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Abstract
Hidden Markov model (HMM) -based speech synthesis sys-
tems possess several advantages over concatenative synthesis
systems. One such advantage is the relative ease with which
HMM-based systems are adapted to speakers not present in the
training dataset. Speaker adaptation methods used in the field of
HMM-based automatic speech recognition (ASR) are adopted
for this task. In the case of unsupervised speaker adaptation,
previous work has used a supplementary set of acoustic models
to firstly estimate the transcription of the adaptation data. By
defining a mapping between HMM-based synthesis models and
ASR-style models, this paper introduces an approach to the un-
supervised speaker adaptation task for HMM-based speech syn-
thesis models which avoids the need for supplementary acoustic
models. Further, this enables unsupervised adaptation of HMM-
based speech synthesis models without the need to perform lin-
guistic analysis of the estimated transcription of the adaptation
data.
Index Terms: speech synthesis, unsupervised speaker adapta-
tion

1. Introduction
Hidden Markov model-based systems have delivered synthetic
speech of comparable quality to that of concatenative (or unit
selection) synthesis systems [1]. Additionally, HMM-based
systems possess several advantages over unit selection systems.
These advantages include simple ways to interpolate between
speakers and synthesise speech of varying styles or emotions
[2, 3] . Perhaps the most significant advantage is the ability to
adapt to new speakers using a relatively small amount of adap-
tation data [4].

Most research into speaker adaptation for HMM-based
speech synthesis (or text-to-speech, TTS) has focussed upon the
supervised scenario, where transcribed adaptation data is avail-
able. More recent work has tackled the challenge of adaptation
of HMM-based synthesis models using unlabelled adaptation
data [5]. As will be explained in due course, unsupervised adap-
tation of HMM-based synthesis models is problematic for two
reasons. Firstly, the modelling of suprasegmental contextual in-
formation renders the synthesis models unsuitable for ASR pur-
poses. Therefore a supplementary set of e.g. triphone acoustic
models are typically used to estimate a transcription of the un-
labelled adaptation data [5]. Secondly, linguistic analysis is re-
quired to transform word-level transcriptions into transcriptions
containing suprasegmental contextual information. In the case
of unsupervised adaptation, it is feasible that the linguistic anal-
ysis step exacerbates errors present in the estimated word-level
transcription.

This paper presents an alternative to the unsupervised adap-

tation approach described in [5]. A two-stage decision tree con-
struction method is introduced, which enables a single set of
acoustic model components to be used for both ASR and TTS.
This method is then used to circumvent the need for supplemen-
tary ASR acoustic models and linguistic analysis of estimated
transcriptions during unsupervised adaptation. The goal of this
work is to demonstrate two results, numbered below.

1. In the case of unsupervised adaptation, performance can
be achieved which is indistinguishable to that yielded by
fully supervised adaptation without the need for

(a) supplementary ASR acoustic models or
(b) linguistic analysis of estimated transcriptions.

2. Two-stage decision tree clustering does not compromise
the quality of the resulting speech synthesis models.

The paper is structured as follows. Section 2 provides a
brief introduction to HMM-based speech synthesis models and
explains why unsupervised adaptation of such models is prob-
lematic. Section 3 explains the two-pass decision tree construc-
tion technique, and how this enables unsupervised adaptation
of HMM-based synthesis models. Sections 4 and 5 respectively
describe the experimental setup and results. Lastly, Section 6
summarises the contributions of this work.

2. Unsupervised adaptation of speech
synthesis models

In the domain of ASR, unsupervised adaptation is usually con-
ducted by firstly estimating a transcription of the adaptation data
using a speech recogniser. This speech recogniser often deploys
the same models which are subsequently adapted, thus avoiding
the need for multiple sets of acoustic models.

In the domain of HMM-based synthesis, use of the same
unsupervised adaptation framework is problematic. This is be-
cause the context-dependent acoustic models typically used in
state-of the art HMM-based speech synthesis [6] are unsuitable
for ASR. These contexts, henceforth referred to as full contexts,
are based on segmental (e.g. context-sensitive phoneme) and
suprasegmental (e.g. stress, total number of syllables in utter-
ance) information. As is the case for ASR acoustic modelling,
decision tree clustering of the full contexts is used to enable
robust estimation of the model parameters.

