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Water Quality Modeling for the Kennet and Avon Canal, a 

Navigational Canal in an Inland Catchment 

Rebecca Zeckoski 

The Kennet and Avon Canal in southern England is experiencing severe water 

quality problems caused by inorganic sediment and algae.  These water quality 

problems are affecting the angling sport of fishermen downstream of the confluence 

of the canal with the River Kennet.  The Environment Agency has been called upon to 

remedy these issues, but before proceeding they desire a computer model capable of 

predicting the water quality impacts of various scenarios under consideration.  No 

such model was available to them. 

This project identified the key solids generation and transport processes to be 

included in a water quality model for inland navigational canals.  Where available, 

equations from the literature describing relevant processes were used or modified for 

inclusion in a canal modeling algorithm.  Where literature was not available, water 

quality samples were taken to characterize needed relationships.  The final algorithm 

was coded and tested using a simplified dataset that allowed clear evaluation of the 

simulated processes. 

After successful testing, the canal model was applied to the Kennet and Avon 

Canal.  The time series predicted by the model were compared to observed 

hydrological, solids, and chlorophyll-a (representing algae) data at multiple points in 

the canal.  The model adequately predicted all of these constituents at the monitored 

locations. 

The final task in the project required evaluation of six management scenarios 

proposed by the Environment Agency to address the water quality problem.  The 

model suggests that filtration or other treatment of water in the canal near the 

confluence with the river is the best management option, as it will address both the 

elevated inorganic sediment and algae concentrations at the most critical point in the 

canal.   Less desirable options include efforts that only target inorganic sediment, 

which could increase algal concentrations by increasing light availability; and 

diversion of surface flows from the canal, which could possibly damage the 

hydrologic balance of the canal while encouraging undesirable algal growth. 

Key Words: Canal, Hydrologic Model, Sediment Transport, Sediment Model, Algal Growth, 

Algal Model, Computer Model, Kennet & Avon Canal, River Kennet, England 
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Notation 

Storage Subscripts 

alg = parameter is related to dry algal mass 

coh = parameter is related to inorganic cohesive sediment 

non = parameter is related to inorganic non-cohesive sediment 

sed = parameter is related to inorganic sediment 

 

Inflow and Outflow Subscripts 

abs = parameter is related to flows abstracted from the canal 

bio = parameter is related to algal growth 

boat = parameter is related to boat traffic 

dep = parameter is related to inorganic sediment deposition 

evap = parameter is related to evaporation 

ext = parameter is related to external flows entering the canal 

leak = parameter is related to flow through leaky lock gates 

lock = parameter is related to lockage flow 

lockmove = parameter is related to movement of lock gates 

prec = parameter is related to precipitation 

runoff = parameter is related to runoff from the surrounding catchment 

seep = parameter is related to seepage through the canal walls 

w,lock = parameter is related to ‘weir’ flow over the top of a lock gate 

weir = parameter is related to flow through the overflow weir in the reach 

 

Variables and Parameters 

Cchl = conversion constant to convert Chlorophyll-a mass to dry algal mass 

(mg dry algal mass/mg Chl-a) 

Cd,weir = weir coefficient (Ø) 

CSboat = concentration of inorganic sediment disturbed by boat movement 

(mg/m³) 

D = water depth in a reach (m) 

Dlock = height of lock gates above bottom of upstream canal reach (m) 

Eboat = efficiency of boat movement (number of boats moving in opposite 

directions/total number of boats) (Ø) 
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ED = euphotic depth, the water depth at which the light intensity is 1% of 

the value just below the water surface (m) 

Fboat = frequency of boat movement (boats/s) 

Hsides = height of sides of overflow weir ‘box’ (m) 

Hweir = distance from overflow weir crest to the bottom of the canal (m) 

I = inflow of water (m³/s) 

ISS = inflow of solids (mg/s) 

K = maximum supportable algal population (mg dry algal mass/m³) 

Ks,l = Michaelis-Menten constant for light-limited growth (J/m²s) 

L = length of reach (m) 

Leak = leakage rate (m³/m·s) 

LI = light intensity (light available to algae) (J/m²s) 

Llock = length of lock gates (m) 

Lweir = length of overflow weir crest (m) 

Q = outflow of water (m³/s) 

QSS = outflow of solids (mg/s) 

S = storage of water in a reach (m³) 

SS = storage of solids in a reach (mg) 

Seep = seepage rate (m³/m²s) 

t = time (s) 

TP = total phosphorus concentration (mg/m³) 

VED = volume of water in the euphotic depth (m³) 

V lock = lockage volume (m³) 

vb = velocity of boat (m/s) 

vw = velocity of water (m/s) 

W = reach width (m) 

ws = fall velocity of inorganic sediment (m/s) 

µ = (in algorithm description) specific growth rate of algae considering 

temperature, light availability, and phosphorus availability (1/s) 

µmax = specific growth rate of algae based on temperature and light 

availability (1/s) 

µmax,T = specific growth rate of algae based only on temperature (1/s) 
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1. Introduction 

1.1. Problem Statement 

There are many canals and navigable waterways in the United Kingdom with the 

potential to contribute poor quality water to natural streams (Swanson et al. 2004).  

During the heyday of canals, circa 1840, nearly 4100 miles (6600 km) of inland 

waterways existed, including both canals and rivers that were made navigable 

(Hadfield 1981).  Over the subsequent years, railroads and lorry traffic led to a decline 

in canal use, and by the time of the 1968 Transport Act, when all existing canals in 

Britain were classified into commercial waterways, cruiseways (for amenity use 

only), and remainder waterways, only 2000 miles (3220 km) remained (Kennet and 

Avon Canal Trust Ltd. 1981).  Of these, 570 miles (917 km) were classified as 

‘remainder’ waterways: not legally abandoned, but not financially maintained by the 

Government.  In these waterways, private groups, such as the Kennet and Avon Canal 

Trust, frequently put forth their own money to contribute to the maintenance of the 

canals.  The Government maintains 1071 miles (1724 km) of cruiseways.  Thus 

private citizens and Government officials alike will benefit from computer models 

that can help them make choices about the best maintenance activities to pursue in 

inland waterways in light of environmental concerns. 

 

The Environment Agency and local stakeholders have voiced specific concerns over 

pollution in the Kennet and Avon Canal, and in particular about the water quality 

problems it is causing in the neighboring River Kennet that originate at the river’s 

confluence with the canal just below Copse Lock (Figure 1).  Prior to the start of this 

research project, suspected issues contributing to the water quality problem in the 

canal included elevated algal growth, boat traffic, and lock operations.  All these 

issues contribute to an elevated suspended solids concentration in the canal.  As no 

computer model existed that could account for all these sources of pollution, the goal 

of this research project was to create such a canal model, capable of being used both 

in the Copse Lock area of the Kennet and Avon Canal and other navigational canals 

with similar water quality issues.   
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Figure 1. Location of the Kennet and Avon Canal.  Hungerford is not large enough to be a 
‘populated place’ but is an important location for monitoring of the canal and natural streams. 
 

1.2. Research Objectives 

Primary Objective: Determine and quantify the effect that canal operations have on 

water quality, specifically suspended solids concentrations, to include both inorganic 

sediment and algal processes.  The desired output of this primary objective is a 

generic computer model of canals capable of representing these effects.  The 

following tasks will be used to accomplish this objective: 

Task 1: Identify the sources of sediment in a target canal that interacts with a 

river; 

Task 2: Quantify the hydrological and water quality interactions between the 

canal and the natural landscape; and 

Task 3: Develop and evaluate a computer model of canal processes and 

canal/river interactions. 

 

Secondary objective: Recommend a course of action for the Environment Agency to 

address the water quality issues in the Kennet and Avon Canal and the River Kennet 
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by simulating alternative management scenarios with the new computer model.  The 

following tasks will be used to accomplish this objective: 

Task 1: Identify possible management scenarios for the Kennet and Avon Canal; 

Task 2: Create mathematical representations of the management scenarios that can 

be simulated with a computer; and 

Task 3: Enter the mathematical representation of each management scenario into 

the canal model to determine the water quality impacts of each scenario. 

 

These tasks have been accomplished and objectives met by creating a standalone 

receiving water model capable of simulating the complex processes inherent to a 

canal.  The guiding principle in developing the algorithms and needed inputs for the 

canal was to generate a model that could be easily parameterized without intensive 

monitoring studies.  Thus, wherever possible, the intended inputs for the new canal 

model are drawn from readily available literature values, existing agency databases, or 

physical characteristics easily measured by a non-expert. 

1.3. Thesis Layout 

This thesis contains nine primary sections and additionally a reference list and 

appendices.  The content of the remaining sections is outlined below. 

 

Section 2 contains a review of literature and background information on canal 

operations and the study area. 

Section 3 provides an overview of data sources used to parameterize the model. 

Section 4 details algorithm development for the model. 

Section 5 provides information regarding the testing and verification of the model. 

Section 6 explains the use of an overland flow model to develop runoff inputs for the 

new canal model. 

Section 7 provides a specific example of the model’s application to the Kennet and 

Avon Canal through evaluation of the model output in comparison to observed data 

and subsequently in evaluating potential management options for the Kennet and 

Avon Canal. 

Section 8 summarizes the project and describes the impact of this work. 

Section 9 provides ideas for future research that would enhance this work. 
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2. Literature Review and Background 

Information 

Before embarking on this study, it is necessary to present a background in basic canal 

operations, the mechanisms involved in sediment and algal generation and transport, 

existing canal modeling efforts, and details of the study area that served both as an 

example of typical canal processes and as a test case for the new canal model. 

2.1. Overview of Canal Processes 

Canals are essentially a series of impoundments (‘reaches’) separated by locks 

(Willby et al. 2001).  Locks consist of a pair of gates that are a fairly standard distance 

apart for a given canal; the maximum acceptable boat size for a given canal is set 

based on the dimensions of the locks on the canal.   

2.1.1. Locks 

The purpose of a lock in a canal is to move a boat from one water elevation to 

another.  The elevation change made possible by locks allows the reaches between 

locks to be fairly flat and easily navigable; this is often in contrast to a natural stream 

in the same topography, which would be too steep to be navigable.  The interior of a 

typical lock is shown in Figure 2; schematics of a typical lock are given in Figure 3.  

From a plan view, it is evident that the lock gates form a convex angle against the 

direction of water movement.   From an elevation view, it can be seen that past the 

upstream lock gates the bottom of the lock drops to the level of the downstream reach.  

The downstream lock gates (e.g., Figure 3) hold sluice doors near their bottoms to 

allow water to drain out of the lock as needed.  The sluices for the upstream gates are 

located at the bottom of the canal wall (Figure 3); water flows through the sluice in 

the side of the canal and into the lock from an opening in the side of the lock wall.  As 

a boat moves through a lock, it is necessary to completely fill or drain the lock (as 

appropriate) so the water level on both sides of the gates to be moved is equal; 

otherwise the water pressure behind the gates is too great for individuals to push the 

gates open.   
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Figure 2. Interior of a typical lock.  Note cill. 
 

 
Figure 3. Plan (a) and elevation (b) views of a typical lock. 
 

Canal users open and close the sluice doors as they move through the lock from one 

elevation to the next (Figure 4).  Before entering the lock, the user opens the sluices 

on the same side of the lock as his boat is currently located, leaving them open until 

the water level equalizes, then closes the sluices.  After the boat enters the lock, the 

opposite sluices are opened and again the boater waits until the water level in the lock 

 (a) 
Plan view of lock 

(b) 
Elevation view of lock 

 W
ater flo

w 

cill  

cill  

Lock Gates 

Edge of 
Lock 

 Water flow 

Upstream 
sluice entry 
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equalizes with that of his destination reach; finally the sluices are closed, the gates 

opened, and the boat moves on (closing the gates behind him) (Corrie 2002).    

 
Figure 4. Typical lockage cycle for a boat moving downstream. 
 

Lockages (the filling of a lock with water) are a major concern to canal engineers, as 

the significant amount of water lost from canal reaches due to lockages must be 

balanced by an external supply of water to the canal.  The total amount of water lost 

during boat passage through a lock depends on the state of the lock when a boat 

approaches, which in turn is dependent on the direction the previous boat traveled 

compared to the direction the current boat is moving (Figure 5).  Boats moving 

upstream must enter a drained lock, and boats moving downstream must enter a full 

lock; likewise, boats moving upstream leave a full lock, and boats moving 

downstream leave a drained lock.  Thus, if boats move in sequence, heading the same 

direction (e.g., cases 3 and 4 in Figure 5), each boat passage draws a full lock volume 

from the upstream reach and deposits a full lock volume in the downstream reach.  If 

Upstream Sluice 
Entry & Exit 

Step 1. Open sluice on upstream side to allow 
water into the lock. 

Step 2. Close upstream sluice, open lock gate.  

Step 3. Move boat into lock, close upstream lock 
gates. 

Step 4. Open downstream sluice gates to drain 
water out of lock.  

Step 5. Close downstream sluice, open 
downstream lock gates.  

Step 6. Move boat downstream, closing lock 
gates behind.  

Boat Lock Gates 

Water Flow 
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the boats moving through the lock are alternating directions (e.g., cases 1 and 2 in 

Figure 5), each boat passage will cause either a lock volume to be drawn from the 

upstream reach or a lock volume to be deposited in the downstream reach.  It is 

evident that having boats move in alternate directions through a lock is an ideal 

situation, but it is difficult to force this in a real-world situation.  Instead, canal 

engineers recommend that narrow boats travel together through a canal, sharing locks.  

This halves the amount of water needed for each individual boat, as the lockage only 

occurs once for the pair of boats, rather than once for each individual boat.  

Occasionally locks must be left empty after use; this requires an additional movement 

of water in each of the cases in Figure 5: boats moving downstream would always 

experience case 4 (they could not experience case 2), and boats moving upstream 

would experience case 1 with an additional drainage of the lock at the end. 

 

Overview of possible boat effects on water movement 
 
Case 1: Boat moving upstream after boat moved downstream: 
 
 
 
 
 
Case 2: Boat moving downstream after boat moved upstream: 
 
 
 
 
 
Case 3: Boat moving upstream after boat moved upstream: 
 
 
 
 
 
Case 4: Boat moving downstream after boat moved downstream: 
 
 
 
 
  

Lockage from upstream 

Lockage to downstream 

Lockage to downstream Lockage from upstream 

Lockage from upstream Lockage to downstream 

 
Figure 5. Illustration of possible water loss scenarios during lockages. (Rectangular containers 
indicate locks, black shape is a boat, blue fill indicates water level.) 
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In addition to water losses through lockages, locks control another important flow 

route through the canal: leakage.  Excepting a short period right after they are 

installed, lock gates are typically leaky (Figure 6).  This occurs for many reasons.  

The wood itself is weathered away after use and exposure to the high pressure of the 

canal water.  Additionally, boats with single riders tend to push their way through the 

lock gates by pushing the bow of the boat against the closed gates to force them open 

and pass through.  This permits the driver of the boat to exit the lock without leaving 

the boat to open the gates, but causes significant damage to the lock gates.   

 

 
Figure 6. Typical leaking lock gates.  Note reinforced center of gates where boats push in the left 
image. 
 

2.1.2. Reaches 

The reaches (impoundments) between the locks are often long; in a gently sloped 

landscape they may exceed 1.5 km.  In a steep incline in the natural topography, 

however, they may be short.  The shortest sections on the Kennet and Avon Canal (the 

canal chosen to test the new model) are in between locks in the steep flight of locks 

approaching the summit reach from the west, where the canal ascends approximately 

75 m through 29 locks over the space of approximately 3 km (Kennet & Avon Canal 

Trust, 1999).  The longest reach in the study area on the Kennet and Avon Canal is 

just over 1.5 km long.  The canal sides are frequently elevated above the surrounding 

landscape, but also occur flush with the neighboring topography. 

 

Overflow weirs in a canal reach are typically located in a side wall near the 

downstream lock (Figure 7).  These weirs will typically discharge to the next lower 

lock or canal reach, although occasionally they may bypass a reach or discharge into a 
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neighboring body of water, depending on the needs of the canal or the constraints of 

design the engineers considered at that point during construction.   

 

 
Figure 7. Typical overflow weirs on the Kennet and Avon Canal. 
 

Unless the canal is lined by an impermeable material, water will seep through the 

canal walls.  This can be a significant source of water loss, particularly in new canals 

where the pores in the soil lining the canal walls have not yet been clogged by fine 

particles (Minikin 1920). 

 

The water level in a reach is generally controlled by three major factors: one input 

control and two output controls.  First, a relatively large and constant source of water 

feeds the summit reach of the canal; this may be pumped from a reservoir or may 

come from a natural feeding stream.  Although the source water is only directly input 

to the summit reach, it moves downstream through the exits from each reach to 

govern the total water input to each successive reach.  Insufficient input to the summit 

reach will cause the water depth in all reaches to drop.  Excessive input to the summit 

reach has little effect on water depth, as it will be channeled away by the second 

primary control on water depth: the overflow weirs.  Given a sufficient input of water 

to the summit reach, the water level in each reach along the length of the canal is 

governed primarily by the height of the overflow weir in each reach.  The overflow 

weirs are designed to carry all excess water above the desired depth to the next 

downstream reach.  Thus, during normal steady-state operating conditions, the 

overflow weir determines the water level in the reach.  However, should the input at 

the summit reach be too low, the water level will drop beneath the overflow weir crest 

and the overflow weir will no longer govern the water level in the reach.  The last 
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major factor affecting water levels in the reach is boat traffic.  The boat traffic directly 

affects water movement from one reach to the next as the boats move through locks at 

the upstream and downstream end of each reach.   As the boats move through the 

locks, the volume of water needed to fill and/or empty the lock is removed from the 

upstream reach and deposited in the downstream reach.  If these lockages are 

excessive, they may drain the water level in the reaches below the height of the 

overflow weirs, thus constituting a significant control on water levels during the peak 

boating season.  These three factors in a canal are designed to balance each other: the 

source of water is designed to be large enough to counteract the water loss through 

expected lockages, leakage, and seepage; and the overflow weirs allow water to 

bypass the locks while boats are not traveling to prevent flooding or undesirable 

overtopping of lock gates.   

2.1.3. Solids Considerations for a Canal 

The generation and transport of solids in a canal can be considered a function of three 

primary processes: the underlying hydrology, boat traffic, and algal growth.  With the 

exception of evaporative and seepage losses, solids will exit the reach at all locations 

that water exits the reach.  The concentration of solids in the exiting flow may vary: in 

general, discharges that involve the whole water profile can be assumed to hold solids 

at the average concentration of the reach, whereas discharges from the top of the 

water profile will hold a concentration lower than the average concentration of the 

reach.  The release of water into a reach during a lockage event or at the outlet of the 

overflow weir bypass is noticeably turbid; thus, any solids associated with the 

underlying hydrology flow can be considered well-mixed at the upstream end of the 

reach. 

   

Boat passages generate sediment independently of the flow of water in the reach.  

This sediment generation is twofold: first, the boat propellers stir up sediment as the 

boat traverses the reach; and second, when the boat passes through the lock gates at 

either end of the reach, the movement of the lock gates near the canal bottom stirs up 

additional sediment.  If the boat speed is high enough, it may additionally cause a 

wake that erodes earthen bank walls (Parchure et al., 2001); however, in general canal 

users are advised not to move so quickly that they might generate a wake.   
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Finally, algal growth can be an important contributor to solids concentration in the 

reach.  Algal growth is negatively correlated with increased flow rate (Dickman 1969; 

Søballe and Kimmel 1987); canal reaches are essentially impoundments, with a low 

flow rate that encourages algal growth.  Additionally, algal growth is enhanced by 

light and nutrient availability and water temperature (Eppley 1972).  Historically, the 

construction of canals eliminated trees close to the water; typical usage patterns since 

their construction tend to keep the area surrounding a canal clear, historically for 

horses to pass on a towpath, and more recently for walkers and bikers to use former 

towpaths recreationally.  As a result, light availability is typically high in a canal.  

This in turn leads to increased water temperature.  All of these factors combine to 

provide a beneficial habitat for algal growth.  Thus, although one might expect to see 

a decline in solids concentration in the still water of canals not experiencing boat 

traffic, it is common to see an increase in solids concentration in canal reaches as a 

result of algal growth. 

 

All of these processes are described in more detail in the section on algorithm 

development (Section 4.2). 

2.2. Inorganic Sediment  

2.2.1. Types of Sediment 

Inorganic sediment is typically classed into three general types: sand, silt, and clay.  

The divisions between these types of sediment are based on size: sand particles range 

from 0.02-2.0 mm in diameter, silt particles range from 0.002 to 0.02 mm in diameter, 

and clay particles are less than 0.002 mm in diameter.  Further classification is 

possible: for example, sand can be broken into fine sand (0.02-0.2 mm) and coarse 

sand (0.2-2.0 mm); and larger particles can be defined, including gravels (>2.0 mm) 

and boulders (>1 m) (Brady and Weil 1996).   

 

There are many soil properties tied to the particle size distribution, or texture, of the 

soil.  Clays and silts have a larger charged surface area per unit weight and thus will 

hold more tightly to nutrients and pollutants than will sand.  Small particles such as 

clays are easily splashed up by rainfall and can form a seal on the soil surface, 

reducing infiltration and increasing surface runoff in later rainfall events.  The voids 
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between sand particles are larger than between clay particles, and thus infiltration is 

increased in sandy soil.  Due to the minimal voids between clay particles and their 

ability to be compacted into a nearly watertight layer, compacted clays are often used 

as a sealing layer in landfills, reservoirs, and canals (Brady and Weil 1996). 

 

In terms of water quality, the various particle sizes can be generally grouped into two 

categories: cohesive (particle size < 0.06 mm) and non-cohesive (Soulsby 1997).  

These categories of sediment behave differently while suspended in water: cohesive 

sediments, due to their high surface area and charge, have a tendency to attract each 

other and group together to form flocs (a process termed ‘flocculation’).  This process 

is affected by both physical and chemical parameters.  Physically, increased sediment 

concentration increases the likelihood that a cohesive particle will randomly 

encounter another particle in the water, thus increasing flocculation (Mehta et al. 

1989; Lau and Krishnappan 1992); to a certain extent, increased flow velocity can 

increase flocculation by moving particles about so that they encounter each other, but 

too vigorous a flow can have a negative effect by stressing the weak flocs so that they 

break apart (Baugh and Manning 2007).  Water temperature and salinity affect the 

charge of the cohesive particles and thus their tendency to flocculate (Mehta et al. 

1989; Lau 1994).  By contrast, non-cohesive sediments have no tendency to flocculate 

and will behave independently of other particles suspended in the water column. 

2.2.2. Sediment Transport and Fall Velocity 

Sediment transport in streams has been well studied.  A commonly accepted approach 

to modeling sediment transport utilizes the Krone-Partheniades method.  This is used 

by the receiving water model in the Hydrological Simulation Program-Fortran (HSPF) 

(Bicknell et al. 2001), for example.  In this method, suspension is calculated using a 

relationship developed by Partheniades (Equation 1) , and deposition is calculated 

using Krone’s Equation (Equation 2) (Gerritsen et al. 2000).   These equations use the 

relation of the bed shear stress to critical shear stress for deposition and scour to allow 

the total deposition or scour to scale from zero to the maximum possible deposition or 

an unlimited scour as the bed shear stress changes. 
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 Where: Cero = concentration of sediment eroded (kg/m³); 
  Cdep = concentration of sediment deposited (kg/m³); 
  Cbed = suspended sediment concentration close to bed (kg/m³); 
  t  = time (s); 
  τb = stress at bed (N/m²); 
  τero = threshold stress for erosion (N/m²); 
  τdep = threshold stress for deposition (N/m²);  
  h  = water depth (m); 
  ws = fall velocity (m/s); and 
  Eo = erosion rate (kg m-2s-1). 
 

Gerritsen and others (2000) suggest τdep = τero = 0.06 N/m² and Eo = 1 kg m-2s-1
 for 

their system, which consolidated all particle size classes into one for simulation.  The 

scour calculation involves the estimation of an erosion rate per unit area, which can 

then be divided by the total depth to obtain an erosion rate per unit volume of water.  

This erosion rate will be site-specific and dependent on the material of the streambed.   

 

Because the flow in a canal reach is typically low, scour due to flow velocity is 

negligible.  There is some scour due to the propeller action of boat traffic, which will 

be discussed in greater detail later (Section 2.4); thus, erosion in a canal is typically 

independent of hydrology.  Because the water is generally stagnant, the deposition of 

sediment in quiescent waters (Equation 3) is most important to the canal model. 

 

Partheniades’ deposition equation is actually a specific form of the more general 

equation (Equation 3) (Vanoni 1975).   
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 Where: C  = concentration of sediment (mass/length3); 
  t  = time (time);  

  w  = fall velocity (length/time); and 
  z  = vertical position (length). 
 

If Cw  represents the total mass settling flux (that is, the rate of sediment deposited 

over a unit area) and resuspension forces are ignored, mass conservation states that for 

a unit volume (the unit area multiplied by the affected depth z) the decrease in total 

sediment concentration over time (the first term of Equation 3) must be balanced out 
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by the amount of sediment that has deposited (the second term in Equation 3). If fall 

velocity is assumed not to change with depth (w  = ws) and flow is insignificant (τb = 

0), Equation 3 can be simplified to Equation 2 to determine the total change in 

concentration over a depth h.  Equation 3 also assumes that sediment concentration 

does not vary across the width of the stream. 

 

The final component of Equations 1 and 2 is the shear stress.  To simplify calculations 

in the Krone-Partheniades formulae, the relationship of the actual bed shear stress to 

critical deposition and scour shear stresses is used to estimate the amount of scour or 

deposition that would happen.  If the bed shear stress is zero (that is, in perfectly still 

water), Equation 2 is equal to Equation 3 and sediment falls at the maximum velocity 

for still water (ws).  However, if there is some water movement, resuspension may 

occur, and the relationship 

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1  reduces the total deposition according to this 

water movement.  Likewise, if the bed shear stress just reaches that needed for 

erosion, the shear stress term in Equation 1 is zero, and no erosion occurs.  As the bed 

shear stress increases above the threshold value, erosion increases in an unlimited 

fashion.  Later researchers (e.g., Gerritsen et al. 2000) modify the Partheniades 

formula to limit the total erosion according to the estimated sediment load available to 

be eroded. 

 

The critical term to define in Equation 3 is the fall velocity, a key parameter into 

which much research effort has been invested.  Two primary factors should influence 

the fall velocity: the weight of the sediment, being the primary force drawing the 

sediment down; and the viscosity of the water, being the primary force resisting the 

fall of sediment.  The weight of the sediment can be described using a combination of 

the acceleration due to gravity, the diameter of the sediment (if sediment is assumed 

to be spherical), and the specific gravity of the sediment.  Among others, Soulsby 

(1997) has experimented with equations using these components to represent 

observed data.  It is generally accepted that the fall velocity of non-cohesive sediment 

is straightforward, commonly expressed as Equation 4 (Soulsby 1997).   
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 Where:  ws = fall velocity (m/s); 
  ν  = kinematic viscosity of water (m²/s); 
  d  = diameter of sediment (m); and 
  D* = dimensionless grain size (Equation 5). 
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 Where:  g  = acceleration due to gravity (m/s²); and 
  s  = specific gravity of sediment (unitless). 
 
Cohesive sediments such as silt and clay tend to flocculate in high sediment 

concentrations, thus increasing fall velocity over what one would normally expect 

using equations such as Equation 4, which assumes that grains of sediment will fall 

without interaction with each other (Vanoni 1975).  The experiments of numerous 

researchers show that settling velocity for cohesive particles can vary with sediment 

concentration, temperature, water velocity, and salinity (Mehta et al. 1989; Lau and 

Krishnappan 1992; Lau 1994; Johansen and Larsen 1998; Milburn and Krishnappan 

2003), which makes the fall velocity of the silt and clay particle size classes difficult 

to predict in a simple model.  However, Equation 6 is a simple empirical model for 

cohesive sediments used by many researchers (e.g., Johansen and Larsen 1998).  This 

equation clearly ties fall velocity to overall sediment concentration and attempts to 

encompass all other factors through the use of multiplicative and exponential 

constants.  If sufficient detailed site-specific observations of fall velocity and 

concentration are available, Equation 6 has been found to be a good representation of 

reality (Johansen and Larsen 1998; Gerritsen et al. 2000; Baugh and Manning 2007). 

 m
s Ckw ⋅=  (6) 

 Where: k, m  = constants estimated from regression against observed data. 
 

Ideally, the settling velocity used in a water quality model should be measured on site 

or used as a calibration parameter for clay and silt particle size classes, enabling the 

characterization of Equation 6.  However, practical applications of this method have 

obvious problems: when modeling an entire canal system (or a canal and its 

contributing catchment area), it is less likely that modelers would have the resources 

to properly characterize Equation 6 with site-specific data.  Due to the difficulties in 

parameterizing equations such as Equation 6, Manning (2004) and Baugh and 

Manning (2007) have developed and tested an empirical model for cohesive sediment 

mass settling flux (MSF) using data from three sites in western Europe (Equation 7).  
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A key feature of Manning’s work is the separation of cohesive particles into 

‘macroflocs’ (flocs with diameter > 160 µm) and ‘microflocs’ (flocs with diameter < 

160 µm).  This separation allows a more precise estimation of overall fall velocity.  

Knowing that cohesive sediment fall velocity is dependent largely on sediment 

concentration and bed shear stress, Manning developed a set of empirical equations 

for the fall velocity of macroflocs (Equation 9) and microflocs (Equation 10).  The 

total mass settling flux (as before, equal to ws · C) can then be calculated based on the 

relative contributions of macroflocs and microflocs (SPMratio) to the total 

concentration of suspended particulate matter (SPM, corresponds to C in previous 

equations).   

 ( ) ( )







⋅

+
+








⋅⋅









+
−= micros

ratio
macros

ratio

wSPM
SPM

wSPM
SPM

MSF ,, 1

1

1

1
1  (7) 

 Where: MSF = mass settling flux (mg/m²s) = wsC;  
  SPM = suspended particulate matter concentration (mg/L) = C; 
  SPMratio = ratio of suspended macroflocs to suspended microflocs 

(Equation 8); 
  ws,macro = settling velocity of macroflocs (Equation 9) (mm/s); and 
  ws,micro = settling velocity of microflocs (Equation 10) (mm/s). 
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 Where: τ  = shear stress (N/m²). 
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The macrofloc equations fit the measured data with an R² of 0.9-0.99.  The microfloc 

equations fit the measured data with an R² of 0.73-0.75.  The SPMratio equation fits 

Manning’s data with an R² of 0.73.  Manning’s intent was that the equations should be 

universally applicable. 

2.3. Algae 

In addition to inorganic sediment, organic solids will influence the overall solids 

concentration in a reach.  Organic solids in a canal may include detritus from the land 
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surface, fecal material from people and animals with access to the canal, and 

vegetation growing in the canal.  Out of all these sources, the growth of algae (a form 

of vegetation) in a canal reach is of greatest concern.  Unlike other sources of organic 

material, algae are living and will reproduce in the water, potentially providing an 

increasing impact on water quality in a canal. 

2.3.1. Abundance and Chemical Composition 

The algae (or phytoplankton) in a body of water typically consist of a multitude of 

species.  Some species are adapted to high nutrient conditions, some to low, and thus 

there is a gradual progression in the abundance of individual species as the growth 

season progresses from the high nutrient conditions of the spring to the low nutrient 

conditions of the autumn (Rodhe 1948; Fogg 1965).   Each of these species has a 

slightly different chemical composition.  However, on the whole, it has been found 

that the chemical makeup, in terms of carbon (C), nitrogen (N), and phosphorus (P), is 

generally uniform in a multi-species population of algae (C106N16P) (Fleming 1940; 

Søballe and Threlkeld 1985); that the relative abundance of these elements in algal 

biomass is very similar to the relative abundance of these elements in sea water 

(Redfield 1958); and that the relative abundance of these elements in algal biomass 

may be more closely tied to environmental conditions than to species composition 

(Fogg 1965). 

 

When monitoring for algae, water is typically analyzed for the presence of 

chlorophyll-a (C55H72O5N4Mg) (Chl-a), rather than biomass or volume of algal cells.  

Thus, a conversion is required when modeling the transport of biomass if one is to 

compare model results to observed data.  Numerous authors have provided estimates 

for the relationship between chlorophyll-a and either live biomass, dry weight, or 

carbon.  These are summarized in Table 1.  Utilizing the various factors shown in 

Table 1, the ratio of the dry weight of the cell to chlorophyll-a content varies from 6.7 

(111 mg biomass/mg Chl-a * 0.06 mg dry weight/mg live biomass) to 1861 (186.1 mg 

C/mg Chl-a * 10 mg dry weight/mg C).  Using the dry weight:C estimate of Fleming, 

the average reported dry weight:chl-a ratio is 107 mg dry weight/mg Chl-a; the 

median value is 65.  The dry weight is desired as it provides an estimate of algal 

contribution to measured suspended solids concentrations, which are estimated 

through oven-drying of the solids sample. 
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Table 1. Estimators of the proportion of chlorophyll-a (Chl-a) content in algae. 
Mass Ratio Condition Ratio Value Source 

Batch Culture 11.8, 19 
(Thomas and 
Dodson 1972) 

Chemostat 
34.9, 61.8, 53.6, 
24.0, 15.8 

(Thomas and 
Dodson 1972) 

Vigorously 
Growing 

25 (Antia et al. 1963) 

Unhealthy 60 (Antia et al. 1963) 

-- 9-186.1 
(Berman and 
Pollingher 1974) 

-- 30, 60, 90, 120 (Eppley 1972) 

-- 51 
(Wienke and 
Cloern 1987) 

C:Chl-a 

-- 25-100 
(Strickland and 
Parsons 1968) 

Algal Bloom 303 
(Berman and 
Pollingher 1974) 

Otherwise 244 
(Berman and 
Pollingher 1974) 

Biomass:Chl-a 

All Conditions 111-1000 
(Berman and 
Pollingher 1974) 

-- 10 
(Berman and 
Pollingher 1974; 
Vollenweider 1974) 

Biomass:C 

-- 37 (Fleming 1940) 
-- 1.7-10 (Soeder et al. 1974) 

Dry Weight:C 
-- 2.3 (Fleming 1940) 

Biomass:Dry Weight -- 16 (Fleming 1940) 
 

The varied relationship between chlorophyll-a and biomass is dependent not only 

upon the specific type of species present (Berman and Pollingher 1974; Malone et al. 

1979), but also upon the environment surrounding the algae (Mullin et al. 1966).  

Thomas and Dodson (1972) found that chlorophyll-a per algal cell increased as 

growth rate increased; Antia and others (Antia et al. 1963) found that chlorophyll-a 

per algal cell decreased with decreased nutrient availability.  Thus, although an 

estimate may be made for an average conversion between algal mass and chlorophyll-

a concentration, the true relationship will be varied and will cause observed 

chlorophyll-a data to appear scattered around any modeled chlorophyll-a 

concentrations calculated from algal weight; in the evaluation of several nutrient-

chlorophyll models, Brown and others (2000) found that the best model had an 



 39 

interval of 30-325% in predicting chlorophyll-a concentrations at the 95% confidence 

level. 

 

It has been suggested that the type of nutrient-limited growth phytoplankton are 

experiencing can be defined according to the ratio of nutrients in their bodies 

compared to the nutrient ratio in the water: thus, an N:P molar ratio in the water of 20 

is considered ideal (Cooper 1937), and Dillon and Rigler (1974) suggest that N:P 

ratios above 12 are indicative of phosphorus-limited conditions.  These correspond to 

the ratios of N and P in phytoplankton biomass: several authors (Fleming 1940; Antia 

et al. 1963; Vollenweider 1974; Reid and Hamilton 2007) describe the ideal 

phytoplankton N:P molar ratio as somewhere between 10 and 20.   As phosphorus is 

commonly the limiting nutrient in the environment, several researchers 

(Vollenweider, 1976; Schindler, 1978; Jones and Bachmann, 1976; Dillon and Rigler, 

1974) have found phosphorus to be the key factor affecting algal abundance, with 

variations in phosphorus levels accounting for between 83 and 95% of the variation in 

algal concentration in the waters studied.  The equations developed by several authors 

to describe this relationship are listed below (Equations 11 – 17) and plotted in Figure 

8.  

