

dR
E = ΣR3(κ2 − Ω2)E, (6.27)

where E is a (possibly) complex function representing the amplitude and phase of the
eccentricity at a given radius. In a strictly isothermal disc, the ratio of specific heats
γ = 1 and the global modes described by this equation have a local wavelength which
is approximately the one given by the dispersion relation (4.21) for (ω,m, n) = (0, 1, 0),
if αE = 0. The equation describing the eccentricity propagation is based on, and agrees
with the local dispersion relation of, a 2D disc; 3D effects are discussed by Ogilvie (2001,
2008). The parameter αE in equation (6.27) is essentially a bulk viscosity. Effects of shear
viscosity are not included as its direct implementation may lead to growing eccentric waves
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(viscous overstability, Kato 1978) (see also Ogilvie 2001, references therein and Part II
of this thesis). The process of turbulent eccentricity damping is poorly known and the
simplest way of describing it is by using a dimensionless bulk viscosity parameter.

In order to include relativistic effects in the problem, I take Ω−1 = (GM/c3)(r3/2+a)
and use expressions (1.55) and (1.56) for the radial and vertical epicyclic frequencies,
respectively. For the surface density Σ and vertically integrated pressure P , expressions
(6.14) and (6.15) are used.

It may be argued that a limitation of the disc model used in the calculations and
introduced in section 6.2 is the fact that it does not include relativistic effects. For exam-
ple, the law for angular momentum conservation in relativistic discs (Novikov & Thorne
1973) is slightly different from the one used here [cf. (1.8)]. However, relativistic correc-
tions are small and their inclusion is not expected to significantly affect the final results.
Also, since the terms on the right-hand side of equations (6.26) and (6.27) dominate the
warp and eccentricity propagation, it is more important to introduce relativistic effects
in these equations by using expressions (1.54)–(1.56) for the characteristic frequencies, as
they correctly describe apsidal and nodal relativistic precession rates, related to Ω2

z − Ω2

and κ2 − Ω2.

6.3.2 Numerical method

Equations (6.26) and (6.27) are solved numerically, using a 4th order Runge–Kutta
method. In the case of the warp, the boundary condition that corresponds to zero torque
at the inner edge, dW/dR(Rin) = 0, is employed. In order for the amplitude of the solu-
tion to be fixed, I specify the value W0 = W (Rin) at the inner edge, which corresponds
to the (small) inclination of the inner edge of the disc with respect to the equator of the
black hole. For the eccentricity I use similar boundary conditions: dE/dR(Rin) = 0 and
E0 = E(Rin). To avoid the formal singularity of the equations at the marginally stable
orbit, here I take Rin = Rms + δR, where δR � Rin is an arbitrary value; the solutions
for W (R) and E(R) are practically independent of the choice of δR. The solutions are
linear and can be renormalized to obtain any desired Wout and Eout, the values of disc tilt
and eccentricity at the outer radius. This normalisation is particularly meaningful in the
case of W (R) since Wout is the (constant) disc tilt at large radius, which can be related
to observations.

To solve the warp and eccentricity equations I consider a black hole with 10 solar
masses, i.e. m = 10, and spin a = 0.5. The ratio of specific heats is given by (e.g.
Kippenhahn & Weigert 1996)

γ =
5 + 40βrg + 32β2

rg

3 + 27βrg + 24β2
rg

. (6.28)

In regions (a) and (b) this expression gives γ ≈ 4/3 and γ ≈ 5/3, respectively. The
dimensionless viscosity parameter α is regarded as constant throughout the disc as in
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Shakura & Sunyaev (1973). Although simulations suggest values of α of the order 10−2,
according to King et al. (2007) observations indicate a typical range of α ∼ 0.1−0.4. Here
I choose to fix the viscosity parameter to 0.1. Parameters αW, αE and ṁ can be varied.
To mimic the transition between different black hole states I fix the viscous damping and
vary the mass accretion rate. The results and corresponding discussion are presented in
the next section.

6.4 Results and Discussion

6.4.1 Undamped propagation

Fig. 6.2 shows the variation with radius of the warp tilt and eccentricity for increasing
accretion rate when αW = 0 = αE. In this case no dissipation is present in the equations
for global deformations, so they propagate everywhere with non-negligible amplitude.
Since the imaginary part of the solutions is zero, the warp comprises a pure tilt, i.e., the
disc is not twisted (Lubow et al. 2002). For small accretion rate the warp has an oscillatory
shape as previously described by Ivanov & Illarionov (1997). The wavelength increases
with radius and, at large R, W tends to a constant value, the inclination of the outer disc
with respect to the equator of the black hole. Note, however, that contrary to the results
of Bardeen & Petterson (1975) the inner disc is not necessarily aligned with the mid-plane
of the compact object, as previously shown by Lubow et al. (2002). The simulations of
Fragile et al. (2007) also found hints of an oscillatory structure characterised by a long
wavelength with no indication of the Bardeen-Petterson effect. Eccentricity also has an
oscillatory structure but its wavelength is shorter (yet much longer than the semi-thickness
of the disc) and has a slower increase with radius [Fig. 4.5 (b)]. The shortening of the
wavelengths at small radius of both the warp and eccentricity implies a sharp increase of
the gradients dW/dR and dE/dR in the inner region of the disc. This is an important
feature in terms of wave coupling in this region since the growth rate for inertial modes
that are trapped below the maximum of the epicyclic frequency, and interact with global
deformations, is proportional to |dW/dR|2 or |dE/dR|2 (chapter 5).

The basic behaviour of the numerical solutions presented in this section can be
explained using WKB theory. In particular, it is possible to predict how the wavelength
and amplitude of the several solutions scale with radius. A WKB analysis of the secular
theories can be performed by assuming the deformations W and E to be proportional to
exp(

∫
i b dR), where b is a function of R to be determined. The dP/dR term in equation

(6.27) can be ignored in the WKB analysis since relativistic precession dominates the
propagation of eccentricity. Letting DW = W (R) and DE = E(R), equations (6.26) and
(6.27) can be written in the form

d

dR

(
gi

dDi

dR

)
+ hiDi = 0, i = W, E. (6.29)
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Figure 6.2: Radial variation of (a) the warp tilt and (b) eccentricity normalised to their

values at the outer radius for αW = 0 = αE (i.e., no viscous damping) for (1) ṁ = 0.2,

(2) ṁ = 0.4, (3) ṁ = 0.8. The full line represents the real part of the disturbance while

the imaginary part is represented by the dashed line. A logarithmic scale is used for the

x-axis.
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Figure 6.3: Solutions for (a) warp and (b) eccentricity propagation in region (a) (βrg � 1)

for αW = 0 = αE, m = 10, a = 0.5, ṁ = 0.1, when the stress scales with the (1) total

pressure and the (2) gas pressure. The full line represents the real part of the disturbance

while the imaginary part is represented by the dashed line. The dot-dashed curves show

the radial variation of the amplitude of the deformations, as predicted by the WKB

analysis.
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The WKB solution is valid where the radial variation of gi and hi is slow and is given by

Di ≈ (gihi)
−1/4 exp

[
±

∫
i
√

hi/gidR

]
. (6.30)

In the inviscid case (αW = 0 = αE), gW ≈ PR3/6r−1, hW ≈ ΣR3Ω24ar−3/2, gE = γPR3,
and hE ≈ ΣR3Ω26r−1, keeping only the lowest-order terms in the expressions for Ω2 − κ2

and Ω2 − Ω2
z. Remembering that P = Ω2H2Σ [from equation (6.9)], one can write

W ∝ r1/8(ΣH)−1/2 exp

[
±

∫
i

√
24a

r5/2H2
dR

]
, (6.31)

E ∝ r1/4(ΣH)−1/2 exp

[
±

∫
i

√
6

γrH2
dR

]
, (6.32)

where the variation of γ with radius was ignored. If the stress scales with the total
pressure, these expressions indicate that the amplitude of the warp should be proportional
to r−5/8 in region (a) and to r−1/10f−2/5 in region (b). The amplitude of the eccentricity is
proportional to r−1/2 in the radiation-pressure dominated regime and to r1/40f−2/5 when
gas pressure dominates. If the stress scales with the gas pressure only, the amplitudes
in region (a) are proportional to r17/40f−4/5 and r11/20f−4/5 in the case of the warp and
eccentricity, respectively. The results for region (a) can be confirmed in Fig. 6.3. In region
(b) r � rin, f ≈ 1, so that the radial variation of both warp and eccentricity amplitudes
is slow, as seen in Fig. 6.2. The eccentricity does not tend to a constant at large radius
because its amplitude is slowly increasing when r increases. The warp amplitude decreases
with r but does not tend to zero as indicated by the WKB scaling. The reason for this
apparent contradiction is in the failure of the WKB approximation at large radii where
the wavelength tends to infinity.