Although theoretically possible to recognise unlabelled
data using full context models, the presence of suprasegmental
contextual information adds a prohibitive amount of complexity
to the construction of recognition networks. The approach de-
scribed in Section 3 avoids this complexity without introducing
the need for a supplementary set of acoustic models to estimate
the transcription of unlabelled adaptation data.
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3. Two-pass decision tree construction
Multiple-component triphone mixture models may be derived
from single-component full context models by imposing con-
straints upon the decision tree structure when constructing full
context models. This constrained decision tree construction
process is illustrated in Figure 1.

The first stage, indicated as Pass 1 in Figure 1, uses only
questions relating to left, right and central phonemes to con-
struct a phonetic decision tree. This decision tree is used to
generate a set of tied triphone contexts, which are easily inte-
grated into the ASR search. No state output distributions are
estimated at this stage.

Pass 2 extends the decision tree constructed in Pass 1 by
introducing additional questions relating to suprasegmental in-
formation. The output of Pass 2 is an extended decision tree
which defines a set of tied full contexts. Each leaf node of the
extended decision tree has an ancestor node which coincides
with a leaf node of the Pass 1 decision tree. This is called the
‘triphone ancestor’.

After this two-pass decision tree construction, single com-
ponent Gaussian state output distributions are estimated to
model the tied full contexts associated with each leaf node of
the extended decision tree. These models are easily integrated
into TTS synthesisers.

A mapping from the single-component full context models
to multiple-component triphone models is defined as follows.
Each set of Gaussian components associated with the same ‘tri-
phone ancestor’ are grouped as components of a multiple com-
ponent mixture distribution to model the triphone context de-
fined by the ‘triphone ancestor’. The derived triphone models
are illustrated at the bottom of Figure 1. The mixture weight cm

of a mixture component m is calculated from the occupancies
associated with components of the Pass 2 leaf node contexts as
described by Equation 1. The sum in the denominator is over
each component associated with the same ‘triphone ancestor’
and the symbol γk is the occupancy of component k.

cm =
γm∑
k γk

(1)

The inverse mapping from triphone models to full context mod-
els is obtained by associating each Gaussian component with its
original full context. This is achieved by associating a unique
full context identifier to each component as illustrated in Figure
1. Given this mapping between full context and triphone mod-
els, unsupervised adaptation of full context acoustic models is
straightforward.

3.1. Unsupervised adaptation

As illustrated in Figure 2, triphone models derived from esti-
mated full context models (as described in Section 3) are used to
transcribe unlabelled adaptation data. Once word and triphone-
level transcriptions of the adaptation data are available, the full
context models may be adapted in two different ways.

The first adaptation method, labelled as ‘Triphone adapta-
tion’ in Figure 2, uses the estimated triphone-level transcription
to adapt the triphone models. The adapted triphone models are
then mapped back to full context models using the inverse map-
ping described in Section 3.

The second adaptation method, labelled as ‘Full adaptation’
in Figure 2, firstly analyses the estimated word-level transcrip-
tion to produce an estimated full context labelling of the adap-
tation data. The full context models are then adapted directly
using this labelling.
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Figure 1: Two-pass decision tree construction. Mapping func-
tions permit sharing of full context models for TTS and triphone
models for ASR.
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Figure 2: Unsupervised adaptation of full context models via
(1) full adaptation or (2) triphone adaptation.

Note that linguistic analysis may exacerbate errors present
in the estimated word-level transcription. It is therefore feasible
that the triphone adaptation technique is more robust than full
context adaptation in the unsupervised case. This hypothesis is
tested in the experimental sections which follow.

4. Experiments
Full context average voice models are estimated using the
Wall Street Journal (WSJ) SI84 dataset and maximum likeli-
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hood estimation. The acoustic features comprise the following:
STRAIGHT-analysed Mel-cepstral coefficients [7] (40 dimen-
sions), fundamental frequency (F0), and measurements which
quantify the aperiodicity of the speech (5 dimensions). The first
and second order temporal derivatives of all of these coefficients
are appended to yield a feature vector of dimension 138. The
feature vector is split into three streams: cepstral coefficients,
F0 and the aperiodicity measures. Multi-space probability dis-
tributions are used to model observations of varying dimension,
namely the F0 observation [8]. Explicit duration models are in-
tegrated (hidden semi-Markov models) to improve the quality of
synthesised speech [9]. One decision tree per state and stream
combination is used, with an additional decision tree to cluster
contexts of the duration model. A speech utterance is generated
from models via feature sequence generation [10] and resynthe-
sis of a waveform from the feature sequence [7].