 

Equation 11 was developed by Dillon and Rigler (1974). 

 [ ] [ ] 136.1log449.1log 1010 −=− PaChl  (11) 

 Where: [Chl-a]= concentration of summer average chlorophyll-a (mg/m³); 
and 

  [P] = total phosphorus concentration (mg/m³). 
 
Equation 12 was developed by Jones and Bachmann (1976).  

 [ ] [ ] 09.1log46.1log −=− PaChl  (12) 

 
Equation 13 was developed by Schindler (1978) 
 848.0]log[213.1]log[ −=− annann PaChl  (13) 

 Where: [Chl-aann]= average annual chlorophyll-a concentration (mg/m³); and 
  [Pann] = mean annual total phosphorus concentration (mg/m³). 
 
Equation 14 was developed by Walker (1984). 

 [ ] [ ] 55.0loglog −=− PaChl  (14) 
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Brown and others (2000) generated both annual (Equation 15) and growing season 

(Equation 16) equations. 

 [ ] [ ] 369.0log053.1log −=− annann PaChl  (15) 

 [ ] [ ] 299.0log03.1log −=− PaChl  (16) 

Pridmore and McBride (1984) provide Equation 17 as part of their predictive model 

for algal growth. 

 [ ] [ ] 389.0log178.1log max −=− PaChl  (17) 

 Where: [Chl-amax] = maximum chlorophyll-a concentration (mg/m³). 
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Figure 8. Relationships between phosphorus and chlorophyll-a concentrations. 
 

2.3.2. Growth and Transport 

In general, the growth of algae in a reach is dependent upon many factors, including 

water temperature; flow rate; and the availability of light, nutrients, carbon, oxygen, 

and silicon (Goldman et al. 1968; Eppley 1972; Dillon and Rigler 1974; Jones and 

Bachmann 1976; Vollenweider 1976; Schindler 1978; Kimmel et al. 1990; Reid and 

Hamilton 2007).  Light, water temperature, and phosphorus concentration have a 

positive effect on algal growth in typical environmental conditions.  In contrast, flow 

rate is inhibitory to growth in a reach in two ways: first, algae grow best in still water; 
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and second, what algae do grow in moving water will be more rapidly flushed out of a 

reach with increasing flow rate (Fogg 1965; Kimmel et al. 1990). 

 

Eppley and Sloan (1966) (Equation 18) and later Eppley (1972) (Equation 19) found 

that a cap on the maximum specific growth rate for algae under ideal light and 

nutrient conditions could be defined according to water temperature (Figure 9). 

 T086.1525.0 ∗=µ  (18) 

  T066.1851.0 ∗=µ  (19) 

 Where:  µ  = maximum specific growth rate (doublings/day); and 
  T  = water temperature (ºC). 
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Figure 9. Maximum specific growth rate based on water temperature. 
 

Equation 18 was developed based on the work of Talling (1955), who evaluated the 

relative growth rate of Asterionella formosa collected from Lake Windermere, 

England in 1952.  However, Eppley and Sloan (1966) found this equation to 

overestimate growth rate at low and high temperatures for their culture of Dunaliella 

tertiolecta.  This likely provided the impetus for the later development of Equation 19, 

which was created by analyzing about 200 samples from a wide range of researchers; 

as such, it is more representative than the 1966 equation, which was developed based 
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on the work of one researcher on one species of algae.  Eppley (1972) found that the 

specific growth rate increased exponentially up to a temperature of 40ºC, and though 

his work focused primarily on organisms in the sea, he reported no noticeable 

variability in growth rate for freshwater organisms (compared to marine organisms), 

nor any variability between species.  Where observed growth rates fall below the rate 

suggested by Equation 19, Eppley suggested that other factors – for example, light or 

nutrient availability – were limiting the growth rate such that it did not achieve its 

potential. 

 

Solar radiation (light) is crucial for the growth of algae – phytoplankton, being plants, 

require sunlight to produce energy.  A common term used when discussing light 

availability for algae is the euphotic depth – the depth below which photosynthesis is 

not possible.  This depth is typically defined as the depth at which the light intensity is 

1% of the value at the water surface (Reynolds 1984; Lee and Rast 1997).  Beer’s 

Law (Equation 20) gives a relationship useful in defining the euphotic depth.  If the 

light intensity at the euphotic depth is 1/100th of the light intensity at the water 

surface, then Equation 20 applied when the depth equals the euphotic depth simplifies 

to Equation 21.   

 ( ) ( ) zeIzI η−= 0  (20) 

 Where: I(z) = light intensity at depth z (percent); 
  I(0) = light intensity at water surface (100%); 
  η  = light extinction coefficient (m-1); and 
  z  = depth (m). 
 

 
( )

ηη
60517.4)1ln()100ln( =−=euz  (21) 

 Where:  zeu = euphotic depth (m). 
 

Many researchers have investigated the final piece of the equation:  the light 

extinction coefficient.  The total light extinction coefficient has been estimated 

between 1.56-7.93 m-1 (Reynolds 1984; Lee and Rast 1997); attempts have also been 

made to develop regression equations to dynamically predict the light extinction 

coefficient based on the concentration of various types of solids; these equations all 

follow the general formula given in Equation 22.  The light extinction rate is 

dependent, at a minimum, on the light extinction due to the water itself, shading from 
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suspended solids, and self-shading by other algae.  Many equations attempt to 

quantify the effects of organic matter as well.  A list of the coefficients for Equation 

22 found by various researchers is given in Table 2. 

 
 [ ] [ ] [ ]OMASS oasw ηηηηη +++= lg  (22) 

 Where: ηw = base light extinction coefficient due to water (1/m); 
  ηs = light extinction due to inorganic sediment (m² mg-1); 
  [SS] = concentration of inorganic sediment (mg/L); 
  ηa = light extinction due to algae (m² mg Chl-a-1);  
  [Alg] = concentration of algae (mg/L); 
  ηo = light extinction due to organic matter (m² mg-1);  
  [OM]= concentration of organic matter (mg/L). 
 

Table 2. Regressed coefficients for Equation 22 presented by various authors. 

ηw (m
-1) ηs (m² mg-1) 

ηa (m² mg 
Chl-a-1) 

ηo (m² mg-1) Source 

0.02-0.2*  0.006-0.02  (Reynolds 1984) 
2.99 12.0 0.020 2.25 (Lee and Rast 1997)† 

0 52 0.031 174 (DiToro 1978)‡ 

1.337 19 0.015 54 (Blom et al. 1994)‡ 
0.627 25 0.021 49 (Buiteveld 1995)‡¶ 
0.877 25 0.022 8 
0.513 44 0.023 27 
1.020 76 0.017 58 
-0.259 10 0.035 8 
1.666 50 -0.027 83 
0.865 137 0.012 75 

(Bakema 1988)‡ 

§ 62.6 0.0335 45.4 (Zhang et al. 2006) 
* Includes effects of water, sediment, and organic matter 
† Also included a term for color, 0.00113 (platinum-cobalt units)-1 m-1 

‡ As cited by Van Duin et al. (2001) 
¶ Also included a term for absorption due to Gilvin at 380 nm, 0.050 (absorption coefficient)-1 m-1 
§ ηs, ηa, ηo regressed separately with intercepts of 1.6068, 3.1924, and 4.3433 m-1, respectively 
 

The relationships presented in Equations 21 and 22 and Table 2 can be used to define 

the amount of light available for algal growth.  Once the light availability is known, 

the growth rate can be calculated or modified from a maximum rate.  Some 

researchers have used Michaelis-Menten kinetics to define the effect of light intensity 

on algal growth rate (Equation 23) (e.g., Eppley and Sloan 1966; Bicknell et al. 2001).  

This relationship requires definition of a ‘half-saturation’ constant, the value of light 

intensity that yields a growth rate equal to half the maximum growth rate possible 

under the remaining environmental conditions (e.g., temperature).  The growth rate 

multiplier based on light availability increases quickly at first, when light availability 
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is low and limiting, but reaches an asymptote of unity when light availability exceeds 

the maximum usable by the algae under the remaining environmental conditions 

(Figure 10). 

 
LIK

LI
GRM

ls +
=

,

 (23) 

 Where: GRM = growth rate multiplier (unitless); 
  LI = light intensity (J/m²s); and 
  Ks,l = half-saturation constant for light-limited growth (J/m²s). 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Light Intensity (J/m²s)

G
ro

w
th

 R
a

te
 M

ul
tip

lie
r (

u
n

itl
e

ss
)

 
Figure 10. Michaelis-Menten relationship for light intensity given a half saturation constant of 
23.012 J/m²s. 
 

Bicknell and others (2001) suggest a value for Ks,l of 23.012 J/m²s; Eppley and Sloan 

(1966) suggest a value for Ks,l of 10.46 J/m²s. 

 

As was described in Section 2.3.1 on algal abundance, the maximum and average 

supportable algal populations, as represented by chlorophyll-a concentration, are 

closely tied to phosphorus concentration.  Some researchers, recognizing this, have 

used the supportable population based on phosphorus concentration as a cap on algal 

growth, slowing the rate of growth as this maximum supportable population is 

approached and causing death to occur should the maximum supportable population 
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be exceeded (e.g., Pridmore and McBride 1984) (Equation 24).  Other researchers 

(e.g., Bicknell et al. 2001) again use Michaelis-Menten kinetics to predict a growth 

rate limited by phosphorus concentration.  The disadvantage of the Michaelis-Menten 

model is that although it can slow the rate of growth, it cannot cause a decline in the 

algal population if the phosphorus level drops, and thus if death is not considered 

separately, the population would, at best, stagnate, rather than dropping to a level 

supportable by the current phosphorus concentration.  For this reason, if death is not 

considered separately, Equation 24 is preferable. 

 
K

BK
GRM

−=  (24) 

 Where: K  = maximum supportable algal concentration based on current 
phosphorus level (mg/m³) (Figure 8); and 

  B  = algal concentration (mg/m³). 
 

Finally, flow rate has been shown to have a significant effect on algal biomass 

(Søballe and Threlkeld 1985; Kimmel et al. 1990; Reid and Hamilton 2007).  Algae 

grow preferentially in more stagnant water, and increased flow rates flush the algae 

out of a water body.  Equations 25 (Lucas et al. 2009) and 26 (Pridmore and McBride 

1984) show how some researchers have attempted to correlate flow rate with algal 

abundance or growth rate.  Equations 25 and 26 are conceptual models that follow the 

same basic principle of mass conservation: the change in biomass must be equal to the 

inflows minus the outflows, plus growth.  For Lucas’ model, the effect of flow rate is 

incorporated into the time available for growth and loss: a higher flow velocity causes 

the time for growth to reduce, which reduces the amount of biomass that can grow; it 

also reduces the amount of time available for loss.  They emphasize that their model is 

developed assuming plug flow and uniformity of environmental conditions along the x 

direction.   Pridmore and McBride’s model incorporates the flow rate through a 

flushing of organisms, which reduces the biomass concentration available to grow.  

They developed their model for impoundments with short retention times, where they 

could assume the inflow and outflow rates were equal and that the volume of the 

impoundment did not change.  These are slightly different approaches to the same 

problem.   Lucas and others tested their model on nine datasets collected from six 

locations; where their underlying assumptions of plug flow and uniformity were met, 

the model predicted well, but for systems where the assumptions were violated (in 

two tidal lakes), the model did not predict adequately.  Pridmore and McBride tested 
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their equation on two hydro-electric impoundments in New Zealand with retention 

times of 3.2 and 8.4 days and volumes of 70 and 45 m³. 

 

 






 −
= x

u
BB lossgrowth

inout

µµ
exp  (25) 

 Where: Bout = algal biomass concentration (µg Chl-a/L or cells/L); 
  Bin = algal biomass concentration entering the system at inlet 

(x=0) (µg Chl-a/L or cells/L); 
  x  = distance downstream from inlet (m); 
  µgrowth= algal specific growth rate (1/d); 
  µloss = sum of specific loss rates due to biological and physical 

processes (1/d); and 
  u  = characteristic velocity along the primary flow direction 

(m/d). 
 

 ( ) BBb
V

Q

dt

dB µ+−=  (26) 

 Where: B  = average phytoplankton concentration in impoundment 
(mass/length³); 

  b  = average phytoplankton concentration in inflow 
(mass/length³); 

  t  = time at which B is measured (time);  
  Q  = flow of water (length³/time); 
  V  = impoundment volume (length³); and  
  µ  = net growth rate of individual algal cells (time-1). 
 
As previously mentioned, Pridmore and McBride cap growth in their model through 

consideration of a maximum growth rate supportable by the phosphorus concentration 

(Equation 27).  Equation 27 also allows a negative growth rate, should the existing 

population exceed the population supportable by the current phosphorus 

concentration. 

 






 −=
K

BK
maxµµ  (27) 

 Where: µmax = maximal specific growth rate of phytoplankton under 
existing light and temperature conditions (time-1); and 

  K  = theoretical maximum phytoplankton concentration 
(mass/length3), determined from Equation 17. 

 

Algae tend to remain suspended in the water column (Fogg 1965; Malone 1980); 

because they are suspended, they move through a hydrologic system as the water 

moves.  This was captured in Pridmore and McBride’s equation (Equation 26), which 
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simply assigned the concentration of algae to inflow and outflow of water to 

determine the mass of algae transported.  Thus the transport of algae is rather 

simplistic in nature; the complexity lies in the prediction of their growth.   

2.4. Canal Process Modeling 

2.4.1. Canal Modeling 

Although many hydrodynamic models exist for riverine systems, few canal models 

exist (Heatlie et al. 2007).  In particular, while modeling efforts have been undertaken 

for irrigation and drainage canals (Sutcliffe and Parks 1987; Misra et al. 1991; Lal 

2001), there seems to be a dearth of research on canals used for navigation.  Some 

well-known canals (e.g., Venice and Suez) have been modeled, but have very 

different drivers on hydrology than do inland waterways.  One study (Heatlie et al. 

2007) does model a navigational canal similar to the study region, but with a different 

goal.  In addition to these large-scale modeling studies, there are a few monitoring and 

regression studies that have gathered data of specific relevance to the current 

modeling effort. 

 

Venice, Italy, is located on a series of small islands inside a lagoon.  A network of 

nearly 160 canals forms the ‘streets’ of the city.  Knowledge of the sedimentation 

rates within the canal network is of vital importance, to ensure that dredging happens 

as needed to keep the canals navigable.  Coraci and others (2007) undertook a study to 

develop a detailed model of the Venice canal network in order to predict 

sedimentation rates therein.  They coupled a finite element model using shallow water 

equations with a 2-D link-node model to represent the system.  The finite element 

model was used to represent the flow in the lagoon, driven by tidal action; outputs 

from this model were then used as boundary conditions for the link-node model of the 

canal network.  Simulation of water levels with this coupled system was excellent; 

sediment simulation was acceptable, though not as good, being heavily dependent on 

parameters (such as lagoon sediment input, building erosion, and sewage outfalls) that 

were difficult to quantify.  Additionally, the modelers did not attempt to quantify 

sediment sourced from “boat traffic or other anthropogenic influences” (Coraci et al. 

2007).  Due to the nature of the system, it was not necessary to include a 
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representation for catchment contributions or for structures (e.g., locks) commonly 

found in inland navigational canals. 

 

In a similar manner to Venice, where the hydrodynamics are primarily a function of 

water levels in the lagoon, the hydrodynamics of the Suez Canal are driven primarily 

by the mean sea level in the water bodies at each end of the canal (Abril and Abdel-

Aal 2000).  Abril and Abdel-Aal used a 1-D model based on the momentum equation 

to represent hydrology within the Suez Canal.  While the authors acknowledge that 

boat movements will have an effect on sediment concentrations, they report that the 

primary influence on sediment concentrations in the Suez Canal is the water 

movement caused by tidal changes in the velocity of water, which affects settling and 

resuspension within the canal (Abril and Abdel-Aal 2000).  Therefore they make no 

accounting for boat traffic. 

 

A recent study used the ISIS model (Wallingford Software 2008) to characterize the 

Manchester Ship Canal in northern England (Heatlie et al. 2007).  This canal 

contained five ponds and three riverine interactions; the primary focus of the 

modeling study was the use of the canal for flood control.  The authors developed a 

method to represent an automated sluice control system within ISIS and successfully 

represented the hydrology in the canal.  Although they proposed using the sediment 

module of ISIS at a later date to evaluate changes in flood risk due to dredging 

activities, they did not run the sediment module in their study (Heatlie et al. 2007).    

British Waterways also used ISIS to assist in their efforts to quantify a range of 

Manning’s roughness coefficients for use in hydraulic modeling of canals (Dun 2006).  

The British Waterways study was conducted on single sections of canals – that is, the 

study segments did not include locks. 

2.4.2. Modeling of Boat Traffic Effects 

Murphy and Eaton (1983) evaluated the effects of boat traffic on macrophyte growth 

in several canals across England.  They found a strong correlation between boat 

movements and turbidity measured at 55 sites (p ≤ 0.001, correlation coefficient = 

0.67) (Equation 28) for an average channel 1 km long, 10 m wide, and 1 m deep 

(Murphy and Eaton 1983). 
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 ( ) ( ) 68.1ln6.0ln −⋅= Tt  (28) 

 Where:  t   = mean turbidity as TSS (g/m³); and 
   T  = annual traffic (movements/(ha·m·year)) (Equation 29). 

 
dw

RL
T

⋅
⋅⋅= 10

 (29) 

 Where:  L  = lockages (lock operated through filling and emptying cycle) 
per year; 

  R  = boat to lockage ratio; 
  w  = mean canal width at measuring point (m); and 
  d  = mean canal depth at measuring point (m). 
 
Hilton and Phillips (1982) also investigated boat traffic effects on turbidity.  They 

reported that suspended sediment concentrations in trafficked waterways originated 

both from elevated phytoplankton levels and turbidity generated by boat movements, 

and that the division between the two was still in need of research.  They recorded 

continuous and nearly-continuous turbidity at two sites on the River Ant, and found a 

visible correlation between boat activity and turbidity.  With the assumption that 

settlement follows an exponential decay model, they developed Equations 30 and 31 

to predict suspended solids mass and concentration in trafficked waters.  At a given 

point in time, these equations sum the individual contributions from each boat that has 

passed, taking into account the deposition that has occurred since the time each 

individual boat passed. 
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 Where: Ttotal = total mass of suspended solids in the water column over 1 
meter of bank length (g/m); 

  T  = mass of solids induced by a single boat passage (g/m 
travelled);  

  n  = number of boats; 
  k  = settlement rate coefficient; 
  τ  = time of sampling, counted from arbitrary starting time; 
  tp  = time of passage of the pth boat, counted from the same 

arbitrary starting time as τ; 
  Tmean = concentration of suspended solids (g/m³); 
  T0 = T/A = suspended sediment concentration generated by 

passage of a single boat (g/m³); 
  A  = cross-sectional area of river, m²; and 
  TB = background suspended solids concentration when there is no 

boat activity (g/m³). 
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Although Equations 30 and 31 are designed for measured concentrations of suspended 

sediment in g/m³, the data available to the researchers (and the final values they 

report) were given in turbidity units of FTU.  Hilton and Phillips (1982) tested their 

equations on two reaches on the River Ant, and found values for k of 0.0146 and 

0.012 and values for T0 of 0.156 and 0.148 FTU.  Due to the differences in the reaches 

tested, they did not expect the values for k and T0 to vary much if the model was 

extended to other rivers.  The researchers cautioned that time steps of 5-60 minutes 

were tested in their model development, but longer time steps were not, and the model 

might not be suitable for time steps of greater than one hour.  Finally, Hilton and 

Phillips concluded that solids resuspended by boat traffic were unlikely to build up 

over time, as their model suggested that even concentrations generated during times of 

peak boat traffic should return to normal within 5.5 hours. 

2.5. Study Area 

The Kennet and Avon Canal was chosen as the site for demonstration of this model, 

predominantly due to the tense political climate around the canal and resulting need 

for a computer model capable of predicting solids loads from the canal.  The canal 

discharges into the visually pristine River Kennet, creating water quality problems 

that have outraged local anglers (Kennet Chalkstream Monitoring Group 2008).  The 

Environment Agency is considering numerous management options to address the 

water quality problem in the River Kennet caused by the canal, but they desire a 

model capable of predicting the outcomes of these options before committing funds to 

any restoration efforts.  The use of the Kennet and Avon Canal as the study site has 

the added benefit of the availability of varied spatial water quality data collected by 

the Centre for Ecology and Hydrology (CEH).   

2.5.1. Description 

The full length of the Kennet and Avon Canal runs 140 km from Bristol to Reading in 

southern England (Corrie 2002); the study area for this research project extends 21 km 

from the summit reach eastward to Copse Lock, where the natural course of the River 

Kennet merges with the canal (Figure 1, page 22).  (In Figure 1, although the town of 

Hungerford is not large enough to be a ‘populated place’ by mapping standards, it is 

an important sampling location where the River Dun, the River Kennet, and the 
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Kennet and Avon Canal run nearly parallel before the convergence of the former two; 

thus Hungerford is noted in Figure 1 to aid in later discussion.)  Copse Lock is the site 

of concern for anglers, the point where the slug of sediment carried by the canal enters 

the pristine River Kennet (Figure 11).  Up until this point, the river and canal parallel 

each other, but have only minimal interaction, insufficient to cause water quality 

problems in the river. 

 

 
Figure 11. Confluence of the Kennet and Avon Canal with the River Kennet.  The canal enters 
from the lock visible in the top right of the photo; the river enters from the bottom right of the 
photo. 
 

The study section of the canal contains 26 locks (and thus 25 reaches between the 

locks, plus the summit reach, for a total of 26 reaches), starting with lock number 55 

(Crofton Top Lock) to the west and ending with lock number 80 (Copse Lock) to the 

east (Figure 12, Figure 13).  To the south and west of Hungerford, the canal parallels 

the River Dun; to the east of Hungerford, after the Dun joins the Kennet, the canal 

parallels the River Kennet.  Two major surface streams contribute flow to the canal in 

this section: Froxfield Stream deposits approximately a quarter of its flow into the 

canal through a control structure (the remainder flows in a culvert underneath the 

canal to join the Dun), and Shalbourne Brook contributes all of its flow to the canal, 

though a large portion of it is removed via a weir on the opposite side of its entry 

point on the canal (National Rivers Authority 1992).  Additionally, generally small 

amounts of water are drawn at various points from the River Dun and the River 
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Kennet and deposited in the canal (National Rivers Authority 1992).  The majority of 

the flow in the canal is provided via the summit reach, to which the Crofton Pumping 

Station (Figure 12) pumps water at a variable rate (but minimum of 125 L/s (personal 

communication, pumping station engineer, 15 September 2009)) year-round.  The 

water pumped at Crofton is drawn from nearby Wilton Water, a manmade reservoir 

designed for this purpose. 

 
Figure 12. Locks on the Kennet and Avon Canal. 
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Figure 13. Elevation and water depth along the study section of the Kennet and Avon Canal.  
Distances and elevations approximate.  Numbers correspond to lock numbers. 
 

Though the major flows come from the aforementioned water bodies, runoff from the 

land surface does have the potential to enter the canal; as a result, it is important to 

understand the nature of the drainage area surrounding the canal and the river.  This 

area is predominantly agricultural (Figure 14), with a loamy soil texture, roughly 30% 

sand, 45% silt, and 25% clay (Jarvis et al. 1979; Jarvis et al. 1984). 



 54 

 
Figure 14. Land uses in the Kennet Catchment.  Data obtained via Dr. Andrew Wade (University 
of Reading), originally from the Institute for Terr estrial Ecology. 

2.5.2. History 

As might be expected with a nearly 200-year-old structure, the Kennet and Avon 

Canal has had a colorful history.  After experiencing financial difficulties that delayed 

its completion, it experienced its heyday in the early 1800s, followed by a substantial 

decline beginning in the mid-1800s when the nearby Great Western Railway was 

completed, with net deficits recorded beginning in 1877.  Around the time of the 

world wars, the improvement in road transport delivered another blow to the canal, 

and throughout the 1900s it struggled to maintain its existence (Clew 1973).  Various 

sections of the canal became impassable in the 1900s due to lack of maintenance; 13 

km of canal between Newbury and Reading were closed in 1950 (Clew 1973; West 

Berkshire Heritage Service 1999).  The entire canal reopened in 1990 thanks to the 

volunteer efforts of the Kennet and Avon Canal Trust.  Today it exists primarily as a 

recreational canal, with very little of the commercial traffic that dominated its early 

years (Neal et al. 2007); however, the reopening of the canal has caused difficulties 

with local anglers (Halcrow Group Limited 2007), as a profitable fishery developed 

on the pristine River Kennet in the years of the canal’s disuse. 
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2.5.3. Water Chemistry Assumptions  

Certain assumptions were made in Section 2.3.2 in the investigations of relevant 

processes for canal modeling.  First, it was assumed that phosphorus would be the 

limiting nutrient in any system studied.  Second, it was assumed that Eppley’s 

relationship for temperature (Equation 19) would be valid (that is, that the water 

temperature would be below 40ºC at all times).  Data from Neal et al. (2006b) support 

both of these assumptions for the Kennet and Avon Canal. 

 

The average N:P weight ratio for the Kennet and Avon Canal is 28.8, yielding an N:P 

molar ratio of 63.7.  This is much greater than the ‘ideal’ molar ratio (20) given by 

Cooper (1937) and the P-limited ratio (12) given by Dillon and Rigler (1974), 

indicating that in terms of nutrients, algal growth is P-limited.  Measured water 

temperatures in the Kennet and Avon Canal range from 1.5 to 22.7ºC, well below the 

40ºC threshold established by Eppley (1972) for the use of his equation to predict 

maximum algal growth rate (Equation 19). 

2.6. Summary 

Many of the components needed to create a canal model currently exist: sediment 

deposition has been characterized, a multitude of formulae for algal growth are 

available, and observations of canal processes and consultation with experts provide a 

good background on the hydrologic processes that must be considered.  However, no 

model currently exists that specifically addresses all the issues needed for a water 

quality study of an inland navigational canal: in particular, the issues of boat-

generated sediment, lockages, and algal growth are not included in existing models.  

The selected length of the Kennet and Avon Canal includes boat traffic, lockages, 

overflow weirs, leakage, algal growth, and interactions with the surrounding natural 

environment and as such provides a suitable setting for development and testing of a 

new computer-based canal model.   
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3. Data Collection & Analysis 

3.1. Introduction 

The development of the canal model required data from numerous sources.  Sources 

of existing data included other researchers, government agencies, and internet 

databases.  Other data were not available and had to be collected specifically for this 

study. 

3.2. Field Surveys 

Two field surveys were conducted to collect data from the canal that were not 

available from an existing source.  The first of these surveys was held in August 2008 

and the second in September 2009.  Water quality samples were collected on both 

occasions.  In August only, latitude and longitude information for the canal was 

collected; in September only, weir dimensions were collected.  On both occasions, 

consultation with knowledgeable persons provided further information on the canal. 

3.2.1. Water Quality Samples 

Water quality samples were collected from the canal in an effort to quantify the 

amount of sediment disturbed by the passage of boats and the opening and closing of 

lock gates.  Samples were collected immediately before and after boat passage and 

likewise immediately before and after lock gate movement.  During the August 

sampling, the boat and lock samples were often taken in series – that is, before a boat 

approached the lock, after the boat passed but before the lock gate closed, after the 

lock gate closed, and then the reverse process as the boat exited the lock. 

 

The water quality samples were collected with a simple apparatus (Figure 15).  This 

apparatus consisted of a 100 mL container, a weight to pull the container down into 

the water column, and a float to keep the sampling container at the correct depth (0.3 

m) while sampling.  The container was lowered (preferably from a bridge, 

occasionally thrown from the side of the canal) into the center of the canal, held under 

water for a few seconds, and retrieved.  The sample was immediately transferred to 
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100-mL container with a screw lid and labeled with the time and date of collection 

and a unique identifying code used later during laboratory analysis. 

 
Figure 15. Sampling apparatus. 
 

In total, samples were collected surrounding the passage of 24 boats: 10 in August 

2008 and 14 in September 2009.  Samples were collected surrounding 14 lock 

movements in August 2008.   

3.2.2. Physical Characteristics 

As lock locations and dimensions were not forthcoming from government agencies, it 

was necessary to collect information on both directly from the canal.  The location of 

each lock on the study section was determined via personal survey using a handheld 

Global Positioning System (GPS) receiver (Garmin eTrex Vista HCx).  The GPS 

receiver was also used to record the track of the old horse towpath along the canal, as 

an electronic map of the canal was not available.  These data were imported into a 

Geographic Information System (GIS) (ESRI ArcGIS 9.2) for analysis.  The results of 

both of these efforts were displayed previously as “Kennet & Avon Canal Locks” and 

“Kennet & Avon Canal” in Figure 12.  These data were later used to calculate the 

lengths of the reaches between each lock and to determine to which reach various 

external sources (streams, sewage treatment works) contributed (described in Section 

7.1.2). 

 

In September of 2009, dimensions of lock gates and overflow weirs (bypassing lock 

gates) were measured using a 100-ft measuring tape.  Notes were also taken regarding 
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any instructions to leave locks empty after use.  The details of these measurements are 

included in Table 3 and in relevant sections throughout this report.  On average, lock 

gates were 2.6 m long; overflow weir lengths varied greatly, with average weir boxes 

at locks (e.g., left photo, Figure 7) being 1.6 m long with a height of 16 cm and 

average culverted weirs (e.g., right photo, Figure 7) having an initial weir length of 

6.3 m followed by a 62 cm diameter culvert. 

 

Table 3. Reach and lock dimensions collected in September 2009. (continues next page) 

Downstream Lock 
Number 

Length of One 
Lock Gate (m) 

Weir Length(s) 
(m) 

Height of 
Weir Box 
(cm) 

Leave 
Lock 
Empty? 

55 2.69 2.4 14 Yes 

56 2.64 
0.91 
0.91 

33 
33 

Yes 

57 2.44 
0.94 
0.94 

20 Yes 

58 2.59 
1.1 
1.1 

18 
18 

Yes 

59 2.67 
2.0 
2.0 

18 Yes 

60 2.69 
2.3 
2.3 

23 
23 

No 

61 2.59 2.1 18 No 

62 2.67 
1.9 
1.9 

20 
20 

No 

63 2.74 
2.2 
2.2 

20 
20 

No 

64 2.72 
2.0 
2.0 
6.7 

20 
20 
∞

† 
No 

65 2.74 
1.7 
1.7 

20 
20 

No 

66 2.59 
1.9 
1.9 
1.7 

19 
19 
38 

No 

67 2.67 
2.0 
2.0 

15 
15 

No 

68 2.59 
1.7 
1.7 

20 
20 

No 

69 2.77 1.9 43 No 

70 2.74 
2.1 
2.1 

24 No 

71 2.59 2.5 ∞ No 

72 2.74 
1.2 
1.2 
7.7 (0.66)‡ 

15 
15 
74 

Yes 
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Downstream Lock 
Number 

Length of One 
Lock Gate (m) 

Weir Length(s) 
(m) 

Height of 
Weir Box 
(cm) 

Leave 
Lock 
Empty? 

73 2.57 
1.4 
1.4 
3.2 (0.74) 

20 
20 
74 

No 

74 2.62 
1.5 
1.5 
7.8 (0.46) 

13 
13 
46 

No 

75 2.69 
1.6 
1.6 
8.8 (0.74) 

23 
23 
74 

No 

76 2.69 
1.7 
1.7 
6.7 (0.61) 

13 
13 
61 

No 

77 2.54 
1.5 
1.5 
9.0 

18 
18 
18 

No 

78 2.74 n/a¶ 
∞ No 

79 2.59 
1.4 
1.4 
3.7 (0.43) 

15 
15 
43 

No 

80 2.44 
1.4 
1.4 

18 
18 

No 
† Where weir height is given as ∞, the weir has no top (i.e., it is just a weir, no box). 
‡ Where a number is given in parentheses, the weir box consists of a long weir crest flowing into a box 
that discharges through a culvert (Figure 16); the number not in parentheses is the weir crest and the 
number in parentheses is the diameter of the culvert. 
¶ The overflow weir for this section is out of sight on private property at Kintbury Mill; estimates were 
later made from aerial photos that the weir length was 9.1 m and the weir had no top. 
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Figure 16. Example of complicated weir box. 
 

3.2.3. Laboratory Analysis 

Upon return to Cambridge after collecting water samples, the samples were 

refrigerated and analyzed within three days.  Sample volume was measured and 

samples were filtered through use of a vacuum filtration system with a 47 mm 

diameter 0.4 µm cyclopore track etched membrane filter (Whatman brand).  After 

filtration, samples were dried at 105ºC for two hours.  The weight of each filter paper 

was recorded prior to analysis, and compared to the post-drying weight of solids and 

filter to determine the weight of dry solids in each sample.  The solids concentration 

was determined as the quotient of the dry solids weight and the original sample 

volume. 

 

The concentration of sediment disturbed by boat passage was determined by 

comparing the pre- and post-boat passage concentrations (Table 4).  Likewise, the 

concentration of sediment disturbed by lock gate movement was determined by 
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comparing the pre- and post-lock gate movement concentrations (Table 5).  In the 

case where these comparisons resulted in a negative concentration change, it is 

assumed that the turbulence generated by the boats or lock gates temporarily drew 

water of lower sediment concentration into the center sampling location in the canal. 

 

The full details of the calculated sediment concentrations are included in Table 4 and 

Table 5; in summary, excluding outliers, the average concentration of sediment stirred 

up by boat passage was 23 mg/L (median 18 mg/L, range 1.8 mg/L to 70 mg/L); and 

by lock movements, 7.3 mg/L. 

Table 4. Sediment concentration increases due to boat passage. 

Collection Period Boat Width 
Sediment Concentration 
(mg/L) 

2008 Wide 36.8 
2008 Narrow 8.5/0.4† 

2008 Two Narrow 14.0/-1.7/-2.8 
2008 Narrow 31.5 
2008 Narrow 12.1 
2008 Narrow 23.3/8.9 
2008 Narrow 147.8 
2008 Not Recorded 149.8 
2008 Not Recorded 22.3 
2009 Wide 259.3 
2009 Narrow 3.2 
2009 Narrow 10.3 
2009 Narrow 27.6 
2009 Narrow 4.6 
2009 Two Narrow 1.8 
2009 Narrow 12.1 
2009 Wide 193.8 
2009 Narrow 44.3 
2009 Narrow 70 
2009 Narrow 2.1 
2009 Wide 61.7 
2009 Narrow 26.8 
†Where multiple numbers are listed, they reflect samples taken surrounding the same boat at different 

stages of the lockage process.  The first number – taken before the boat moved into the lock – is 
considered most accurate. 

 

Table 5. Sediment concentration increases due to lock gate movements (mg/L). 
70.3 -5.9 19.7 
5.2 -7.3 -6.3 
-12.9 -1.7 -12.1 
-25.0 -3.9 -6.2 
0.1 87.7  
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3.3. Aerial Photography 

A bird’s-eye view of the canal was used to estimate reach widths, the area in the canal 

affected by boat-disturbed sediment, and shading of each canal reach.  Aerial photos 

were obtained from Bing.com (© 2010, Microsoft Corporation, NAVTEQ, Intermap, 

and Getmapping plc) for use in this analysis.   

 

Because dimensions of the canal were not forthcoming from any Government agency, 

canal widths were estimated from aerial photography; information from the literature 

suggests a typical width for all 107 reaches of the canal of 40ft (12.2m) (West 

Berkshire Heritage Service 1999); this is consistent with the widths measured for 

individual reaches in the study length, which ranged from 7.4 m to 13.3 m. 