The radial variation of the wavelength of the deformations can also be understood
in light of the WKB theory. From equations (6.31) and (6.32), it can be seen that the
wavelengths are given by λW ≈ Hπr5/4/

√
6a, and λE ≈ 2Hπr1/2

√
γ/6, for the warp and

eccentricity respectively. These dependencies are in agreement with the results shown in
Fig. 6.2, where it is clear that the wavelengths of the deformations increase with radius
and with the disc thickness [or equivalently with the accretion rate, cf. (6.20), (6.23)]. The
increase in λ when ṁ increases is evident: in particular, for ṁ = 0.8 the wavelength of the
warp becomes so large that it practically loses its oscillatory character, but still maintains
the sharp increase in dW/dR. Even in this case, the inner disc is not aligned with the
equator of the black-hole as in the Bardeen & Petterson (1975) picture. Unfortunately
the behaviour of the solutions very close to the marginally stable orbit cannot be trusted
in detail because the singularity of the disc model there ought to be resolved by the
transition to a supersonic inflow (see Part II and chapter 7).
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6.4.2 Damped propagation

Fig. 6.4 shows the variation with radius of the warp tilt and eccentricity in the case
where a significant attenuation is present. The values of αW = 0.15 and αE = 0.25 are
both larger than the viscosity value α used to model the disc, and are chosen so that
the warp and eccentricity have negligible amplitude at the inner region of the disc, for
small accretion rate (ṁ = 0.2). For dissipation values smaller than these ones, the global
deformations propagate everywhere with non-negligible amplitude even for small accretion
rate, although with larger amplitude in the inner region for larger ṁ.

An important difference between the results presented here and the ones in Fig. 6.2 is
the existence of a non-zero imaginary part in the solutions. This shows that the reflection
of the global deformations from the stress-free boundary is no longer perfect. They are
affected by viscous attenuation and, in consequence, their amplitude is reduced as they
propagate to smaller radii; a wave with inward group velocity, as opposed to a standing
wave, is set up.

It is evident from Fig. 6.4 that when the accretion rate increases the global defor-
mations propagate to the inner region of the disc more easily, i.e., the amplitude of warp
and eccentricity in the inner region increases with ṁ. This result can be explained in
light of the WKB analysis introduced in 4.1. If a small viscosity is present (αW, αE 6= 0),
the WKB solution for the warp and eccentricity includes an attenuation factor due to the
presence of a imaginary wavenumber ki,

kWarp
i ≈ ±αW

3H

√
6a

r1/2
, kEcc

i ≈ ± αE

2γH

√
6

γr
. (6.33)

If H/r varies slowly with radius, the logarithm of the attenuation factor is∫ ∞

Rin

|ki|dR ∼ αi

H/r
(αi = αW, αE), (6.34)

indicating that, for fixed viscosity, the attenuation is smaller if the thickness of the disc
(or equivalently ṁ) is larger.

The results presented in this section indicate that global deformations can reach
the inner region of accretion discs under a wide variety of conditions. In particular, even
when subject to large viscous attenuation, both warp and eccentricity can reach the inner
disc provided the black hole is accreting mass at a large enough rate.

Some caveats accompany the solutions obtained for W (R) and E(R). The equations
used assume that these quantities are small enough so that non-linear effects can be
neglected. They also assume that the quantities |1− Ω2

z/Ω
2| and |1− κ2/Ω2| are smaller

than, or of the order of, H/r which is not true of the inner region of relativistic discs.
Another important caveat relates to the effects of viscosity in the propagation of global
deformations. Here they are parametrised using viscous coefficients αW and αE; this is
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Figure 6.4: Radial variation of (a) the warp tilt and (b) eccentricity normalised to their

values at the outer radius for αW = 0.15 and αE = 0.25 for (1) ṁ = 0.2, (2) ṁ = 0.4,

(3) ṁ = 0.8. The full line represents the real part of the disturbance while the imaginary

part is represented by the dashed line. A logarithmic scale is used for the x-axis.
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the simplest way of describing the poorly understood process of turbulent damping in
accretion discs. In the particular case of the eccentricity equations only a bulk viscosity
is present so that the complications of viscous overstability can be avoided. However, the
latter may be present resulting in growth (as opposed to decay) of eccentricity at small
radii.

6.4.3 Relation to global modes

The results shown above relate to strictly stationary warp deformations such as those
induced by the misalignment between the rotational axis of the black hole and that of
the binary orbit. They also apply to slowly precessing global eccentric modes similar
to those computed by Goodchild & Ogilvie (2006) but including relativistic expressions
for the characteristic frequencies. When these relativistic expressions are included, the
solution for global warping and eccentric modes in the inner disc resembles the stationary
solutions described above, while the outer part of the solution is practically unaffected.
In addition, the precession rate (and, when viscosity is included, the decay rate) of global
modes is almost the same as in a Newtonian model.

6.5 Conclusion

In this chapter I studied the propagation of warp and eccentricity in discs around black
holes to determine the conditions under which these disturbances can propagate to the
inner regions of accretion discs. High-frequency QPOs have previously been identified
with inertial oscillations trapped in the inner region of discs, and are detected mainly
when black holes are in the very high state where accretion rate is maximum. I find
the accretion rate to have a vital role in the damped propagation of global deformations.
The results suggest that the activation of the inner region, and consequent excitation of
trapped oscillations by these disturbances, may be possible only when the accretion rate
is close to its Eddington value, i.e., when the black hole is in the very high state.

When the propagation of global disturbances (found to have an oscillatory structure
in the radial direction) is not affect by viscous damping, the increase in mass accretion
rate gives rise to a lengthening in their wavelength, in agreement with the WKB analysis
of the warp and eccentricity equations. The most interesting results of the calculations
described here are obtained when the more realistic situation of damped propagation of
global disturbances is considered. In this case, the increase of accretion rate facilitates the
propagation of warp and eccentricity, i.e., their amplitudes in the inner region increase
with ṁ. In particular, when the accretion rate is only a small fraction of Eddington and
the viscous damping is strong enough to completely suppress the propagation of global
deformations, an increase in ṁ to the values expected in the very high state results in
their amplitude in the inner region being increased to a non-negligible value.



Chapter 7

Influence of background inflow on

wave propagation

7.1 Introduction

In the previous chapters of Part III I studied linear perturbations of a disc which was
assumed to terminate at the marginally stable orbit and where the background radial
inflow was neglected. However, the dynamical importance of the radial velocity in the
inner regions of black-hole accretion discs was highly emphasised in Part II. Moreover, in
the transonic models of chapter 3, the sonic point — as opposed to the marginally stable
orbit — is regarded as the inner boundary of the subsonic disc. Inertial and inertial-
acoustic waves propagating in the inner disc, considered in chapters 4 and 5, are likely to
be affected when this transonic background is taken into account.