Average voice models corresponding to standard, uncon-
strained decision tree construction (system A of Figure 3) are
estimated for comparison with those corresponding to two-pass
decision tree construction (system B).

Adapted systems are derived from System B using either
the triphone or full adaptation method described in Section 3.1.
Constrained maximum likelihood linear regression adaptation
is used, and the adaptation data corresponds to spoke 4 of the
1993 ARPA evaluation (speaker 440M). The adaptation tech-
niques are evaluated using two different volumes of adaptation
data (10 and 40 utterances), and in the supervised and unsuper-
vised cases, resulting in eight adapted model sets corresponding
to systems C through J in Figure 3. System K corresponds to
vocoded natural speech, analysed and resynthesised using the
STRAIGHT technique [7]. The synthesised test utterances are
a subset of the 1992 ARPA speaker independent read 5k test
dataset with no verbal pronunciation.

In the case of unsupervised adaptation, triphone models de-
rived from the estimated full context average voice models are
used for the recognition step, in conjunction with the closed vo-
cabulary 20k bigram language model provided with the WSJ0
corpus. A set of state transition probabilities are estimated from
the SI84 dataset for use with the triphone models during recog-
nition. A phoneme error rate of 47.1% (word error rate 72.5%)
is observed for the unsupervised transcriptions.

A total of eleven systems, A through K in Figure 3, were
evaluated by listening to synthesised utterances via a web
browser interface closely resembling that used in the Blizzard
Challenge 2007. The evaluation comprised two sections. In
the first section, listeners judged the naturalness of an initial
set of synthesised utterances. In the second section, listeners
judged the similarity of a second set of synthesised utterances
to a target speaker’s (speaker 440M) speech. Four of the target
speaker’s natural utterances were available for comparison. No
utterances from the initial set were present in the second set.
Each synthetic utterance was judged using a five point Likert-
type psychometric response scale [11], where ‘5’ is the most
favourable response and ‘1’ is the least favourable.

Twenty two native English speakers conducted the evalua-
tion, and were divided into eleven blocks of two listeners. Two
different Latin squares of order eleven were used (one for each
section of the evaluation) to define the order in which systems
were judged. Each listener block was assigned a row of each
Latin square, and judged eleven different utterances per section,
each synthesised by a different system.

Significant differences between systems are detected using
a Bonferoni-corrected pairwise Wilcoxon signed rank test [12].
In the discussion which follows, a difference is deemed signif-

icant if this test discovers significance at the 99% confidence
level.

5. Results
Figure 3 summarises listener judgements of ‘naturalness’ and
‘similarity to target speaker’ [12]. The system definitions are
specified in the table above the boxplots, which also displays
the mean opinion scores (MOS) for naturalness and similarity
for each system. Since no significant differences were observed
between the systems adapted using 10 utterances (C through F)
and those adapted using 40 utterances (G through J), the discus-
sion which follows concerns only the latter set of systems. The
same discussion holds for the former set.

5.1. Similarity to target speaker

With regard to similarity to the target speaker, significant im-
provements over the average voice system B are observed in
the case of all adapted systems (G through J). Moreover, no
significant difference is found between any pair of these sys-
tems. This demonstrates that unsupervised adaptation of TTS
models achieves performance indistinguishable to that of super-
vised adaptation (systems G and I) without use of supplemen-
tary acoustic models (systems H and J) or linguistic analysis of
the adaptation data (system J). Result 1, as stated in Section 1,
has therefore been demonstrated.

One additional result, in response to the hypothesis men-
tioned at the end of Section 3.1, is that no significant perfor-
mance degradation or improvement is observed when using full
adaptation (system H) instead of triphone adaptation (system J)
in the unsupervised case. These results suggest that linguistic
analysis does not improve or adversely affect the unsupervised
adaptation procedure. Therefore the linguistic analysis stage
may be omitted for the sake of efficiency.

5.2. Naturalness

With regard to naturalness, no significant differences are found
between any pair selected from systems A through J. The vol-
umes of adaptation data used are insufficient to significantly im-
prove the naturalness of speech synthesised using the average
voice models. Importantly, however, note that no significant dif-
ference in naturalness is observed between system A (standard
decision tree construction) and system B (two-pass decision tree
construction). So constraining decision tree construction using
the two-pass technique has not compromised the naturalness of
the resulting synthetic speech. Result 2, as stated in Section 1,
has therefore been demonstrated.