 

The laboratory analysis provided a concentration of sediment suspended by boat 

passage; in order to appropriately model sediment transport, a volume of affected 

water was needed to obtain the total mass of sediment suspended.  This was nearly 

impossible to estimate from a ground perspective; however, aerial photos clearly 

show the affected width to be approximately that of the boat (Figure 17).  It is 

assumed, as the sediment is stirred up from the bottom of the canal, that the sediment 

load is evenly distributed from the bottom of the canal to the surface, roughly in a 

rectangular cross-section. 
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Figure 17. Aerial photo of boat and sediment plume on the Kennet and Avon Canal.  From 
bing.com, © 2010, Microsoft Corporation, NAVTEQ, Intermap, and Getmapping plc. 
 

Because the aerial photos clearly showed the tree cover over each canal reach, they 

were also used to estimate the percentage of each canal reach shaded from the sun.  

This was done by first importing the aerial photos to a GIS program, then outlining 

the total reach surface area and the reach surface area not covered by trees, then using 

those areas to compute the fraction of the surface area not shaded by trees. 

3.4. Agency Data 

The cooperation of several Government and private agencies was essential to the 

completion of this work.  In particular, personnel from the Environment Agency, 

British Waterways, the Centre for Ecology and Hydrology, the University of Reading, 

and the Kennet and Avon Canal Trust provided crucial information for the 

development and testing of the canal model. 

 

The Environment Agency provided information on sewage treatment works in the 

Kennet catchment (Figure 18).  These data included locations of the facilities and 

monitored concentrations of sediment in the facilities’ outfalls.  Additionally, the 

Environment Agency provided monitored flows in the river at the Marlborough 

station (Figure 18), used to calibrate the overland flow model used to generate runoff 
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inputs to the new canal model.  Perhaps most importantly, the Environment Agency 

provided details of previous studies and surveys conducted on the canal that identified 

areas of interaction between the canal and the river (National Rivers Authority 1992; 

Halcrow Group Limited 2007). 

 
Figure 18. Sewage treatment works and hydrological monitoring station, data from which were 
provided by the Environment Agency. 
 

British Waterways provided information on the height of the overflow weirs in the 

canal, lockage rates, and limited flow data recorded in the canal.  The heights of 

overflow weir crests above the bottom of the canal ranged from 1.10 m to 1.53 m.  An 

annual count of lockages at multiple locations on the canal (Figure 19) is shown in 

Table 6; Lock 85 is outside the study area, but data from this lock were used to 

estimate lockages at the lower locks on the study area.  A representative distribution 

of lockages throughout the year based on data compiled from multiple canals in 

England was also available, shown in Figure 20.  Flow data on the canal were only 

available for the modeling period at the Picketfield weir bypass (bypassing Lock 71). 
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Figure 19. Location of information available from British Waterways – lockage data were 
available from the labeled locks, and flow data were available from the bypass at Lock 71. 
 

Table 6. Lockages by year for four locks on the Kennet and Avon Canal. 
 Lockages 

Lock 2000 2001 2002 2003 2004 2005 
60 1862 1976     
71 1938 1892 1822 1915 2407  
76    2367 2443 2345 
85 2261 2423 2750 2858 2950 2831 
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Figure 20. Weekly distribution of lockages. 
 

Dr. Colin Neal at the Centre for Ecology and Hydrology provided sediment 

concentrations, phosphorus concentrations, and chlorophyll-a concentrations recorded 

over varying periods of time at multiple stations on the canal and the river (Figure 21) 

(Neal et al. 2000; Neal et al. 2006a; Neal et al. 2006b; Neal et al. 2007; and 

unpublished data).  Observations made on the canal were used to verify the accuracy 

of the new canal model, and observations made on the river were used to calibrate the 

overland flow model used to provide runoff input to the canal model.  Sediment and 

phosphorus data were also available from Dr. Neal for the Wilton Water reservoir 

supplying the canal.    
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Figure 21. Centre for Ecology and Hydrology (CEH) sampling locations. 
 

Dr. Andrew Wade and Mr. Attila Lazar (PhD candidate) at the University of Reading 

provided information on sewage treatment work flow rates and flow-velocity 

relationships for the River Kennet needed for the runoff model.  They had previously 

gathered these data for their modeling efforts for the river.   

 

Mr. Mike Lee, Hon. Engineer for the Kennet & Avon Canal Trust, provided a detailed 

map of the canal that included the lengths and depths of the locks.  He also provided 

background information on the canal and the operation of the Crofton Pumping 

Station. 

3.5. Summary 

The data collected as described in this section of the report provided the needed inputs 

for the final canal model described later in Section 6.  Estimates of sediment disturbed 

by boat passage provide a valuable contribution to the literature, which is noticeably 

deficient in that regard.  Communication with local experts and agencies provided a 

much-needed background to help understand the canal, in addition to the data needed 

for parameterization and testing of the canal model.   
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4. Canal Model Development 

4.1. Introduction 

As has been mentioned previously, the goal of this project is to develop a computer 

model capable of predicting the multiple processes unique to a canal model, while 

retaining an ease of parameterization to make the model usable by agency personnel 

who may not be familiar with the intricacies of hydrologic modeling and usable in 

areas where intensive monitoring is not available. 

4.2. Algorithm Development 

Solids generation and transport in canals differs from what one might expect in a lake 

or river.  Rivers have a high flushing rate and lakes tend to be stagnant enough to act 

as settling basins; however, canals are somewhere in the middle, essentially a series of 

impoundments with a ‘short’ water transit time.  Although canals have a much lower 

flow rate than rivers, it is not so low that the individual ‘impoundments’ can be 

considered completely stagnant.   

 

Boat traffic in canals dominates both the hydrology and sediment generation and 

transport in canals.  Boat traffic serves two functions of interest – first, it increases the 

flow rate over an otherwise low rate as the boats remove large volumes of water from 

each impoundment (‘reach’) as they pass through locks; second, the boats themselves 

stir up noticeable quantities of solids (Figure 17, page 63).  The subsections of Section 

4.2 describe the key processes in canal operations and those that are considered as part 

of the canal model, illustrated in Figure 22.  In summary, the suspended solids 

concentration in a reach is a function of the underlying hydrology, boat movements, 

and factors affecting algal growth.  It is additionally affected by sources and sinks 

external to the model.  Three types of solids will be tracked in the solids calculations: 

biological (i.e., algae), inorganic cohesive sediment, and inorganic non-cohesive 

sediment.  The specific processes modeled include: 

• Water and solids flow through the overflow weirs (Iweir, Qweir, ISSweir, QSSweir) 

• Water and solids flow occurring with lockages (Ilock, Qlock, ISSlock, QSSlock) 
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• Water and solids flow associated with overtopping of lock gates (Iw,lock, Qw,lock, 

ISSw,lock, QSSw,lock) 

• Water and solids flow associated with lock leakage (Ileak, Qleak, ISSleak, 

QSSleak) 

• Seepage of water through the sides of the canal (Qseep) 

• Sediment disturbance caused by boat propellers (ISSboat) and lock movements 

(ISSlockmove) 

• Biological solids generation in terms of algal growth (ISSbio) 

• Deposition of sediment along the length of the reach (QSSdep) 

• External influences on water and solids quantities in the canal reaches (Iext, 

Qabs, Irunoff, Iprec, Qevap, ISSrunoff, ISSext, QSSabs) 
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Figure 22. Plan view of reach processes. 
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Equation 32 is the basic governing equation for the hydrology calculations: 

 ( ) ( )tQtI
dt

dS −=   (32) 

 Where: S  = water storage in the canal reach (m³); 
  I  = water inflow to the reach as a function of time (m³/s); 
  Q  = water outflow from the reach as a function of time (m³/s); 

and 
  t  = time (s). 
 

This is a basic continuity equation in use by numerous existing hydrologic models 

(e.g., HSPF (Bicknell et al. 2001) and INCA (Wade et al. 2002)); however, the 

characteristics of the inflows and outflows will be unique to the canal model. 

 

Similarly, equation 33 is the basic governing equation for the solids calculations. 

 ( ) ( )tQSStISS
dt

dSS −=   (33) 

 Where:  SS = sediment storage in the canal reach (mg); 
  ISS  = sediment inflow to the reach as a function of time (mg/s); 

and 
  QSS  = sediment outflow from the reach as a function of time 

(mg/s). 
 

The components of inflow (I(t) and ISS(t)) and outflow (Q(t) and QSS(t)) are 

described in the following sections.  Note that in each category of flow, the outflow of 

water and solids from the upstream reach(es) becomes the inflow to the downstream 

reach.  This is done individually for each component of outflow and inflow; thus, 

Qweir, Qlock, Qw,lock, and Qleak for an upstream reach are routed separately to Iweir, Ilock, 

Iw,lock, and Ileak, respectively, for the downstream reach.  The solids processes follow 

the same pattern. 

4.2.1. Simplifying Assumptions 

The basic system simulated is a series of reaches, within which solids are assumed 

completely mixed (except as detailed in the following sections).  Each reach has four 

basic state variables – water storage, cohesive sediment storage, non-cohesive 

sediment storage, and algal storage.  Equations 32 and 33 are applied to the state 

variables in each reach to determine the inflows and outflows at each time step. 
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It is assumed that the primary sources of sediment in the reach are the boats and 

upstream canal reaches, as opposed to runoff or external inputs; thus, the potential 

distribution of runoff and external inputs along the canal length is not considered in 

the deposition calculations. 

 

It is assumed that the potential elevation of the canal sides above the neighboring 

topography does not affect the potential for runoff to enter the reach.  Although 

surface runoff may be retarded by elevated earthen walls, interflow and groundwater 

flow into the reach may still occur. 

 

It is assumed that the water temperature in the canal will not be so hot as to kill the 

algae in a reach and that the diversity of algal species is great enough that the general 

algal response to increased phosphorus concentrations is a positive one.  Although 

some researchers like Rodhe (1948) have found a small number of species that were 

adversely affected by high concentrations of phosphorus, the hot water and low 

diversity conditions required as habitat for those species are considered unlikely to 

occur in an average inland navigational canal.  Most researchers have found a positive 

relationship between algal growth and phosphorus concentration, as described 

previously in Section 2.3.2. 

 

A few minor processes assumed insignificant in a typical navigational canal will not 

be modeled.  Because boat operators are instructed not to cause a wake, the erosion of 

banks by wake effects is not considered.  Because the flow rate in the canal is low, 

scour of the sides and bottom of the canal is not considered (except in conjunction 

with boat propellers and lock gates). 

4.2.2. Hydrologic Algorithm 

The hydrologic algorithm for the canal model quantifies the relationships unique to 

canals: lockages, weir flows, over-lock flows, seepage losses, and leakage.  Because 

the reaches between locks are designed to be level, flow due to the slope of the stream 

is insignificant in comparison to these other flows, and thus a typical hydrologic 

model based on slope and roughness is inapplicable for these purposes. 
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The components of hydrologic inflow (I(t)) are precipitation, runoff, external sources, 

weir flows from upstream reaches, over-lock-gate flows from upstream reaches, 

lockages from upstream locks, and leakage from upstream locks.  The components of 

hydrologic outflow (Q(t)) are evaporation, external abstractions, seepage, weir flows, 

over-lock-gate-flows, lockages to downstream locks, and leakage through 

downstream locks.  Most of these flows are time-dependent and many also depend on 

the water storage in the reach.  The methods by which each of these processes is 

represented in the canal model are described in this section. 

4.2.2.1. Weir Flow 

An overflow weir is typically positioned in the side of a canal wall to maintain a 

desired water level in the canal reach.  It may take the form of a box cut in the side of 

the canal or it may be a long weir with no significant overhang (Figure 7, page 29, left 

and right images, respectively).  The hydrology of the weir is governed by basic weir 

flow and orifice flow equations; while the weir opening is not completely submerged, 

Equation 34 for weir flow is used; if it becomes submerged, Equation 35 for orifice 

flow is used. Daugherty (1937) developed equation 35 as an orifice flow equation for 

low head conditions and as such it provides a smooth transition between typical weir 

flow and orifice flow equations.  The smooth transition is necessary for the use of 

Newton’s Method to solve the system of equations (described in more detail in 

Section 4.2.6).  Water that exits a reach through a weir will become an inflow to the 

next downstream reach. 

 ( ) 2
3

, 22.0
3

2
 weirweirweirweirdweir HgHLCQ −=  (34) 

 ( )( )5.15.1
, 2

3

2
sidesweirweirweirweirdweir HHHgLCQ −−=  (35) 

 Where:  Cd,weir= weir discharge coefficient (unitless); 
  g  = acceleration due to gravity (m/s²);  
  Lweir = length of weir crest (m); 
  Hweir = depth of water above weir crest (m); and 
  Hsides = height of sides of weir box (m).  
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Flow 

 
Figure 23. Illustration of typical canal overflow weir. 

4.2.2.2. Lock-Associated Flows 

The locks in a canal have several effects on flow.  In addition to maintaining the reach 

impoundments while lock gates are closed, the most obvious effect is the water flow 

associated with a boat passage (Figure 4, page 26), which drives the primary outflow 

of the reach when boats are present.  Not as obvious are the flows that occur due to 

leakage and overtopping of the lock gates. 

 

During boat passage through a lock, a volume of water equal to the volume of the lock 

will be either taken from the upstream reach, deposited to the downstream reach, or 

both (Figure 5, page 27).  Equation 36 describes this scenario.   

 ( ) lockboat
boat

boatlock VF
E

EQ ∗






 +−= *
2

1  (36) 

 Where: Eboat = efficiency of boat movement: that is, what portion of canal 
traffic follows case 1 or 2 in Figure 5 rather than case 3 or 4 
(unitless);  

  Fboat = frequency of boat movement (boats/s); and 
  Vlock = volume of lock (m³/boat). 
 

The term (1-Eboat) in Equation 36 represents the boats moving through the lock 

sequentially in the same direction (that is, cases 3 and 4 in Figure 5, page 27); the 

term Eboat/2 in Equation 36 represents the boats moving through the lock sequentially 
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in opposite directions (that is, cases 1 and 2 in Figure 5).  An entire lock volume is 

lost from the reach every time a boat passes going the same direction as the previous 

boat to pass the lock, but the same volume is lost only every other time a boat passes 

going the opposite direction of the previous boat to pass the lock. 

 

Recalling Section 2.1.1, leakage occurs through lock gates that are weathered or 

damaged by use.  A leakage rate must be estimated as a function of depth for input to 

the model; this leakage rate becomes the component of Q(t) related to lock leakage, 

Qleak (Equation 37).   

 ( )lockleak DDMinLeakQ ,∗=  (37) 

 Where: Leak = leakage rate (m³/m/s);  
  D  = water depth in canal reach (m); and  
  Dlock = height of lock gates (m). 
 

The inclusion of depth in Equation 37 allows the discharge rate to scale based on the 

depth of water behind the lock gates.   

 

On infrequent occasions, water may overtop the lock gates, causing weir flow (Figure 

24).  It is likely this would only happen in the case of extreme rainfall and flooding; 

however, a canal experiencing management or design problems may also experience 

over-lock-gate flow.  When it does occur, this overtopping of a lock gate will 

experience non-contracted weir flow (Henderson 1966), as given in Equation 38.  

  2
3

,, 2
3

2
locklockweirdlockw HgLCQ =  (38) 

 Where:  Llock = length of lock gates (m); and 
  Hlock = water depth above lock gates (m). 
 

Note that because there is no ‘top’ to the lock gate weir flow, it will not switch to 

orifice flow at any point.  Water that overtops the lock gates is assumed to enter the 

downstream reach in short order, either because the lock itself is already full, or 

through leakage in the downstream gates. 
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Figure 24. Water overtopping lock gates during a period of high flow.  

4.2.2.3. Seepage 

Seepage (Equation 39) is dependent on a seepage rate and the wetted surface area of 

the reach, which in turn can be determined by the model from the storage in the reach. 

  WSASeepQseep ∗=  (39) 

 Where:  Seep = rate of seepage (m/s); and 
  WSA = wetted surface area of the reach (m²). 
 

Put briefly, this equation uses a constant rate of seepage, ideally determined based on 

the characteristics of the material lining the canal.  This seepage rate is applied to the 

entire water-covered surface of the walls and bottom of the reach (the wetted surface 

area). 

4.2.2.4. External Sources and Sinks 

There are several processes that occur independently of the flow rate and flow depth 

in the reach.  These include precipitation, runoff, point source inputs, abstractions, and 

evaporation.  All of these processes must be input as a time series of values.  

Precipitation and evaporation are described by equations 40 and 41, respectively.    

 SAPRECI prec ∗=   (40) 

  SAPEQevap ∗=  (41) 

 Where:  PREC = precipitation rate (m/s);  
  SA  = reach surface area (m²); and 
  PE  = potential evaporation (m/s). 
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Evaporation can only happen when there is water in the reach (i.e., storage is greater 

than zero); this should always be the case in a properly modeled canal but regardless 

is checked in the model before applying the equation.  Point source inputs (Iext), 

hydrologic abstractions (Qabs), and runoff (Irunoff) must be obtained from appropriate 

sources; these will likely be regulating agencies for Iext and Qabs and a separate 

catchment model for Irunoff.  The sources used for the current application are detailed 

further in the section on model application (Section 7.1, page 126). 

4.2.3. Inorganic Sediment Algorithm 

Inorganic sediment is tracked in two classes: cohesive and non-cohesive.  With the 

exception of fall velocity, these two classes of sediment can be described by the same 

basic equations.  The components of inflow (ISS(t)) for inorganic sediment include 

boat generated sediment in addition to inputs associated with the water inflows to the 

reach.  The components of outflow (QSS(t)) for inorganic sediment include deposition 

in addition to the outputs associated with the water outflows from the reach. 

4.2.3.1. Deposition 

The inorganic sediment in the reach will undergo deposition during each time step.  

The inorganic sediment deposition comprises QSSdep, a component of QSS(t).  The 

basic deposition formula is given as Equation 42. 

 
D

SSw

dt

dSS s−=   (42) 

 Where:  ws  = fall velocity of sediment (m/s). 
 

It is evident that the solution to Equation 42 yields a relationship wherein deposition 

causes the remaining sediment in suspension to decay exponentially with time.  

Because the solution to Equation 42 actually yields the remaining suspended sediment 

after deposition has occurred, the deposited sediment load (QSSdep (mg/s)) equals the 

existing suspended sediment load less the SS calculated from Equation 42.  Although 

Equation 42 is readily solved analytically, the numerical solution is unstable when the 

time increment is large; therefore, the actual code of the model includes D
tsw

e
−

−1  as a 

term of QSS(t) rather than including the pure differential form as a decay term as 

given above. 
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The fall velocity (ws) used in Equation 42 is calculated differently for cohesive and 

non-cohesive sediments.  Non-cohesive sediment fall velocity is a straightforward 

function of particle diameters (Equation 4, Section 2.2).  Because in-situ measurement 

of fall velocity for cohesive sediments is not practical for large-scale modeling 

projects, the relationship developed by Manning (2004) will be used to estimate the 

fall velocity for cohesive particles (Equations 7 - 10).  This estimates the overall fall 

velocity based solely on suspended cohesive sediment concentration and shear stress 

near the bed.  The adaptation of Manning’s methods for use in the canal model is 

described in greater detail in Appendix A.1. 

4.2.3.2. Boat-Associated Processes 

As aptly pointed out by Copeland and others (2001), boats do not introduce sediment 

into the canal, but rather resuspend the sediment that has been previously deposited by 

other means.  In the canal model, it is assumed that a plentiful supply of sediment 

exists in the canal, both as a result of earthen canal walls and from sediment carried 

into the reach from the land surface and external sources. 

 

Boats will suspend a plume of sediment (Figure 17, pg. 63) as they travel down the 

reach.  This plume is primarily generated by scour of the canal bottom caused by the 

turbulence generated by the propellers.  An estimate of the sediment concentration 

generated by boats must be made, for example as a result of on-site sampling as 

described in Section 3.2.1.  Once this estimate is provided, the sediment generated by 

a boat is a straightforward calculation (Equation 43).  

  widboatreachboat BDLCSFISS ∗∗∗∗=  (43) 

 Where:  Freach = rate of boat passage in the reach (boats/s);  
  CSboat = suspended sediment concentration generated by boat 

propellers (mg/m³•boat);  
  L  = reach length (m); and 
  Bwid = boat width, assumed to be equal to the width of sediment 

disturbance in the canal (see Section 3.3) (m). 
 
Because the Fboat variable introduced earlier is a property of locks, not reaches, it is 

necessary to calculate Freach based on the Fboat’s at the upstream and downstream locks 

in order to determine the frequency of boat movement in the reach itself.  These 

values may not be the same, for example, if there is a winding hole in a reach where 

boats commonly turn around and return from whence they came.  As a boat traverses 
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the reach, it will cause sediment production along the entire length of the reach, and 

thus the concentration stirred up by the boat is multiplied by the volume of disturbed 

water in the reach (estimated as the product of reach length, reach depth, and boat 

width, as was described previously in Section 3.3) in order to obtain the total sediment 

load generated by boats as they traverse the reach.  A concentration is used to 

generate a sediment load because it is considered more easily measured than the 

multitude of parameters needed to directly compute a load (for example, by using the 

model of Maynord and others (2004) to compute bedload generated by boat 

propellers). 

 

Boats will also affect the sediment passing through weirs on the reach.  The flow 

through overflow weirs or over the top of lock gates is typically only a few 

centimeters deep.  When the reach is unaffected by boats, the concentration of 

sediment in the top few centimeters of flow will be lower than the average 

concentration in the reach.  However, as a boat passes the lock gates or the overflow 

weir, it will stir up sediment and cause a fully mixed solution again, which will begin 

to deposit as the boat moves farther away from the point of interest (Figure 25).  This 

means that the concentration of sediment shortly after boat passage in the top few 

centimeters of flow will be elevated compared to what would be expected considering 

only suspension and deposition operating on sediment entering the upstream end of 

the reach (this latter process will be described in the next subsection).   
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Figure 25. Elevation view of canal showing concentration profile for sediment generated by a 
boat as it passes a weir.  Not to scale.  Brown shading represents suspended sediment. 
 

As time passes, sediment will move horizontally due to the effects of water movement 

and vertically due to the pull of gravity.  The vertical movement is expected in 

Equation 42, but the horizontal movement is not.  Therefore, in order to model the 

sediment suspended in the cross-section of the overflow weir, the time parameter in 

the solution to the deposition equation (Equation 42) must be modified to account for 

the effect of water movement.  The modification must ensure that when the actual 

time is put into Equation 42, the model ‘sees’ a time adjusted for flow velocity.  In 

short, the time parameter must change to account for water and boat velocities.  Thus, 

Equation 44 describes the sediment generated by boat movement past a point of 

interest (that is, an overflow weir or a lock gate).  The derivation of Equation 44 is 

provided in detail in Appendix A.1. 
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 Where: BSS = suspended sediment generated by boat passage that is lost 
through an overflow weir or over top a lock gate (mg/boat);  

  vw = water velocity (m/s); 
  vb = boat velocity (m/s); and 
  t3  = time for boat-generated sediment concentration to become 

negligible at the crest of the weir or top of the lock gates (s). 
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vb = boat velocity; vw = water velocity 
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The boat suspended sediment (BSS) is the total sediment load passing over the weir 

sill or lock gate between the time when the boat passes (t = 0) and the time when the 

concentration above the weir crest or lock gate becomes negligible (t = t3).  This end 

time, t3, is determined by setting the exponential part of the solution to Equation 42 to 

nearly zero (i.e., 0.0001).  Typical t3 values will be much less than the model time step 

(t3 ~ 0.5-1hr for cohesives, 0.5-1min for noncohesives; model time step = 1 day).  It 

should be emphasized that individual boat traffic is not modeled; rather, Equation 44 

is used to calculate the contribution from a representative boat on the reach, and Fboat 

is used to determine how many BSS’s should be included in each time step.  The 

sediment disturbed by each of the passing boats is assumed to fall below the crest of 

the weir within one model time step; in a typical canal, there is no boat traffic for the 

last several hours of the day, such that all sediment generated by a boat will deposit 

below the crest of the weir before the next day begins, so this assumption is consistent 

with reality.  The model set up does allow smaller time steps, but these should be 

chosen with care and attention to the expected values for t3. The BSS will be 

incorporated into the weir transport in Section 4.2.3.3, where it is transformed to a 

rate (per time) through incorporation of the frequency of boat passage. 

4.2.3.3. Weir-Associated Processes 

There is significant turbulence associated with the inflow of sediment to a reach from 

upstream sources, whether the source is the outflow of the upstream overflow weir, 

leakage, or lockage.  However, because the depth of water over the weir is often of the 

order of only 5cm or less (compared to a canal depth of approximately 1.5m), it is 

necessary to consider that the solids that were fully mixed at the upstream end of the 

reach may have settled out of the top few centimeters of the water column and thus 

not have the potential to exit the reach via the overflow weir (Figure 26).  This is 

considered in Equation 45.  

 w

weir

weir

s

v

xL

H

w

boat
weirboatweir e

S

tISSSS
QBSSFQSS

−−

∗
∆⋅−

∗+∗=   (45) 

 Where: ∆t = model time step (s); and 
  xweir = distance from upstream end of reach to weir location (m). 
 

Note that Fboat is used in this case to affect BSS rather than Freach (used in Equation 43) 

because most overflow/bypass weirs are located very close to the downstream lock 
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gate, and therefore the frequency of boat passage at the downstream lock gate is most 

representative of the boat traffic past an overflow weir.   

 

In Equation 45, the first term accounts for the sediment stirred up by boats that passes 

through the weir.  This term accounts for all boat-generated sediment (ISSboat) that can 

possibly pass through the weir, as the time for the ISSboat sediment to deposit below 

the weir height is considered as part of BSS.  The second term accounts for the 

sediment from sources other than ISSboat that passes through the weir during periods 

not affected by boat traffic.  The (L-xweir)/vw term in the exponent represents the time 

it takes water to travel the length of the reach, and thus the time that sediment entering 

the reach at the turbulent upstream extent has to settle out of the water column.  Thus 

ISSboat is subtracted from the total sediment store in the second term so as not to 

double-count the sediment generated by boat traffic that was already considered in the 

first term.  In practice, the second term of the equation is nearly always zero for the 

reach lengths considered in the Kennet and Avon Canal, and thus it may be 

appropriate in most cases to simplify Equation 45 to include contributions from boat 

passage only. 
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Figure 26. Elevation view of reach showing an idealized settling pattern for sediment traveling 
downstream.  Brown dots represent sediment. 

4.2.3.4. Lock-Associated Processes 

As a lock is being drained to allow boat passage, water is typically released with great 

turbulence into the downstream reach.  The sediment that moves downstream with 
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this water is assumed fully mixed, due to the turbulence in the released water.  The 

sediment that moves with the water that fills the lock is also assumed fully mixed, as 

the water that fills a lock is drawn from near the bottom of the water column (Figure 

4, page 26) and the water entering the lock also enters with a high turbulence.  Thus, 

the sediment leaving the canal reach via lockages will do so at the average 

concentration of the reach, as described by Equation 46. 

  
S

SS
QQSS locklock ∗=  (46) 

When the lock gates open to allow boats to pass, a certain amount of sediment will be 

stirred up as the bottoms of the gates move across the bottom of the canal.  The 

sediment will be disturbed in the pattern outlined in Figure 27. 

 
Figure 27. Plan view of lock gates and sediment disturbance caused by gate movement. 
 

The orange area of disturbance in Figure 27 is the area that the lock gates disturb as 

they move from their closed position (shown) to their fully open position.  When the 

lock gates are fully open, they are flush with the side of the canal.  Assuming a 

significant amount of turbulence is generated, the sediment can be assumed fully 

mixed in the volume of water with the footprint of the orange area in Figure 27.  If the 

sediment disturbed by the gates is considered to manifest itself as a constant 

concentration over the volume disturbed (with the orange footprint in Figure 27), 

Equation 47 describes the sediment input to the reach by lock gate movement. 
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 DWLCSFISS locklockboatlockmove *** ∗=   (47) 

 Where: CSlock = concentration of sediment generated by lock gate 
movements (mg/m³/boat). 

 
This ISSlockmove must be calculated for each lock bounding the reach, using the Fboat 

and Llock applicable to each lock.  The variables Llock * W * D represent the affected 

volume, while CSlock is a measured increase in concentration of sediment associated 

with lock gate movements and Fboat equates to the frequency of lock movements, 

which occur whenever a boat passes. 

 

Leaking flows through lock gates draw from the entire water column; thus, sediment 

leaving through leaky lock gates will do so at the average concentration of the reach, 

as described in Equation 48.  

  
S

SS
QQSS leakleak ∗=  (48) 

 

Sediment moving with water that overtops the lock gates will follow a similar pattern 

to that moving with water associated with overflow weirs (defined previously as 

Equation 45), considering both the deposition of sediment originating from upstream 

(second term) and the resuspension by boats (first term) (Equation 49).  
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The components of this equation mirror the components of the similar overflow weir 

equation (Equation 45) with BSS from equation 45 calculated using Hlock instead of 

Hweir. 

4.2.3.5. External Sources and Sinks 

Point source (ISSext) and runoff (ISSrunoff) sediment inputs must be estimated from 

agency data and a separate surface model, respectively.  Once estimated they can be 

used without modification.  The sediment associated with abstractions is calculated 

according to the average concentration in the reach (Equation 50). 

 
S

SS
QQSS absabs ∗=   (50) 

Note inclusion of the position of the intake pipe would unnecessarily complicate the 

model inputs and is not considered. 
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4.2.4. Algal Algorithm 

Algae will generally leave the reach at any point water exits; thus, the components of 

outflow (QSS(t)) for algae follow all but the evaporation and seepage outflows for 

water.  Research has shown that algae tend to keep themselves suspended in the water 

column (Fogg 1965; Malone 1980); for this reason, deposition of algae is not 

considered and algae are considered fully and uniformly suspended in the reach, to the 

depth that light penetrates.  Algae will enter the reach (ISS(t)) with incoming water 

via all routes except precipitation and runoff.  The continuity equation (Equation 33) 

for algae is modified to include a growth term, µSS.   

4.2.4.1. Outflows 

The profile of algal concentration in a reach might be considered to be the opposite of 

the sediment profile: where sediment deposits and thus leaves the top of the water 

column with a low-to-zero sediment concentration, algae can only grow to the depth 

that light penetrates in the reach and thus will leave a portion of water with low-to-

zero concentration at the bottom of the water profile.   The outflow of algae from a 

reach can be divided into two categories: the outflow that draws from the entire water 

column, and the outflow that draws only from the light-saturated portion of the water 

column.  Before proceeding, it is useful to define the euphotic volume, VED, as in 

Equation 51. 
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 Where: VED = volume of water in the euphotic depth (m³); and 
  ED = euphotic depth (depth of light penetration, described in more 

detail in Section 4.2.4.2) (m). 
 

Where the outflow draws only from the light saturated portion of the water column, 

the algal outflow is simply a product of the concentration of algae in the light-

saturated depth and the flow rate through a given exit (Equation 52).    

 
EDV

SS
QQSS ∗=  (52) 

 Where: QSS = generic algal outflow term (mg dry algal mass/s); and 
  Q  = generic water outflow term (m³/s). 
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The algal outflows that fall into this category are abstractions (QSSabs), weir 

overflows (QSSweir), and lock gate overflows (QSSw,lock). 

 

The remaining algal outflows (through lockage (QSSlock) and leakage (QSSleak)) draw 

from the entire water column and must be treated differently. The turbulence 

associated with lockages implies that the algae entering and leaving a lock will be 

thoroughly mixed in the lockage water and can be represented by Equation 53. 

  
S

SS
QQSS locklock ∗=  (53) 

Calculation of algal loss through leakage is somewhat more complicated and can be 

represented by Equation 54.    

 ( )( )
ED

locklockleak V

SS
LeakDHEDMaxMinQSS ⋅⋅−= ,0,  (54) 

The term Max(ED-Hlock,0) accounts for the effect of over-lock-gate flow (Qw,lock); if 

over-lock-gate flow is occurring, the euphotic depth might not extend below the top of 

the lock gate (and thus no algal outflow would occur due to leakage) (case (a) in 

Figure 28); if there is over-lock-gate flow but ED is greater than the depth of flow 

over the gate, algal flow through leakage would only occur for the portion of the 

euphotic depth that extends below the top of the lock gate (case (b) in Figure 28).  If 

there is no flow over the top of the lock gate, Hlock is zero and the algal outflow occurs 

over the entire euphotic depth (case (c) in Figure 28); this latter case is the typical one, 

as Qw,lock is typically zero.  The Min term addresses the case when the calculated 

euphotic depth exceeds the height of the lock gate; in this case, the result of the Max 

term must not be allowed to exceed the height of the lock gate, or the leakage rate will 

be overestimated when calculating algal outflow.  (Note that when ED<Dlock the 

leakage rate applied to the algal concentration is recalculated in Equation 54 (rather 

than using Qleak from the hydrologic calculations) to encompass only the flow that 

contains algae.) 
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Figure 28. Possible euphotic depth (ED) and overlock depth (Hlock) scenarios: (a) ED<Hlock; (b) 
ED>H lock>0; (c) Hlock = 0. 

4.2.4.2. Algal Growth & Revised Continuity Equation  

The continuity equation, with an added growth rate, has been used by previous 

phytoplankton researchers to model algal growth and transport (e.g., Pridmore and 

McBride (1984)).  Equation 55 is the revised form of Equation 33 applicable to algal 

growth and transport.   

 ( ) ( ) SStQSStISS
dt

dSS ⋅+−= µ  (55) 

 Where: µ = algal growth rate (s-1). 
 

The factors affecting algal growth have been previously discussed (Section 2.3.2).  In 

keeping with the primary factors found in the literature review, phosphorus 

concentration, temperature, light availability, and retention time are considered in the 

new canal model.  A maximum growth rate is first calculated based on water 

temperature and then modified according to the other controlling factors to obtain ‘µ’ 

in Equation 55.  This general method (starting from a base rate and modifying it) has 

been used in riverine models (e.g., HSPF (Bicknell et al. 2001)).  The specific 

methods used to calculate growth rate are unique to the canal model, as detailed 

below. 
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The maximum growth rate limited by water temperature as given by Eppley (1972) 

(Equation 19) is modified for the canal model to yield a growth rate per second 

(Equation 56).   

 T
T 066.1851.0

86400

2ln
max, ∗∗=µ  (56) 

 Where: T  = water temperature (ºC); and 
  µmax,T= maximum growth rate based on temperature (s-1). 
 

It is anticipated that daily water temperatures will be unavailable; thus, the canal 

model expects the user to provide parameters to characterize Equation 57 (Beer 2001) 

to provide water temperature for use in Equation 56.   

  
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2
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 (57) 

 Where: Tmean = mean annual temperature (ºC); 
  Tmag = magnitude parameter for the temperature equation (ºC); 
  x  = julian day; and 
  Tphase = phase parameter for the temperature equation (radians). 
 

This sinusoidal curve provides a good fit to data collected on the canal – see, for 

example, Figure 29. 
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Figure 29. Equation 57 fit to observed data from the Kennet and Avon Canal. 
 

The maximum growth rate for algae in the canal is then limited by light availability as 

described by Bicknell and others (2001) (Equation 58).   
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 Where: µmax = maximum growth rate based on temperature and light 
availability (s-1); 

  LI = light intensity (calculated as per the method in Appendix 
A.3) (J/m²s); and 

  Ks,l = Michaelis-Menten constant for light limited growth (J/m²s). 
 

Finally, the growth rate is limited according to phosphorus availability based on the 

equation developed by Pridmore and McBride (1984) (Equation 59) (the original 

equation was given in the literature review, Equation 27). 
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 Where: TP = total phosphorus concentration; and 
  Cchl = conversion from chlorophyll-a mass to dry algal biomass 

(mg dry algal mass/mg chlorophyll-a). 
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Equation 59 provides a final growth rate to be used in Equation 55.  This final growth 

rate takes into account the primary algal growth factors of phosphorus availability, 

water temperature, and light availability.  The effect of flow rate is captured in the 

inflow and outflow loads (ISS and QSS), which depend in the inflow and outflow 

rates of water for the reach.   