In the present chapter, I aim to understand how linear perturbations of a steady
(i.e., with viscosity parameter α < α∗) transonic flow behave and how they are influenced
by the presence of a sonic point. This is done in two ways as reflected in the two-fold
structure of this chapter. In the first section I study the propagation of waves in a 1D,
isothermal flow in a gravitational potential Φ(x). In this toy model, Φ is chosen to have
a maximum at x = 0 where the flow velocity u(x) changes from subsonic to supersonic.
Linear perturbations proportional to exp(−iωt) are imposed on the flow and the reflection
of these waves at x = 0 (where equations describing such perturbations are singular) is
calculated for different potential shapes and wave frequencies. In the second section I
investigate how trapped inertial modes are affected by the background radial inflow and
by a sonic point at the inner disc boundary.

The results obtained here have implications for the excitation mechanism of trapped
inertial waves which has been the main focus of this part of the thesis. As detailed in
chapter 5, this mechanism relies on a variety of assumptions. For example, the coupling
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between inertial waves, a global deformation and negative-energy intermediate oscillations
relies on damping of the latter to provide the necessary energy for sustained growth of
the r modes. In chapter 5 this dissipation was assured by artificially placing a damping
term in the equations for the intermediate waves. This term is supposed to describe the
expected absorption of these waves as they approach their corotation resonance or the
inner disc boundary. (While the n = 2 intermediate mode can be damped at corotation, as
determined by Li et al. (2003), the coupling with the n = 0 oscillation relies on absorption
at the inner boundary to remove the mode’s negative energy.) The problem investigated
in section 7.2 is expected to provide clues about the conditions under which reflection
or absorption of waves at the sonic point is possible. When the transonic nature of the
flow is considered, the disc isn’t taken to artificially terminate at the marginally stable
orbit, the surface density doesn’t decrease suddenly to zero there and the inner boundary
is no longer a totally reflecting wall. Depending on the variation of the density profile
in the transonic region [mimicked by the shape of the potential Φ(x)] and on the wave
properties, the oscillations may either be absorbed or reflected there.

At this point it is important to note that, simultaneously with the research described
here, the influence of a non-negligible radial inflow on inertial-acoustic modes trapped in
the innermost region of subsonic discs was studied by Lai & Tsang (2009). They calculated
the reflection of these oscillations at the sonic point and determined how the reflection
coefficient depends on several parameters of the disc inner edge. Their results indicate
that wave loss at that radius is significant unless the surface density decays rapidly at the
sonic point. Even taking this study into account, the analysis done in the 1D isothermal
flow in a potential is of interest to determine the relation between the flow characteristics
at the sonic point, the wave properties and the reflection coefficient under more general
conditions.

Returning to the implications of a non-negligible radial inflow to the excitation
mechanism, perhaps most important is how the r modes themselves are affected. For the
growth of inertial waves to be effective the “leakage” from the epicyclic trapping barrier to
both the outer and inner parts of the disc has to be relatively small. While it was shown
before that the “outer leakage” results in a small decay rate (cf. Table 5.1) which can
easily be surpassed by the growth due to the coupling with the warp or eccentricity, the
“inner leakage” is yet to be considered. The presence of the radial inflow and of a singular
sonic point (as opposed to a rigid wall) at the inner boundary are of crucial importance
to determine how much the inertial waves decay as they leak into the plunging region.
The analysis of section 7.3 shows that, depending on the location of the sonic point, the
decay rate can have a strong dependence on the sound speed and may, in some situations,
be larger than the growth attained by coupling with a global deformation. In addition,
for large enough sound speeds and for the cases where the sonic point is outside the
marginally stable orbit, the Gaussian structure of the simplest possible r mode may be
deeply modified or even destroyed. The implications of these results are discussed in
section 7.3.3.
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7.2 Wave reflection at the sonic point — a toy model

7.2.1 Oscillations of a 1D flow

Consider a one-dimensional isothermal and inviscid hydrodynamic flow under the influence
of a gravitational potential Φ(x). In a steady state, the equations describing mass and
momentum conservation can be expressed in the combined form

(u2 − c2
s )

du

dx
= −u

dΦ

dx
, (7.1)

where u(x) < 0 is the inflow velocity and cs is the isothermal sound speed. The density
ρ is given by ρ = −Ṁ/u, where Ṁ > 0 is the constant mass flux. It is clear from this
equation that the sonic point, where u(x) = −cs, is located where the derivative of Φ is
zero. By differentiating (7.1) it is simple to obtain the value of the inflow derivative at
the sonic point x = x0,(

du

dx

)
0

=

√
−1

2

(
d2Φ

dx2

)
0

. (7.2)

Physical flows have (du/dx)0 real implying that the sonic point has to be located at a
maximum of the gravitational potential.

To study the propagation of waves in this medium and to see how they behave at
the sonic point, linear perturbations are imposed on the steady flow,

u(x, t) → u(x) + Re[u′(x) exp(−iωt)], (7.3)

q(x, t) → q(x) + Re[q′(x) exp(−iωt)], (7.4)

where q = ln ρ and ω is the wave frequency. Neglecting self-gravitation and non-linear
terms on the perturbed quantities, the equations for the perturbations can be written as

−iωu′ + u′
du

dx
+ u

du′

dx
= −c2

s

dq′

dx
, (7.5)

−iωq′ + u′
dq

dx
+

du′

dx
= −u

dq′

dx
, (7.6)

where q(x) can be obtained from the steady state mass conservation equation, dq/dx =
−(1/u)du/dx, and u(x) is given by equation (7.1).

For convenience, I take the gravitational potential to have a maximum at x = 0 and
to tend to a constant at large |x|. For example, Φ(x) can be assumed to be a Gaussian
of the form:

Φ(x) = N exp

(
− x2

2σ2

)
, (7.7)
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Figure 7.1: Profile of the inflow velocity −u(x) and density ρ(x) in the subsonic region

for (a) N = 0.001, σ = 5, (b) N = 0.001, σ = 10 and (c) N = 0.01, σ = 5. The sonic

point is at x = 0 where u(x) = −cs, which is taken to be 0.01. The velocities are in units

of c while the units of ρ are arbitrary (for the purpose of these plots, Ṁ was arbitrarily

chosen to be 1).
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where N is the height of the potential which has units of a velocity squared and σ is a
measure of the width of the Gaussian and has the same (arbitrary) units as x. For the
purpose of the wave reflection calculations, N is to be compared with c2

s while σ is to be
contrasted with the wavelength of the incident wave. Fig. 7.1 shows solutions of equation
(7.1) when Φ is given by (7.7) for different values of N and σ. As it can be seen, for fixed
σ, increasing N results in a steeper profile of u and ρ in the inner region. For a potential
of fixed height, the background flow varies on a small/long length scale if σ is small/large.

The region of positive x is taken to be subsonic while x < 0 is the supersonic side.
In a realistic situation of an accretion flow surrounding a black hole, u(x) < 0 everywhere
and the region x > 0 can be thought of as the accretion disc itself, where the radial inflow
is approximately constant as mimicked in this toy model. The plunging region is located
at x < 0 and the transition occurs at x = 0 where u = −cs. I am interested in studying
the behaviour of waves propagating in the subsonic region and at the transition point
where they can be reflected and/or transmitted.

