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ABSTRACT

This paper demonstrates howunsupervisedcross-lingual
adaptation of HMM-based speech synthesis models may be
performed without explicit knowledge of the adaptation data
language. A two-pass decision tree construction technique is
deployed for this purpose. Using parallel translated datasets,
cross-lingual and intralingual adaptation are compared in
a controlled manner. Listener evaluations reveal that the
proposed method delivers performance approaching that of
unsupervisedintralingual adaptation.

Index Terms— HMM-based speech synthesis, unsuper-
vised speaker adaptation, cross-lingual.

1. INTRODUCTION

Cross-lingual (or interlingual) speaker adaptation is defined
as the adaptation of acoustic models associated with one lan-
guage, thetarget language, using adaptation data uttered in
a different language, thesource language. Recent work [1,
2] has addressed the task of supervised cross-lingual adap-
tation for HMM-based speech synthesis (or text-to-speech,
TTS). This work used TTS models of both source and tar-
get languages, and defined a phoneme or state-level map-
ping between the source and target language acoustic mod-
els. This mapping was deployed during cross-lingual adapta-
tion to translate the source transcription to a target language
phoneme or state sequence.

Techniques similar to those described above rely upon the
availability of both source and target language TTS models,
and the mapping mechanism between these models must be
established prior to adaptation. The work described in this pa-
per quantifies the value of such prior knowledge by adopting
an alternative approach which requires no knowledge of the
source language acoustic model (or source language) and its
relationship to the target language acoustic model. Further,
this alternative technique is applied to the task ofunsuper-
visedcross-lingual adaptation.

Using parallel translated adaptation datasets recorded by
the same speaker,intralingual (within-language) and cross-
lingual adaptation are compared in a controlled manner. Lis-
tener evaluations reveal that the proposed unsupervised cross-

lingual adaptation delivers performance approaching that of
unsupervised intralingual adaptation.

The paper is structured as follows. Sections 2 and 3 re-
spectively discuss the idea and implementation of the cross-
lingual adaptation technique. Section 4 describes the experi-
mental procedure used to evaluate the technique and Section
5 analyses the results of the evaluation. Section 6 summarises
the contributions of this work.

2. UNSUPERVISED CROSS-LINGUAL ADAPTATION
OF SPEECH SYNTHESIS MODELS

The cross-lingual adaptation technique used in this work
treats the source language adaptation data as if it were uttered
in the target language. Target language acoustic models and
a phoneme-loop grammar are used to recognise the adap-
tation data, thus mapping it onto a phoneme sequencep̂ in
the target language. Subsequently, the estimated phoneme
sequencêp is used as the reference sequence by the speaker
adaptation algorithm. This process is similar to standard
approaches to unsupervised intralingual adaptation. Note
that to avoid language-specific constraints, no dictionary or
language model is used during recognition.

Several advantages are associated with this technique.
Firstly, a pre-trained source language acoustic model is not
required. Secondly, no previously learned mapping between
source and target language acoustic models is necessary.
Thirdly, the technique may be applied even when the source
language is unknown. However, it may be argued that auto-
matic mapping of source language speech to a target language
phoneme sequence is suboptimal. The impact of this auto-
matic mapping is measured in Section 4.

To perform unsupervised adaptation in this way, it is
necessary to perform automatic speech recognition (ASR)
with the target TTS models to obtain transcriptionp̂. This
is problematic because the acoustic models typically used
in HMM-based speech synthesis are not easily integrated
into the ASR search procedure. This, in turn, is because
the context-dependent acoustic models used in HMM-based
speech synthesis represent suprasegmental information (e.g.
syllabic stress). However, these models, henceforth referred
to asfull contextmodels, may be constructed such that they



may be mapped to triphone acoustic models suitable for ASR.
This technique, introduced in [3], is summarised in Section 3.

3. TWO-PASS DECISION TREE CONSTRUCTION

Full context models are clustered using a decision tree to
enable robust estimation of their parameters. By impos-
ing constraints upon the decision tree structure, multiple-
component triphone mixture models may be derived from
single-component full context models. This constrained de-
cision tree construction process is illustrated in Figure 1.