4.2.5. Summary of Model Inputs and Variables 

The parameters for the model are based on real physical and measureable 

characteristics; however, it is anticipated that many of the inputs will be difficult or 

prohibitively expensive to measure; in this latter case, it will be necessary to estimate 

values from the literature and/or alter the parameter during calibration.  Table 7 

summarizes the inputs that are anticipated to be readily measureable for a catchment; 

Table 8 summarizes the inputs that will likely need to be estimated from the literature 

and calibrated.  In these tables, some variables appear that have not previously been 

discussed in Section 4.1; these are required for some of the background calculations 

discussed in Appendix A.  Finally, Figure 30 summarizes the state variables that track 

along each time step and other variables calculated from them.  As previously 

mentioned, there are four state variables that form the core of calculations in the canal 

model: hydrologic storage (S), non-cohesive sediment storage (SSnon), cohesive 

sediment storage (SScoh), and algal storage (SSalg).  All inflows and outflows are based 

on these four core variables. 

 

Some of the variables have quite a wide range based on literature information.  The 

Sensitivity Analysis section (Section 5.3) will provide some useful information on 

parameters to which the model is sensitive and thus to which more attention in 

development should be given.   
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Table 7. Measureable Canal and Catchment Characteristics. (continues next page) 
Variable Name Description Units Source 
PREC Precipitation m/s Met Office 
PE Evaporation m/s Met Office 

Irunoff 
Runoff (surface and 
subsurface) 

m³/s 
Hydrologic model 
(e.g., HSPF) 

Iext 
External sources (e.g., 
STWs) 

m³/s 
Regulatory 
agencies 

Qabs 
External abstractions 
(e.g., WTWs) 

m³/s 
Regulatory 
agencies 

Reach Characteristics:   
L Reach length m GIS analysis 

W Reach width m 
Canal regulatory 
agency, aerial 
photos, or measure 

xweir 
Location of overflow 
weir along reach 
length 

m 
Canal regulatory 
agency or measure 

Dweir 
Height of overflow 
weir above reach 
bottom 

m 
Canal regulatory 
agency or measure 

Lweir 
Length of overflow 
weir crest 

m 
Canal regulatory 
agency or measure 

Hsides 
Height of sides of 
overflow weir box 

m 
Canal regulatory 
agency or measure 

Dlock 

Height of top of lock 
gate above the reach 
bottom 

m 
Canal regulatory 
agency or measure 

Tmean 
Mean water 
temperature 

ºC Measure 

Crad 

Radiation coefficient 
to account for canal 
shading from 
vegetation etc. 

Ø 
Estimate from site 
visits, aerial 
photography 

Lock Characteristics:   

Empty 
Flag whether lock is 
intended to be left 
empty after use 

Ø 
Canal regulatory 
agency or signs on 
canal 

V lock 

Volume of lock 
drained during a 
lockage 

m³ 
Canal regulatory 
agency 

L lock Length of lock gates m 
Canal regulatory 
agency or measure 

CSlock,non 

Concentration of non-
cohesive sediment 
stirred up by lock gate 
movement 

mg/m³ Measure 
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Variable Name Description Units Source 

CSlock,coh 

Concentration of 
cohesive sediment 
stirred up by lock gate 
movement 

mg/m³ Measure 

Fboat 
Frequency of boat 
passage 

boats 
Canal regulatory 
agency or measure 

Sediment & Algal Constants:   

diam Median sand diameter m 

Measure or pick 
from typical range 
(0.06-0.2mm) 
(Jarvis et al. 1979) 

sg 
Specific gravity of 
sand 

Ø 

Measure or use 
typical value (2.65) 
(Simons and 
Şentürk 1977) 

CSboat,non 

Concentration of non-
cohesive sediment 
stirred up by boats 

mg/m³ Measure 

CSboat,coh 

Concentration of 
cohesive sediment 
stirred up by boats 

mg/m³ Measure 

vb Average boat velocity m/s 
Canal regulatory 
agency 

ISSrunoff 
Sediment inputs from 
overland flow 

mg/s 
Hydrologic model 
(e.g., HSPF) 

ISSext 
Sediment and algal 
inputs from external 
sources (e.g., STWs) 

mg/s 
Regulatory 
agencies 

TP 
Total phosphorus 
concentration  

mg/m³ Measure 

RAD Solar radiation J/m²/s Met Office 

Tmag 
Magnitude parameter 
for temperature 
equation (Equation 57) 

ºC 

Estimate by fitting 
monitored water 
temperature data to 
a sinusoidal curve 

Tphase 
Phase shift parameter 
for temperature 
equation (Equation 57) 

radians 

Estimate by fitting 
monitored water 
temperature data to 
a sinusoidal curve 
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Table 8. Estimated Canal and Catchment Characteristics. 
Variable 
Name 

Description Recommended 
Value 

Source 

Ce 

Evaporation correction 
factor, accounts for 
differences in pan 
evaporation vs. evaporation 
over larger surfaces 

0.7 
(Minikin 1920; Schwab 
et al. 1993)  

Cd,weir Weir discharge coefficient 0.611 (Henderson 1966) 

Seep 
Rate of seepage through 
canal walls 

1.75 x 10-6 to 
1.24 x 10-7 m³/m²/s 

(Minikin 1920; Dun 
2006) 

Eboat 

Efficiency of boat 
movement (i.e., how often 
does a boat approach a lock 
with the needed water entry 
level) 

0.5 
Estimate by watching 
locks for a while or 
talking to locals 

Leak Lock gate leakage 
0.0301 m³/s ÷ 

Dweir
¶ 

(Dun 2006) (see also 
Minikin 1920; Pinkett 
1995) 

Up/Down 
Fraction of boats moving 
upstream vs. downstream 
through a lock 

0.5 
Estimate by watching 
locks for a while or 
talking to locals 

τcd 
Critical shear stress for the 
deposition of sediment 

0.06 kg/m/s² 
(Krone 1962) (as cited 
by Mehta et al. 1989) 

Cd,drag Drag coefficient 0.0025 (Soulsby 1997) 

EXTB 

Base light extinction 
coefficient used in light 
availability calculations 

1 m-1 

Reynolds (1984) gives 
1.02-1.22; Van Duin et 
al. (2001) give 0.513 to 
1.666 

Ks,l 
Michaelis-Menton constant 
for light limited growth 

23.012 J/m²/s 

Dugdale and MacIsaac 
(1971) give 0.033 
Ly/min or 10% of 
radiation on clear day 
in mid-March 

Cchl 
Factor to convert 
Chlorophyll-a mass to dry 
weight biomass 

60 mg dry algal 
mass/mg Chl-a 

range of 10-372 as 
calculated from 
published data†  

LITSED 
Light extinction coefficient 
due to sediment 

0.000025 m²/mg 
Van Duin et al. (2001) 
give 0.00001-0.000137 
m² /mg 

LITALG 
Light extinction coefficient 
due to algae 

0.00002 m²/mg 
Chl-a 

Van Duin et al. (2001) 
give 0.000012-
0.000035 m²/µg Chl-a‡  

† (Fleming 1940; Redfield 1958; Antia et al. 1963; Goldman et al. 1968; Strickland and Parsons 1968; 
Thomas and Dodson 1972; Berman and Pollingher 1974; Soeder et al. 1974; Vollenweider 1974; 
Malone et al. 1979; Malone 1980; Søballe and Threlkeld 1985; Wienke and Cloern 1987) 

¶ Note that the leakage rate needs to be a flow rate per unit depth (m³/s/m); because the expected depth 
in the reach is Dweir, divide the overall recommended leakage rate of 0.0301 m³/s by the Dweir for each 
upstream section. 

‡ Note Van Duin et al. (2001) incorrectly give units of mg/L for Chl-a concentration; the units for Chl-a 
concentration should be µg/L in their article. 
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Figure 30. Relationships between state variables (Water Storage (S), Non-cohesive Sediment 
Storage (SSnon), Cohesive Sediment Storage (SScoh), Algal Storage (SSalg)) and inflow and outflow 
variables.  Color of line indicates classification of target variable. 
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Many of the relationships in Figure 30 are obvious connections: all outflow variables 

for a given classification of storage (water, non-cohesive sediment, cohesive 

sediment, or algae) are dependent on the state variable for that same classification of 

storage; solids outflows through various exits are dependent upon water outflows 

through the same exits, as the rate of water flow through the route determines the rate 

of loss through each exit.  However, some of the connections may be less obvious.  

For example, µ is dependent on SScoh, SSnon, and SSalg, as all of these state variables 

affect the light availability for the algae.  QSSdep for cohesive sediments is dependent 

on SScoh and SSalg because these state variables affect flocculation and thus the fall 

velocity used to calculate QSSdep.  Algal growth rate (µ) and QSSdep are dependent 

upon S because they are affected by the concentration of sediment and algae, not just 

the total quantity of the sediment and algae in the reach. 

 

The web of relationships in Figure 30 complicates what might otherwise be a 

straightforward solution to the system of equations.  For example, µ is dependent 

upon SSalg, but SSalg in turn cannot be determined until µ is known.  Likewise, SSalg 

affects QSSdep, which is driven by SScoh; but SScoh affects µ and thus SSalg.  These 

issues force a nested approach to solution, described in the next section. 

4.2.6. Solving the System of Equations 

Considering the various factors described in the previous sections, the components of 

Equations 32, 33, and 55 are simply represented according to Equations 60-65.  The 

subscript ‘sed’ indicates that the formulae are representative of both cohesive and 

non-cohesive sediment relationships. 

 leakprecrunoffextlocklockwweir IIIIIIItI ++++++= ,)(  (60) 

 leakevapseepabslocklockwweir QQQQQQQtQ ++++++= ,)(  (61) 

 
leakextlockmoveboat

runofflocklockwweirsed

ISSISSISSISS

ISSISSISSISStISS

++++

+++= ,)(
 (62) 

 absleaklocklockwweirdepsed QSSQSSQSSQSSQSSQSStQSS +++++= ,)(  (63) 

 leakextlocklockwweira ISSISSISSISSISStISS ++++= ,lg )(  (64) 

 absleaklocklockwweira QSSQSSQSSQSSQSStQSS ++++= ,lg )(  (65) 
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Because Equations 32, 33, and 55 have no analytical solution (due to the complexity 

of their components), they must be solved using numerical methods.  The canal model 

uses an implicit Euler method (Boyce and DiPrima 1986) to solve the equations, as in 

Equation 66 for the hydrology equations (the solids equations follow the same 

format). 

 
( ) ( )

t
QIQI

SS nnnn
nn ∆







 −+−
+= ++

+ 2
11

1  (66) 

 Where: n  = subscript representing the previous model time step; 
  n+1 = subscript representing the current model time step; and 
  ∆t = time that passes between model time steps (s). 
 

The components of inflow are fixed at each time step, but most of the components of 

outflow are dependent upon the storage at each time step; therefore, this relationship 

does not have a straightforward solution, but must be solved via numerical methods.  

Newton’s Method (Equation 67) was chosen for this purpose, for its simplicity in 

application and the fact that it does not require prior knowledge of the interval within 

which the solution to the equation must lie (something that would be nearly 

impossible to reliably determine for these equations) (Hamming 1973).   

 
( )
( )i

i
ii xf

xf
xx

′
−=+1  (67) 

 Where: xi+1 = next guess for the zero of f(x); 
  xi  = current guess for the zero of f(x); and 
  f(x) = the function whose zero is to be determined. 
 

Under certain conditions it is not possible to use Newton’s Method, and in these cases 

the Bisection Method (Hamming 1973) is used.  These conditions are rare and 

typically involve limits of computer precision that cause Newton’s Method to jump 

over the zero of the function.  The Bisection Method is not used in the general case 

because of the difficulty of initially arriving at the opposite-signed estimates needed; 

however, in this particular case, such a bracket has been inadvertently found by 

Newton’s Method as it jumps from a positive to negative f(x), thus enabling the use of 

the Bisection Method.   
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The Bisection Method starts with an x1 and x2 such that 0)()( 21 <⋅ xfxf .  A value, 

x3, is calculated as:
2

21
13

xx
xx

−+= ; then a decision is made regarding the next value 

to choose based on the product of the function of x1 and the function of x3 according 

to Equation 68. 

( ) ( )








=
=>
=<

⋅
)( foundsolution   ,0

repeat,set  ),,(in  changesign   ,0

repeat ,set  ),,(in  changesign   ,0

 If

3

3123

3231

31

x

xxxx

xxxx

xfxf  (68) 

The f(x) function used for the bisection method is the same as that used for Newton’s 

Method.  Complete details on the solution to the system of equations are provided in 

Appendix Section A.4, pg. 207. 

 

A final consideration for solution was the determination of the variables for the ‘0th’ 

time step – that is, the initial conditions.  Because the water level in a canal is held 

mostly constant by design, the initial water storage is set at the design level – that is, 

L·W·Dweir.  The initial outflows for the 0th time step are calculated based on this 

storage.  The inflows for each reach are simply the corresponding outflows from the 

next upstream reach (or 0, in the case of the summit reach), with the exception of Iext 

and Irunoff, which are set to the values at the first time step as a simple approximation.  

Likewise, the water demands for Qevap and Qabs are set to the values at the first time 

step. 

 

The initial conditions for the solids state variables were somewhat more complicated.  

For the sediment, because boat traffic is the primary driver of sediment concentration 

in a reach, the initial sediment storage is set to the storage generated by boat 

movement – that is, ISSboat at time step 1.  The initial storage of algae in the reach is 

calculated as half that supportable by the phosphorus concentration at time step 1, that 

is, 
2449.2

178.1
chlCTP ∗ .  Using half the population supportable by the phosphorus 

concentration gives a reasonable order of magnitude for the algal population while 

recognizing the population is unlikely to be at its fullest potential due to influences 

from light, temperature, and water flow.  The remaining inflows and outflows for 

solids are calculated in the same manner as those for hydrology, based on the initial 

storages where appropriate and on the value for the first time stop where not.  
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Experimentation with the model showed that the effects of these choices of initial 

conditions vanished within a month of simulation, suggesting that with a sufficient 

‘start up’ time for the model, any inaccuracies generated by these simplistic estimates 

of initial conditions will vanish. 

4.2.7. Computer Programming 

The algorithms listed in the previous section have been translated into computer code 

using the Visual Basic 2008 programming language (a component of Microsoft Visual 

Studio 2008, © 2007 Microsoft Corporation).  A graphical user interface was created 

to aid the user in the input of the needed parameters. 

 

In programming, objects were created to represent reaches and locks.  The 

calculations for Newton’s Method f(x) formulae have been isolated in individual 

subroutines.  It is hoped that the modularization of the code will make it easily 

portable for any future model developers who may take interest in it. 
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5. Canal Model Verification 
There is some discrepancy in the professional community regarding the definition of 

‘verification’ vs. ‘validation’ of a model.  In the context of this document, 

‘verification’ is taken to mean the process by which model code is verified to be an 

accurate representation of an algorithm.  That is, the verification process is meant to 

ensure there are no typographical errors in the code, that the code functions under all 

conditions without causing exceptions at run-time, and that the correctly coded 

algorithms predict model variables in a logical fashion.  During the verification 

process for this model, extreme cases were also tested to ensure that the model 

algorithms continued to function as desired in extreme conditions.  Validation, by 

contrast, is defined in this text to mean the process by which a calibration is proved 

valid, by using the calibrated model parameters to predict model output for a time 

period separate from that used for the calibration process and comparing that model 

output to observed values. 

5.1. Code Verification 

The canal model code was verified in stages.  The hydrology component was verified 

initially and separately from the solids component.  For each component, a simple set 

of inputs for a system of three locks and three reaches was tested (Figure 31); 

characteristics of the reaches and locks are listed in full in Appendix B, pg. 215.  In 

the initial test, only meteorological inputs were included – no runoff or external 

source of flow was considered – this tested the code behavior in extreme low flow 

conditions.  Following successful verification of the extreme condition, a full-blown 

scenario with more typical water levels was verified.  This process ensured that the 

model would behave properly under all conditions. 

 

 
Figure 31. Simple canal system used to verify the model. 
 

 

Reach 1 

Lock 1 

 

Reach 2 

Lock 2 

 

Reach 3 

Lock 3 
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To complete the verification, the relationships described in Section 4.1 were input into 

an Excel spreadsheet to produce an expected set of output.  By using Excel (rather 

than making calculations by hand), a long time period with varying hydrologic 

conditions could be tested while at the same time making all the intermediate steps 

transparent.  The results of the simple hydrology and water quality models were 

compared to the same values calculated using the equations in Section 4.1 and 

Appendix Section A.4 in a Microsoft Excel spreadsheet, and investigation and 

correction of bugs continued until all components of inflow, outflow, and storage 

calculated by the Excel spreadsheet precisely matched those predicted by the canal 

model (with an allowed tolerance due to expected rounding errors). 

 

It was noted during verification that an inaccuracy at the first timestep was generally 

rendered inconsequential to the results of the fifteenth and later time steps.  This lends 

support to the idea that, given a sufficient (e.g., one month) startup time, inaccuracies 

in the initial state variable estimates will be irrelevant. 

5.2. Algorithm Verification 

Once the code was ensured bug-free via the process described in Section 5.1, the 

model output was evaluated to ensure that the algorithms predicted outflows of water 

and solids that made logical sense.  For this test, the parameters for the top three 

reaches of the Kennet and Avon Canal were used, to ensure the input values were 

realistic.  The development of these parameters will be discussed in detail in the 

section on model application (Section 7.1).  

5.2.1. Storage Variables 

Water storage in a reach is expected to remain fairly constant, at a level near Dweir.  It 

may be slightly higher in the winter (when no lockage demands exist) and slightly 

lower in the summer (when lockages may draw the water level below that of Dweir), 

but to be a properly functioning canal, the water level should remain relatively 

constant.  The canal model accurately generated this trend, as can be seen for the 

reach above Lock 57 in Figure 32.  The storage in this reach when the water level is at 

Dweir is 3600 m³. 
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Figure 32. Modeled water storage in the reach above lock 57. 
 

By contrast, the sediment and algae storages should vary greatly throughout the year.  

During the boating season in the late spring to early autumn, inorganic sediment 

concentrations will greatly increase compared to winter values due to the sediment 

stirred up by boat propellers.  Algal growth in the summer far exceeds its growth in 

the winter due to increased water temperature and solar radiation in the summer.  

Thus, a nearly sinusoidal curve for solids is expected, as gradual increases in 

temperature, sunlight, and boat traffic in the spring cause corresponding increases in 

solids concentrations, eventually peaking in mid-summer and then falling off again 

gradually in the autumn.  The model accurately predicted these trends (Figure 33). 
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Figure 33. Modeled solids concentrations in reach above Lock 57. 
 

Note that Figure 33 supports the previous conclusion that inaccuracies in initial 

storage estimates quickly vanish: the initial calculated algal concentration is more 

than twice any other value attained during the simulation, but after two time steps the 

algal concentration converges on a stable and appropriate trend for the remaining 

simulation. 

5.2.2. Outflows 

To a large extent, modeled outflows of all the constituents can be expected to follow 

the trends in storage illustrated previously.   

 

Considering hydrology, it is expected that lockages will dominate flow in the summer, 

while weir flows will dominate in the winter.  There should be little to no lockage 

flow in the winter, while weir flow will be slightly to greatly reduced during the 

summer.  Flows such as leakage and seepages will vary slightly according to the 

overall reach storage; abstracted flows will remain constant all year; and evaporative 

outflows should peak in the summer and trough in the winter, though they are 

expected to be much lower than the rest of the outflows.  Ideally over-lock flows will 

be insignificant year-round, but if present they should peak in the winter and be 
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unnoticeable in the summer.  These expected trends are met by the model, as 

illustrated in Figure 34. 
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Figure 34. Modeled hydrologic outflows for the reach above Lock 57. 
 

For clarity, Figure 34 shows only the outflows for 2005, so that the seasonal trends are 

evident.  As expected, lockage outflows increase in the spring, peak in the summer, 

and are negligible in the winter.  They also change in a step-wise fashion due to the 

estimation of Fboat, which is held constant on a weekly basis due to the resolution of 

the input data. Weir outflows are fairly constant while boat traffic is not present, but 

experience a short-lived peak at the beginning of the boating season when inflows to 

the summit reach have increased to their higher summer levels but the boating traffic 

is not yet plentiful enough to for lockages to demand the full increase in inflow.  

Seepage and leakage are relatively constant year-round, which is expected as the 

overall reach storage is nearly constant.  Evaporative losses increase in the summer 

but are nearly non-existent in the winter.  Lock gate overflows never occur, as 

expected.  For this particular reach there are no abstractions, so the abstracted flows 

remain zero year-round. 

 

Solids outflows should also follow a seasonal trend.  Solids outflows must match the 

overall availability of solids, so in general all solids outflows in the winter months 
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should decline as the solids storage in the reach declines.  Additionally, solids should 

move with the water – so the trends in the distribution of hydrologic outflows to 

various pathways should match the distribution of solids through the same pathways, 

with the exception of weir outflows of inorganic sediment.  Although weir outflows 

are significant year-round for water, most inorganic sediment will settle out of the top 

of the water column from which the weir overflow draws, so weir overflows should 

be minimal for inorganic sediments.  Finally, inorganic sediments experience an 

additional outflow route through sediment deposition; due to the length of the reach in 

question (322 m) and the fall velocity (~0.0005 m/s for cohesive sediment, ~0.026 m/s 

for non-cohesive sediment) and slow moving water (~0.009 m/s), a sizeable amount 

of inorganic sediment, particularly the non-cohesive variety, is expected to deposit out 

of the water column at each time step.  These trends are accurately reproduced in the 

model for non-cohesive sediment (Figure 35), cohesive sediment (Figure 36), and 

algae (Figure 37). 
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Figure 35. Modeled non-cohesive sediment outflows from the reach above Lock 57. 
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Figure 36. Modeled cohesive sediment outflows from the reach above Lock 57. 
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Figure 37. Modeled algal outflows from the reach above Lock 57. 
 

The small peak in inorganic sediment concentrations seen in January is due to a small 

amount of boat traffic associated with the New Year holiday.  Aside from this 

holiday, winter boat traffic is at or near zero.  As expected, inorganic sediment 

outflows through the weir are negligible compared to outflows through other routes.  
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Algal outflows make a nearly perfect mirror of the overlay of relative hydrologic 

outflows (Figure 34) and algal concentration (Figure 33).   

5.3. Sensitivity Analysis 

A sensitivity analysis was conducted on the key parameters of the model to identify 

those parameters most influential on various aspects of model output.  This is a useful 

exercise for multiple reasons: first, it adds confidence to the verification process to see 

the model respond to various changes in model parameters in an expected fashion; 

second, it allows current and future users of the model to identify parameters that may 

be most useful in calibration; third, in application of the model to find solutions to 

water quality problems, a sensitivity analysis run using model parameters similar to 

those correct for a target canal suggests which efforts may be most successful.  

Considering this latter benefit, the sensitivity analysis was run using an abbreviated 

and slightly modified set of input parameters from the final application described in 

Section 6.  It should be understood that the precise values of sensitivities observed 

will change with a different set of inputs, and likewise future model users would 

benefit from running a new sensitivity analysis customized for their own situations.  

However, the relative importance of the parameters discussed in this section should 

provide a useful guide for all future users of the canal model. 

5.3.1. Procedure 

The sensitivity analysis was conducted for a three-reach system based generally on 

the top three reaches of the Kennet and Avon Canal.  Modifications were made to the 

parameters later used in Section 6 to make the sensitivity analysis more representative 

of the full range of influential parameters, primarily moving abstraction demands and 

external inflows to occur in these three reaches where they previously did not.  The 

model time span was set to a period of one year for the sensitivity analysis.  Both the 

limited number of reaches and limited time span were chosen to allow the full 

sensitivity analysis to run in a reasonable amount of time: this setup allows one 

scenario of the sensitivity analysis to run in less than a minute, and the full 178 

scenarios to run in 2 hours.  Some of the scenarios caused extreme conditions to be 

simulated, slowing down execution as the numerical methods encountered greater 

difficulty in convergence. 
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The values of the parameters previously listed in Table 7 and Table 8 for the baseline 

scenario are listed in Table 25 - Table 28 in Appendix C.  For the sensitivity analysis, 

these parameters were varied by ±25% and ±10% to generate a total of four sensitivity 

runs for each variable.  This resulted in 178 different scenarios, including the baseline 

scenario and the scenario for Empty, which could not be varied by a percent, just 

simply set to false.  For each of the 178 runs, statistics were computed for the 

following state variables and outflows for the downstream reach: 

• Hydrologic Variables: 

o S (hydrologic storage) 

o D (water depth) 

o Qabs (hydrologic outflow via abstractions) 

o Qweir (hydrologic outflow via overflow weir) 

o Qw,lock (hydrologic outflow via lock overtopping) 

o Qseep (hydrologic outflow via seepage) 

o Qleak (hydrologic outflow via leakage) 

o Qlock (hydrologic outflow via lockage) 

o Qevap (hydrologic outflow via evaporation) 

o Qtot (total hydrologic outflow) 

• Concentration Variables: 

o [SSnon] (concentration of non-cohesive sediment) 

o [SScoh] (concentration of cohesive sediment) 

o [SSalg] (concentration of algae) 

• Sediment (cohesive and, separately, non-cohesive) Variables: 

o SS (sediment storage) 

o QSSabs (sediment outflow via abstractions) 

o QSSweir (sediment outflow via overflow weir) 

o QSSw,lock (sediment outflow via lock overtopping) 

o QSSdep (sediment loss via deposition) 

o QSSleak (sediment outflow via leakage) 

o QSSlock (sediment outflow via lockage) 

o QSStot (total sediment outflow) 

• Algae (Biological Solids) Variables: 

o SS (algal storage) 
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o QSSabs (algal outflow via abstractions) 

o QSSweir (algal outflow via overflow weir) 

o QSSw,lock (algal outflow via lock overtopping) 

o QSSleak (algal outflow via leakage) 

o QSSlock (algal outflow via lockage) 

o QSStot (total algal outflow) 

o ISSbio (algal growth) 

 

For each of these variables, the following statistics were calculated: 

• Mean (total simulation) (Avg) 

• Minimum (total simulation) (Min) 

• Maximum (total simulation) (Max) 

• 1st Quartile (total simulation) (1Q) 

• Median (total simulation) (2Q) 

• 3rd Quartile (total simulation) (3Q) 

• Seasonal Means (Winter (W), Spring (Sp), Summer (Su), Autumn (A)) 

 

The sensitivity of model variables to the input parameters was calculated according to 

a simple formula used in previous model studies (Equation 69) (Byne 2000). 
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Where:  Sr = relative sensitivity of parameter;  
 O  = output (model output for variables bulleted above); 
 P  = input (model parameters in Table 7 and Table 8);  
 Ob  = baseline output (model output for baseline run); and 
 Pb = baseline input (model parameters in Appendix C). 
 

5.3.2. Results 

The full results of the Sensitivity Analysis are given in Appendix D.  The parameters 

to which the model is most sensitive are presented and discussed in the following 

sections.  A positive sensitivity (Sr) indicates a positive correlation between the 

indicated parameter and the indicated variable; if the sensitivity is greater than 1, the 

change in the variable is greater, proportionally, than the change in the parameter. 
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5.3.2.1. Hydrologic Variables 

The key parameters to which the hydrologic variables are sensitive are given in Table 

9.   A key parameter in this case is defined as one which has at least one sensitivity 

(Sr) at the -25%, -10%, 10%, or 25% level whose absolute value is greater than or 

equal to 0.5 for the mean statistic.  The average sensitivities for each combination of 

parameter and statistic are calculated as the mean of the Sr values calculated at the  

-25%, -10%, 10%, and 25% levels. 

 

Table 9. Key parameters to which the hydrologic variables are most sensitive. 
Average Sensitivities 

Var.  
Most 
Sig. 
Params. Avg Max Min 1Q 2Q 3Q W Sp Su A 

L 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Dweir
† 0.93 0.80 0.95 0.96 0.94 0.92 0.91 0.91 0.95 0.95 

S 

Dlock
‡ 0.71 0.80 3.68 0.68 0.70 0.72 0.75 0.72 0.68 0.69 

Dweir
† 0.93 0.80 0.95 0.96 0.94 0.92 0.91 0.91 0.95 0.95 

D 
Dlock

‡ 0.71 0.80 3.68 0.68 0.70 0.72 0.75 0.72 0.68 0.69 
Qabs Qabs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Irunoff 0.64 0.84 3.82 0.60 0.63 0.65 0.73 0.58 0.78 0.48 
Iext 2.44 0.60 14.96 4.53 2.42 1.75 1.34 2.00 4.96 3.45 

Qabs -0.50 -0.14 -5.50 -0.84 -0.50 -0.39 -0.36 -0.38 -0.93 -0.69 
Dweir

† -1.84 -2.43 -10.90 -1.52 -1.57 -1.79 -1.87 -1.82 -1.93 -1.75 
Vlock -0.70 <0.01 -7.47 -1.87 -0.48 -0.30 -0.01 -0.47 -2.51 -1.08 
Leak -0.92 -0.31 -9.19 -1.53 -0.93 -0.68 -0.67 -0.70 -1.65 -1.25 

Qweir 

Fboat -0.68 0.00 -7.43 -1.93 -0.52 -0.28 0.00 -0.43 -2.48 -1.06 
L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
W 0.73 0.72 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 Qseep 

Seep 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Dweir

† 0.92 0.76 0.95 0.96 0.93 0.90 0.90 0.90 0.95 0.94 

Dlock
‡ 0.74 0.87 3.68 0.71 0.74 0.76 0.79 0.76 0.70 0.71 Qleak 

Leak 0.97 0.99 0.83 0.98 0.98 0.98 0.98 0.98 0.96 0.97 
Vlock 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Qlock Fboat 0.97 1.08 0.00 0.00 1.00 1.05 0.00 0.93 0.99 0.99 
PE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Qevap 

Ce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Qtot Iext 0.87 0.44 0.51 0.70 0.97 0.91 0.72 0.84 0.95 0.98 

 † Average sensitivity for Dweir ±10% and -25%; at Dweir +25%, the weir depth exceeded lock depth and 
caused an erroneous sensitivity 

‡ Only significant at the -25% level, when Dlock < Dweir
 

 

Many of the relationships in Table 9 are expected, and support the verification of the 

model.  Storage and depth are most dependent on the dimensions of the reach.  

Evaporative losses are dependent only upon those things that affect evaporation 

(potential evaporation, the coefficient of evaporation, and factors that contribute to the 
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water surface area in the reach); Qlock is dependent on the volume of lockage and the 

frequency that lockages occur (represented by Fboat).  The Sr values of zero seen for 

some statistics for Qlock are expected, as there are some weeks of the year that have no 

boat traffic and thus no Qlock.  Qleak  is dependent on the leakage rate and the depth 

from which the leakage can draw, and shows sensitivity to external inflows only when 

they decrease to the point that the water level in the reach falls.  Qseep is sensitive to 

the components used to calculate the wetted surface area and the rate of seepage; it 

may be surprising that a representative of depth does not appear on the list for Qseep; 

the model does show an average sensitivity of 0.25 to Dweir, but because the wetted 

surface area of the sides of the canal is small compared to the wetted surface area of 

the bottom of the canal, it does not reach the requirements set for a ‘key parameter.’   

 

Qweir is by far the most complex variable, being the primary route by which excess 

water leaves a reach.  It is thus sensitive to any parameter that is a significant 

contributor to the inflow or outflow of water in the reach.  Qweir’s strong sensitivity to 

external inflows (Sr = 2.44) shows that changes in external inflow produce a change in 

weir outflow proportionally much greater than the inflow change.  This is because any 

increase in inflow rate to the canal mostly exits the reach through the weir overflow, 

so that the overall storage is maintained at the desired level.  In a properly balanced 

scenario, weir overflow should be minimal, as the input flows as designed should just 

balance the outflow demand from lockage, leakage, seepage, and evaporation.  

However, when the inflow rate increases, the outflow demands from lockage, leakage, 

seepage, and evaporation will not change; thus, all additional inflow will leave via the 

overflow weir (and perhaps over the lock gate, if the flow increase is very great).  A 

small change in total inflow in this case results in a much greater change in weir 

outflow.  For example, if total inflow is 10 m³/s, and under normal conditions the weir 

overflow is 1 m³/s, then a 10% increase in inflow (to 11 m³/s) will result in a 100% 

increase in weir overflow (to 2 m³/s).  Likewise, decreasing the inflow will affect the 

weir flows firstly and most greatly – for the same scenario, but for a decrease of 10%, 

the weir overflow would decrease by 100% (to 0 m³/s).  The maximum value for Qweir 

is expected to occur in the winter, when lockages are low and most water flows 

through the overflow weir, and thus the maximum Qweir sensitivity is unaffected by 

changes in Fboat, the value of which parameter is near or equal to zero in the winter 

months. 
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As expected, Qtot is dependent primarily upon the external inflow of water.  Indeed, 

had Qtot been dependent upon anything other than external inflows, runoff, or 

precipitation, it would indicate an error in the model, as the mass of water must be 

conserved, so assuming a minimal change in storage for the simulation period (as 

would be expected in a canal), the inflows from all sources should approximately 

equal the sum of the outflows from all sources.  The variations in sensitivity to Iext are 

due to the varying predominance of runoff sources.  Although runoff sources are not 

so significant on an annual basis, they contribute significantly to the high flows, and 

thus have a much greater impact on the maximum Qtot statistic than do the external 

flows. 

5.3.2.2. Concentration Variables 

The key parameters to which the solids concentration variables are sensitive are listed 

in Table 10.  As with the hydrology variables, parameters to which the model is most 

sensitive are defined as those parameters for which the absolute value of one value of 

Sr for the mean statistic is greater than or equal to 0.5. 

 

The sensitivity of the load variables to the model input parameters mirrors the 

sensitivity of the hydrology variables (Table 9) and that of the solids concentration of 

the reach (Table 10); therefore, the sensitivities of the load parameters are only 

included in Appendix D, as they would be repetitive here. 

 

Table 10. Key parameters to which the solids concentrations are most sensitive. 
Average Sensitivities 

Var.  
Most 
Sig. 
Params. Avg Max Min 1Q 2Q 3Q W Sp Su A 

CSboat,non 0.82 0.86 <0.01 0.62 0.79 0.85 0.13 0.82 0.85 0.84 
[SSnon] Fboat 0.61 0.60 0.00 0.00 0.71 0.68 <0.01 0.68 0.59 0.66 

W -0.45 -1.23 -1.04 -0.86 -0.54 -0.38 -1.05 -0.50 -0.36 -0.44 
CSboat,coh 0.70 0.02 0.01 0.39 0.66 0.76 0.06 0.70 0.76 0.73 [SScoh] 
Fboat 0.54 0.00 0.00 0.00 0.59 0.63 <0.01 0.59 0.55 0.59 
Iext -1.57 -0.44 -¶ -1.31 -1.49 -1.57 -0.81 -1.48 -1.90 -1.55 
L 0.85 0.39 +¶ 0.55 0.73 0.88 0.68 0.72 1.05 0.63 
W 1.00 0.38 +¶ 0.58 0.80 1.05 0.67 0.81 1.29 0.76 
Tmean 0.60 0.05 0.00 0.36 0.53 0.69 0.13 0.54 0.84 0.47 
ISSext,alg 0.85 0.00 0.00 1.00 0.98 0.98 0.26 0.98 0.96 0.99 

[SSalg] 

EXTB -0.47 -0.05 0.00 -0.39 -0.43 -0.54 -0.14 -0.42 -0.62 -0.45 
¶ Because the minimum algae concentration was nearly zero, extreme values of Sr were calculated 

whenever any change in minimum algae concentration was seen; therefore, this column is simply 
marked ‘+’ or ‘-‘ to indicate a positive or negative correlation, respectively. 
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It is not surprising that the sediment concentrations are most sensitive to boat-related 

parameters – that is, the amount of sediment stirred up by the boats (CSboat,non, 

CSboat,coh) and the frequency of boat passage (Fboat).  In a typical canal, it is expected 

that boat contributions to sediment will greatly exceed any contributions from runoff 

or external sources (this certainly appears to be the case from monitoring efforts in the 

Kennet and Avon Canal).  Without boat traffic, any sediment that did enter the canal 

from an external source would quickly settle out in the near-stagnant water in the 

canal reaches.  The sensitivity to boat width for cohesive sediment concentration 

occurs because the primary driver of sediment concentration – the concentration of 

sediment disturbed by boat traffic – is dependent upon the width of the boat rather 

than the width of the canal.  The same load of sediment will be disturbed regardless of 

the canal width, so that the overall fully-mixed concentration will be lower when the 

reach width (and thus total water storage) is higher.  The sensitivity to reach width (Sr 

= -0.42) is not quite as great for non-cohesive sediment because it falls more rapidly 

out of suspension.   