Using the steady state mass conservation, equations for linear perturbations (7.5)
and (7.6) can be written in the form

dq′

dx
=

1

u2 − c2
s

[
iωuq′ − iωu′ + 2

du

dx
u′

]
, (7.8)

du′

dx
=

1

u2 − c2
s

[
−iωc2

sq
′ + iωuu′ −

(
1 +

c2
s

u2

)
du

dx
uu′

]
, (7.9)

which shows that the ODEs are singular at the sonic point. (7.8) and (7.9) can be solved
numerically everywhere except near x = 0. The desired solution is regular at this point.
To find this solution, the following analytical expansion around the sonic point is used

u(x) ≈ −cs + Ax, (7.10)

u′(x) ≈ u′0 + u′1x, u′1 = − iω

2cs

u′0, (7.11)

q′(x) ≈ q′0 + q′1x, q′0 =
iω − 2A

−iωcs

u′0, q′1 =
iω − 2A

2c2
s

u′0, (7.12)

where A = (du/dx)0 [which can be found to be
√

N/2σ2 using (7.2)] and u′0 is an arbitrary
constant. Given input parameters N , cs, σ, ω and u′0, these expansions are used in a
small region of length δx around the sonic point and equations (7.1), (7.8) and (7.9) are
integrated numerically for x ≥ δx. Two typical solutions are shown in Fig. 7.2.
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Figure 7.2: Solutions of equations (7.8) and (7.9) for cs = 0.01, σ = 5, N = 10c2
s = 0.001

[Fig. 7.1 (a)], u′0 = 1.0, and ω = 0.5cs/σ (upper 4 panels, representing a wave which is

reflected at the sonic point) and ω = 10cs/σ (lower 4 panels, representing a wave which

is absorbed at x = 0). The dashed lines represent the analytical solution given by (7.13)

and (7.14) and match the numerical solution at large x, as expected.
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7.2.2 Reflection coefficient

At large |x| where Φ is a constant (and therefore du/dx = 0 ⇒ u(x) = u, constant),
equations for the linear perturbations can be solved analytically. The solution of (7.5)
and (7.6) is then

q′(x) = k1 exp

(
iω

u− cs

x

)
+ k2 exp

(
iω

u + cs

x

)
, (7.13)

u′(x)

cs

= −k1 exp

(
iω

u− cs

x

)
+ k2 exp

(
iω

u + cs

x

)
. (7.14)

In the subsonic region, u + cs > 0 (u − cs < 0 everywhere) and the waves are composed
of outgoing and ingoing parts. The former propagate to the right and can therefore be
thought of as waves reflected from the sonic point while the latter are incident as they
propagate to the left. Assuming, without loss of generality, that ω is positive, the term
with constant k1 represents the incident wave (which has a wavelength ∼ cs/ω) while the
term with k2 represents the reflected wave. The reflection coefficient can then be defined
as

R =
|k2|2

|k1|2
. (7.15)

The constants k1 and k2 can be found by matching the numerical solution at some large
distance xl with (7.13) and (7.14):

k1 =
q′(xl)− u′(xl)/cs

2 exp [iωxl/(u− cs)]
, (7.16)

k2 =
q′(xl) + u′(xl)/cs

2 exp [iωxl/(u + cs)]
, (7.17)

where q′(xl) and u′(xl) are the values of the numerical solution of (7.8) and (7.9) at xl.
Note that because this solution coincides with that given by (7.13) and (7.14) at large x
(say for x > xmatch, as seen in Fig. 7.2), the exact value of xl is irrelevant provided it is
chosen to be larger than xmatch.

Note that because the reflection coefficient is calculated at large radii, it measures
the gradual reflection of waves as they approach the sonic point from the subsonic region
rather than the reflection at the inner boundary exactly. For example, in the case repre-
sented in Fig. 7.1 (c), the reflection probably occurs mainly in the region between x = 4
and x = 8 because that is where the density drops steeply. In any case, in a realistic disc,
this region where the density drops rapidly is expected to be closer to the sonic point.
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Figure 7.3: Variation of the reflection coefficient with N/c2
s and σ/(cs/ω). In the white

region R is practically null while in the dark grey area the reflection is close to total

(R > 0.95).

The reflection coefficient calculated in the case of Fig. 7.1 (c) would, in a realistic disc,
correspond to the reflection from the transonic region.

In Fig. 7.3, I show how the reflection coefficient changes for a range of values of
N/c2

s and σ/(cs/ω). For the purpose of these calculations, cs = 0.01 and σ = 5 were fixed
while N and ω were varied.

7.2.3 Discussion and conclusions

The calculations made here provide important information about the relation between
the properties of the flow at the sonic point, the wave characteristics and the reflection of
oscillations as they approach the inner edge.

Since σ and cs were kept constant in the determination of the reflection coefficient,
changes in N/c2

s target changes in the profile of the background flow u and density ρ. In
particular, as N/c2

s increases, u and ρ become steeper in the inner region. On the other
hand, the values of the x-axis of the plot of Fig. 7.3 roughly compare the width of the
potential to the wavelength of the incident wave. When σ/(cs/ω) is small, the wavelength
is longer than the scale on which the background varies.

The results obtained are those intuitively expected. A tall, narrow potential results
in good reflection and a low, wide one allows for transmission. More specifically, the waves
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are reflected effectively when the wavelength is comparable to or longer than the typical
length scale for background variations. This is in line with the findings of Lai & Tsang
(2009). Moreover, if the potential is sufficiently high, indicating that the background
density drops abruptly as the inner edge is approached, essentially all waves are reflected.

An interesting feature of Fig. 7.3 is the difference between the separation between
the regions of R < 0.05 and R > 0.95 for small and large N/c2

s . When the potential is
high, the waves are either completely reflected or absorbed for practically all values of
N/c2

s and σω/cs. On the other hand, for small N/c2
s , partial reflection is also possible

depending on the wavelength of the incident wave. Moreover, the slope of the reflection
contours changes depending on whether the potential is high or low. These differences can
be understood by remembering that when N/c2

s is small, the density drops smoothly and
the reflection occurs gradually. When the background density is very steep in the inner
region it works as a totally reflecting wall there if the incident wave has a wavelength long
compared to σ.

Generalising these results to the inertial-acoustic waves that work as intermediate
oscillations in the coupling mechanism described in chapter 5, it seems that absorption is
possible under some conditions. More calculations, similar to those done by Lai & Tsang
(2009) are necessary to determine if non-axisymmetric intermediate waves can indeed be
damped or partially damped at the inner boundary under realistic conditions. Nonethe-
less, in the stable, steady state disc profiles calculated in chapter 3, the background radial
inflow and density vary smoothly at the sonic point indicating that a realistic disc is prob-
ably in the low N/c2

s regime where most waves are absorbed as they approach the inner
boundary. These are encouraging results for the effectiveness of an excitation mechanism
for trapped inertial modes that relies on damping of inertial-acoustic waves at the inner
boundary.

7.3 Inertial waves

In this section I investigate how the presence of background radial flow affects trapped
inertial modes. In what follows, the usual scalings apply: velocities are in units of c, the
enthalpy h = c2

s ln ρ in units of c2, lengths are multiples of GM/c2 and frequencies of
c3/GM . In these units, particles moving in a a = 0 Paczyński & Wiita (1980) potential
have a marginally stable orbit at r = 6.