The first stage, indicated as Pass 1 in Figure 1, uses only
questions relating to left, right and central phonemes to con-
struct a phonetic decision tree. This decision tree is used to
generate a set of tied triphone contexts, which are easily inte-
grated into the ASR search. Pass 2 extends the decision tree
constructed in Pass 1 by introducing additional questions re-
lating to suprasegmental information. The output of Pass 2 is
an extended decision tree which defines a set of tied full con-
texts. After this two-pass decision tree construction, single
component Gaussian state output distributions are estimated
to model the tied full contexts associated with each leaf node
of the extended decision tree. These models are then used for
speech synthesis.

A mapping from the single-component full context mod-
els to multiple-component triphone models is defined as fol-
lows. Each leaf node of the extended decision tree has unique
‘triphone ancestor’ node; its ancestor leaf node of the Pass 1
decision tree. Each set of Gaussian components associated
with the same ‘triphone ancestor’ are grouped as components
of a multiple component mixture distribution to model the
context defined by the ‘triphone ancestor’. The derived tri-
phone models are illustrated at the bottom of Figure 1. The
mixture weight of each mixture component is calculated from
the occupancies associated with components of the Pass 2 leaf
node contexts. The inverse mapping from triphone models to
full context models is obtained by associating each Gaussian
component with its original full context. Given this mapping
between full context and triphone models, unsupervised adap-
tation of full context acoustic models may be achieved via
adaptation of triphone models, as described below.

As illustrated in Figure 2, triphone models derived from
full context models are used to estimate a triphone-level tran-
scription of source language adaptation data. This estimated
transcription is then used to adapt the triphone models. The
adapted triphone models are subsequently mapped back to
full context models using the inverse mapping.

4. EXPERIMENTS

Full context English average voice models are estimated
using speaker adaptive training (SAT, [4]) and the Wall
Street Journal (WSJ) SI84 dataset. Acoustic features used
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Fig. 1. Two-pass decision tree construction. Mapping func-
tions permit sharing of full context models for TTS and tri-
phone models for ASR.
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Fig. 2. Unsupervised cross-lingual adaptation of full context
target language acoustic models.

are STRAIGHT-analysed Mel-cepstral coefficients [5], fun-
damental frequency, band aperiodicity measurements, and
the first and second order temporal derivatives of all features.
The acoustic models use explicit duration models [6] and
multi-space probability distributions [7]. Decision trees (one
per state and stream combination) are constructed using the
two-pass technique of Section 3. Adapted TTS systems are



derived from the average voice models using the adaptation
method described in Section 3 and constrained maximum
likelihood linear regression. Speech utterances are gener-
ated from models via feature sequence generation [8] and
resynthesis of a waveform from the feature sequence [5].

4.1. Adaptation and evaluation datasets

The adaptation datasets comprise94 utterances from a cor-
pus of parallel text of European parliament proceedings [9].
English and Finnish versions of this dataset are recorded in
identical acoustic environments by a native Finnish speaker
also competent in English. Statistics relating to these datasets
are provided in Table 1. The evaluation dataset comprises En-

Language # utterances # minutes # words

English 94 12.3 1546
Finnish 94 10.9 1066

Table 1. Europarl adaptation datasets.

glish utterances (distinct from the adaptation utterances) from
the same Europarl corpus.

4.2. Evaluation

The following systems are evaluated.

• System A: average voice.
• System B: unsupervised cross-lingual adapted.
• System C: unsupervised intralingual adapted.
• System D: supervised intralingual adapted.
• System E: vocoded natural speech.

System B is the result of applying unsupervised cross-lingual
adaptation to the average voice models using the Finnish
adaptation dataset. System C results from unsupervised
adaptation using the English adaptation dataset. System D is
identical to System C with the exception that the correct tran-
scription is used during adaptation. System E analyses and
resynthesises the evaluation utterances using STRAIGHT[5].