 

Algal concentration is sensitive to many things.  Unsurprisingly, parameters related to 

temperature, light intensity, and water velocity play key roles as represented by mean 

temperature (Tmean); the base water light extinction coefficient (EXTB); and external 

flow inputs (Iext), respectively.  Interestingly, parameters that affect the total storage of 

water in the reach (thus the total algal load) are also important – Length and Width.  

These factors affect VolED used in equation 59 to calculate algal growth rate; all other 

things being equal, if VolED increases, the concentration of algae decreases, the 

difference between the concentration of algae supportable by the total phosphorus 

concentration increases, and thus the multiplier for µmax increases, causing a higher 

growth rate.  Additionally, the greater width decreases the concentration of inorganic 

sediment, allowing more light to penetrate through the water and thus allowing a 

higher growth rate (µmax).  

 

As expected the algae input to the whole system (ISSext,alg) are an important influence 

on the algal concentration at the downstream reach: these provide the ‘seed’ for the 

entire system.  However, it is interesting to note that as long as there is some sort of 

seed, its influence is less apparent farther down the reaches: during calibration of the 
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full 26-reach model, it was noted that changes in the input of algae to the summit 

reach had minimal effect at the calibration station 18 reaches downstream.  That far 

downstream, as long as there is any seed at the summit reach, the concentration of 

algae in the reach becomes more dependent upon factors that influence the growth 

rate – temperature, light availability, and nutrient availability.  Consider a case where 

the total growth is limited to 10 cells in a given reach by temperature, light, and 

nutrients; if the upstream reach provides 8 cells, only 2 more cells can grow in the 

current reach; if the upstream reach provides 6 cells, only 4 more cells can grow in the 

current reach.  In both cases, the number of cells in the reach will be the maximum 

supportable by the environmental conditions – 10 cells.  For the upstream reaches, the 

seed is still growing, and so considering the same environmental conditions: if 1 cell 

is input to the reach and only one doubling time passes, the reach will hold 2 cells at 

the end of the time step; if 2 cells are input, then the reach will hold 4 cells; it is not 

until the input exceeds 5 cells that the cap imposed by environmental conditions 

becomes important. 

 

What is surprising in the algal sensitivities is that phosphorus and solar radiation do 

not make an appearance.  They are somewhat influential with mean algae Sr = 0.17 for 

phosphorus and Sr = 0.39 for solar radiation.  However, the water temperature, ‘seed’ 

algal input (ISSext,alg), and light extinction exert more control on the algal 

concentration in a reach typical of the Kennet and Avon Canal.  This is due in part to 

the choice of the top three reaches for use in the sensitivity analysis; as will be 

discussed later (Section 7.2.4.3, page 156), in the upstream reaches of the canal the 

population is so low that it generally does not reach the cap imposed by phosphorus 

and is rather controlled by the seed of algae input at the summit reach. 
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6. Overland Flow Model 
In order to adequately predict flow in the canal, it was necessary to use an existing 

overland flow model to generate runoff inputs for the canal model described in 

Section 4.  No attempt was made to improve upon existing overland flow models, nor 

was it the intent of this project to develop or evaluate an existing overland flow model 

(although some comparisons have been made recently (Zeckoski et al. 2009)).  The 

overland flow model was simply a tool used in generating necessary inputs to the 

canal model.  The Hydrological Simulation Program-Fortran (HSPF) (Bicknell et al. 

2001) was chosen for this purpose due to the researcher’s familiarity with the model 

and thus the straightforward nature of obtaining the outputs from HSPF that would be 

needed for input to the canal model.  The adequacy of predictions of the overland 

flow model was evaluated based on successful calibration of the model to points 

above the first primary intersection of the canal and the natural river. 

6.1. Subcatchment Delineation for HSPF Calibration 

The area above the confluence of the River Kennet with the Kennet and Avon Canal, 

contributing to the river, was subdivided into 13 subcatchments in order to perform 

the hydrology and sediment calibrations.  The breaks in the subcatchments were 

largely dependent on the locations of the monitoring stations (Figure 38).  The 

subcatchments also generally followed the delineation previously performed by Dr. 

Andrew Wade at the University of Reading for his work with the Integrated 

Catchments (INCA) model (Wade et al. 2002) so that the velocity-discharge 

relationships he developed for the INCA model could be used to create hydraulic 

function tables to represent the river in HSPF. 
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Figure 38. Subcatchment delineation for HSPF calibration. 
 

6.2. Hydrology Calibration 

6.2.1. Introduction 

Hydrological calibration methods for HSPF are well established (Lumb et al. 1994; 

EPA 1999; EPA 2000; Kim et al. 2007a).  To summarize, a hydrologic model 

calibration is evaluated based on seven metrics: total annual runoff, low flow 

recession, total of highest 10% of flows, total of lowest 50% of flows, storm peaks, 

seasonal volume, and summer storm volume.  These latter two are seasonal metrics, 

ensuring that success in the remaining statistics is not achieved by improper 

distribution of high flows (e.g., compensating for low flows in summer by elevating 

flows in winter, thus achieving an acceptable total runoff metric).  The seasonal 

volume metric is the difference between the summer and winter flow errors.  The 

summer storm volume metric is the difference between the summer storm volume 

error and the total storm volume error (for all times of the year).   
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6.2.2. Calibration Station 

In the case of the River Kennet, one station was available for calibration above the 

confluence of the river with the canal: Marlborough (Figure 38).  The period of record 

for this station extended from 1972 to present.  Being most relevant to the current 

work, the period of 1997-present was chosen for calibration and validation.  This 

period also corresponded to the available data for sediment calibration.  Calibration 

was performed on data from 1997-2003, and validation on data from 2004-2009. 

6.2.3. Model Parameterization 

HSPF model parameters were initially estimated using the guidance in BASINS 

Technical Note 6 (EPA 2000).  This required information on land use, soils, and 

meteorology.  Land use and soils were previously discussed in Section 2.5.1.  

Meteorological data were collected from the British Atmospheric Data Centre 

(http://badc.nerc.ac.uk/home/) for the stations Aldbourne (precipitation) (World 

Meteorological Organization (WMO) ID 266949) and Upper Lambourn (temperature) 

(WMO ID 268196) (Figure 38).  The precipitation data were converted to appropriate 

units and entered as inputs to HSPF; the temperature data were used along with the 

catchment’s latitude to estimate potential evaporation using the Hamon Potential 

Evapotranspiration method in the Watershed Data Management Utility (WDMUtil) 

program (Hummel et al. 2001) (a companion program to HSPF). 

6.2.4. Results 

After calibration, the HSPF metrics were satisfied for both the calibration and the 

validation periods (Table 11).  The baseflow index was calculated as 0.94 for the 

calibration period and 0.95 for the validation period, compared to 0.94 predicted by 

the UK Hydrometric Register (Marsh and Hannaford 2008).  A comparison of 

simulated and observed flows is provided in Figure 39 for the calibration period and 

Figure 40 for the validation period.  A full list of the final calibrated parameters is 

provided in Appendix E.   
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Table 11. Results of HSPF hydrologic calibration and validation. 

Metric 
Acceptable 

Error Range 

Error for 
Calibration 

Period 

Error for 
Validation 

Period 
Total Runoff ±10% -6.6% 5.3% 
Low Flow Recession ±0.01 0.01 0.01 
Highest 10% of Flows ±15% -14.1% -3.2% 
Lowest 50% of Flows ±10% 3.9% 1.5% 
Storm Peaks ±15% -13.3% -10.8% 
Seasonal Volume ±10% 8.1% 4.6% 
Summer Storm Volume ±15% -10% -3.9% 
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Figure 39. Observed and simulated flow rates for the Marlborough station on the River Kennet – 
calibration period. 
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Figure 40. Observed and simulated flow rates for the Marlborough station on the River Kennet - 
validation period. 
 

6.3. Sediment Calibration 

6.3.1. Introduction 

Compared to hydrologic calibration, sediment calibration for HSPF is less well 

defined in terms of both procedure and metrics.  However, some guidance exists.  The 

guidelines in BASINS Technical Note 8 (EPA 2006) were followed to estimate 

parameters, target parameters for calibration, and establish the sediment loading rate 

metric to assess the calibration.   Additional metrics used to assess the sediment 

calibration included the 5-day window concept introduced by Kim and others (2007b) 

to calibrate to discontinuous data; the discrepancy ratio (van Rijn 1984; Winter 2007; 

Neumeier et al. 2008); and the Nash-Sutcliffe model efficiency (Benaman et al. 2005; 

Mishra et al. 2007; de Vente et al. 2008; Tyagi et al. 2008) based on monthly average 

concentrations.  As is generally accepted (Soulsby 1997), sediment loads and 

concentrations are more difficult to predict than hydrologic data; therefore the 

satisfactory errors for the sediment calibration were less stringent than those for the 

hydrology calibration.   
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6.3.2. Setting Calibration Targets 

HSPF produces two key variables used in the sediment calibration: an edge-of-stream 

load (model parameter SOSED) and an in-stream concentration of sediment (model 

parameter ROSED).  It was necessary to set observed targets for each of these 

variables. 

6.3.2.1. Edge-Of-Stream Load 

BASINS Technical Note 8 (EPA 2006) suggests use of sediment loading rate as an 

initial assessment of a sediment model’s performance, and specifically the model’s 

ability to predict sediment washed off the land surface (as opposed to sediment 

scoured from the stream).  This sediment washed off the land surface will have a 

greater effect on the canal model than the in-stream sediment concentration, and so 

determination of an appropriate ‘observed’ value for this target and minimization of 

the error in sediment loading rate was a high priority in calibration. 

 

A sediment loading rate is a function of two processes.  First, the sediment must be 

detached from the soil surface – either by raindrop impact or scour from surface 

runoff.  Second, the sediment must be carried by surface runoff to the stream.  This 

process is illustrated in Figure 41.  Sediment detached by raindrop impact may fall on 

a portion of the land surface that has no flowing water, or it may land in flowing 

surface runoff and be carried to the stream.  Sediment scoured by surface runoff may 

continue to be carried by the runoff, or it may be deposited as the rate of runoff slows 

due to the roughness of the land surface.     
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Figure 41.  Sediment transport processes on the land surface.  Brown dots and drops represent 
sediment. 
 

The first component of the sediment loading rate, the expected soil detachment, was 

estimated from the Pan-European Soil Erosion Risk Assessment (PESERA) map 

(Kirkby et al. 2004) for the area contributing to each monitoring station used in 

calibration (see Figure 21, page 67).  To determine the final target sediment loading 

rate, it was necessary to multiply this detachment by a sediment delivery ratio to 

determine how much of the detached sediment reaches the stream.  The sediment 

delivery ratio is the ratio of sediment that reaches the edge of the stream to the total 

amount of sediment detached from the land surface.  The sediment delivery ratio for 

this purpose was estimated based on the method of Roehl (1962) (Equation 70). 

 ( ) ( )WSDR ⋅⋅−= 10log33852.091349.1log  (70) 

 Where: SDR = sediment delivery ratio (unitless); and 
  W = drainage area (square miles). 
 

By multiplying the sediment detachment from PESERA by the sediment delivery ratio 

determined from Equation 70, an ‘observed’ (or more appropriately, expected) value 

is obtained that can be compared to HSPF edge-of-stream outputs from the land 

surface.   

6.3.2.2. In-Stream Concentration 

Data from the Centre for Ecology and Hydrology that were collected from the five 

stations on the River Kennet above the confluence of the river with the canal (Figure 

38) were used as targets for the in-stream portion of the sediment calibration.  These 

stations have varying periods of record as presented in Table 12.  Because most 
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stations had a limited number of samples, calibration to a multitude of spatially 

distributed stations was performed in lieu of a calibration and validation at a single 

station. 

 

Table 12. Periods of sediment data available at stations on the River Kennet. 
Station Name Period of Record Number of Samples 
Clatford 6/1997-9/2005 410 
Mildenhall 6/1997-9/2005 417 
Ramsbury 6/1997-2/2001 204 
Knighton 6/1997-2/2001 204 
Hungerford 8/2003-9/2005 107 
 

It was assumed that the monitored concentrations at these stations were comparable in 

nature to the in-stream concentrations predicted by HSPF. 

6.3.3. Establishing Metrics 

Kim and others (2007b) introduced a 5-day window method of computing statistics 

for use in bacteria calibrations.  Portions of this method were adapted here as well, as 

the difficulties and goal are the same for sediment predictions as with bacteria: there 

are a limited number of grab samples for a water quality constituent that varies greatly 

both spatially and temporally.  Thus, an expectation that daily model output would be 

capable of predicting the precise observed value from a grab sample collected once a 

week (at best) is not reasonable.  By looking at a 5-day window of simulated values 

surrounding each observation, a more reasonable comparison can be made.  In 

particular, this allows focus of the statistics on the conditions unique to the 

observation dates – a particular benefit in this case, where the observed record misses 

entire seasons.  Comparing yearly or simulation-long averages that capture all seasons 

to observed values that only represent some seasons would be erroneous.   

 

In practice, the simulated values for two days before, one day before, the day of, one 

day after, and two days after each observation date were averaged to create a series of 

simulated 5-day window values – one 5-day window value for each observation date.  

Then the average and median of this series were calculated to compare with the 

average and median of the observed data. 
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The discrepancy ratio used by several researchers to evaluate sediment prediction 

capabilities is simply a ratio of an observed value to a simulated value – either on a 

daily (that is, each observation day) or monthly basis.  If it is desired for all observed 

values to fall within a factor of 2 of the simulated values, then the desired discrepancy 

ratio range would run from ½ to 2.  The factors used to define the limits on a desirable 

discrepancy ratio range in the literature from 1.5 to 10.  Having established the 

desired factor, the next step is to determine what fraction of discrepancy ratios fall 

between the limits imposed by the desired factor.  Typically, as the desired range 

decreases, so does the fraction of calculated discrepancy ratios that fall between the 

limits imposed by that range.  As an example, Soulsby (1997) suggests that the best 

models are able to have 70% of their discrepancy ratios fall between 0.5 and 2.  van 

Rijn (1984) provided an example of an acceptable model that had 76% of its 

discrepancy ratios falling between 0.5 and 2; 37% falling between 0.67 and 1.5; and 

94% falling between 0.33 and 3.  To evaluate the HSPF model calibration, 

discrepancy ratios were calculated for monthly average solids concentrations.  The 

desired factor was set at 2 (providing a desired range of 0.5 to 2). 

 

The Nash-Sutcliffe Model Efficiency (NSE) (Nash and Sutcliffe 1970) is perhaps one 

of the best known methods for evaluating prediction of flow from a hydrologic model.  

As mentioned in the introduction, this metric is also frequently used to evaluate a 

water quality model’s predictive capability for sediment.  The formula for the Nash-

Sutcliffe Model Efficiency is given in Equation 71. 
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 Where: NSE = Nash-Sutcliffe Model Efficiency (unitless); 
  N  = number of observations; 
  xoi = value of observation i (mg/L, in this case); 
  xs  = simulated value corresponding to observation i (mg/L); and 

  x  = mean of observed values (mg/L). 
 

By comparing the error between the observed and simulated data (numerator) to the 

error between the observed value and the mean of all observed values (denominator), 

the NSE allows the modeler to determine whether the model simulation is a better 

predictor of the observed condition than a simple use of the mean of observed values.  
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If the NSE is greater than zero, the error in the numerator is lower than the error in the 

denominator, and the model is a better predictor of reality than the mean of the 

observed values; if the NSE is less than zero, the error in the numerator is greater than 

the error in the denominator, and the mean of observed values is a better predictor 

than the model.  This can be used on individual observations or an aggregate of 

observations – for example, an average daily value for the month.  This average daily 

value each month is what was used in this case to evaluate HSPF’s predictive 

capabilities. 

 

The satisfactory error rates are summarized in Table 13.  Because the prediction of 

sediment is inherently less certain than the prediction of hydrology, the allowed error 

bounds are less restrictive for the sediment calibration than they were for the 

hydrology calibration.  In addition to the metrics listed in this section, a visual 

assessment of the goodness-of-fit was also conducted. 

 

Table 13. Satisfactory errors for the metrics used in the calibration of the overland flow model 
for sediment. 
Metric Evaluation Criterion Abbreviation 
Sediment Loading Rate (tonnes/ha/yr) ±30% SLR 
5-Day Window Average (mg/L) ±30% 5DA 
5-Day Window Median (mg/L) ±30% 5DM 
Discrepancy Ratio (using factor of 2) max† DR 
Nash-Sutcliffe Model Efficiency max NSE 
† That is, maximize the percent of values with a discrepancy ratio between 0.5 and 2 
 

6.3.4. Results 

The sensitive parameters listed in BASINS Technical Note 8 (EPA 2006) were 

targeted for calibration and adjusted until they met the allowed errors for each metric.  

The final calibration results are listed in Table 14.  Graphs of simulated and observed 

data are provided in Figure 42.  

 

Table 14. HSPF sediment calibration results. 
Error Station  

SLR 5DA 5DM 
DR NSE 

Clatford 4% -17% 2% 29% 0.11 
Mildenhall 3% 26% 24% 59% -0.17 
Ramsbury 1% 5% -20% 60% -0.19 
Knighton -2% 7% 14% 62% -0.01 
Hungerford -6% 29% 2% 65% -1.77 
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Figure 42. Results of HSPF sediment calibration for five stations on the River Kennet. 
 

Overall the sediment predictions are good, particularly in the middle region, at 

Ramsbury and Knighton.  After calibration, the 30% error targets for sediment 

loading rate, 5-day average, and 5-day median were met.  The magnitudes of the 

sediment loading errors were all less than 10%; this is especially important, as the 

sediment loading from the land surface is the most crucial export from the overland 

flow model to the canal model.  The percents of discrepancy ratios that fall between 

0.5 and 2 are generally high, with the exception of the values predicted for Clatford.  

However, the Clatford station shows the best Nash-Sutcliffe model efficiency.  Given 

how well all other calibration targets were met, the poor Nash-Sutcliffe model 

efficiency results for the remaining stations are surprising.  However, as was 

previously mentioned, expecting a metric based upon a single value for the entire 
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simulation to perform well when one is comparing simulated results to observations 

based on (non-continuous) grab samples is optimistic.  Note that the 5-day window 

metric, which compares a grab sample collected once a week to simulated values for a 

window surrounding the collection date, has very good results.  Additionally, the 

visual comparison shows that the model is accurately predicting the average 

condition.  The peaks predicted by the model would happen in association with storm 

events, and given that grab samples are not typically collected during storm events, 

one would not expect the monitored data to capture such peaks.  The inclusion of the 

storm peaks in the simulated record forces a more variable condition than the ambient 

measurements would suggest, which in turn causes the mean of observed values to 

appear to be a better predictor than the simulated results.  Considering all these issues 

and that all other metrics used to evaluate the calibration are good, the calibration is 

acceptable.  The final calibrated parameters for HSPF are given in Appendix E. 
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7. Canal Model Application 
To further demonstrate the use and reliability of the new canal model, it was applied 

to the Kennet and Avon Canal in Southern England (described in Section 2.5.1, pg. 

21).   

7.1. Inputs for Canal Model 

The list of required inputs for the model was previously discussed (Section 4.2.5).  In 

practice, these inputs can be generally divided into three categories: inputs from the 

overland flow model (runoff and sediment transported in runoff), time series inputs, 

and physical canal characteristics.  In this section, the runoff inputs are treated 

separately, as they required greater effort involving parameterizing and calibrating a 

separate overland flow model.  The time step for the canal model was set to one day 

to match the resolution of available input data. 

7.1.1. Runoff Inputs 

7.1.1.1. Modification of HSPF 

The HSPF model as used in calibration (Section 6) only required subcatchment 

delineation for the River Kennet to Hungerford, the last station available before the 

confluence of the River Kennet and the Kennet and Avon Canal.  To produce 

appropriate runoff inputs for the canal model, small subcatchments were created to 

contribute to each lock and were then further divided to separate drainage to the canal 

from drainage to the river to ensure the correct runoff could be apportioned to the 

canal.  The first step in doing this was to use the digital elevation model (DEM) 

provided by Dr. Andrew Wade at the University of Reading (originally generated by 

the Centre for Ecology and Hydrology) to create new subcatchments with outlets at 

each lock location (Figure 43). 
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Figure 43. Intermediate subcatchment delineation, causing a break at each lock location. 
 

After this was completed, the subcatchments were split along the line of the canal.  

The resulting polygons were then classified as contributing to the canal or 

contributing to the river depending on whether they fell on the canal side or the river 

side of the divide, respectively.  This is illustrated in Figure 44; the final division is 

shown in Figure 45.  It was assumed that any area between the canal and the river 

contributed to the river, as the canal was typically slightly elevated above the river. 
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Figure 44. Close-up of subcatchment delineation according to whether it contributes to the river 
or canal.  Drainage area that intercepts the canal before the river contributes to the canal; the 
remainder contributes to the river. 
 

 
Figure 45. Final subcatchment delineation, splitting the intermediate subcatchments according to 
contribution to the canal or river. 
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After delineation, the previously calibrated parameters described in Appendix E were 

applied to the new subcatchments. 

7.1.1.2. Data Used in Canal Model 

The total runoff and sediment transported from the land surface were exported to text 

files from HSPF for each of the new subcatchments in Figure 45.  These text files 

represented the total volume of flow (Irunoff) and mass of inorganic sediment (ISSrunoff) 

delivered from the land to each reach of the canal.  In the case where a direct transfer 

of water from the River Dun or the River Kennet was made to the canal, the 

concentration of sediment in the water in the river  predicted by HSPF was used to 

determine the load of sediment (ISSext) that should enter the canal at those points.  The 

transfers of water (and thus sediment) from the River Dun or the River Kennet to the 

canal occurred in the reaches above Locks 68, 75, and 78.     

7.1.2. Canal Data Processing 

7.1.2.1. Time Series Processing 

In addition to time series inputs also required or provided by the catchment model 

(e.g., precipitation, evaporation, runoff), the canal model required the following time 

series of data: solar radiation, total phosphorus, external inputs (water, sediment, 

algae), external abstractions, and frequency of boat movements.  This section 

describes the development of each of these time series. 

7.1.2.1.1. Solar Radiation 

Solar radiation data were not readily available for the study area.  However, solar 

radiation (exclusive of cloud cover) is a standard function of the latitude of a given 

region.  Therefore, the relation developed by Hamon and others (1954) as 

implemented by the WDMUtil program (Hummel et al. 2001) was used to estimate 

solar radiation data for the study area.  This method requires input of latitude and 

cloud cover.  Although the latitude of the study area is approximately 51º24′N, solar 

radiation was estimated at 50ºN as this is a limitation of the WDMUtil program.  

Cloud cover was estimated based on available hours of sunshine available from the 

MetOffice for a nearby station in Oxford (51º42′N) (MetOffice 2010) combined with 
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sun rise and set tables published by the United States Naval Observatory (U. S. Naval 

Observatory 2010). 

7.1.2.1.2. Total Phosphorus Concentration 

Total phosophorus concentration was estimated on a monthly basis from data 

collected by Colin Neal at the Centre for Ecology and Hydrology (Neal et al. 2006b) 

at the stations shown on the canal in Figure 21.  The phosphorus concentration in each 

reach on the canal was estimated using data from the closest observation station.  The 

phosphorus concentration for each month of simulation varied by reach and was the 

average of observed values for that month collected over the observation period.  The 

average of observed monthly values was used in place of the actual values both 

because the observed record had many holes and because this minimized the effect of 

isolated extreme values, which were likely not representative of the entire observation 

period in which they were taken.  There were three stations that did not have a record 

that included a minimum of one observed sample each month; where their records 

were incomplete (i.e., months with no observed data), an average of the concentration 

at all other stations was used to patch the missing month. 

7.1.2.1.3. External Inputs and Abstractions 

External inputs and abstractions of water were estimated primarily from a field survey 

conducted in 1992 (National Rivers Authority 1992) (henceforth ‘the NRA report’).  

The exceptions were the input from streams directly to the canal (Froxfield Stream 

and Shalbourne Brook) and pumping from Crofton Pumping Station to the summit 

reach (see Figure 12, page 52 for stream and pumping station locations).  These flows 

are significant contributors to the canal, and so more current information was used in 

their estimation. 

 

The major input of water, pumped by the Crofton Pumping Station from Wilton 

Water Reservoir into the summit reach, was varied throughout the year based on 

personal communication with the Hon. Engineer for the Kennet and Avon Canal and 

with engineers at the Crofton Pumping Station.  There is a constant ‘baseflow’ from 

the pumping station that is pumped year-round to compensate for leakage, seepage, 

and evaporative losses; this was estimated as 125 L/s.  Additionally, a higher flow rate 

is pumped in the boating season to compensate for lockages; this was estimated as 80 
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L/s.  The concentration of sediment in the feed water from Wilton Water was 

estimated as the monitored concentration of sediment in the reservoir (Neal et al. 

2006b).   

 

The concentration of algae in the feed water from Wilton Water was not available; 

however, visual inspection confirms that algae are present (Figure 46), and thus a 

method was devised to generate algal inputs from the feed water.  First, the seasonal 

average TP concentration recorded by Colin Neal (Neal et al. 2006b) was used to 

calculate the seasonal maximum, mean annual, and summer average chlorophyll-a 

concentrations using the relationships described in Section 2.3.2.  The seasonal 

maximum and summer average concentrations calculated using these methods ranged 

from 208 to 424 mg Chl-a/m³; the mean annual concentrations ranged from 88 to 182 

mg Chl-a/m³.  After calibration, 208 mg Chl-a/m³ was chosen as the maximum 

chlorophyll-a concentration. 

 
Figure 46. The outlet of Wilton Water Reservoir next to the Crofton Pumping Station.  Note algal 
mat. 
 

Next, the solar radiation data previously collected for direct input to the model were 

processed to create a time series indicating the fraction that each solar radiation daily 

value was of the maximum solar radiation for the simulation period.  Then the 

chlorophyll-a concentration was distributed throughout the year according to this 

fractional solar radiation time series.  This resulted in the maximum concentration 
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occurring in the summer (at the time of maximum solar radiation) and the minimum 

in the winter.  The chlorophyll-a concentration was converted to algal biomass using 

the conversion factor used in the rest of the simulation (Cchl), estimation of which was 

described in Table 8.  Finally, this value was multiplied by a fraction to account for 

the fact that the intake to the pumping station is located well beneath the water surface 

and likely at or below the euphotic depth.  Reasoning that 1% or less of the algae 

would be expected to inhabit a depth where 1% or less of the incident light was 

available, and through experimentation with a few different fractions during 

calibration, 1% was chosen as the fraction for this purpose. 

 

HSPF was used to estimate the flows from Froxfield Stream and Shalbourne Brook 

(for locations of these streams, see Figure 12, page 52).  The NRA report indicated 

approximately three quarters of the flow from Froxfield Stream (51 L/s of a total 

streamflow of 66 L/s) passed through a control structure (Figure 47) that diverted the 

majority of the Froxfield Stream flow to the River Dun through a culvert passing 

underneath the canal.  As a result, output from HSPF for the drainage area 

contributing to the reach above Lock 71 was divided: one quarter became input for the 

canal model, and three-quarters was redirected to the River Dun.  This division was 

applied to both water and sediment outputs from HSPF.  Shalbourne Brook enters the 

canal in its entirety, but an excess is taken off at the opposite side of that reach (above 

Lock 74).  The input of water and sediment was estimated from HSPF runoff, and the 

output was set at the abstraction level indicated by the NRA report (0.5 L/s).  The 

concentration of sediment in the abstracted water was estimated as the concentration 

of sediment in the canal reach. 
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Figure 47. Control structure to divert Froxfield Stream flow away from the canal. 
 

On a few occasions – above locks 68, 75, and 78 – water is drawn from the River Dun 

or the River Kennet.  The volumes of water input to the reach at these points were set 

at the values given in the NRA report: 0.014 m³/s, 0.003 m³/s, and 0.207 m³/s, 

respectively.  The concentration of sediment in the water from these external sources 

was set equal to the HSPF-modeled concentration of sediment in the corresponding 

river sections of the model setup shown in Figure 45.   

 

Two sewage treatment works enter the canal: Great Bedwyn and Kintbury.  These 

discharge to the canal above Lock 66 and Lock 79, respectively (see Figure 18, page 

64).  The volume of water entering from Great Bedwyn was estimated as 203.8 m³/d 

as given by Neal and others (2005b).  The volume of water entering from Kintbury 

was not readily available from any current source, but was estimated as 9 L/s by the 

NRA report; this value was used in the canal model.  Concentrations of sediment in 

the sewage treatment works outfalls were available from the Environment Agency and 

were used as input to the canal model. 

 

Whenever water was abstracted from the canal, at locations defined by the NRA 

report, it carried solids with it at a concentration equal to the concentration in the 

reach from which it was abstracted.  Total abstractions were minimal, amounting to a 

total of 0.14 m³/s over the entire length of the study section of the canal. 
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7.1.2.1.4. Boat Movements 

Frequency of boat movement was estimated based on data supplied by Glenn Millar at 

British Waterways (Langridge 2004).  These data included total lockages for the year 

for Locks 60, 71, 76, and 85 on the Kennet and Avon Canal as well as a typical 

weekly distribution for lockages averaged from data from multiple canals around 

Britain (Section 3.4).  The annual data for the locks on the Kennet and Avon Canal 

were distributed to all locks on the study reach based on proximity to the monitored 

locks and the location of winding holes.  In consideration of winding holes: a boat 

heading a particular direction in a canal will be forced to continue in that direction 

until it reaches a winding hole, a point in the canal wide enough to permit a canal boat 

to turn around.  There are seven winding holes in the section of the canal being 

studied (Figure 48) (based on data extracted from Corrie (2002)).  Using these data, it 

can be said with confidence that any boat traffic experienced by Lock 60 must also be 

experienced by locks 55-64; any boat traffic experienced by Lock 71 must also be 

experienced by locks 72-74; and any boat traffic experienced by Lock 76 must also be 

experienced by locks 77-78.  For the intervening locks, best judgment and calibration 

were used to determine how to allocate the known boat movements.  It was assumed 

that most boat traffic would originate from the east (and turn around to return there), 

so that boats passing through lock 60 would also pass through locks 61-80; boats 

passing through lock 71 would also pass through locks 72-80; etc.  Thus, locks 65-71 

and 75 were given the boat movements of Lock 71 and locks 79-80 were given the 

boat movements of Lock 85. 
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Figure 48. Schematic of winding hole locations in the study area. 
 

The resulting annual lockage data were distributed throughout the year based on the 

weekly distribution provided by Glenn Millar.  Annual lockage data were available 

only for 2000-2005; data for 1997-1999 were estimated as the maximum observed (as 

the hydrology of the canal clearly demonstrated increased lockage losses prior to 

2000, causing a depression in total weir flow, Figure 47).  Data for 2006-2009 were 

adjusted within the observed range given in 2000-2005 to achieve a successful 

validation.  Because the lockage data were only known from 2000-2005, most 

confidence was held in model output from that period. 

 55     56    57     58     59    60     61    62     63    64     65    66    67     68     69 

 69     70    71     72     73    74     75    76     77    78     79    80     

= canal reach 

= winding hole 

= lock with lockage data 

= lock (ID number underneath) 
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Figure 49. Observed flows collected at the bypass weir for the Picketfield Lock (Lock 71). 
 

7.1.2.2. Reach and Lock Data 

Where possible, the data for the locks and reaches were estimated as suggested in 

Table 7 and Table 8.  Further details on the estimates are supplied in this section. 

 

The reach data were determined as follows: 

• Length: measured in GIS as the GPS-delineated towpath distance between 

locks 

• Width: measured from aerial photographs 

• xweir: measured with tape measure 

• Dweir: estimates provided by British Waterways (Fox 2010) 

• Lweir: measured with tape measure 

• Hsides: measured with tape measure 

• Dlock: estimated to be 17.8 cm above Dweir (visual observation suggested the 

top of the lock gates was the width of a railroad tie above the permanent water 

level) 

• Cd,weir: set at 0.611 as suggested by Henderson (1966) 
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• Seep: calibrated to 3.72 x 10-7 m³/m²/s; this is three times the value given by 

Dun (2006) and approximately one fifth of the value given by Minikin (1920) 

for old canals 

• Tmean: average of water temperature data collected at multiple points in the 

canal by Colin Neal (Neal et al. 2006b) 

• Crad: estimated from aerial photos based on the fraction of canal visible (not 

covered by trees)  

Data are summarized in Table 15 for each reach of the canal. 

Table 15. Reach parameters for the Kennet and Avon Canal for input to the new canal model. 
Reach 
ending 
in Lock 

Length 
(m) 

Width 
(m) 

Dweir 
(m) 

Lweir 

(m) 
Hsides 
(cm) 

Dlock 
(m) 

Tmean 
(ºC) 

Crad 
(Ø) 

55 18† 10.0 1.37 2.44 0.14 1.55 11.5 1.0 
56 270.7 9.0 1.42 1.83 0.33 1.60 11.5 0.92 
57 322.1 7.9 1.42 1.88 0.20 1.60 11.5 0.89 
58 290.8 8.8 1.21 2.19 0.18 1.39 11.5 0.85 
59 283.3 8.1 1.17 4.01 0.18 1.35 11.5 0.92 
60 273.2 7.9 1.10 4.52 0.23 1.28 11.6 0.95 
61 287.0 11.9 1.53 2.06 0.18 1.71 11.6 0.94 
62 663.9 10.5 1.47 3.86 0.20 1.65 11.6 0.90 
63 399.6 8.6 1.21 4.47 0.20 1.39 11.6 0.79 
64 1145.8 10.5 1.17 10.67 0.20 1.35 11.6 0.69 
65 954.1 11.4 1.40 3.45 0.20 1.58 11.6 0.88 
66 821.9 10.5 1.23 5.51 0.19 1.41 12.0 0.86 
67 485.1 10.2 1.37 3.96 0.15 1.55 12.3 0.73 
68 1494.7 9.5 1.44 3.45 0.20 1.62 12.3 0.92 
69 317.6 13.3 1.37 1.88 0.43 1.55 12.3 0.95 
70 355.9 7.4 1.36 4.22 0.24 1.54 12.3 0.87 
71 1297.9 8.8 1.37 2.54 ∞ 1.55 12.3 0.86 
72 811.6 9.5 1.51 10.21 0.15 1.69 12.4 0.83 
73 489.7 10.7 1.38 6.00 0.20 1.56 12.4 0.94 
74 1065.3 10.0 1.34 10.81 0.13 1.52 12.4 0.91 
75 1648.1 10.7 1.30 11.99 0.23 1.48 12.1 0.71 
76 1176.4 10.7 1.12 10.06 0.13 1.30 12.1 0.72 
77 1008.3 10.0 1.50 12.04 0.18 1.68 12.1 0.60 
78 1573.6 10.7 1.55 9.14‡ 

∞ 1.73 12.3 0.69 
79 2483.8 10.0 1.54 6.56 0.15 1.72 12.3 0.79 
80 743.4 10.2 1.19 2.90 0.18 1.37 12.3 0.74 

† Estimated as the distance from the feeder from Crofton Pumping Station to the lock gates; water west 
of the inlet of the feeder flows to the west side of the canal. 