7.3.1 Equations and method

To understand the behaviour of linear perturbations of a stable transonic flow, I start
by considering the hydrodynamic equations describing an isothermal and inviscid disc,
(4.1)–(4.2). As in chapter 5, the disc is assumed thin and the equilibrium state is taken
to be axisymmetric and time-independent. However, now I consider this equilibrium to
be characterised by u = (u(r), Ω(r)r, 0) and h = hb(r)− Ω2

zz
2/2.
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For the purpose of the calculations presented here, the basic state quantities u(r),
hb(r) and Ω(r) are obtained from equations (3.7)–(3.9) of Part II in the case where the
system reaches a steady state. From the numerical calculations made in chapter 3 and
the quasi-analytical treatment of Afshordi & Paczyński (2003), it is known that for low
enough α the system reaches a steady state. In that case u(r) is approximately constant
and subsonic at large radii, equals the isothermal sound speed at the sonic point, which is
close to the marginally stable orbit, and becomes supersonic in the plunging region. Even
though viscosity is ignored for the purpose of the linear perturbation equations, its effect
is indirectly present in the calculations since the value of α influences (although weakly
for α < α∗) the background flow profile. More specifically, it slightly changes the location
of the sonic point which, as will be seen later, is significant.

I assume that small perturbations of the usual form are imposed to the basic state.
Neglecting self-gravitation and non-linear terms in the perturbed quantities, and sepa-
rating variables as in chapters 4 and 5, the equations describing the behaviour of these
perturbations read

−iω̂ur + u
dur

dr
+ ur

du

dr
− 2Ωuφ = −dh

dr
, (7.18)

−iω̂uφ + u
duφ

dr
+

κ2

2Ω
ur +

uφu

r
= − imh

r
, (7.19)

−iω̂uz + u
duz

dr
= −nh

H
, (7.20)

−iω̂h + u
dh

dr
+ ur

dhb

dr
− Ω2

zHuz = −c2
s

[
1

r

d

dr
(urr) +

imuφ

r

]
, (7.21)

where the wave quantities (ur, uφ, uz, h) are functions of r only. As before, H = cs/Ωz

is the semi-thickness of the disc, ω̂ = ω − mΩ is the Doppler-shifted wave frequency
and m and n are the azimuthal and vertical wave numbers, respectively. Note that this
system of equations reduces to (5.3)–(5.6) if the radial inflow and dhb/dr are negligible.
The vertical frequency Ωz is assumed to be equal to Ω as in the Paczyński & Wiita
(1980) potential and the epicyclic frequency is calculated from the basic state Ω using
the usual Newtonian formula, κ =

√
4Ω2 + 2rΩdΩ/dr. As seen in Part II (Fig. 3.1), the

fluid’s angular velocity and epicyclic frequency are everywhere nearly equal to equivalent
particle-orbit expressions except in the transonic and supersonic regions. Although with
minor changes, the maximum of κ is still located close to r = 7.5.

As in chapter 5, I consider the simplest trapped inertial mode with m = 0 and
n = 1. In this case, equations (7.18) and (7.21) can be written in the form,

dh

dr
=

uf − c2
sg

u2 − c2
s

, (7.22)
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dur

dr
=

ug − f

u2 − c2
s

, (7.23)

where

f = iωh− ur
dhb

dr
+ Ω2

zHuz − c2
s

ur

r
, (7.24)

g = iωur + 2Ωuφ −
du

dr
ur. (7.25)

It is evident that the equations for perturbations are singular at the sonic point, r = r0,
where u(r) = −cs. The regular solution satisfies f + csg = 0 at r = r0 so that both
numerators of (7.22) and (7.23) vanish there. In other words,

−
[(

du

dr

)
0

cs +

(
dhb

dr

)
0

+
c2
s

r0

]
ur,0 + csΩz,0uz,0 +2csΩ0uφ,0 = −iω(h0 + csur,0),(7.26)

where the subscript zero indicates that the quantities are evaluated at the sonic point. I
solve equations (7.18)–(7.21) with (m, n)=(0, 1) numerically using the Chebyshev method
already applied in chapter 5. The inner boundary is now taken to be located at rin = r0+δr
and (7.26) is taken as an inner boundary condition (this is equivalent to using an order
zero expansion for the wave quantities from r0 to δr � r0). Condition (7.26) replaces the
one employed previously, ur,0 = 0. The outer boundary condition remains as before. The
goal is to see how the decay rate of the simplest trapped inertial mode and its structure
are affected when the radial inflow is taken into account and the inner boundary, now
essentially at the sonic point, can no longer be approximated by a rigid wall.

The reader is reminded that, as in chapter 5, the method used to solve the system
of equations is an eigenvalue problem where −iω is the complex eigenvalue. Because I
want to focus my attention on the simplest possible r mode, that with lowest radial wave
number l, I look for the mode with a Gaussian structure similar to that of Fig. 5.1 (a).
However, as it will be seen in the next section, this structure is likely to be modified by
the radial inflow. Nonetheless, the real part of the frequency of this mode should still be
close to the maximum of the epicyclic frequency. This value changes slightly depending on
the background solution but should be close to the particle-orbit max(κ) which is 0.0347
in the units used here. Since no excitation mechanism is employed here, the imaginary
part of the frequency gives the decay rate of the mode. When no background flow is
considered this rate is due to the boundary condition used at outer radius, which selects
the outgoing wave only; these values should be equivalent to those presented in Table 5.1.

7.3.2 Results and discussion

In Table 7.1, I show the dependence of the complex frequency of the simplest trapped
r mode, that with wave numbers (l,m, n) = (0, 0, 1), on the sound speed. The three
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cs/c No background flow r0 < rms = 6 r0 > rms = 6

0.003 0.0343 + 0.0i 0.0343− 5.12× 10−6i 0.0344− 6.59× 10−5i

0.004 0.0342− 1.60× 10−11i 0.0340− 1.18× 10−5i 0.0345− 2.87× 10−4i

0.005 0.0340− 5.63× 10−10i 0.0338− 1.74× 10−5i 0.0345− 5.93× 10−4i

0.006 0.0339− 6.14× 10−9i 0.0336− 2.66× 10−5i 0.0345− 9.38× 10−4i

0.007 0.0338− 3.64× 10−8i 0.0334− 3.55× 10−5i 0.0343− 1.29× 10−3i

0.008 0.0337− 1.25× 10−7i 0.0332− 4.53× 10−5i 0.0342− 1.69× 10−3i

0.01 0.0334− 7.70× 10−7i 0.0327− 6.59× 10−5i N/A

0.02 0.0321− 4.34× 10−5i 0.0310− 3.61× 10−4i N/A

Table 7.1: Values of the (complex) frequency of the simplest trapped inertial mode for

different values of sound speed and background flow appropriate for a non-rotating black

hole. The second column corresponds to the case where no radial inflow is considered

and the modes are damped simply due to the outgoing boundary condition applied at

rout. The third column corresponds to the case where the radial inflow was calculated for

a small enough value of viscosity and where the sonic point is located inwards from the

marginally stable orbit. In the fourth column the radial inflow was determined for slightly

larger values of α in which case the sonic point is located at r > 6. The N/A indicates

that no mode with a Gaussian structure could be identified.

rightmost columns of the table correspond to the three different cases considered. Once
again, it should be made clear that the effect of viscosity on the waves is not being
calculated here; the decay rates result from the presence of the radial inflow only.

The first of these columns shows the frequency of the r mode when no background
flow is considered and where the waves decay solely due to the use of an outgoing wave
outer boundary condition. The imaginary parts of the frequencies are, as expected, equiv-
alent to those of Table 5.1. The real parts are larger in the present case because the
maximum of the epicyclic frequency used here is higher than that of chapter 5, where a
different expression for κ was used [cf. (1.52), (1.55)]. Even so, the general behaviour is
the same as that indicated in Table 5.1: the smaller the sound speed, the closer the mode
is trapped to the maximum of the epicyclic frequency which results in a smaller trapping
region and less significant outer “leakage”.