All systems were evaluated by listening to synthesised ut-
terances via a web browser interface, as used in the Blizzard
Challenge 2007. The evaluation comprised four sections. In
the first pair of sections, listeners judged the naturalness of
an initial set of synthesised utterances. In the second pair of
sections, listeners judged the similarity of a second set of syn-
thesised utterances to the target speaker’s speech. Four of the
target speaker’s natural English utterances were available for
comparison. Each synthetic utterance was judged using a five
point psychometric response scale, where ‘5’ and ‘1’ are re-
spectively the most and least favourable responses.

Twenty-four native English and sixteen native Finnish
speakers conducted the evaluation. Different Latin squares
were used for each section to define the order in which sys-
tems were judged. Each listener was assigned a row of each

Latin square, and judged five different utterances per section,
each synthesised by a different system.

5. RESULTS

Figure 3 summarises listener judgements of ‘similarity to tar-
get speaker’ and ‘naturalness’ using boxplots [10] while Ta-
ble 2 displays the average mean opinion scores (MOS) of
these judgements for each system in the columns labelled
‘av’. Analysis of these judgements by listener native language
is provided in the columns labelled ‘En’ and ‘Fi’, respectively
denoting English and Finnish.

Sys
Source

Sup?
MOS MOS

lang. similarity naturalness
En Fi av En Fi av

A - - 1.2 1.1 1.1 2.3 2.4 2.3
B Fi N 2.3 1.5 2.0 2.4 2.4 2.4
C En N 2.6 1.7 2.2 2.6 2.7 2.7
D En Y 2.7 2.0 2.4 2.5 2.8 2.6
E - - 4.6 4.6 4.6 3.7 4.1 3.8

Table 2. Mean opinion scores of evaluated systems.

A difference between two systems is deemed significant
if the Bonferoni-corrected pairwise Wilcoxon signed rank test
[10] discovers significance at the95% confidence level.

5.1. Discussion

The average similarity to the target speaker given by adapted
systems (B, C and D) are all significantly greater than that ob-
served for the unadapted System A. A significant difference is
also observed between the average similarity of adapted sys-
tems B (2.0) and D (2.4). The similarity score for system D
is a reasonable upper limit on the performance ofsupervised
cross-lingual adaptation since system D uses the correct tran-
scription of the acoustic data and deploys no potentially sub-
optimal mapping between source and target language acoustic
models.

The similarity score for system C is a reasonable upper
limit on the performance ofunsupervisedcross-lingual adap-
tation for the given imperfect adaptation data transcription.
System B yields an average similarity (2.0) approaching that
of System C (2.2). This difference may be due to the addi-
tional knowledge used by System C i.e. prior knowledge of
source language acoustics and a perfect mapping from source
to target language acoustic models. In this case the small per-
formance degradation measures the value of such knowledge.
A second possible explanation should be kept in mind, how-
ever. The target speaker’s characteristics may change when
speaking his non-native English. When adapting using na-
tive Finnish speech, such alterations are not observed, and so
possibly not captured.
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Fig. 3. Listener opinion scores for similarity to target speaker and naturalness.

Small increases in naturalness are noted between the
adapted systems (B, C and D) and the unadapted system
A. This demonstrates that the improvements in similarity
discussed above do not compromise the naturalness of the
synthetic speech.

Lastly, note that, with respect to speaker similarity,
Finnish and English judges display similar patterns. However,
on average, Finnish listeners ascribe lower scores. Further
analysis is required to explain this observation. Influential
factors may include familiarity with the target speaker and
cultural differences.

6. CONCLUSION

This paper has measured the value of source language knowl-
edge upon the task of unsupervised cross-lingual adaptation
of HMM-based synthesis models. A cross-lingual adapta-
tion technique which uses no such knowledge delivers perfor-
mance approaching that of unsupervised intralingual adapta-
tion. Future work should measure how well this technique
generalises across different speakers and language pairs. Fu-
ture work may also determine if significant differences exist
between unsupervised intralingual and cross-lingual adapta-
tion, and explain any such differences.
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