‡ Weir was not visible from public land; estimated from aerial photos. 
∞ Weir was open to the air (no top). 
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The lock data were determined as follows: 

• Empty: based on instructions recorded in the field at each lock gate (e.g., 

Figure 50) 

• Eboat: calibrated to 0.67 

• V lock: calculated from lock dimensions provided in a map from Mr. Mike Lee 

(Hon. Engineer for the Kennet and Avon Canal) 

• L lock: measured with tape measure 

• Leak: set at 0.0301 m³/s based on 2.6 ML/d given by Dun (2006); doubled for 

locks that were observed to be especially ‘leaky’ in the field (e.g., Figure 51)  

• CSlock,non & CSlock,coh: set at 7.3 mg/L (7300 mg/m³) (the median of recorded 

values), allocated to non-cohesive (2000 mg/m³) and cohesive (5300 mg/m³) 

forms based on an area-weighted average soil texture in the catchment as 

determined from Jarvis et al. (1979; 1984) 

The lock data are summarized in Table 16. 

 
Figure 50. Example of instructions regarding lock emptying at a lock on the Kennet and Avon 
Canal. 
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Figure 51. Example of leaky lock gates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 140 

Table 16. Lock parameters for the Kennet and Avon Canal for input to the new canal model. 

Lock Number Empty V lock (m³) Llock (m) Leak 
(m³/m/s) 

55 TRUE 173.02 5.38 0.0439 
56 TRUE 229.27 5.28 0.0212 
57 TRUE 201.52 4.88 0.0211 
58 TRUE 219.38 5.18 0.0498 
59 TRUE 223.54 5.34 0.0257 
60 FALSE 205.85 5.38 0.0273 
61 FALSE 200.55 5.18 0.0197 
62 FALSE 180.79 5.34 0.0409 
63 FALSE 211.49 5.48 0.0249 
64 FALSE 240.35 5.44 0.0257 
65 FALSE 234.86 5.48 0.0215 
66 FALSE 226.91 5.18 0.0245 
67 FALSE 210.11 5.34 0.0220 
68 FALSE 180.96 5.18 0.0208 
69 FALSE 208.36 5.54 0.0220 
70 FALSE 212.99 5.48 0.0221 
71 FALSE 212.76 5.18 0.0220 
72 TRUE 248.53 5.48 0.0199 
73 FALSE 249.93 5.14 0.0218 
74 FALSE 241.73 5.24 0.0224 
75 FALSE 172.76 5.38 0.0231 
76 FALSE 209.91 5.38 0.0538 
77 FALSE 149.87 5.08 0.0201 
78 FALSE 174.45 5.48 0.0194 
79 FALSE 175.27 5.18 0.0195 
80 FALSE 181.76 4.88 0.0506 

 

7.1.2.3. Constants 

The various constant parameters (those that do not vary by reach, lock, or timestep) 

were determined in the following fashion: 

• Ce: set at 0.7 as suggested by Schwab et al. (1993) 

• diam: set at 0.0002 m as a mid-range point from the range given by Jarvis et 

al. (1979) 

• sg: set at 2.65 as a standard accepted for fluvial sediment (Simons and Şentürk 

1977) 

• τcd: set at 0.06 kg/m/s² as given by Krone (1962) as cited by Mehta et al. 

(1989) 

• Cd,drag: set at 0.0025 as suggested by Soulsby (1997) 
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• CSboat,coh & CSboat,non: total calibrated to 13500 mg/m³ based on field 

measurements; distributed as described for CSlock,coh and CSlock,non (Section 

7.1.2.2) 

• vb: 1.79 m/s provided in a map from Mr. Mike Lee (Hon. Engineer for the 

Kennet and Avon Canal) 

• EXTB: calibrated to 1.67/m, within the ranges given by Reynolds (1984) and 

Van Duin et al. (2001)  

• Ks,l: set at 23.012 J/m²s based on the recommendation of Dugdale and 

MacIsaac (1971) 

• Tmag and Tphase: set to 6.54 and 4.46, the best fit parameters for Beer’s (2001) 

model as fit to water temperature data collected in the canal by Colin Neal 

(Neal et al. 2006b)  

• Cchl: set at 60 as a midrange of data calculated from the sources in Table 8 

• LITSED: set at 0.000025 m²/mg based on range reported by Van Duin et al. 

(2001)  

• LITALG: set at 0.00002 m²/mg Chl-a based on range reported by Van Duin et 

al. (2001) 

7.2. Canal Model Calibration & Validation 

7.2.1. Hydrology 

Very little hydrology data are available on the Kennet and Avon Canal.  The only data 

available are flows over a weir that bypasses Picketfield Lock (Lock 71) (Figure 19, 

page 65).  As the dataset for comparison is so sparse, only a calibration was 

performed for hydrology on the canal; this calibration consisted of a visual evaluation 

coupled with a comparison of observed and simulated average and median values.  

This particular bypass flow is heavily influenced by input to the reach from Froxfield 

Stream, one-quarter of which flows into the canal near the top of the reach (Section 

7.1.2.1).  Thus, errors in the overland flow model propagate to this section of the 

canal model.  Due to the lack of detail available and the concern of error propagation 

from the overland flow model, the acceptable error in the average and median 

comparison was set at ±15%.   
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The visual comparison of observed and simulated bypass weir flows around Lock 71 

is presented in Figure 52.  It is evident from the figure that there is generally a good 

agreement between the observed and simulated flows, particularly in the years where 

good lockage data are available (2000-2004, see Table 6).  There is more confidence 

in the model predictions for this 2000-2004 period, as weir flows are noticeably 

influenced by lockages (with an Sr of -0.68 (Table 9)); thus, with greater confidence 

in lockages, there is greater confidence in weir flow.  The good agreement of the 

modeled and observed data is further supported by the error in the average flow rates 

(10%) and median flow rates (9%).   
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Figure 52. Simulated and observed flows at Picketfield Lock (Lock 71). 
 

The successful calibration was obtained with minimal parameter adjustment from the 

initial estimates.  The parameters adjusted were the input rates to the summit reach at 

Wilton Water and the seepage rates.  Consultation with the literature, agencies, and 

canal engineers yielded a wide range of estimated flow to the summit reach, from an 

unlikely maximum of 250000 gal/hour (Kennet and Avon Canal Trust Ltd. 1999) (316 

L/s), to rate of 14 ML/d (162 L/s) reported by British Waterways (very patchy data, 

only through 1998), to 2500 gal/min (189 L/s) and 125 L/s reported by canal 

engineers.  Consultation with the engineers also suggested a variable rate, with 

additional pumping capacity of 80 L/s for the summer months.  Each of these rates 
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was tried in the canal model, and the constant 125 L/s with a supplement of 80 L/s in 

the summer was accepted as it best matched the observed flow data.  This rate was the 

one in which there was most confidence, as it was the rate reported by the engineer 

who operates the pumping station.  Seepage estimates started at the low end of the 

range reported in the literature (Table 8) and were gradually adjusted upward until a 

successful calibration was obtained. 

7.2.2. Total Solids 

7.2.2.1. Observed Data 

Total solids data were available at seven sites on the canal (Figure 21, page 67), 

collected by the Centre for Ecology and Hydrology.  An initial data collection period 

spanned 1997-2002, with six individual stations recording data for 2-5 years within 

that time window (Neal et al. 2006c).  A secondary collection period covered five 

stations for the period 2008-2009 (unpublished data obtained from Dr. Colin Neal, 

Centre for Ecology and Hydrology).  Samples were collected at a sole station, 

Hungerford, for 2003-2007.  The observed data did not differentiate between organic 

and inorganic solids; thus the observed data were compared to total simulated solids 

concentrations (non-cohesive sediment, cohesive sediment, and algal dry mass) in the 

canal at these seven locations.  It was assumed that the observed data were 

representative of the average concentration of solids in the reach.  The data from 

1997-2005 were used in calibration; the data from 2006-2009 were used in validation.  

A summary of the data available at the seven stations is given in Table 17. 

 

Table 17. Observed solids data available from the Kennet and Avon Canal. 

Station Name Period of Record 
Number of 
Samples in 

Calibration Period 

Number of 
Samples in 

Validation Period 

Crofton 
Feb 2000 – Feb 2002;  
Oct 2008 – Oct 2009 

50 48 

Great Bedwyn Feb 2000 – Feb 2002 50 0 

Fore Bridge 
Feb 2000 – Feb 2002;  
Oct 2008 – Oct 2009 

50 48 

Dun Cottage Feb 2000 – Dec 2001 49 0 
Hungerford Feb 2000 – Oct 2009 238 130 

Kintbury 
Feb 2000 – Feb 2002;  
Oct 2008 – Oct 2009 

50 49 

Copse Lock Oct 2008 – Oct 2009 0 47 
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7.2.2.2. Calibration Methods and Results 

The metrics considered for solids calibration and validation included the 5-day 

window average values (5DA) and a visual comparison.  The percent of discrepancy 

ratios falling between 0.5 and 2 (DR) and Nash-Sutcliffe model efficiencies (NSE) 

were also calculated.  The criterion for calibration acceptance was an error in the 5-

day window average value prediction of ±30%; due to the previously mentioned 

uncertainty in boat movements after 2005, the criterion for validation acceptance was 

an error in the 5-day window average value prediction of ±40%.  As with the runoff 

model calibration and validation, a larger DR and larger NSE are desired, while a 

minimal-magnitude 5DA is desired.  The results of the successful calibration and 

validation of the canal model for the Kennet and Avon Canal are shown in Table 18. 

 

Table 18. Results of suspended solids calibration for the canal model. 
Calibration Validation Station Name 

5DA DR NSE 5DA DR NSE 
Crofton 15% 28% -0.74 25% 54% -0.26 
Great Bedwyn -8% 24% -0.14 n/a n/a n/a 
Fore Bridge -29% 46% 0.12 -15% 56% 0.38 
Dun Cottage -17% 63% 0.69 n/a n/a n/a 
Hungerford 1% 63% -0.22 19% 62% -0.03 
Kintbury 5% 49% -0.04 -1% 69% 0.48 
Copse Lock n/a n/a n/a -26% 66% 0.44 
n/a: data not available at this station in the designated period 
 

The model agreement is further demonstrated in Figure 53 for calibration and Figure 

54 for validation.  In Figure 54, the predictions for Copse Lock appear low, relative to 

the observed values, compared with the predictions at the other stations.  This may be 

a result of multiple factors, including the lack of data available for the calibration 

period which prevented locally specific calibration of model parameters.  As with all 

the data, there is difficulty in comparing grab samples to daily average simulated 

values (and the 5DA metric, designed to overcome this difficulty, performs well); 

additionally, surface runoff may be impacting the area, and maneuvering at the 

winding hole in the reach above Copse Lock may mean both that boat traffic is under 

or over estimated and that peaks of sediment concentration may be produced in 

association with maneuvering efforts. 
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Figure 53. Calibrated model results compared with suspended solids concentrations measured in 
the Kennet and Avon Canal. 
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Figure 54. Validated model results compared with suspended solids concentrations measured in 
the Kennet and Avon Canal. 
 

During the calibration of the solids model, the primary factors adjusted were the 

sediment stirred up by boat movements and the boat:lockage ratio (note that lockage 

data were provided by British Waterways, but had to be converted to number of boats 

by use of an unknown boat:lockage ratio).  The boat:lockage ratio was suggested to be 

2 by British Waterways; however, if this were the case, it would mean that each boat 

entered a lock going the opposite direction of the boat before it.  A 100% efficiency of 

this sort seems extremely unlikely, and observations made while visiting the canal did 

not support an estimate of 100% efficiency.  Therefore, this value was adjusted 

downward to a boat:lockage ratio of 1.5, corresponding to a 67% efficiency in lock 

usage.  This matched the sediment data well and was supported by visual 

observations.  The observed values of sediment concentration disturbed by boats 
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varied widely (Section 3.2.3 and Appendix Table 4); the initial value chosen was the 

median of the non-extreme values collected in September 2009, 12 mg/L; the values 

collected in September were considered more reliable because they were collected 

from a bridge, rather than near a lock where boat manuevers to enter the lock, the 

movement of the lock gates, and the increased flow of water due to lock filling may 

have had an unanticipated effect on the results.  However, 12 mg/L proved to be too 

low, and was increased to 13.5 mg/L in the final calibration; an increase of this nature 

was supported by the samples collected in August 2008, which suggested an overall 

median of 18 mg/L. 

7.2.3. Algae 

Chlorophyll-a data, considered to be representative of algal concentration, were 

available at only 2 sites on the canal during the calibration period (Crofton and 

Hungerford, Figure 21, page 67), again collected by the Centre for Ecology and 

Hydrology (Neal et al. 2005a).  All stations at which suspended solids data were 

collected during the validation period (Table 17) also collected chlorophyll-a data 

(unpublished, received from Dr. Colin Neal at the Centre for Ecology and 

Hydrology).  Because the model predicts algal dry mass rather than chlorophyll-a 

concentration, the conversion factor used for equations in the model (Cchl, Table 8, 

page 93) was applied to the algal mass output to generate a time series of simulated 

chlorophyll-a concentrations.  As this chlorophyll-a to algal mass ratio varies with a 

multitude of conditions (Section 2.3.1), and as algae are living organisms, a great deal 

of scatter is expected in the observed data compared to the modeled results.  It was 

assumed for comparison purposes that the measured chlorophyll-a data were 

representative of the average chlorophyll-a concentration in the relative reaches.  

 

As with suspended solids, the primary focus of the algal calibration was the 5-day 

window average value coupled with visual inspection.  The 5-day window average 

was allowed to have an error of up to 50% during the calibration period, in 

consideration of the increased uncertainty associated with algal prediction.  During 

the validation period the allowed error rate was increased to 60% to allow for 

increased uncertainty caused by lack of knowledge of any water quality conditions in 

the Wilton Water reservoir (and thus lack of knowledge of the ‘seed’ of algae entering 

the summit reach).  The discrepancy ratios falling between 0.5 and 2 and the Nash-
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Sutcliffe model efficiency were also considered.  The results of the successful 

calibration and validation are shown in Table 19. 

 

Table 19. Results of algal calibration for the canal model. 
Calibration Validation Station Name 

5DA DR NSE 5DA DR NSE 
Crofton 28% 56% 0.24 -21% 54% 0.36 
Fore Bridge n/a n/a n/a -24% 44% 0.25 
Hungerford 22% 53% 0.14 6% 58% 0.38 
Kintbury n/a n/a n/a -37% 20% 0.19 
Copse Lock n/a n/a n/a -28% 51% 0.84 
n/a: data not available at this station in the designated period 
 

The fit of the model is additionally demonstrated in Figure 55 for calibration and 

Figure 56 for validation.  As expected, there is considerable scatter about the 

relatively smooth simulated values, but the simulated values do reproduce the overall 

trend and thus will be useful in targeting scenarios to address the solids problem in the 

canal. 
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Figure 55. Calibrated model results compared with algal concentrations measured in the Kennet 
and Avon Canal. 
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Figure 56. Validated model results compared with algal concentrations measured in the Kennet 
and Avon Canal. 
 

The primary factor altered during calibration of the algal model was the base light 

extinction coefficient, which was increased from 1 to 1.67 to address a surge in algal 

growth modeled in the autumn after boat movements (and thus shading from 

sediment) decreased (no corresponding surge was seen in the observed data).  

Modeled algal concentrations were also considered in choosing the flow rate from the 

Crofton Pumping Station, as this flow rate had a great flushing effect on algal 

concentrations near the summit reach (e.g., at the Crofton station).  During calibration, 

initial rough estimates associated with algae were further refined – the algal 

concentration in the feeder from Wilton Water was estimated to be a small percentage 

of the supportable population due to presumed water withdrawal from well below the 

water surface; and estimates of Crad were determined geometrically through 
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measurement in ArcGIS rather than through rough visual observation as was done 

originally.  A small attempt was made to address known changes in algal 

concentrations in the reservoir during the validation period by increasing the algal 

concentration in the feed water by a factor of 3 (compared to the calibration period), 

due to an algal bloom seen in the summers of 2008 and 2009 that local canal users 

claimed to be very unusual.   

7.2.4. Analysis & Discussion 

In addition to the metrics included in the previous sections, there are some revealing 

bits of information that can be extracted from the model output that will be useful in 

planning efforts.   

7.2.4.1. Hydrology 

Figure 57 (inflows) and Figure 58 (outflows) show the total hydrologic flows through 

various routes, summed for the entire simulation (recall that the study section of the 

canal covers the length from the reach above Lock 55 to the reach above Lock 80).  It 

is clear from these figures that leakage and weir flow, being relatively constant 

through the year, cause the majority of flow in the Kennet and Avon Canal.  Lockages 

provide significant flow in the summer months, but the constant flows through weirs 

and leakage in the full 12 months of the year outweigh the lockages on an annual 

basis.  From a management perspective, it is clear that replacement and/or 

reinforcement of lock gates designed to address leakage problems could have great 

effect on the amount of water needed to maintain water levels in the canal, as the 

current flow into the summit reach is just above that needed to satisfy the leakage and 

lockage demands for the next six reaches. 
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Figure 57. Relative contribution of various inflows to the total inflow into each reach of the 
Kennet and Avon Canal. 
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Figure 58. Relative contribution of various outflows to the total outflow from each reach of the 
Kennet and Avon Canal. 
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7.2.4.2. Inorganic Sediment 

The inorganic sediment behaves as one might expect (non-cohesive inflows: Figure 

59; non-cohesive outflows: Figure 60; cohesive inflows: Figure 61; cohesive 

outflows: Figure 62).  Losses through the weir are minimal despite the major flow 

being through this route; this is because most of the suspended sediment in the reach 

deposits by the time it reaches the overflow weir, with the exception of that disturbed 

by boats in the immediate vicinity of the overflow weir.  A large slug of sediment 

moves from one reach to the next with each lockage; this is expected as the water 

used to fill the lock is drawn from the bottom of the water profile.  Additionally, this 

movement happens in direct association with the sediment disturbance caused by boat 

traffic.  The other primary source of transfer from one lock to the next is through 

leakage, which again draws from the entire water column.  These movements of 

sediment from one reach to the next are minor in comparison with the huge amounts 

of sediment disturbed by boats in passing.  Likewise, the amount of sediment 

deposited out of suspension is the primary ‘outflow’ route for sediment in a given 

canal reach. There are only a few differences in the overall pattern for cohesive 

sediment vs. non-cohesive sediment: the cohesive sediments do have some outflows 

via the overflow weir, and external inflows are assumed to include cohesive sediments 

but not non-cohesive sediments.  The total amount of sediment involved in transport 

is greater for cohesive than for non-cohesive sediment, principally due to the soil 

texture in the area (see Section 2.5.1), dominated by cohesive sediments. 
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Figure 59. Breakdown of non-cohesive sediment inflows to each reach in the Kennet and Avon 
Canal. 
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Figure 60. Breakdown of non-cohesive sediment outflows from each reach in the Kennet and 
Avon Canal. 
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Figure 61. Breakdown of cohesive inflows to each reach in the Kennet and Avon Canal. 
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Figure 62. Breakdown of cohesive outflows from each reach in the Kennet and Avon Canal. 
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7.2.4.3. Algae 

As would be expected with a constituent that remains suspended in the water column, 

the movement of algae from reach to reach largely follows the same pattern as that of 

the water (Figure 63, inflows; Figure 64, outflows) – weir flow dominates, followed 

by leakage and then lockage.  The interesting thing to glean from Figure 63 is that the 

total movement of algae from reach to reach is governed primarily by growth in the 

reach.  That is, at the summit reach, there are very little algae available to transport 

downstream; but in each reach, the total algae available for transport is increased by 

the amount of growth in the reach.  Thus, the high transport seen in the most 

downstream reaches is simply a result of the growth that has occurred in the upstream 

reaches.  If this growth can be slowed, the total algal transport will reduce throughout 

the system.   
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Figure 63. Breakdown of algal inflows to each reach in the Kennet and Avon Canal. 
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Figure 64. Breakdown of algal outflows from each reach in the Kennet and Avon Canal. 
 

The components of algal growth rate at two points in the canal were investigated to 

further illuminate the factors involved in algal growth (at the reach ending in Lock 60 

(Figure 65) and the reach ending in Lock 79 (Figure 66)).  In both graphs, the top line 

(MuMaxT = µmax,T) represents the maximum growth rate as determined by 

temperature only; the middle line (MuMax = µmax) represents the maximum growth 

rate as further modified by available light; and the bottom line (Mu = µ) represents the 

final growth rate used in Equation 55, as modified by available phosphorus.  Light 

intensity (LI) is plotted on the right axis for reference.  It is clear that the amount of 

sunlight available never allows the growth rate to reach its fullest potential as defined 

by the temperature; this is not surprising given the latitude of the study area, as 

insolation at 51ºN would commonly be half that found at even a latitude of 25ºN for 

many seasons of the year (Hamon et al. 1954).  The differences in the trend in the 

‘Mu’ curve for the two locations are interesting.  Above Lock 60, the algal population 

is not great, and the growth rate is typically unhindered by phosphorus concentrations, 

with the exception of the peak of summer, when algal populations are at their peak 

while phosphorus concentrations are at their minimum.  By contrast, phosphorus is 

noticeably limiting further downstream above Lock 79; with the exception of a couple 

months in the winter, the algal population continually pushes the cap imposed by 
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phosphorus, as evidenced by the degree to which µ is reduced year-round compared to 

µmax.  Thus, minor reductions of phosphorus in the upstream reaches of the canal will 

likely have little effect on algal populations, but the same reductions farther 

downstream would have a more noticeable effect.   

 

The final component presented in the growth rate figures is the light intensity.  This 

follows an interesting trend that bears analysis.  The light intensity is driven both by 

solar radiation and by shading from sediment and algae within the stream (Appendix 

A.3).  Thus, the light intensity reaches a trough during the winter months, when 

incoming solar radiation is at its lowest.  Light intensity peaks in the spring, when 

days grow longer and boat traffic is not great.  During the summer light intensity 

actually decreases, due to shading from the boat-disturbed sediment and self-shading 

from increased algal populations.  The light intensity continues to generally decline 

through the autumn months as incoming solar radiation decreases, with an interesting 

mini-peak in October.  In October the boat traffic noticeably drops off, thus 

significantly decreasing the shading due to sediment, so much that the light intensity 

available to algae in October is actually higher than in September even though solar 

radiation in October is lower than solar radiation in September.  This is the reason for 

the perhaps higher-than-expected algal concentrations in the autumn months seen 

during model calibration.  It is clear that boat traffic in these crucial ‘swing’ months 

(spring and autumn) will have a great influence on the amount of light available to the 

algae.  A reduction in boat traffic, though beneficial in terms of reductions in the total 

sediment concentration, would actually increase the algal concentration by increasing 

light available for growth. 
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Figure 65. Seasonal trends of growth rates and light intensity for the reach ending in Lock 60. 
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Figure 66. Seasonal trends of growth rates and light intensity for the reach ending in Lock 79. 
 

7.3. Kennet and Avon Canal Management Options 

As can be seen in the sensitivity analysis (Table 10) and the details of the calibrated 

model (Section 7.2.4), light intensity and phosphorus concentration in the Kennet and 

Avon Canal are key drivers of its algal concentration.  Boat traffic is most influential 
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on the inorganic sediment concentration in the reach (Table 10, Figure 59, Figure 61), 

but decreases in boat traffic can be expected to have an adverse effect on the 

concentration of algae in the reach.  Any successful management options must address 

these multiple and interrelated issues. 

 

As has been previously discussed (Section 2.5.1), the primary area of concern in the 

studied system is the poor water quality brought from the Kennet and Avon Canal into 

the River Kennet where the two join just below Copse Lock (Lock 80).  Officials at 

the Environment Agency have worked with an external contractor to arrive at a suite 

of potential management solutions to the water quality problem in the River Kennet 

downstream of Copse Lock (Halcrow Group Limited 2007).  The short list of options 

presented in that report are: 

1. ‘Do minimum’ - dredge reaches 

2. Divert feeder streams 

3. Install cross-drainage culverts 

4. Install on-line filtration of canal flow 

5. Reduce storm runoff entering canal 

6. Reduce volume of poor quality water from canal into river 

7. Control effluent discharge 

8. Treat canal water 

9. Separate canal and river 

These will be addressed individually in this section.  The results of the scenarios are 

first presented with reference to dry solids (being equivalent to what has been 

measured in the canal).  Under existing conditions algae constitute about 15% of the 

observed total suspended solids (see Figure 67, where algal mass is calculated based 

on observed chlorophyll-a data modified by the conversion of chlorophyll-a to algal 

mass used in modeling, 60 mg dry algal mass/mg Chl-a).  However, the dry mass of 

algae that contributes to the measured total suspended solids concentration is a factor 

of 16 lower than what might be expected for the in situ (wet) suspended solids (Table 

1, page 38; Figure 68).  This means that the water with high turbidity visually 

observed in the canal is composed of both the (dry) total suspended solids and an 

additional wet weight for the live algae, so that the actual effect visible to observers 

on the canal is worse than the effect expected from the laboratory analysis of the 

dessicated algae.  In the scenarios discussed in the following subsections a 
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comparison is done both according to changes that might be observed solely from 

laboratory analysis of dried solids and changes that might be observed visually in the 

canal of sediment and live algal mass.   
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Figure 67. Observed algal dry mass and total suspended solids at the Copse Lock sampling 
station. 
 

Note that because phosphorus is not modeled, any side effects that might result in a 

decrease in in-stream phosphorus concentrations (e.g., in a decrease in sediment-

attached phosphorus in the water column due to less sediment disturbance by boats) 

are not evaluated.  However, given the relatively non-fluctuating nature of the 

observed phosphorus concentrations, it is not expected that these potential side effect 

phosphorus influences would be significant. 
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Figure 68. Wet and dry solids concentrations modeled in the Kennet and Avon Canal. 

7.3.1. Do Minimum 

The Environment Agency considers a ‘do minimum’ approach to involve dredging the 

canal reaches near Copse Lock.  This would have the effect of increasing the depth of 

the canal, thus reducing the amount of sediment disturbed as boats pass, both by 

reducing the sediment available to disturb and by lowering the bottom of the canal 

away from the zone of disturbance caused by boat propellers.  In consideration of this 

latter effect: it was previously demonstrated (Figure 17) that sediment disturbance 

generally happens intensively within the boat’s width; a logical extrapolation of this 

would be that there is a circular pattern of disturbance around the propeller of the boat 

(case a, Figure 69, includes typical dimensions for the Kennet and Avon Canal under 

current conditions).  If the canal can be dredged to the point where this zone of 

disturbance does not intersect the bottom of the canal (case b), the amount of sediment 

disturbed by boat passage might be greatly reduced.  Even if this amount of dredging 

is not possible, if the area on the bottom of the canal that the zone of disturbance 

covers could be reduced (case c), some effect could be seen on boat-generated 

sediment.   
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Figure 69. Influence of water depth on boat-disturbed sediment. 
 

To evaluate the potential benefits of this scenario, the canal model was executed using 

a 50% and 90% reduction in CSboat compared to the concentration of sediment 

disturbed by boat passage under existing conditions (this was applied to the entire 

length of the canal).  The results of these scenarios on the sediment concentration at 

Copse Lock are shown in Figure 70.  Clearly, this reduction in boat-generated 

sediment would have a sizeable impact on the total dry solids concentration in the 

canal, and thus on the total dry solids concentration entering the River Kennet.  

However, without an accompanying decrease in sediment entering the canal, sediment 

inputs from surface runoff, point sources, and upstream canal reaches would 

accumulate over time, eventually negating the impact of the dredging option.  If the 

solids are considered including the live biomass of algae, the effect of this scenario is 

diminished, as the sizeable reduction in inorganic sediment concentration permits 

more light to penetrate the water column, allowing a higher growth rate for algae, so 

that the additional live biomass of algae nearly completely replace the sediment 

removed by this option. 

Boat Draft = 0.76 m 
Water Depth = 1.3 m 

Radius of Sediment Disturbance = 1.1 m 

(a) 

(b) 

(c) 

Water Depth > 1.86 m 

1.3 m < Water Depth < 1.86 m 
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Figure 70. Reduction in dry solids concentration in outflows from Lock 80 under ‘Do Minimum’ 
management scenarios. 
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Figure 71. Reduction in wet solids concentration in outflows from Lock 80 under 'Do Minimum' 
management scenarios. 
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7.3.2. Divert Surface Flow  

For modeling purposes, items 2, 3, and 5 from the short list of options have the same 

effect: reduce or divert surface flows to minimize the amount of sediment from the 

land surface entering the canal.  In the canal model, this is effected by the reduction of 

runoff inputs and external inputs from the river to the canal.  As was previously 

demonstrated in Figure 59 and Figure 61, runoff inputs of sediment to the canal are 

minimal compared to the sediment suspended by boat traffic.  Thus, without the 

inclusion of the ‘Do Minimum’ option, this action can be expected to have little 

impact on the overall solids concentration in the canal, and in fact could have a 

detrimental effect by reducing the flow rate in the canal and thus providing a more 

hospitable environment for algal growth, a lower water depth (causing higher boat-

generated sediment), and less dilution water for the boat- and lock-disturbed sediment 

and any remaining sediment transported from the land surface.  The Halcrow Group 

proposal suggests that efforts might be targeted on the Kintbury Feeder (reach above 

Lock 78) and Peartree Bottom Stream (reach above Lock 80); thus, the effect of 

removing the feeder (external) input and the stream (runoff) input from only these two 

sources is shown in Figure 72 and Figure 73.  Removing the considerable flow input 

from Kintbury Feeder and Peartree Bottom Stream causes a severe reduction in flow 

from Copse Lock, and thus the flow that does leave has a much higher concentration 

of solids, even though the load is lower (Figure 74).  Because the Kintbury Feeder 

provides such a large volume of water to the canal, the input from Wilton Water to the 

summit reach must be tripled before the concentration of solids leaving Copse Lock 

under this scenario drops to the level of the existing conditions.  Therefore, diversion 

of the Kintbury Feeder is considered undesirable. 
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Figure 72. Change in dry solids concentration in outflows from Lock 80 under surface flow 
diversion management scenarios. 
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Figure 73. Change in wet solids concentration in outflows from Lock 80 under surface flow 
diversion management scenarios. 
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Figure 74. Change in dry solids load (top) and flow rate (bottom) from Lock 80 under surface 
flow diversion management scenarios. 
 

7.3.3. Install On-line Filtration of Canal Flow 

The Environment Agency proposes that the on-line filtration of canal flow option 

would involve installing reed beds in bypass channels around locks to filter nutrients 

and sediment from the water.  This addresses filtration of the water involved in Iweir 

and thus the solids transported in ISSweir.  As was previously demonstrated in Figure 

59 and Figure 61, inorganic sediment transported via weir flow is minimal due to 

deposition along the length of the reach.  Thus, this can be expected to have a minimal 

effect on sediment transport and concentration.  However, a large number of algae 
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pass through the overflow weir (Figure 63) and the reed beds would additionally filter 

out the phosphorus crucial to algal growth, so it is expected this scenario would have 

a noticeable effect on algal concentrations. 

 

To evaluate the best possible implementation of this scenario, it was assumed that 

65% of the water in the canal would pass through a reed bed (assuming a reed bed 

installed at each lock, with 65% of the total outflows due to weir flow (Figure 58)).  

Assuming phosphorus is fully mixed in the water column, this means 65% of 

phosphorus in the system will pass through a reed bed.  Reed beds have a reported 

phosphorus removal efficiency of 3-85% (Green and Upton 1994; Gschlößl et al. 

1998; Babatunde et al. 2008), with most values reported between 20-40%.  For the 

purposes of this scenario, a removal efficiency of 30% was assumed for total 

phosphorus.  Thus, the total phosphorus in each reach was assumed to be 19.5% 

(0.65*0.3) less than current levels.  Additionally, sediment and algae were assumed to 

be filtered out of weir flows with the reported reed bed efficiency for sediment 

removal, 85% (reported literature values range from 72%-99%) (Green and Upton 

1994; Gschlößl et al. 1998; Babatunde et al. 2008).  The results of this scenario are 

shown in Figure 75 and Figure 76.  This is the best case scenario; it is of course more 

likely that reed beds would be installed in (at best) only the weirs that are currently 

open to the air, significantly minimizing the effect of these measures.  The scenario 

shows a significant drop in solids effluent from Copse Lock, particularly in the wet 

solids concentrations driven by algae, but requires a greater expenditure than many of 

the other options. 
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Figure 75. Reduction in dry solids concentrations discharged from Copse Lock for the filtration 
scenario. 
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Figure 76. Reduction in wet solids concentrations discharged from Copse Lock for the filtration 
scenario. 
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7.3.4. Reduce Volume of Poor Quality Water from Can al 

into River 

This scenario differs from the previous in that it proposes to route both weir and lock 

flow through a reed bed, but targets only areas like Copse Lock which would 

otherwise feed directly into the river.  As this scenario addresses the transport of 

sediment with lockages, it has a greater potential than the previous scenario to 

attenuate inorganic sediment concentration.  To implement this scenario in the model, 

it was assumed that all flow from Copse Lock would be routed through a reed bed, 

and thus sediment and algae were assumed filtered out of the flow from Copse Lock 

according to the reported reed bed efficiency for sediment removal, 85%.  This 

procedure has the added benefit of targeting the problem just before its impact on the 

river, and can actually be evaluated in model post-processing, rather than by using the 

model itself.  The results of this scenario are shown in Figure 77 (dry solids) and 

Figure 78 (wet solids).  It is interesting to note that this scenario produces a 

comparable reduction in wet solids concentration and a much greater reduction in dry 

solids concentration flowing from Copse Lock compared to that of the ‘filtration’ 

scenario presented in Section 7.3.3; however, the current scenario requires only one 

reed bed to be installed, rather than twenty-six reed beds.  

 



 171 

0

10000

20000

30000

40000

50000

60000

Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06

Representative Date

S
ol

id
 C

on
ce

nt
ra

tio
n 

(m
g/

m
³)

Existing Conditions Reduce Volume of Poor Water Quality
 

Figure 77. Reduction in dry solids concentrations discharged from Copse Lock for the poor 
water quality reduction scenario. 
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Figure 78. Reduction in wet solids concentrations discharged from Copse Lock for the poor 
water quality reduction scenario. 
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7.3.5. Control Effluent Discharge 

This option proposes to target the flow from the sewage treatment works (STW) on 

the canal, either in improving discharge standards or in diversion of the effluent away 

from the canal to the river.  The initial focus would be on the Kintbury sewage 

treatment works.  As can be seen from Figure 59 and Figure 61, the inflow of 

sediment from the Kintbury sewage treatment works (represented in the figures by 

ISSext for the reach above Lock 79) is minimal, and thus any improvement in sediment 

discharge from the operation would have minimal effect on the canal water quality.  

However, reductions in phosphorus concentration could have a more noticeable 

impact through a control on algal growth.  This impact was evaluated by reducing the 

total amount of phosphorus in the reach above Lock 79.  

 

The Environment Agency has monitored the phosphorus concentration in the effluent 

from the Kintbury STW at an average of 5.7 mg/L.  According to modeling efforts, 

the effluent water from the STW constitutes 1.6% of the total inflow to the reach 

above Lock 79.  To evaluate the potential impact of improved phosphorus controls on 

the algal concentration in the canal, the model was executed, subtracting the 

concentration of phosphorus due to the Kintbury STW (0.016 * 5.7 mg/L) from the 

total phosphorus concentration in the reach above Lock 79 (Figure 79 (dry solids), 

Figure 80 (wet solids)).  This is of course a best case scenario, removing all 

phosphorus originating from the Kintbury sewage treatment works; the actual result of 

phosphorus improvements would lie between the existing conditions and scenario 

presented in the figures.  As can be seen from the results, the impact of this change is 

expected to be unnoticeable on the total dry solids concentration, and not very 

significant in terms of the wet solids concentration including the live biomass.  In the 

reach above Lock 79, the algae have already become so abundant due to their growth 

in the previous 24 reaches that a minor setback to their growth in the reach above 

Lock 79 is nearly inconsequential.  To evaluate the potential impact of diverting the 

STW flow from the canal, the same reduction in phosphorus was enacted, and the 

flows and sediment loads from the Kintbury STW were additionally removed from 

the canal (Figure 81).  Removal of the Kintbury STW flows in this manner decreases 

the overall flow rate in the reach above Lock 79, thus increasing the hospitability of 

the water for algal growth.  The effect on dry solids concentration is again 
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inconsequential; for wet solids, the flow and sediment diversion results in greater 

concentrations than when only phosphorus is reduced. 
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Figure 79. Reduction in dry solids concentration achieved by removing phosphorus from 
Kintbury STW effluent in the reach above Lock 79. 
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Figure 80. Reduction in wet solids concentration achieved by removing phosphorus from 
Kintbury STW effluent in the reach above Lock 79. 
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Figure 81. Effect (on dry solids concentration) of removing Kintbury STW flow, phosphorus, and 
sediment concentrations from the canal in the reach above Lock 79. 
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Figure 82. Effect (on wet solids concentration) of removing Kintbury STW flow, phosphorus, and 
sediment concentrations from the canal in the reach above Lock 79. 
 