The values of the r0 < rms and r0 > rms columns, were obtained by considering
perturbations to a transonic flow which has a value of viscosity such that the sonic point
is located inside and outside the marginally stable orbit, respectively. As seen in Part
II of the thesis, the profile of the transonic radial inflow is dependent on the values
of viscosity α and isothermal sound speed cs, even in those cases where a stable flow
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Figure 7.4: Decay rate as a function of sound speed for the 3 different cases presented

in Table 7.1. The stars, triangles and squares correspond to the values of decay rate of

columns 2, 3 and 4, respectively. In all cases, the variation can be reasonably well fitted

by a polynomial of degree 2 as indicated by the lines represented. The extrapolation of the

variation of decay rate with cs up to 0.02 is included in the plot on the right even though

this corresponds to the N/A values of the table which cannot be found numerically.
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is considered. The introduction of chapter 2 and references therein indicate that two
scenarios are possible. For fixed sound speed, a flow with a low value of α goes through a
saddle-type critical point which is located at a radius smaller than rms. As α is increased,
the characteristics of the flow change and it goes through a nodal sonic point located
outside the marginally stable orbit. As seen in Afshordi & Paczyński (2003) and in
chapter 3, the passage can still be stable provided α < α∗ = 0.14(100cs)

1/3. According
to Afshordi & Paczyński (2003), the limiting value of α separating the cases of saddle
and nodal passages is αsn = 0.08(100cs)

1/3. In summary, the values presented in the third
column of Table 7.1 were calculated using a background inflow with α < αsn while those
in the last column were determined using u(r) corresponding to a viscosity α > αsn (but
still smaller than α∗ so that the transonic background is stable)1.

A comparison between the values of the last two columns reveals that the location
of the sonic point has a significant influence on the decay rates of the r mode. When the
background flow is such that the sonic point is located inside the marginally stable orbit,
the frequency of the simplest inertial mode has a variation with sound speed similar to
that of the case where the basic flow isn’t included. As the sound speed increases, the
real part of the frequency decreases indicating that the mode is trapped in a wider region
and the decay rate increases. The difference is that the decay rate is higher and increases
faster in the case where the background inflow is taken into account, as seen in the left
panel of Fig. 7.4. When u(r) is such that the sonic point is at r0 > rms, the increase of the
decay rate with sound speed is extremely significant. Even for moderate values of cs, the
imaginary part of the frequency can be as high as 10 times the real part. In addition, the
extrapolated curve presented in the the right panel of Fig. 7.4 reveals that for cs = 0.02,
the inertial oscillation, if present, would have a decay rate comparable to its frequency.
This indicates that the inertial wave is deeply affected, even at moderate sound speeds,
when the sonic point is at r0 > rms: even if present, the inertial structure can no longer
be referred to as a “mode” since it is damped before completing a single oscillation.

The differences between the cases r0 < rms and r0 > rms can be better understood
by looking at the eigenfunctions of the trapped modes. This is represented in Fig. 7.5. As
it can be seen by looking at the 4 upper panels, when the background inflow locates the
sonic point inside rms, the structure of the r mode is unaffected [cf. Fig. 5.1 (a)]. As in the
case without inflow, ur still has a simple Gaussian structure centred at the maximum of κ.
This is, however, not the case when r0 > rms. Although the Gaussian structure is still an
identifiable feature (at least for the small value of cs considered in the plots), it is no longer
centred at max(κ). Unlike the previous cases, the real and imaginary parts of ur and uφ

no longer peak at the same point: the real part of ur and the imaginary part of uφ seem
to be pulled inwards by the radial inflow. Other wave quantities are also slightly changed
in the inner region in comparison to the case where r0 < rms. These changes become

1The reader should recall that the values of α indicated in this paragraph correspond to a stress tensor
such that τRφ ≈ −2αP (Ω/ΩK).
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more evident as the sound speed is increased until, eventually, the Gaussian structure is
completely destroyed.

It should be noted that, in the r0 > rms case, the destruction of the Gaussian profile
at large cs is unrelated to the proximity of the sonic point to the maximum of κ. Indeed,
the background profile used in the case represented in the figure had a viscosity such that
r0 was located at about 6.07 while for cs = 0.02 (in which case the Gaussian structure
couldn’t be identified), α was such that r0 = 6.01. The simple profile is more affected at
large cs because the background inflow is more significant when the sound speed is larger.

Nonetheless, when the cases r0 < rms and r0 > rms are compared, it is clear that the
location of the sonic point, inside or outside the marginally stable orbit, is important. In
the former case, the transition from subsonic to supersonic occurs far away enough from
the trapping region and, as a result, the structure of the r mode isn’t affected. In the
latter case, the maximum of κ is dangerously close to the transonic region indicating that
the radial inflow is more significant where the mode is trapped than in the previous case.
As a consequence, the r mode is deeply modified or even destroyed and has a significant
decay rate.

7.3.3 Conclusions and implications

The results obtained reveal that inertial modes can be significantly affected when a back-
ground radial inflow is considered. If the conditions are such that the sonic point is located
inside the marginally stable orbit (low viscosity), the structure of the trapped r modes
isn’t modified but their decay rate is higher than in the case where no background inflow
is taken into account. Presumably this is due to the “leakage” of the wave to the inner
disc and plunging region. The inertial modes are more affected by a radial flow which has
the sonic point located outside rms (high viscosity) and therefore closer to the trapping
region. In this case, the decay rates are more significant and, for moderate to high sound
speeds, the structure of the inertial modes is deeply altered and possibly destroyed.

These results have implications to the excitation of trapped inertial modes in realistic
discs. As explained previously, the coupling mechanism described in chapter 5 relies on
the protective trapping region created by the non-monotonic variation of the epicyclic
frequency. In an idealised thin disc with no background inflow, the r modes are trapped
between their two Lindblad resonances, far enough away from the uncertain conditions
of the marginally stable orbit, and the wave “leakage” out of the trapping region isn’t
significant. Global deformations can then couple with these trapped modes and they can
grow as a result.

But a real disc is far from ideal. Here, I will refrain from mentioning the com-
plications associated with the presence of magnetic fields and MRI turbulence and will
instead focus on the scope of this chapter: the influence of the radial inflow. The results
of this section are not exactly in favour of the coupling mechanism of chapter 5, but they
are also far from being devastating. Observations indicate that black-hole accretion discs
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Figure 7.5: Profile of the wave quantities (ur, uφ, uz, h) for cs = 0.004 corresponding to

the simplest trapped inertial mode. The upper 4 panels represent a perturbation of a

stable transonic flow with a sonic point inside the marginally stable orbit while the lower

4 panels represent the case r0 > rms. In all plots, r0 . r < 10 and the full line represents

the real part of the wave while the dash-dotted curve represents the imaginary part.
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might be thick in some accretion states and have a relatively high α (see chapter 1 and
references therein). Under these conditions, the trapped inertial modes have, at the very
least, a significant decay rate, possibly comparable with the growth achieved by coupling
with a global deformation. In the worst case scenario, realistic conditions are such that
the flow is relatively thick and has a sonic point outside rms and the inertial modes are
destroyed. In any case, the actual properties of real discs are uncertain and one can only
speculate about the typical values of cs and α in black-hole accretion flows. If the condi-
tions are such that the radial inflow only influences the decay rate of the r mode and/or
only modifies its structure slightly, the coupling in a warped or eccentric disc may still be
effective depending, in particular, on the amplitude of the deformation.