6. Conclusions
A two-pass decision tree construction method has been intro-
duced. This method enables sharing between full context mod-
els used for HMM-based speech synthesis and triphone models
used for HMM-based ASR via a simple mapping between these
models. This enables unsupervised adaptation of full context
models without a separately estimated set of components. Fur-
ther, the technique enables the components to be adapted with-
out the use of linguistic analysis. These refinements have been
introduced without any perceived degradation to the quality of
the speech synthesis models.
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System Clustering # utterances adaptation data Adaptation method Supervised? MOS naturalness MOS similarity
A Standard 0 2.0 1.0
B Two-pass 0 1.8 1.0
C Two-pass 10 Full Y 2.0 2.9
D Two-pass 10 Full N 2.1 2.5
E Two-pass 10 Triphone Y 2.0 2.9
F Two-pass 10 Triphone N 1.9 2.4
G Two-pass 40 Full Y 2.1 3.3
H Two-pass 40 Full N 1.9 2.8
I Two-pass 40 Triphone Y 2.1 2.9
J Two-pass 40 Triphone N 2.0 2.9
K 3.8 4.9
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Figure 3: Boxplots of listener opinion scores for naturalness and similarity to target speaker.

7. Acknowledgements
We are very grateful to the organizers of the Blizzard Challenge
for providing scripts to conduct our experimental evaluation.
This research was funded by the European Communitys Sev-
enth Framework Programme (FP7/2007-2013), grant agreement
213845 (EMIME).

8. References
[1] Karaiskos, V., King, S., Clark, R. and Mayo, C., “The Blizzard

Challenge 2008”, Proc. Blizzard 2008, 2008.

[2] Yoshimura, T., Masuko, T., Tokuda, K., Kobayashi, T., Kitamura,
T., “Speaker interpolation in HMM-based speech synthesis sys-
tem”, Proc. Eurospeech, 1997

[3] Yamagishi, J., Onishi, K., Masuko, T. and Kobayashi, T., “Mod-
eling of various speaking styles and emotions for HMM-based
speech synthesis, Proc. Eurospeech, 2003.

[4] Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K. and Isogai,
J., “Analysis of Speaker Adaptation Algorihms for HMM-based
Speech Synthesis and a Constrained SMAPLR Adaptation Algo-
rithm” IEEE Audio, Speech & Language Processing, 17(1):66–
83, 2009.

[5] King, S., Tokuda, K., Zen, H. and Yamagishi, J., “Unsupervised

adaptation for HMM-based speech synthesis”, Proc. Interspeech,
2008.

[6] Yamagishi, J. Zen, H. Wu, Y.-J., Toda, T. and Tokuda, T.,
“The HTS-2008 System: Yet Another Evaluation of the Speaker-
Adaptive HMM-based Speech Synthesis System in The 2008
Blizzard Challenge”, Proc. Blizzard 2008, 2008.

[7] Kawahara, H., Masuda-Katsuse, I. and Cheveigne, A., “Re-
structuring speech representations using a pitch-adaptive time-
frequency smoothing and an instantaneous-frequency-based F0
extraction: possible role of a repetitive structure in sounds”,
Speech Communication, 27:187-207, 1999.

[8] Tokuda, K., Masuko, T., Miyazaki, N., Kobayashi, T., “Multi-
space probability distribution HMM”, IEICE Trans. Inf. & Syst.,
E85-D(3):455–464, 2002.

[9] Zen, H., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.,
“Hidden semi-Markov model based speech synthesis”, Proc. IC-
SLP, 2004.

[10] Tokuda, K., Yoshimura, T. Masuko, T., Kobayashi, T. and Ki-
tamura, T., “Speech parameter generation algorithms for HMM-
based speech synthesis”, Proc. ICASSP, 2000.

[11] Likert, R., “A technique for the measurement of attitudes”,
Archives of Psychology, 140:1–55, 1932.

[12] Clark, R., Podsiadlo, M., Fraser, M., Mayo, C. and King, S., “Sta-
tistical analysis of the Blizzard Challenge 2007 listening test re-
sults”, Proc. Blizzard 2007, 2007.

4


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