The phosphorus levels in the Kennet and Avon Canal are generally high and do not 

noticeably increase past the Kintbury STW (located in the reach above Lock 79) 

(Figure 83); in fact, the phosphorus concentrations observed at Kintbury and Copse 

Lock are typically the lowest recorded in the canal.  Therefore, to restrict algal growth 

via phosphorus controls, it appears a systematic approach is needed, one that 

addresses all the elevated phosphorus concentrations in the canal.  This could be 

accomplished by reducing phosphorus in effluents from all sewage treatment works 

contributing to the canal, as well as installing riparian buffer strips and/or 

implementing nutrient management planning in neighboring farmland to reduce 

phosphorus transported to the canal in surface runoff.  The effect of reducing 

phosphorus concentration at all points in the canal to 0.05 mg/L (suggested as the 

level needed to reduce eutrophication in lakes and reservoirs) (Mueller and Helsel 

1999) is shown in Figure 84 (dry solids) and Figure 85 (wet solids).  As is evident, 

such a project would have a small effect on the measureable dry solids concentration, 

but a much larger effect on the wet solids concentration including the live algal 

biomass. 
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Figure 83. Observed Total Phosphorus concentrations in the canal.  (Reach ##) indicates the 
reach above Lock ##. 
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Figure 84. Reduction in dry solids concentration achieved by reducing phosphorus levels 
throughout the canal to 0.05 mg/L. 
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Figure 85. Reduction in wet solids concentration achieved by reducing phosphorus levels 
throughout the canal to 0.05 mg/L. 

7.3.6. Treat Canal Water 

The details of implementation of this option are vague in the Halcrow Group report, 

stating that further investigation is needed.  However, the general idea behind this 

option is to biologically and/or chemically treat the canal water at some point(s) along 

the length of the Kennet and Avon Canal.  The current canal model can be used to 

optimize the placement of such treatment.  To represent this management option, the 

canal model was run separately 25 times, each time assuming a treatment mechanism 

has been put in place in the reach above one of the 25 locks, capable of removing 90% 

of sediment and algal concentrations.  The final scenario, above Lock 80, was created 

in post-processing as was done in Section 7.3.4. Unsurprisingly, treatment 

mechanisms installed nearest to Copse Lock have the largest effect on the water 

quality entering the River Kennet.  Treatment mechanisms installed anywhere 

upstream of Lock 74 have no noticeable effect on the concentration output from 

Copse Lock.  Treatment mechanisms installed in the reaches between Lock 74 and 

Lock 79 have a slight effect on solids concentrations output from Copse Lock (Figure 

86 (dry solids), Figure 87 (wet solids)).  Unsurprisingly, the greatest effect is seen 

with treatment mechanisms installed in the reach above Lock 80 (Copse Lock) 
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(Figure 88); this last option is similar to the option presented in Section 7.3.4.  

However, if land availability for such treatment is better at a higher point in the canal, 

the evaluation in Figure 86 and Figure 87 may prove useful.  The drastic change seen 

in dry solids concentration reductions achieved by installing treatment works above 

Lock 80 rather than above Lock 79 is due to the fact that most of the sediment 

suspended in a given reach comes from the boats traversing the reach; any sediment 

brought into a reach from the upstream lock will likely settle out of suspension before 

reaching the next downstream lock.   
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Figure 86. Dry solids concentrations output from Copse Lock when treatment works are installed 
at the indicated locks. 
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Figure 87. Wet solids concentrations output from Copse Lock when treatment works are 
installed at the indicated locks. 
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Figure 88. Dry solids concentrations output from Copse Lock when treatment works are installed 
at Lock 80. 
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Figure 89. Wet solids concentrations output from Copse Lock when treatment works are 
installed at Lock 80. 

7.3.7. Separation of Canal and River 

This option involves separating the combined canal and river navigation below Copse 

Lock into a canal and a river.  Modeling in this case using the canal model is not 

needed, as the water quality output from the canal becomes irrelevant in the new 

system.  As this is a prohibitively expensive option, the Environment Agency will not 

likely consider it until all other options have been exhausted. 

7.3.8. Summary 

This previous sections have provided a description of the expected effects of various 

proposed management scenarios for the Kennet and Avon Canal based on the canal 

model predictions.  The effects are summarized in Table 20. 
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Table 20. Summary of impacts of potential management scenarios. 

Scenario 

Average Dry 
Solids 

Concentration 
(mg/m³) 

Reduction in 
Average Dry 

Solids 
Concentration 

(%) 

Average Wet 
Solids 

Concentration 
(mg/m³) 

Reduction in 
Average Wet 

Solids 
Concentration 

(%) 
Baseline 13 000 -- 67800 -- 
Do Minimum (90% 
reduction) 

5 680 56 70300 -4 

Do Minimum (50% 
reduction) 

8 970 31 64700 5 

Surface Flow 
Diversion 

22 100 -70 105000 -55 

On-line Filtration 6 840 47 7760 89 
Poor Water Quality 
Reduction 

1 950 85 10200 85 

Effluent Discharge 
Control (treat 
effluent) 

11 640 10 45900 32 

Effluent Discharge 
Control (divert 
effluent) 

12 100 7 47000 31 

Effluent Discharge 
Control (reduce TP 
throughout canal) 

10 600 18 28600 58 

Treat Canal Water 
(treatment above 
Lock 75) 

11 600 11 46200 32 

Treat Canal Water 
(treatment above 
Lock 79) 

7 350 43 14800 78 

Treat Canal Water 
(treatment above 
Lock 80) 

1 280 90 6780 90 

 

The scenarios illustrated in Table 20 and in the previous figures suggest that the most 

effective management scenarios would focus on the reach directly upstream of Lock 

80 (Copse Lock).  These scenarios are most effective in part because so much of the 

inorganic sediment concentration leaving a reach is attributable to boat traffic within 

the reach in question; thus, dry solids concentrations contributed to a reach from the 

upstream reaches are not very significant.  Additionally, by treating the water directly 

above the point in question (Copse Lock), one can be sure that all relevant sources of 

solids are indeed being addressed.  Treatment of the canal water directly above Copse 

Lock seems a promising option, causing a major reduction in both inorganic sediment 

and algae; the ultimate success and viability of this option would depend on the 
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specific treatment method used. Alternatively, reducing the amount of poor water 

quality discharged from Copse Lock (which in practice may have a similar 

implementation) will provide a large impact.  Because these options have a small 

spatial scope, it may be that they are the most practical to implement.   

 

Treatment of water in reaches above Lock 79 may also provide a noticeable impact, 

and may be practical to implement should the preferred scenarios prove much more 

expensive than these treatment installed in reaches of the canal upstream from Lock 

79.  Although improving the quality of effluent from sewage treatment works will 

provide a beneficial effect on the water quality in the canal, this effect is focused only 

on the algal biomass and thus is ultimately limited in what it can achieve.  The costs 

of implementing this scenario should be weighed against the costs of the treatment or 

poor water quality reduction scenarios, as those provide comprehensive treatment and 

achieve greater water quality improvements. Dredging of the canal has the potential to 

provide noticeable impact on the inorganic sediment discharged from Copse Lock, the 

magnitude of which is dependent upon the depth to which the canal can be dredged.  

However, a thorough dredging (e.g., a 90% reduction in boat sediment) may increase 

light availability and thus algal growth to a point that makes the reductions in 

inorganic sediment concentration unnoticeable.  Even the effects of minor dredging 

may be offset by increased algal growth.  However, it may be that dredging only in 

the reach above Copse Lock may minimize the potential for algal growth while still 

achieving a significant reduction in sediment concentrations.  Surface flow diversion, 

particularly of the Kintbury Feeder, is not recommended due to the resultant severe 

decrease in flow rate in the canal and corresponding increased sediment concentration 

and algal growth.   
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8. Conclusions & Impact 
The development, testing, and application of a new canal model have been presented 

in this document.  This canal model satisfies the primary objective of this work: to 

determine and quantify the effect that canal operations have on water quality.  In 

developing the new canal computer model, sources of solids were identified in a 

target canal, hydrological and water quality interactions between the canal and the 

natural landscape were quantified, algorithms were developed and coded to represent 

water quality processes within the canal, and the coded algorithms were tested on a 

target canal. 

 

To identify sources of solids in the Kennet and Avon Canal, extensive data about the 

canal were collected.  Field surveys involving the measurement of physical 

characteristics and water quality sample collection were conducted (Section 3.2).  An 

external model, HSPF, was parameterized and used to quantify the effects on the 

canal from the natural landscape (Section 6).   

 

The new canal model considers processes relevant specifically to inland navigational 

canals, namely lockage, leakage, seepage, boat traffic, and algal growth (Section 4.2).  

The processes in the new model were verified through process evaluation and 

sensitivity analysis using input parameters collected for the Kennet and Avon Canal 

(Section 5).   

 

The effectiveness of new canal model has been demonstrated in predicting hydrology 

and inorganic sediment transport in canals.  Its effectiveness has also been 

demonstrated in predicting the general trend of algal concentrations in a canal 

(Section 7.2).  In satisfaction of the secondary objective of this research, the utility of 

the canal model has been further demonstrated through its application to the Kennet 

and Avon Canal to find solutions to the water quality problem in the River Kennet 

caused by the canal (Section 7.3).   
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In its application to the Kennet and Avon Canal, the new canal model showed: 

• algal growth is most affected by light availability and phosphorus 

concentration; 

• total algal concentration in a given reach reflects a combined impact of algal 

growth in all upstream reaches; 

• inorganic sediment generation in a canal is primarily due to sediment disturbed 

by boat passage; 

• inorganic sediment transport in a canal is primarily through the mechanisms of 

lockage and leakage; and 

• a management scenario to address water quality problems must take a 

combined approach to restricting algal growth and minimizing sediment 

disturbance by boats. 

 

Now that the model is complete, it will be passed along to the Environment Agency, 

who will use it in future planning efforts for the Kennet and Avon Canal.  The model 

developed herein is sufficiently broad to allow application to other canals.  After 

successful physical implementation of management efforts on the Kennet and Avon 

Canal, the Environment Agency will be able to use the new canal model to guide 

water quality improvement efforts in other canals in Britain. 

 

Additional interest has been expressed in this model by the developers of the 

Integrated Catchments (INCA) model (Wade et al. 2002), who will be provided with 

the algorithms and source code in hopes they will be able to incorporate the canal 

model into their existing overland flow and receiving water model.  As the canal 

model code and algorithms will be made freely available to any interested party, 

designers of other comprehensive land-surface and receiving water body models may 

also find a use for incorporating the canal model into their own models. 
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9. Future Research 
Concurrent research being done by Mr. Attila Lazar at the University of Reading 

involves equation development to predict algal growth in detail.  His work will 

include varied factors that may make it possible to predict nuances of algal growth 

with greater accuracy than the algorithms used here.  It is hoped that his work can be 

incorporated into the canal model.  However, the intrinsic simplicity in input 

development for the current canal model may be adversely affected by a detailed algal 

growth model, and thus the ability to implement the simple approach presented herein 

may be desired in a final combined model. 

 

As has been mentioned throughout this report, there are many physical details of the 

canal that would have been useful in characterizing and evaluating the computer 

model: total flow rates, or even bypass weir flow rates monitored at multiple 

locations; algal concentration in the feed water to the summit reach; seepage rates; 

leakage rates; daily boat traffic; additional measurements of sediment disturbed by 

boat traffic; algal biomass measurements; and detailed time series of external inflows 

and abstractions to and from the canal.  An intensive study of a canal, collecting all 

these data, would greatly enhance the utility of this model and any future efforts to 

refine it.  In particular, measurement of seepage rates, leakage rates, daily boat traffic, 

and sediment disturbed by boat traffic could provide a useful suite of data currently 

lacking in the literature. 

 

If the input requirements do not become prohibitive, the current canal model would 

benefit from a phosphorus simulation routine, rather than depending on phosphorus 

concentrations as input from the user.  The addition of a phosphorus routine to the 

model would enable a daily-variable prediction of phosphorus concentration and 

could reduce the effect of excessive peaks or troughs in the monitored data that may 

not be indicative of the true condition of the canal.  However, as phosphorus 

concentrations are so ubiquitously measured where water quality is measured, it 

seems that the current approach would put far less demand on modelers attempting to 

use the canal model. 
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Appendix A. Supporting Information for 

Algorithm Development 

A.1. Cohesive Sediment Deposition 

The mass settling flux is calculated according to the equations developed by Manning 

(2004) and tested by Baugh and Manning (2007).  The equations depend on the 

separation of flocs into macroflocs (>160 µm diameter) and microflocs (<160 µm 

diameter).  Manning found the settling velocity for macroflocs to be dependent on 

both suspended solids concentration and shear stress at the bed, as was previously 

described in the literature review (Equations 7-10 in Section 2.2).  The macrofloc fall 

velocity equations will be modified to calculate SPM according to Equation 72, to 

work with model variables. 

 
1000

lg

∗
+

=
S

SSSS
SPM coha  (72) 

 Where: SSalg = dry mass of algal solids (mg);  
  SScoh = mass of cohesive solids (mg); and 
  1000 = conversion from m³ to L. 
 

Manning was working with silt- and clay-dominated bottom material, and his 

equations assume that all suspended material is in the form of either macro- or 

microflocs.  Therefore, only the concentration of cohesive sediments and algae (a 

form of organic matter) will be used in calculating ws,macro, SPMratio, and MSF.  

Although the algae will not deposit noticeably, organic matter is known to have an 

effect on flocculation and indeed to be a part of flocs that are formed (Mehta et al., 

1989), and so algae will be included in the MSF calculations. 

 

The shear stress used in the ws,macro and ws,micro equations will be calculated with 

Equation 73 (Soulsby 1997). 

   2
, wdragd vCρτ =  (73) 

 Where: ρ  = water density (kg/m³); 
  Cd,drag= drag coefficient (unitless); and 
  vw = velocity of water (m/s). 
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Soulsby suggests that where detailed data are not available (as will be the case in most 

hydrological modeling cases), a value for Cd,drag of 0.0025 be used; this will be used in 

this case. 

 

The canal model will also use the modification to fall velocity suggested by Mehta et 

al. (1989) to include the probability that a “grain reaching the bed will remain there” 

(Equation 74). 

  
cd

bp
τ
τ

−= 1  (74) 

This helps account for the effect of turbulence on the resuspension of cohesive 

particles: when shear stress is low, most sediment will be deposited, but as shear 

stress rises, there will be enough energy in the water to keep cohesive sediments 

suspended.  This is similar to the modification to deposition used in Krone’s Equation 

(Equation 2).  Because p cannot be allowed to be negative, if τb > τcd, p will be 0.  τcd 

should be measured where possible but is typically in the range of 0.04-0.08 kg/(m·s²) 

(Krone 1962; Nicholson and O'Connor 1986; Mehta et al. 1989; Milburn and 

Krishnappan 2003), so can be estimated by the user.   

 

A problem with Manning’s method arises when the SPM concentration is extremely 

large (greater than 10000 mg/L).  The behavior of the SPMratio equation (Equation 8) 

at these extreme concentrations is undesirable (Figure 90). 
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Figure 90. Equation 8, showing the undesirable behavior at high solids concentrations. 
 

The peak of the curve in Figure 90 occurs when dSPMratio/dSPM = 0, or at 11357 

mg/L.  To prevent against illogical calculations during extreme conditions, a method 

was introduced to account for these extreme concentrations: because the figure 

presented in Manning’s original document (2004) implies a constant asymptote as 

concentrations rise above 10000, above 11357 mg/L the SPMratio calculated for SPM 

= 11357 mg/L will be used in the model.  It should be noted that these extreme 

concentrations are not expected in a properly functioning canal. 

A.2. Boat-Generated Sediment and Weir Flow 

Only a portion of the sediment generated by boats as they traverse the reach will make 

it out of the reach via the overflow weir – that is, the portion that stays in suspension 

near the top of the water column at the location of the overflow weir (or the top of the 

lock gates).  For boats moving upstream, this effect is summarized in Figure 91 (vb = 

boat velocity; vw = water velocity; D = water depth; Hweir = depth of water above weir 

bottom; t1 defined later).   

 



 201 

 
Figure 91. Concentration profile for sediment generated by a boat as it passes a weir.  Weir 
elongated for effect.  Brown shading represents suspended sediment. 
 

A complication arises in that the sediment will appear to settle faster at a given point 

in the reach (i.e., the weir) than the deposition equation would predict, because while 

the sediment falls it is also being carried down the reach by the flowing water.  In the 

case of a boat moving downstream, sediment is being washed out of the weir area 

faster than one would expect; for a boat moving upstream, sediment is being moved 

into the weir area faster than one would expect. 

 

An equation is needed that can calculate the concentration at a given point in space as 

a function of the time since boat passage.  However, use of the deposition equation 

without modification would neglect the action of the flow rate, which moves sediment 

into or out of the weir cross section in addition to the actions of gravity causing the 

sediment to settle out of suspension.   

 

Thus, the time parameter in the deposition equation must be modified so that the input 

to the equation can be <time since boat passage> while the time parameter in the 

exponent in the equation remains the <time since the boat deposited the sediment>.  

Note that the time since the boat passed a given point in space is not the same as the 

time since the sediment currently occupying that space was deposited.   

 

Boat  

vb 

vw 

D 

t1 * (vb + vw) 

Hweir 
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Consider a boat and point of interest as given in Figure 92. 

 

 
Figure 92. Diagram of boat and sediment movement in relation to a point of interest. 
 

Considering the case of the boat moving downstream, to be at the level at which it is 

located, the sediment must have been deposited t1 ago.  In that time, the sediment has 

moved along the reach t1*vw from its point of origin.  In that same time, the boat has 

moved t1*(vb+vw) downstream from its point of origin.  Thus, the sediment is 

currently t1*vb behind the boat and the peak concentration at the moment.  However, 

the boat actually passed the point of interest longer ago than t1.  Given that the boat 

has travelled t1*(v w+vb) since depositing a given sediment particle in the weir cross-

section, and that same sediment particle was originally deposited t1*v w before the 

weir, the boat must have travelled t1*(vw+vb-vw) since passing the weir, or t1*vb.  The 

time it took to do this (t2) is this distance divided by its rate of travel (Equation 75). 

 
wb

b

vv

vt
t

+
⋅

= 1
2

  (75) 

So, it is desired to input t2 into the deposition equation, but have it come out as t1 in 

the exponent.  That is, it is necessary to define f(t2) = t1 (Equation 76).   

Boat moving downstream Boat moving upstream 

= sediment particle 

= boat position at time of sediment particle suspension 

= boat position at time sediment particle fully deposits 

= concentration profile behind boat 

= fall trajectory of sediment particle 

vb 

vw 

t1*(vb+vw) 

t1*vw 

t 1
*w

s vw 

-t1*(vb+vw) t1*vw 

t1 *w
s 

recall vb and thus vb+vw 
is negative for a boat 

moving upstream 

vb 
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v
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+
= 21   (76) 

 

If the time variable in the exponent of the solution to the deposition equation is 

modified according to Equation 76, the deposition equation becomes Equation 77. 

 
t

v

vv

D

w

b

wbs

eCC




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

 +−

= 0   (77) 

This equation considers the effects of water movement on the decrease in 

concentration at a given point in space, modifying the time parameter to account for 

the effects of advection by the moving water.  The time input to this equation is the 

time since the boat passed the point of interest. 

 

Returning to the issue at hand – the increased amount of sediment that moves through 

the overflow weir (or overtops the lock gates) due to a boat that stirs up sediment as it 

passes.  The sediment concentration in the top few centimeters of flow is not constant 

but rather is decreasing as the boat moves farther away.  To determine the amount of 

sediment lost, one must first determine the length of time (say, t3) that passes between 

the time of boat passage and the time that the concentration above the weir becomes 

negligible (assumed to occur when C/Co = 0.001).  This can be determined from 

Equation 77 with the appropriate substitutions (Equations 78-79).   
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The total amount of sediment lost while under boat effects is thus ∫= 3

0
 

t

weir dtCQBSS .  

The equations above simplify to Equation 80. 
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Considering that 0.001 was just the arbitrary ‘just greater than zero’ value used to 

represent zero in a formula that would not allow a zero, this can be simplified further 

to Equation 81. 
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In this case, Co is the increase in the concentration of solids caused by boat passage, 

CSboat, an input by the user. 

 

This description has been for a boat moving downstream past the weir.  If the boat is 

moving upstream, the value held by the vb variable becomes negative.  The time that 

has passed since the boat crossed the weir is greater than the time the sediment has 

been settling, as illustrated in Figure 92.  The distance travelled by the boat since 

being deposited becomes –t1*(vw+vb) but in turn the total distance travelled by the 

boat since crossing the weir becomes t1*v w + -t1*(vw+vb), and the equations work out 

the same as for a boat moving downstream.  When the equations are combined in 

Equation 45, the amount of boat-contributed sediment is thus based on the entire Fboat 

of the downstream lock, regardless of whether the boats are moving upstream or 

downstream. 

 

Finally, all these equations have used Qweir and Hweir; substituting Qw,lock and Hlock for 

these values gives the equivalent scenario for flow over the lock gates. 

A.3. Algal Growth 

A key component of the algal growth algorithm presented in Section 4.2.4.2 is the 

estimation of light intensity (LI).  The HSPF model uses Equations 82-84 to predict 

available light intensity. 

 ( )( )DEDMinEXTCO
rad eRADCLI ,5.097.0 ∗∗−∗∗∗=  (82) 

 [ ] [ ] EXTBSSLITSEDSSEXTCO inorga +∗+∗= lg000452.0  (83) 

 
EXTCO

ED
60517.4=  (84) 

 Where: Crad  = coefficient for radiation, accounts for the effects of shading 
of the water (unitless); 

  RAD = incoming radiation (Langleys/min); 
  ED = euphotic depth (ft); 
  D  = water depth (ft); 
  EXTCO = light extinction coefficient (1/ft); 
  0.000452 = light extinction due to algae (L ft-1 µmol Chl-a-1); 
  [SSalg]= phytoplankton concentration (µmol Chl-a/L); 
  LITSED = light extinction due to inorganic sediment (L ft-1 mg-1); 
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  [SSinorg] = inorganic sediment concentration (mg/L); 
  EXTB = base light extinction coefficient (1/ft); and 
  4.60517 = ln(100). 
 

The 0.5 in Equation 82 captures the light available to phytoplankton at half the 

euphotic depth, used to represent the average light availability for all plankton in the 

euphotic depth. The 0.97 in Equation 82 accounts for an assumed 3% surface 

reflection of radiation.   

 

These basic formulae, which match those presented elsewhere in the literature 

(Equations 21 and 22), are used in the canal model.  However, in order to make the 

canal model more generic, the factor 0.000452 is replaced by an input variable 

LITALG.  Additionally, all units are changed to metric units, and the concentration of 

phytoplankton (algae) is tracked in milligrams of dry biomass rather than µmol of 

chlorophyll-a.  The concentrations of algae and inorganic sediment are calculated as 

Equations 85 and 86, respectively. 

 [ ]
ED

a
a Vol

SS
SS lg

lg =   (85) 

 [ ]
S

SSSS
SS noncoh

inorg

+
=  (86) 

 

The concentration of algae is limited to the euphotic depth, as that is where algae are 

assumed to remain, and thus that is the concentration that will affect light available to 

them. 

 

Because euphotic depth is dependent upon algal concentration (through EXTCO, 

Equation 83), but algal concentration is, in turn, dependent on euphotic depth 

(Equation 85), the use of Equation 82 for LI is not straightforward.  If euphotic depth 

is less than the water depth, Equation 82 simplifies to Equation 87. 

 ( )( )100ln5.097.0 ∗−∗∗∗= eRADCLI rad  (87) 

However, in this case, every time an algal concentration is used in the code (e.g., 

Equation 52), the euphotic depth must be calculated and used to determine the volume 

(VolED) used in the concentration calculation.  If, by contrast, euphotic depth is 

greater than the water depth, the LI equation becomes complicated – with the terms in 
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the exponent of the LI equation requiring input of the algal concentration, which in 

turn is dependent on the available light intensity.  In this case VolED becomes equal to 

depth in calculating the algal concentration.  These two cases require separate 

solutions, presented in Appendix A.4. 

 

As a final note, it may seem odd to use the value 0.5*ED to represent the average light 

intensity available to algae, as Equation 82 is readily integrated to obtain the actual 

average LI over the euphotic depth (Equation 88 for ED<D, Equation 89 for ED>D).   

 ( )60517.41
60517.4

**97.0 −−= e
RADC

LI rad
avg  (88) 

 ( )DEXTCOrad
avg e

EXTCO

RADC
LI ⋅−−= 1

**97.0
 (89) 

 

However, finding an average maximum growth rate over the euphotic depth from 

Equation 58 is somewhat more problematic as Equation 58 is not readily integrated.  

To evaluate the relative merits of discretizing Equations 58 and 88 vs. simply using 

the light intensity calculated at half the euphotic depth, a comparison was performed 

in Microsoft Excel.  The light intensity was calculated for 3500 increments between 

the water surface and a sample euphotic depth.  With 3500 increments, the average LI 

over the water depth was calculated within 0.04% of the actual value obtained through 

integration.  LI/(Ks,l+LI) was then calculated for each of these 3500 depths.  Given the 

accuracy of the LI estimate with 3500 increments, it was assumed the average 

LI/(K s,l+LI) estimate would be equally representative of the true average value over 

the water depth.  This ‘true’ average LI/(Ks,l+LI) was then compared to the single 

values of LI/(Ks,l+LI) obtained using the depth-averaged LI from integration 

(Equation 88) and the LI calculated at half the euphotic depth (Equation 82).  In most 

cases the single value for LI/(Ks,l+LI) obtained using HSPF’s method of estimating a 

representative LI was actually much closer to the true mean value for LI/(Ks,l+LI) than 

the value obtained using the true average LI – typically errors less than 10% for the 

former vs. greater than 30% for the latter.  The only exception to this was when the 

radiation dropped very low – less than 50 ly/day.  However, even at latitudes of 50º, 

the radiation never drops beneath 100 ly/day (Hamon et al. 1954), so this extreme 

case was considered unlikely to occur, and thus HSPF’s method of estimating average 

LI as the value at half the euphotic depth is used in the new canal model. 
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A.4. Solution Details 

In this section, detailed information regarding the solution to the complex series of 

equations presented in Section 4.1 is presented.  If through these processes the 

hydrologic storage falls below 1 cm, water quality processes cease to be simulated; 

this is consistent with what is done by some other models (e.g., Bicknell et al. 2001) 

and prevents in particular unrealistic estimation of shear stress (which propagates to 

unrealistic estimates of deposition).  In this case, solids loads are held constant at the 

value from the previous time step and inflows and outflows are calculated based on 

that constant value. 

(i) Detailed Q and QSS formulae 

Equations 90-92 present detailed Q and QSS formulae for hydrology, non-cohesive 

sediment, cohesive sediment, and algae, respectively, including all the components 

presented in the appropriate subsections of Section 4.1. 
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The term ws(SS) indicates that the fall velocity for cohesive sediments is a function of 

the sediment concentration. 
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Note that the equation for QSSalg includes a leak term slightly different from that 

presented in Equation 54.  To simplify the calculations, ED is first determined using 

QSSalg in Equation 93; then the minimum and maximum comparisons are performed 

and QSSalg and ED are recalculated if necessary.   

 

(ii) Solving the System of Equations 

A formula for Qj+1 or QSSj+1 having been defined for each constituent (Equations 90-

93), the next step is to put these outflow formulae back into their respective continuity 

equation formulae (Equations 32, 33, and 55) to solve for the storage of each 

constituent at each time step.  With the exception of non-cohesive sediment, this is not 

a straightforward procedure and Newton’s Method must be used. 

 

The solutions presented next assume that the sum of inflows for a constituent are 

constant, as well as some values that do not depend on the reach storage (for example, 

Qlock and Qabs).  In some cases this assumption may cause the solution to the system of 

equations to be unattainable, as the ‘fixed’ outflow demand may exceed the available 

inflow plus storage.  In these cases, the ‘fixed’ outflow demands are reduced so that 

they do not exceed the available inflows plus storage.  Additionally, if for any reason 
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any of the storages are calculated to be negative, they are set to zero (water, inorganic 

sediment) or 1 (algae).  Algal storage is always maintained above 0 so that a ‘seed’ 

exists to start growth at the next time step. 

 

In all cases that use Newton’s Method, if the cap on iterations is reached before the 

value for ‘f(x)’ falls below the error threshold, the final absolute value for f(x) is 

compared to that of the initial estimate; if the value for the final f(x) is less than that 

for the initial estimate, the final storage estimate is used even though the threshold 

was not met, as it is a better estimator than the initial estimate. 

 

For the hydrology, the ‘f(x)’ (or f(S)) used for Newton’s Method is given as Equation 

94.  The iteration of Newton’s Method continues until the absolute value of the 

function is less than 0.00001 m³/s.  The derivative of the function with respect to 

storage is given in Equation 95.  The initial guess for Sj+1 is the value at the previous 

time step. 
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For non-cohesive sediment, no iteration is required.  The value for storage of non-

cohesive sediment is a straightforward calculation (Equation 96). 
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The storages for cohesive sediments and algae must be solved simultaneously, as the 

algal concentration affects the fall velocity used in computing cohesive sediment 

storage, and the cohesive sediment concentration is used in computing the light 

intensity used in computing algal storage.  The storages are solved using Newton’s 

Method.  For the simple condition, when ED<D, the first step is to calculate g(SSalg) 

(Equation 97), which is simply the algal equation rearranged to solve for cohesive 

sediment concentration (that is, g(SSalg) = SScoh).  The initial guess for SSalg,j+1 is set to 

half the value that causes g(SSalg,j+1) to be zero; this is done to prevent the initial 

estimate from inadvertently landing outside the narrowly defined range for the ED>D 

function (discussed momentarily). 
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This g(SSalg) can then be used in place of SScoh to solve the set of cohesive sediment 

equations as a function of SSalg.  In this way, f(SS) for Newton’s Method becomes 

Equation 98. 
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Equation 100 presents the derivative of f(SS). 
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Where: 
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(101)  
 
and 
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And finally, 
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If ED>D, then g(SSalg) must be rewritten as Equation 104.  Typically the f(SS) 

calculated in Equation 98 becomes negative when ED>D (Figure 93); this transition 

to a negative value for f(SS) is used in the model as an indication to switch to ED>D 

calculations.  The relationship between ED and D is verified once Newton’s Method 

converges on a solution. 
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Figure 93. Typical zeros of f(SSalg) and g(SSalg) when euphotic depth is greater than (indicated by 
subscript ED) and less than water depth.  (SSbio = SSalg in this figure) 
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And the derivative of g(SSalg) becomes Equation 105.  Because f(SS) only deals with 

inflows and outflows related to cohesive sediment, it remains unchanged. 
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In both cases (ED>D and ED<D), the iterations for Newton’s Method continue until 

the absolute value of f(x) is less than 0.1 mg·m³/s.   

 

Note that should the input phosphorus concentration for a given time step be zero, all 

equations involving ‘K’ in the denominator would be undefined; therefore, if the input 

phosphorus concentration is zero, algal growth is set to zero and all terms in the 

formulae related to algal growth are removed. 