The fact that high-frequency QPOs are only detected in certain states of black-hole
accretion indicates that the mechanism in their origin is fragile. The results obtained here,
together with the model that identifies HFQPOs with trapped inertial modes excited in
a warped or eccentric disc, are in agreement with this statement. HFQPOs may only be
visible in states where the accretion flow has specific properties, namely when the viscosity
and sound speed are such that the sonic point is inside rms and global deformations are
able to propagate to the inner disc with reasonable amplitudes.
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Chapter 8

Conclusion

8.1 Summary and conclusions

This dissertation has addressed the problem of variability in black-hole accretion discs by
means of various theoretical studies which focused on the dynamical processes occurring
in these objects. Particular attention was given to those processes that result in quasi-
periodic variability of high frequency which are specific to matter orbiting a relativistic
compact object. Two classes of problems were investigated. One concerned the transonic
nature of accretion around black holes and the influence of viscosity in its steadiness and
stability. The other focused on the propagation and excitation of oscillations in these
objects and how they are influenced by strong gravitational field effects.

The work done on the stability of transonic black-hole accretion was described in
chapters 2 and 3. In the former a comprehensive review of the topic was made in order
to properly introduce the research described in the latter. This introduction revealed
that the radial structure of transonic accretion discs is not as simple as that of Shakura–
Sunyaev discs. If the radial component of the fluid velocity is included in the equations,
they have a critical point R0 where the flow goes from subsonic (R > R0) to supersonic
(R < R0). Physically acceptable steady solutions are equivalent to Shakura and Sunyaev
discs at large radii, go through the sonic point regularly for each set of flow parameters,
and become supersonic close to the black hole. However, at least in isothermal discs
with αP stress, such solutions cannot be found for α > α∗ ∝ c

1/3
s , not because transonic

accretion is no longer possible but because it proceeds unsteadily.

The time-dependent calculations of chapter 3 indicate that persistent inertial-acoustic
waves with frequency close to the maximum of the epicyclic frequency are found in the
disc for α > α∗. These waves grow due to viscous overstability which is most likely to act
effectively where these waves slow down, close to the point where κ peaks. Simulations
show that waves propagate both inwards and outwards from this point. Steady accretion
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is possible for smaller values of α, even though the disc is locally unstable to viscous
overstability, because growing disturbances propagate out of the domain of interest.

The review of chapter 2 showed that inertial-acoustic waves propagating in viscous
discs have long been known to be locally viscously overstable for all values of α. Nonethe-
less, the conditions under which the instability becomes global — that is, it is revealed
in a system with open boundaries via which waves are likely to escape before reaching
considerable amplitudes — are more difficult to quantify. Numerical calculations made
in the 90s show that viscous overstability is global when α > αvo. This limiting viscosity
depends on the mass accretion rate or, equivalently, the sound speed in the disc; αvo is
lower for lower Ṁ or cs. The numerical calculations presented in chapter 3 showed that
in isothermal discs with αP stress αvo = α∗ ∝ c

1/3
s , that is, accretion is globally viscously

overstable because it can’t proceed steadily in a physically acceptable way.

This relation may, however, be exclusive to isothermal, αP discs — the very exis-
tence of a limit α∗ is probably related to the simplicity of such model, as speculated by
Afshordi & Paczyński (2003). Notwithstanding the possible lack of generality of the rela-
tion αvo = α∗, the study presented in Part II of the thesis was useful to obtain the exact
relation αvo(cs) in the case of the disc model considered and to understand the conditions
under which such discs may become viscously overstable. Future work is important to
look for a relation αvo(cs or Ṁ) applicable to more general flows. The ideas discussed in
Part II are also useful to interpret future simulations of turbulent discs.

The work on oscillations in accretion discs around black holes was described in
the various chapters that constitute Part III of this thesis. The topic is introduced in
chapter 4 where I describe the mathematical theory of oscillations in discs and mention
possible wave-trapping regions, present due to the non-monotonic variation of the epicyclic
frequency with radii in relativistic discs. Throughout most of Part III, the background
radial inflow is neglected for simplicity although it is considered in chapter 7.

An excitation mechanism for the simplest of the trapped inertial modes is described
in chapter 5. I find that these waves can achieve reasonable growth rates when they
couple with a global deformation in the disc. (Deformations are simply described as
very low-frequency modes for the purpose of solving the complicated non-linear coupling
equations.) The energy necessary for the growth of the r mode is drawn from the disc by
dissipation of a negative-energy intermediate wave involved in the coupling. I conclude
that inertial modes can be excited in warped or eccentric discs for a variety of sound speeds
and black-hole spins. Although the results of this chapter were obtained in a simple disc
model, they are expected to hold in more realistic flows and therefore be observationally
relevant, as it will be discussed in section 8.2.

There is a fundamental requirement for the excitation mechanism described to be
efficient: the global deformations have to reach the inner disc region, where the r modes are
trapped, so that the coupling can occur. With this condition in mind, I found it necessary
to study the propagation of such modes from the outer disc where they originate to the
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inner parts. This is done in chapter 6 where a more general description of a stationary
wave-like warp and eccentricity, allowing for viscous damping, is made. A model similar
to Shakura & Sunyaev (1973) discs but with a more accurate description of the vertical
structure is introduced and wave propagation is considered within it. I deduce from
the results obtained that global deformations can reach the inner parts of the disc and
effectively interact with the r modes when the mass accretion rate is high (i.e., the disc
is thick) and the viscous damping is low.

Finally, in chapter 7, I study the influence of a background radial inflow and the
presence of a sonic point in the propagation of diskoseismic modes. I start by analysing
the reflection properties at the critical point in a simple toy model. The intermediate
waves of the excitation mechanism of chapter 5 need, for some of the coupling processes
considered, to be absorbed at the inner disc boundary in order for energy to be drawn
from the disc. In a more realistic flow description, where the radial inflow is considered,
this boundary is at the sonic point. Calculations of the reflection coefficient within the
toy model introduced in chapter 7 show that absorption is indeed possible under some
conditions, being favoured when the background density isn’t too steep in the inner region.

More interesting is the influence of the background inflow on the trapped inertial
modes. Results show that these modes leak into the plunging region and decay as a result.
Even though this damping rate can be considerable, the excitation mechanism can still
work if, e.g., the warp or eccentricity amplitude is significant. Less favourable to growth
of inertial modes are flows which have the sonic point located outside the marginally
stable orbit. In these cases, the radial velocity in the trapping region is higher and, as a
result, the structure of inertial modes is altered and possibly destroyed. This result has
serious implications for the detection of r modes in discs with considerable radial inflow.
Nonetheless, detection of these waves is still possible if radial advection is less significant.

8.2 Observational relevance

This thesis intended to be a contribution to the theoretical knowledge of variability in
black-hole accretion discs. However, no study aiming to play a part in the understanding
of astrophysical phenomena can exist isolated from observational data. Doing research in
theoretical astrophysics should be more than doing interesting mathematical calculations;
it should always endeavour to explain observational events.

In the core of this dissertation is rapid X-ray variability, in particular the phe-
nomenon of high-frequency quasi-periodic oscillations. Fundamental characteristics of
these peaks seen in the X-ray spectra of some black-hole binaries are their frequency,
O(100 Hz) and stability against luminosity variations, which connects these oscillations to
the very inner, strong gravitational field region. Any model claiming to explain HFQPOs
has to, at the very least, be intrinsically relativistic and explain the range and stability
of frequencies. At the heart of the search for theoretical models for these quasi-periodic
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oscillations is precisely their connection with the strong gravitational field of the com-
pact object, making them promising probes of this region and precise tools to measure
black-hole spin.

In Part II, I investigate the possibility that HFQPOs can be identified with inertial-
acoustic waves excited due to viscous overstability in non-steady accretion flows. On
the other hand, in Part III I associate high-frequency variability with trapped inertial
waves excited in a warped or eccentric disc. The two models presented are intrinsically
relativistic as they both rely on the non-monotonic variation of the epicyclic frequency
with radii. Viscous overstability seems to only attain a global character because inertial-
acoustic waves slow down in the region around the maximum of κ. On the other hand,
inertial waves are trapped precisely because of the existence of this maximum. In both
models the frequency of the QPO can roughly be identified with max(κ) which is in the
expected range and depends only on the mass and spin of the black hole. The frequency
stability is corroborated by the fact that changes in sound speed (within the thin-disc
range) don’t significantly alter this scenario.

The models based on both inertial-acoustic and inertial waves not only explain the
basic properties of HFQPOs but provide a straightforward correspondence between their
frequency and black-hole spin. Unfortunately, that’s not the end of the story. As seen in
chapter 1, the current observational status of X-ray variability demands for far more com-
plete QPO models. These oscillations are known to be detected almost exclusively when
the black hole is in the very-high state of emission which dominates at X-ray luminosities
close to the Eddington limit (high mass accretion rate). In this state, the spectrum has a
blackbody-like component at low energies and a steep power law tail to higher energies.
Although the physical origin of this state is unknown (Remillard & McClintock 2006), a
possible model explains the spectral characteristics by assuming that the cool, optically
thick disc (responsible for the blackbody-like component) is surrounded by a hot, optically
thin corona (responsible for the power law tail) in the inner region (Done et al. 2007).
HFQPOs may originate in the disc but they seem to only be revealed when the cool flow
interacts with the hot corona.

The trapped inertial waves model may still fit these observational constraints: these
oscillations are only excited in the very high state because only then does the warp
or eccentricity reach the inner region with reasonable amplitude. This is justified by
the study presented in chapter 6 where it was seen that the propagation of these global
deformations is, at fixed viscous damping, favoured when Ṁ is high. The model considered
is, however, too crude to allow for a proper description of the steep power law state and
to consider the influence of a hot corona on the inertial oscillations.

In contrast with the previous model, a drawback of the inertial-acoustic wave theory
is precisely the fact that viscous overstability is favoured at low accretion rates. This
doesn’t necessarily mean that these oscillations couldn’t be detected in the very high state
since at high enough viscosity they can still exist for reasonable Ṁ . But it also doesn’t
explain why viscously-overstable inertial-acoustic oscillations would only be detected in
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the high luminosity state. But it should be mentioned that the physical origin of this
state is far from being known for certain and its observational characteristics vary slightly
from object to object. It is therefore complicated to try to relate a QPO model with the
properties of the flow in this state.

A possible problem with the trapped inertial oscillations model regards the influence
of radial inflow on these waves. While the transonic nature of the flow is at the heart of
the viscous overstability model presented in Part II, the consideration of a background
radial velocity may hinder the theory of chapter 5 of Part III. As seen in chapter 7, if the
sonic point is located outside the marginally stable orbit, the simplest trapped inertial
mode suffers considerable damping and its structure may be deeply altered by the radial
inflow. Despite that, it is not known how strong this inflow may be in the very high state
or how the mode would be affected in more realistic deformed discs in which accretion
seems to occur through two plunging streams that start at high latitudes with respect to
the midplane of the disc (Fragile et al. 2007).

To terminate the reference to observational characteristics, I should mention the
infamous 3:2 ratio which is not explained within any of the models considered. As seen
in the introduction, a considerable number of the sources that exhibit HFQPOs displays
pairs of these oscillations with frequencies in a 3:2 ratio. Curiously enough, these pairs are
most often not detected simultaneously and in some of the sources the lowest frequency
QPO appears when the power law flux is very strong while the highest frequency appears
when the flux is weaker (Remillard & McClintock 2006). Perhaps this is indicative of
different, yet correlated, mechanisms in the origin of each component of the pair. While
the models presented in this thesis don’t explain the frequency commensurability they
may still explain the origin of one of these HFQPOs.

8.3 Theoretical difficulties and numerical simulations

More than aiming at explaining observational characteristics, a good model of HFQPOs
has to surpass theoretical barriers. In other words, the mechanism that gives rise to
quasi-periodic variability cannot be an artefact of the approximations used to model the
accretion flow, i.e., it has to be shown to operate in more realistic discs.

Throughout this thesis, the process of accretion was characterised somewhat unre-
alistically: magnetic fields were ignored and angular momentum transport was described
simplistically or, at times, completely neglected. Moreover, heating and cooling mecha-
nisms were ignored altogether as isothermal flows were studied in both Part II and Part III,
and relativistic effects were considered within a pseudo-relativistic approximation. These
simplifications reflect the theoretical difficulties involved in modelling any phenomenon
related to accretion discs. In an analytical or quasi-analytical framework, problems are
only tractable within certain approximations. Still, this type of work provides valuable
insight into understanding the physics of accretion flows and should always accompany,
if not precede, the less-simplistic numerical simulations.
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Sophisticated numerical calculations which use fewer approximations than the ones
considered here can be used to see how the models studied are altered when more realistic
discs are considered. To date, the most realistic simulation looking into viscous overstable
modes in black-hole accretion discs is perhaps that of O’Neill et al. (2009). While they
show, in agreement with previous results, that waves may be excited by viscous over-
stability for large α and Ṁ , they still don’t consider MRI turbulence or full relativistic
effects. Indeed, MHD simulations indicate that HFQPOs may be damped or hidden by
MRI turbulence since their observational amplitude falls below the level of turbulent noise
(Reynolds & Miller 2009). Viscous overstable modes may still be visible in MHD sim-
ulations if they feature larger effective viscosities and are run for longer to improve the
signal-to-noise ratio (O’Neill et al. 2009). Simpler numerical work as that described in
chapter 3 could provide some insight into the exact value of viscosity (and its dependence
on Ṁ or cs) above which viscous overstability can be efficient.

A considerably more realistic simulation has looked into the excitation of trapped
inertial modes in tilted discs, providing a numerical test of the model described in chapter
5. The fully relativistic, MHD work of Henisey et al. (2009), already mentioned in the
introduction, is the only combining state-of-the-art MRI simulations with tilted discs. It
provides preliminary confirmation of the inertial-waves model since simulations of tilted
discs show an excess of inertial power when compared to equivalent untilted simulations.
My contribution to this paper was precisely that of helping interpret the origin of this
excess inertial power in light of the work on the excitation of trapped inertial modes in
deformed discs. Indeed, simulations show a particularly interesting trapped feature with
a frequency close to max (κ) which is found in all fluid variables analysed. Unfortunately,
it is not straightforward to identify this feature with a trapped r mode since its character-
istics are not all of those expected from the analytic theory of thin-disc oscillations. The
exact cause of the excess inertial power seen in the simulations is difficult to assess due
to the complicated background characteristic of a tilted, thick accretion flow. It may be
that it is simply due to the differences in the accretion process in tilted and untilted flows.
Alternatively, the excess inertial power may be due to trapped inertial waves excited by
coupling with the warp which have different characteristics from those predicted in sim-
ple analytic calculations precisely due to the complicated background. This would should
that inertial modes can resist both MRI turbulence and radial inflow in a deformed disc.
Future work, both numerical and analytic, is required to explain all the features of the
simulations, to understand how different processes influence inertial modes in tilted flows,
and if HFQPOs may indeed be explained in terms of these oscillations.

With the increasingly sophisticated numerical simulations and the flow of observa-
tional data from modern X-ray observatories, it is an exciting time for the theoretical
modelling of black-hole accretion discs. High-frequency variability models are of particu-
lar interest because of the connection between HFQPOs and the strong gravitational field
region. Scientists in the field aim not only to comprehend the physics of accretion onto
compact objects, but also to contribute to the understanding of black holes themselves
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and to play a part in testing or disproving the theory of general relativity. With the
advancement of numerical simulations, the further understanding of observational data,
the valuable insight of analytic theoreticians and the constant collaboration between the
three parts involved, this goal will soon be achieved.
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