 

If the calculated euphotic depth is negative or zero, the algae are assumed uniformly 

distributed in the water column and the algal and cohesive solids storages are 

recalculated. 
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Appendix B. Model Verification Inputs 
Table 21. Reach parameters for the verification scenario. 
Parameter Value 
Reach Number 1 2 3 
Length (m) 536.33 402.25 804.5 
Width (m) 13.33 11.67 14 
Overflow weir location (upstream of lock) (m) 1 2 3 
Height of overflow weir above bottom of 
reach (m) 

3 3.2 2.9 

Length of overflow weir crest (m) 0.33 0.67 0.5 
Height of sides of overflow weir (m) 0.167 0.173 0.15 
Height of lock gates above bottom of reach 
(m) 

3.5 3.9 3.4 

Weir Constant (Ø) 0.611 0.61 0.612 
Seepage losses (m³/m²/s) 1.08 x 10-7 1.15 x 10-7 1.05 x 10-7 

Number of locks contributing flow at 
upstream end 

0 1 1 

ID number of downstream lock 1 2 3 
ID number of upstream lock 0 1 2 
ID number of upstream reach 0 1 2 
Mean reach temperature (ºC) 12.1 11.5 12.6 
Correction to incoming radiation (Ø) 0.7 0.65 0.75 
 

Table 22. Lock parameters for the verification scenario. 
Parameter Value 
Lock Number 1 2 3 
Is the lock left empty after use? Yes No Yes 
Efficiency of lock use by boats (Ø) 0.5 0.75 0.4 
Volume (m³) 1777.78 1347.5 2272.5 
Length of lock gates (m) 13.33 11.67 15 
Gate leakage rate (m³/m) 0.010031 0.000893 0.010896 
Fraction of boats moving upstream (Ø) 0.5 0.4 0.6 
Fraction of boats moving downstream (Ø) 0.5 0.6 0.4 
Non-cohesive sediment concentration stirred up by 
lock gate movement (mg/m³) 

30000 32000 28000 

Cohesive sediment concentration stirred up by lock 
gate movement (mg/m³) 

10000 12000 11000 
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Table 23. Solids parameters for the verification scenario. 
Parameter Value 
Non-cohesive particle diameter (m) 0.0002 
Specific gravity of sediment (Ø) 2.65 
Critical shear stress for the deposition of sediment (kg m-1 s-2) 0.06 
Drag coefficient (Ø) 0.0025 
Concentration of non-cohesive sediment stirred up by boat passage 
(mg/m³) 

14500 

Concentration of cohesive sediment stirred up by boat passage (mg/m³) 29000 
Average boat velocity (including water velocity) (m/s) 1.8 
Fraction of sediment in runoff that is non-cohesive (Ø) 0.6 
Fraction of sediment in runoff that is cohesive (Ø) 0.4 
Fraction of sediment from external sources that is non-cohesive (Ø) 0.3 
Fraction of sediment from external sources that is cohesive (Ø) 0.7 
Base light extinction coefficient (m-1) 1 
Michaelis-Menton constant for light-limited growth (J/m²s) 23.012 
Magnitude parameter for temperature equation 6.28 
Phase shift parameter for temperature equation 4.46 
Conversion from chlorophyll-a mass to total biomass (mg biomass/mg 
Chl-a) 

1.5 

Factor to convert sediment concentration to light extinction (m²/mg) 0.000025 
Factor to convert algal concentration to light extinction (m²/(mg Chl-a)) 0.00002 
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Table 24. Sample time series inputs for the first five timesteps for the verification scenario. 
Parameter Value 
Timestep Day 1 Day 2 Day 3 Day 4 Day 5 
Precipitation (m) 0.0048 0.0054 0.0027 0 0 
Radiation (J/m²/s) 121.06 96.851 193.7 121.06 121.06 
Potential evaporation (m) 0.0008 0 0.0005 0.0012 0.0004 
Frequency of boat movement – reach 1 
(Ø) 

4 4 4 4 4 

Frequency of boat movement – reach 2 
(Ø) 

5 5 5 5 5 

Frequency of boat movement – reach 3 
(Ø) 

7 7 7 7 7 

External hydrologic inputs – reach 1 
(m³/s) 

0.125 0.127 0.123 0.125 0.124 

External hydrologic inputs – reach 2 
(m³/s) 

0.002 0.003 0.002 0.004 0.002 

External hydrologic inputs – reach 3 
(m³/s) 

0.003 0.005 0.001 0.001 0.002 

External sediment inputs – reach 1 
(mg/m³) 

0.125 0.127 0.123 0.125 0.124 

External sediment inputs – reach 2 
(mg/m³) 

0.002 0.003 0.002 0.004 0.002 

External sediment inputs – reach 3 
(mg/m³) 

0.003 0.005 0.001 0.001 0.002 

External algal inputs – reach 1 (mg/m³) 0.125 0.127 0.123 0.125 0.124 
External algal inputs – reach 2 (mg/m³) 0.002 0.003 0.002 0.004 0.002 
External algal inputs – reach 3 (mg/m³) 0.003 0.005 0.001 0.001 0.002 
Runoff hydrologic inputs – reach 1 
(m³/s) 

0.001 0 0.003 0 0.002 

Runoff hydrologic inputs – reach 2 
(m³/s) 

0.002 0.004 0 0.005 0.001 

Runoff hydrologic inputs – reach 3 
(m³/s) 

0 0.001 0.003 0.002 0.001 

Runoff sediment inputs – reach 1 
(mg/m³) 

0.01 0 0.03 0 0.02 

Runoff sediment inputs – reach 2 
(mg/m³) 

0.013 0.015 0 0.01 0.025 

Runoff sediment inputs – reach 3 
(mg/m³) 

0 0.007 0.022 0.04 0.036 

Hydrologic abstractions – reach 1 (m³/s) 0.0001 0 0 0.0001 0.0001 
Hydrologic abstractions – reach 2 (m³/s) 0.0003 0 0.0003 0 0.0003 
Hydrologic abstractions – reach 3 (m³/s) 0.0002 0.0002 0 0.0002 0.0002 
Total phosphorus concentration – reach 
1 (mg/m³) 

186 219 176 166 483 

Total phosphorus concentration – reach 
2 (mg/m³) 

139.5 164.25 132 124.5 362.25 

Total phosphorus concentration – reach 
3 (mg/m³) 

232.5 273.75 220 207.5 603.75 
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Appendix C. Sensitivity Analysis 

Baseline Parameters 

 

Ce = 0.7 

 

Table 25. Reach parameters for the sensitivity analysis. 
Parameter Value 
Reach Number 1 2 3 
Length (m) 18.00 270.68 322.11 
Width (m) 9.98 9.03 7.85 
Overflow weir location (upstream of lock) (m) 0 0 0 
Height of overflow weir above bottom of 
reach (m) 

1.37 1.42 1.425 

Length of overflow weir crest (m) 2.44 1.83 1.88 
Height of sides of overflow weir (m) 0.14 0.33 0.20 
Height of lock gates above bottom of reach 
(m) 

1.55 1.6 1.6 

Weir Constant (Ø) 0.611 0.611 0.611 
Seepage losses (m³/m²/s) 3.72 x 10-7 3.72 x 10-7 3.72 x 10-7 

Mean reach temperature (ºC) 11.5 11.5 11.5 
Correction to incoming radiation (Ø) 1.0 0.92 0.89 
 

Table 26. Lock parameters for the sensitivity analysis. 
Parameter Value 
Lock Number 1 2 3 
Is the lock left empty after use? Yes Yes Yes 
Efficiency of lock use by boats (Ø) 0.67 0.67 0.67 
Volume (m³) 173.02 229.27 201.52 
Length of lock gates (m) 17.67 17.33 16.00 
Gate leakage rate (m³/m) 0.044 0.021 0.021 
Non-cohesive sediment concentration stirred up by lock 
gate movement (mg/m³) 

1000 1000 1000 

Cohesive sediment concentration stirred up by lock gate 
movement (mg/m³) 

2600 2600 2600 
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Table 27. Solids parameters for the sensitivity analysis. 
Parameter Value 
Non-cohesive particle diameter (m) 0.0002 
Specific gravity of sediment (Ø) 2.65 
Critical shear stress for the deposition of sediment (kg m-1 s-²) 0.06 
Drag coefficient (Ø) 0.0025 
Concentration of non-cohesive sediment stirred up by boat passage 
(mg/m³) 

4500 

Concentration of cohesive sediment stirred up by boat passage (mg/m³) 9000 
Average boat velocity (including water velocity) (m/s) 1.79 
Fraction of sediment in runoff that is non-cohesive (Ø) 0.2 
Fraction of sediment in runoff that is cohesive (Ø) 0.8 
Fraction of sediment from external sources that is non-cohesive (Ø) 0.15 
Fraction of sediment from external sources that is cohesive (Ø) 0.85 
Base light extinction coefficient (m-1) 1.67 
Michaelis-Menton constant for light-limited growth (J/m²s) 23.012 
Magnitude parameter for temperature equation 6.54 
Phase shift parameter for temperature equation 4.46 
Conversion from chlorophyll-a mass to total biomass (mg biomass/mg 
Chl-a) 

60 

Factor to convert sediment concentration to light extinction (m²/mg) 0.000025 
Factor to convert algal concentration to light extinction (m²/(mg Chl-a)) 0.00002 
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Table 28. Sample time series inputs for the first five timesteps of the sensitivity analysis. 
Parameter Value 
Timestep Day 1 Day 2 Day 3 Day 4 Day 5 
Precipitation (m/d) 0.0021 0.0049 0.0094 0.0073 0.0014 
Radiation (J/m²/s) 29.7 30.0 30.3 30.6 30.9 
Potential evaporation (m/d) 0.00047 0.00042 0.00040 0.00051 0.00055 
Frequency of boat movement (Ø) 1 1 1 1 1 
External hydrologic inputs – reach 
1 (m³/s) 

0.063 0.063 0.063 0.063 0.063 

External hydrologic inputs – reach 
2 (m³/s) 

0 0 0 0 0 

External hydrologic inputs – reach 
3 (m³/s) 

0 0 0 0 0 

External sediment inputs – reach 1 
(mg/s) 

630 630 630 630 630 

External sediment inputs – reach 2 
(mg/s) 

0 0 0 0 0 

External sediment inputs – reach 3 
(mg/s) 

0 0 0 0 0 

External algal inputs – reach 1 
(mg/s) 

2.29 2.32 2.35 2.38 2.41 

External algal inputs – reach 2 
(mg/s) 

0 0 0 0 0 

External algal inputs – reach 3 
(mg/s) 

0 0 0 0 0 

Runoff hydrologic inputs – reach 
1 (m³/s) 

0.0239 0.0255 0.0310 0.0311 0.0277 

Runoff hydrologic inputs – reach 
2 (m³/s) 

0.00255 0.00228 0.00331 0.00332 0.00296 

Runoff hydrologic inputs – reach 
3 (m³/s) 

0.00228 0.00242 0.00295 0.00296 0.00264 

Runoff sediment inputs – reach 1 
(mg/s) 

0.708 7.06 246 82.3 0.176 

Runoff sediment inputs – reach 2 
(mg/s) 

0.0755 0.753 26.2 8.78 0.0188 

Runoff sediment inputs – reach 3 
(mg/s) 

0.0673 0.672 23.4 7.83 0.0168 

Hydrologic abstractions – reach 1 
(m³/s) 

0.008 0.008 0.008 0.008 0.008 

Hydrologic abstractions – reach 2 
(m³/s) 

0 0 0 0 0 

Hydrologic abstractions – reach 3 
(m³/s) 

0.009 0.009 0.009 0.009 0.009 

Total phosphorus concentration 
(mg/m³) 

302.4 302.4 302.4 302.4 302.4 
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Appendix D. Sensitivity Analysis – 

Results 

D.1. Non-cohesive Sediment Variables 

The key parameters to which the non-cohesive sediment variables are most sensitive 

are listed in Table 29.  Table 30 complements the data for SSnon in Table 10 on page 

111, showing relative sensitivities of the concentration of non-cohesive sediment to 

the remaining parameters where |Sr| < 0.5. 
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Table 29. Key parameters to which the non-cohesive sediment variables are most sensitive. 
Average Sensitivities 

Var.  
Most 
Sig. 
Param. Avg Max Min 1Q 2Q 3Q W Sp Su A 

Iext 0.41 0.28 0.03 0.04 0.54 0.40 0.01 0.07 0.58 0.46 
L 1.30 1.38 -0.04 0.81 1.13 1.36 0.14 1.26 1.39 1.32 
W 0.58 0.67 -0.04 0.27 0.50 0.62 0.02 0.54 0.64 0.59 
Dweir

‡ 1.15 1.26 0.22 0.77 1.08 1.21 0.31 1.08 1.23 1.16 
Dlock

† 0.83 0.84 1.05 0.60 0.82 0.86 0.35 0.83 0.86 0.82 
Vlock -0.35 -0.46 <0.01 <0.01 -0.21 -0.41 <0.01 -0.20 -0.47 -0.33 
CSboat,non 0.82 0.86 <0.01 0.62 0.79 0.85 0.13 0.82 0.85 0.84 

SSnon 

Fboat 0.52 0.49 <0.01 0.00 0.68 0.53 <0.01 0.66 0.45 0.56 
Qabs 0.91 0.93 0.79 0.86 0.91 0.92 0.82 0.91 0.92 0.91 
CSboat,non 0.82 0.86 <0.01 0.62 0.79 0.85 0.13 0.82 0.85 0.84 QSSabs 
Fboat 0.61 0.60 0.00 0.00 0.71 0.68 0.00 0.68 0.59 0.66 
Irunoff 0.94 1.00 0.00 2.79 1.36 0.84 1.28 0.90 1.21 0.66 
Iext 5.43 3.59 0.00 6.82 16.77 4.90 2.32 3.74 7.90 6.16 
Qabs -0.92 -0.60 0.00 -3.77 -2.41 -0.84 -0.63 -0.63 -1.32 -1.06 
Dweir

‡ -2.81 -2.67 0.00 -5.07 -5.40 -2.51 -2.88 -2.72 -2.92 -2.87 
Lweir -0.66 -0.68 0.00 -0.48 -0.66 -0.64 -0.63 -0.66 -0.65 -0.65 
Empty -0.88 -0.49 0.00 -0.23 -5.07 -0.73 -0.03 -0.42 -1.68 -0.92 
Vlock -2.05 -1.19 0.00 -4.08 -7.03 -1.71 -0.09 -1.14 -3.63 -2.14 
diam -1.62 -1.62 0.00 -1.62 -1.62 -1.62 -1.62 -1.62 -1.62 -1.62 
sg -1.48 -1.48 0.00 -1.48 -1.48 -1.48 -1.48 -1.48 -1.48 -1.48 
CSboat,non 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Cd,weir -0.65 -0.68 0.00 -0.47 -0.66 -0.63 -0.63 -0.66 -0.65 -0.65 
Leak -1.67 -1.10 0.00 -4.87 -4.02 -1.54 -1.15 -1.17 -2.37 -1.92 

QSSweir 

Fboat -0.98 -0.13 0.00 -4.00 -5.03 -0.65 0.00 -0.12 -2.45 -1.06 
Iext 0.41 0.28 0.03 0.04 0.54 0.40 0.01 0.07 0.58 0.46 
L 1.30 1.38 -0.04 0.81 1.13 1.36 0.14 1.26 1.39 1.32 
W 0.58 0.67 -0.04 0.27 0.50 0.62 0.02 0.54 0.64 0.59 
Dweir

‡ 1.15 1.26 0.22 0.77 1.08 1.21 0.31 1.08 1.23 1.16 
Dlock

† 0.83 0.84 1.05 0.60 0.82 0.86 0.35 0.83 0.86 0.82 
Vlock -0.35 -0.46 <0.01 <0.01 -0.21 -0.41 0.00 -0.20 -0.47 -0.33 
CSboat,non 0.82 0.86 <0.01 0.62 0.79 0.85 0.13 0.82 0.85 0.84 

QSSdep 

Fboat 0.52 0.49 <0.01 0.00 0.68 0.53 <0.01 0.66 0.45 0.56 
Iext 0.41 0.28 0.03 0.04 0.54 0.40 0.01 0.07 0.58 0.46 
Dweir

‡ 1.14 1.26 0.21 0.77 1.07 1.21 0.29 1.07 1.23 1.15 
Dlock

† 0.85 0.86 1.05 0.64 0.85 0.89 0.41 0.87 0.88 0.85 
Vlock -0.35 -0.46 <0.01 <0.01 -0.21 -0.41 <0.01 -0.20 -0.47 -0.33 
CSboat,non 0.82 0.86 0.00 0.62 0.79 0.85 0.13 0.82 0.85 0.84 
Leak 0.78 0.75 1.32 0.92 0.81 0.78 1.18 0.80 0.76 0.77 

QSSleak 

Fboat 0.52 0.49 0.00 0.00 0.68 0.53 <0.01 0.66 0.45 0.56 
Iext 0.17 0.25 0.00 0.00 0.02 0.10 -0.01 0.02 0.22 0.18 
Vlock 0.68 0.56 0.00 1.00 0.81 0.73 1.00 0.80 0.63 0.70 
CSboat,non 0.85 0.86 0.00 0.63 0.83 0.85 0.60 0.84 0.85 0.85 

QSSlock 

Fboat 1.58 1.61 0.00 0.00 1.70 1.76 0.00 1.64 1.54 1.61 
Iext 0.31 0.30 0.02 0.03 0.13 0.31 0.01 0.05 0.42 0.35 
L 0.67 0.73 -0.53 0.32 0.61 0.71 -0.36 0.65 0.72 0.69 
Dweir

‡ 0.80 0.82 0.11 0.65 0.72 0.83 0.20 0.77 0.82 0.81 
Dlock

† 0.58 0.56 0.15 0.51 0.58 0.59 0.27 0.61 0.58 0.59 
CSboat,non 0.83 0.86 <0.01 0.62 0.82 0.85 0.13 0.83 0.85 0.84 

QSStot 

Fboat 0.87 0.93 <0.01 0.00 0.93 0.96 <0.01 0.93 0.87 0.89 
† Only significant at the -25% level, when Dlock < Dweir. 
‡ Average sensitivity for Dweir ±10% and -25%; at Dweir +25%, the weir depth exceeded lock depth and 

caused an excessive sensitivity. 
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Table 30. Sensitivity of non-cohesive sediment concentration to variables which cause an absolute 
value for Sr less than 0.5. 
Sensitivity Variable (sign of Sr) 

Sr > 0.1 or 
Sr < -0.1 

Iext (+) 
L (+) 
W (-) 
Dweir (+) 
V lock (-) 
Leak (-) 

0 <Sr< 0.1 
or 
0 >Sr> -0.1 

PREC (+) 
Irunoff (+) 
PE (-) 
Qabs (-) 
Lweir (-) 
Empty (-) 
L lock (+) 
CSlock,non (+) 

Diam (+) 
SG (+) 
vb (-) 
ISSrunoff (+) 
ISSext (+) 
Ce (-) 
Cd,weir (-) 
Seep (-) 

Sr = 0 

Hsides 
Tmean 
Crad 
CSlock,coh 
Boatcoh 

τcd 
Cd,drag 
Ks,l 
Cchl 

ISSext,alg 
TP 
RAD 
Tmag 
Tphase 
Eboat 
EXTB 
LITSED 
LITALG 

 

D.2. Cohesive Sediment Variables 

The key parameters to which the cohesive sediment variables are most sensitive are 

listed in Table 31.  Table 32 complements the data for SScoh in Table 10 on page 111, 

showing relative sensitivities of the concentration of cohesive sediment to the 

remaining parameters where |Sr| < 0.5. 

 

 

 

 

 

 

 

 

 



 224 

Table 31. Key parameters to which the cohesive sediment variables are most sensitive. 
Average Sensitivities 

Var.  
Most 
Sig. 
Params. Avg Max Min 1Q 2Q 3Q W Sp Su A 

Iext 0.37 <0.01 0.03 0.04 0.52 0.37 0.01 0.06 0.55 0.43 
L 1.14 -0.07 -0.04 0.49 1.00 1.26 0.03 1.10 1.28 1.18 
W 0.55 -0.22 -0.04 0.16 0.49 0.62 -0.02 0.51 0.64 0.57 
Dweir 1.03 0.15 0.22 0.57 0.99 1.14 0.25 0.97 1.16 1.06 
Dlock 0.75 0.17 4.00 0.45 0.75 0.81 0.31 0.74 0.81 0.75 
CSboat,coh 0.70 <0.01 0.01 0.39 0.68 0.76 0.06 0.70 0.76 0.73 

SScoh 

Fboat 0.45 0.00 <0.01 <0.01 0.55 0.48 <0.01 0.58 0.40 0.50 
Qabs 0.91 0.85 0.79 0.84 0.90 0.92 0.81 0.90 0.92 0.91 
W -0.45 -1.23 -1.04 -0.86 -0.54 -0.38 -1.05 -0.50 -0.36 -0.44 
CSboat,coh 0.70 0.02 0.01 0.39 0.66 0.76 0.06 0.70 0.76 0.73 

QSSabs 

Fboat 0.54 0.00 0.00 0.00 0.59 0.63 0.00 0.59 0.55 0.59 
Irunoff 0.93 0.96 +‡ 3.55 1.33 0.89 1.28 0.90 1.21 0.66 

Iext 5.36 3.54 +‡ 8.23 16.3 5.03 2.33 3.72 7.86 6.09 

Qabs -0.90 -0.55 -‡ -4.72 -2.02 -0.85 -0.62 -0.62 -1.30 -1.04 

Dweir
*  -2.83 -2.67 -‡ -6.50 -5.68 -2.65 -2.87 -2.74 -2.96 -2.88 

Lweir -0.66 -0.66 -‡ -0.50 -0.60 -0.65 -0.63 -0.66 -0.65 -0.65 
Empty -0.83 -0.47 0.66 -0.48 -4.86 -0.65 -0.03 -0.40 -1.62 -0.88 
Vlock -1.97 -1.12 -4.87 -4.93 -6.48 -1.73 -0.09 -1.10 -3.55 -2.06 
CSboat,coh 0.90 0.90 -3.41 0.85 0.87 0.91 0.99 0.91 0.87 0.90 
Cd,weir -0.65 -0.66 -‡ -0.49 -0.60 -0.65 -0.63 -0.66 -0.65 -0.65 

Leak -1.63 -1.03 -‡ -5.91 -4.04 -1.59 -1.16 -1.14 -2.33 -1.88 

QSSweir 

Fboat -1.03 -0.18 -1.59 -4.82 -4.82 -0.81 0.00 -0.19 -2.55 -1.11 
Iext 0.37 <0.01 0.03 0.04 0.52 0.37 0.01 0.06 0.55 0.43 
L 1.14 -0.07 -0.04 0.49 1.00 1.26 0.03 1.10 1.28 1.18 
W 0.55 -0.22 -0.04 0.16 0.49 0.62 -0.02 0.51 0.64 0.57 
Dweir

*  1.03 0.15 0.22 0.57 0.99 1.14 0.25 0.97 1.16 1.06 

Dlock
† 0.75 0.17 4.00 0.45 0.75 0.81 0.31 0.74 0.81 0.75 

CSboat,coh 0.70 <0.01 0.01 0.39 0.68 0.76 0.06 0.70 0.76 0.73 

QSSdep 

Fboat 0.45 0.00 <0.01 <0.01 0.55 0.48 <0.01 0.58 0.40 0.50 
Iext 0.37 <0.01 0.03 0.04 0.52 0.37 0.01 0.06 0.55 0.43 
W -0.46 -1.26 -1.04 -0.87 -0.51 -0.39 -1.06 -0.50 -0.36 -0.44 
Dweir

*  1.03 0.12 0.21 0.57 0.98 1.14 0.23 0.96 1.16 1.05 

Dlock
† 0.78 0.25 4.00 0.49 0.78 0.83 0.36 0.78 0.83 0.78 

CSboat,coh 0.70 <0.01 0.01 0.39 0.68 0.76 0.06 0.70 0.76 0.73 
Leak 0.82 1.38 1.32 1.04 0.84 0.80 1.23 0.84 0.77 0.80 

QSSleak 

Fboat 0.45 0.00 <0.01 <0.01 0.55 0.48 0.00 0.58 0.40 0.50 
Vlock 0.71 0.59 0.00 1.00 0.83 0.75 1.01 0.82 0.66 0.73 
CSboat,coh 0.76 0.78 0.00 0.39 0.72 0.76 0.37 0.73 0.77 0.75 QSSlock 
Fboat 1.53 1.57 0.00 0.00 1.63 1.70 0.00 1.57 1.50 1.55 
Iext 0.28 0.28 0.02 0.03 0.10 0.29 0.01 0.05 0.38 0.32 
L 0.53 0.61 -0.52 -0.01 0.49 0.60 -0.47 0.50 0.61 0.56 
Dweir

*  0.69 0.75 0.11 0.44 0.65 0.74 0.14 0.66 0.74 0.71 

Dlock
† 0.51 0.51 4.00 0.36 0.52 0.54 0.22 0.53 0.53 0.52 

CSboat,coh 0.72 0.78 <0.01 0.39 0.69 0.76 0.06 0.71 0.77 0.73 

QSStot 

Fboat 0.79 0.88 0.00 0.00 0.84 0.91 <0.01 0.84 0.83 0.83 
* Average sensitivity for Dweir ±10% and -25%; at Dweir +25%, the weir depth exceeded lock depth and 

caused an excessive sensitivity. 

† Only significant at the -25% level, when Dlock < Dweir. 
‡ Model output minimum Qweirs are all <<0.00001 so sensitivity calculation is skewed; sign indicates 

the sign of the change. 
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Table 32. Sensitivity of cohesive sediment concentration to variables which cause an absolute 
value for Sr less than 0.5. 
Sensitivity Variable (sign of Sr) 

Sr > 0.1 or 
Sr < -0.1 

L (+) 
V lock (-) 
L lock (+) 
CSlock,coh (+) 
ISSext (+) 
Leak (-) 

0 <Sr< 0.1 
or 
0 >Sr> -0.1 

PREC (-) 
PE (-) 
Irunoff (+) 
Iext (+) 
Qabs (-) 
Dweir (+) 
Lweir (-) 
Dlock (+) 
Tmean (+) 
Crad (+) 
Empty (-) 
CSlock,non (-) 
diam (-) 
sg (+) 
CSboat,non (-) 
vb (-) 

ISSrunoff (+) 
ISSext,alg (+) 
TP (+) 
RAD (+) 
Tmag (+) 
Tphase (+) 
Ce (+) 
Cd,weir (-) 
Seep (+) 
τcd (+) 
Cd,drag (-) 
EXTB (-) 
Ks,l (-) 
Cchl (+) 
LITSED (-) 
LITALG (+) 

Sr = 0 Hsides Eboat 

 

D.3. Algal Variables 

The key parameters to which the algal variables are most sensitive are listed in Table 

33.  Table 34 complements the data for SSalg in Table 10 on page 111, showing 

relative sensitivities of the concentration of algal mass to the remaining parameters 

where |Sr| < 0.5. 
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Table 33. Key parameters to which the algal variables are most sensitive. (continues next page) 
Average Sensitivities 

Var.  
Most 
Sig. 
Params. Avg Max Min 1Q 2Q 3Q W Sp Su A 

Iext -1.25 -0.39 -¶ -1.20 -0.93 -1.17 -0.76 -1.42 -1.40 -1.02 

L 1.86 1.37 +¶ 1.55 1.74 1.89 1.68 1.73 2.07 1.64 

W 2.02 1.36 +¶ 1.57 1.81 2.10 1.67 1.83 2.33 1.78 

Dweir
† 1.12 1.36 0.00 0.99 1.06 1.02 1.54 1.04 1.05 0.93 

Dlock
‡ 0.85 -0.40 0.00 0.82 0.93 0.82 1.12 0.85 0.80 0.70 

Tmean 0.60 0.05 0.00 0.34 0.52 0.70 0.13 0.54 0.84 0.47 
ISSext,alg 0.85 0.00 0.00 1.00 0.98 0.98 0.26 0.98 0.96 0.99 

SSalg 

EXTB -0.47 -0.05 0.00 -0.39 -0.45 -0.56 -0.14 -0.42 -0.62 -0.45 
Iext -1.57 -0.44 -¶ -1.31 -1.49 -1.57 -0.81 -1.48 -1.90 -1.55 
Qabs 1.08 1.04 1.00 1.07 1.08 1.09 1.08 1.06 1.10 1.07 
L 0.85 0.39 +¶ 0.55 0.73 0.88 0.68 0.72 1.05 0.63 

W 1.00 0.38 +¶ 0.58 0.80 1.05 0.67 0.81 1.29 0.76 
Tmean 0.60 0.05 0.00 0.36 0.53 0.69 0.13 0.54 0.84 0.47 
ISSext,alg 0.85 0.00 0.00 1.00 0.98 0.98 0.26 0.98 0.96 0.99 

QSSabs 

EXTB -0.44 -0.05 0.00 -0.39 -0.43 -0.50 -0.14 -0.42 -0.57 -0.43 
Iext 1.65 1.24 3.92 3.70 2.35 1.83 0.85 0.83 3.08 2.78 
Qabs -0.51 -0.42 -1.13 -1.39 -0.50 -0.51 -0.36 -0.33 -0.79 -0.75 
L 0.67 0.19 +¶ 0.41 0.46 0.74 0.51 0.65 0.93 0.46 

W 0.80 0.22 +¶ 0.54 0.57 0.96 0.52 0.75 1.19 0.60 

Dweir
† -1.65 -1.81 -2.70 -3.08 -1.90 -1.81 -1.57 -1.65 -1.64 -1.89 

Tmean 0.49 0.05 0.00 0.42 0.38 0.67 0.12 0.53 0.85 0.42 
Vlock -0.99 -0.06 -3.52 -2.64 -1.31 -1.32 -0.04 -0.54 -2.29 -1.61 
ISSext,alg 0.77 0.00 0.00 1.00 1.00 0.96 0.23 0.98 0.96 0.99 
Leak -0.96 -0.59 -3.73 -2.44 -1.11 -1.00 -0.60 -0.68 -1.52 -1.42 

QSSweir 

Fboat -1.11 0.00 -3.50 -2.64 -1.41 -1.55 0.00 -0.62 -2.61 -1.76 
Iext -1.25 -0.39 -¶ -1.20 -0.93 -1.17 -0.76 -1.42 -1.40 -1.02 

L 0.85 0.38 +¶ 0.55 0.73 0.87 0.68 0.72 1.04 0.63 

W 0.99 0.37 +¶ 0.56 0.80 1.07 0.67 0.81 1.28 0.76 

Dweir
† 1.11 1.34 <0.01 0.99 1.04 1.02 1.52 1.03 1.05 0.93 

Dlock
‡ 0.88 -0.31 0.00 0.85 0.95 0.84 1.17 0.89 0.82 0.73 

Tmean 0.60 0.05 0.00 0.34 0.52 0.70 0.13 0.54 0.84 0.47 
ISSext,alg 0.85 0.00 0.00 1.00 0.98 0.98 0.26 0.98 0.96 0.99 
Leak 1.05 1.20 1.00 0.98 1.00 1.03 1.15 1.02 1.04 1.02 

QSSleak 

EXTB -0.47 -0.05 0.00 -0.39 -0.45 -0.56 -0.14 -0.42 -0.62 -0.45 
Iext -1.76 -2.17 0.00 -0.89 -1.40 -1.33 -0.75 -1.56 -1.87 -1.57 
L 0.92 1.13 0.00 0.33 0.61 0.80 0.77 0.73 1.04 0.66 
W 1.13 1.42 0.00 0.32 0.66 1.03 0.75 0.84 1.28 0.82 
Tmean 0.73 0.92 0.00 0.16 0.43 0.65 0.09 0.56 0.83 0.51 
Vlock 1.09 1.13 0.00 1.00 1.01 1.08 1.00 1.05 1.11 1.08 
ISSext,alg 0.96 0.96 0.00 1.00 0.98 0.95 0.03 0.98 0.96 0.99 
EXTB -0.56 -0.67 0.00 -0.20 -0.34 -0.54 -0.10 -0.43 -0.62 -0.47 
Ks,l -0.48 -0.58 0.00 -0.17 -0.28 -0.48 -0.10 -0.36 -0.53 -0.40 

QSSlock 

Fboat 0.80 0.69 0.00 0.00 0.93 0.76 0.00 0.83 0.79 0.86 
Iext -0.60 0.60 -¶ -0.33 -0.50 -0.64 0.11 -0.56 -0.88 -0.48 

L 0.82 0.26 +¶ 0.46 0.66 0.81 0.59 0.69 1.02 0.60 

W 0.98 0.28 +¶ 0.48 0.77 1.03 0.59 0.79 1.27 0.75 
Tmean 0.61 0.05 0.00 0.29 0.54 0.67 0.12 0.54 0.84 0.47 
ISSext,alg 0.86 0.00 0.00 1.00 0.98 0.98 0.24 0.98 0.96 0.99 

QSStot 

EXTB -0.47 -0.05 0.00 -0.31 -0.47 -0.51 -0.13 -0.42 -0.61 -0.44 
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Average Sensitivities 
Var.  

Most 
Sig. 
Params. Avg Max Min 1Q 2Q 3Q W Sp Su A 

Iext -1.59 -0.21 -¶ -1.29 -1.27 -1.36 -0.75 -1.45 -1.75 -1.43 

L 1.77 1.18 +¶ 1.54 1.71 1.69 1.59 1.66 1.88 1.51 

W 2.24 1.20 +¶ 1.67 2.03 2.25 1.59 1.95 2.45 1.99 
Tmean 1.43 0.76 0.74 1.11 1.27 1.42 0.91 1.28 1.57 1.23 
Crad 0.96 0.79 0.77 0.99 0.91 1.01 0.85 0.84 1.01 1.00 
ISSext,alg 0.91 0.00 <0.01 0.99 0.82 0.94 0.44 0.95 0.92 0.97 
RAD 0.96 0.79 0.77 0.99 0.91 1.01 0.85 0.84 1.01 1.00 
Tmag 0.52 -0.42 -0.41 -0.32 -0.04 0.60 -0.47 0.15 0.81 0.23 
Tphase 0.49 -0.45 -0.34 -1.49 0.30 0.74 0.14 2.59 0.15 -2.33 
EXTB -1.13 -0.98 -0.95 -1.21 -1.10 -1.13 -1.04 -1.02 -1.17 -1.19 
Ks,l -0.99 -0.81 -0.79 -1.03 -0.94 -1.03 -0.87 -0.85 -1.04 -1.04 

ISSbio 

LITSED -0.68 -0.05 -0.09 -0.19 -0.37 -0.76 -0.07 -0.47 -0.80 -0.71 
† Average sensitivity for Dweir ±10% and -25%; at Dweir +25%, the weir depth exceeded lock depth and 

caused an excessive sensitivity. 
‡ Only significant at the -25% level, when Dlock < Dweir. 
¶ Because the minimum algae concentration was nearly zero, extreme values of Sr were frequently 

calculated whenever any change in minimum algae concentration was seen; in these cases, this 
column is simply marked ‘+’ or ‘-‘ to indicate a positive or negative correlation, respectively. 

 

Table 34. Sensitivity of algal dry mass concentration to variables which cause an absolute value 
for Sr less than 0.5. 
Sensitivity Variable (sign of Sr) 

Sr > 0.1 or 
Sr < -0.1 

Irunoff (-) 
Dweir (+) 
Crad (+) 
CSboat,coh (-) 
TP (+) 
RAD (+) 

Tmag (+) 
Tphase (+) 
Ks,l (-) 
Cchl (+) 
LITSED (-) 
Fboat (-) 

0 <Sr< 0.1 
or 
0 >Sr> -0.1 

PREC (-) 
PE (+) 
Qabs (+) 
Lweir (-) 
Dlock (+) 
Empty (+) 
V lock (+) 
L lock (-) 
CSlock,non (-) 
CSlock,coh (-) 
Diam (-) 
SG (-) 

CSboat,non (-) 
vb (+) 
ISSrunoff (-) 
ISSext (-) 
Ce (+) 
Cd,weir (-) 
Seep (+) 
Leak (+) 
τcd (-) 
Cd,drag (+) 
LITALG (-) 

Sr = 0 Hsides Eboat 
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Appendix E. Calibrated Parameters for 

HSPF 

This section provides tables of the calibrated parameters for HSPF.  Table 35 lists the 

hydrologic parameters, and Table 36 lists the sediment parameters.  Table 38 lists the 

parameters associated with the reaches, where the most upstream reach is reach 25.  

Table 39 lists the land surface parameters that vary monthly.   

 

Table 35. Hydrologic land surface parameters for HSPF. 
Parameter Forest Arable Other Ag Grassland Urban 
Pervious Land Parameters 
LZSN (in) 6 
INFILT (in/hr) 0.11 
LSUR (ft) 405.9 417.0 373.7 414.7 434.4 
SLSUR 0.054 0.049 0.069 0.050 0.041 
AGWRC (1/day) 0.99 0.975 0.975 0.975 0.975 
INFEXP 2 
INFILD 2 
DEEPFR 0.31 
BASETP 0.04 
AGWETP 0.04 
UZSN (in) 0.1 
NSUR 0.30 0.15 0.20 0.20 0.15 
INTFW 1 
IRC 0.3 
Impervious Land Parameters 
LSUR (ft) 150 
SLSUR 0.041 
NSUR 0.05 
RETSC 

 

0.10 
 

 

 

 

 

 

 

 

 



 229 

Table 36. Sediment land surface parameters for HSPF. 
Parameter Value 
Pervious Land Parameters 
SMPF 1 
KRER 0.32 
JRER 2.0 
AFFIX (1/day) 0.01 
NVSI (lb-ac/day) 1.0 
KSER 10 
JSER 1.73 
KGER 0 
JGER 2.5 
Impervious Land Parameters 
KEIM 1.0 
JEIM 2.1 
ACCSDP 0.01 
REMSDP 0.05 
 

Table 37. Reach parameters for HSPF constant for all reaches. 
Parameter Value 
KS 0.5 
DB50 0.01 
POR 0.5 
SAND-D (in) 0.01 
SAND-W (in/sec) 0.4 
SAND-RHO (g/cm³) 2.65 
SAND-KSAND 0.5 
SAND-EXPSAND 2.0 
SILT-D (in) 0.0006 
SILT-W (in/sec) 0.0005 
SILT-RHO (g/cm³) 2.3 
CLAY-D (in) 0.0001 
CLAY-W (in/sec) 0.00001 
CLAY-RHO (g/cm³) 2.0 
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Table 38. HSPF reach parameters that vary by reach. 

Reach 
# 

LEN 
(mi) 

DELTH 
(ft) 

BEDWID 
(ft) 

TAUCD 
– SILT 
(lb/ft²) 

TAUCS 
– SILT 
(lb/ft²) 

M – 
SILT 

(lb/ft²d) 

TAUCD 
– 

CLAY 
(lb/ft²) 

TAUCS 
– 

CLAY 
(lb/ft²) 

M – 
CLAY 
(lb/ft²d) 

13 1.35 9.84 42.65 0.25 0.85 0.010 0.18 0.75 0.010 
14 2.07 26.25 39.37 0.44 0.85 0.010 0.32 0.75 0.010 
15 1.52 16.41 36.09 0.37 0.85 0.010 0.27 0.75 0.010 
16 2.64 19.69 32.81 0.3 0.85 0.010 0.25 0.75 0.010 
17 0.59 9.84 32.81 0.51 0.85 0.010 0.36 0.75 0.010 
18 0.99 3.28 32.81 0.3 0.85 0.010 0.25 0.75 0.010 
19 0.40 9.84 26.25 0.75 1.75 0.010 0.53 1.50 0.010 
20 1.53 6.56 24.61 0.3 1.00 0.010 0.25 0.90 0.010 
21 2.16 26.25 22.97 0.27 1.00 0.010 0.25 0.90 0.010 
22 0.72 9.84 19.69 0.28 0.75 0.015 0.17 0.65 0.015 
23 4.36 52.50 19.69 0.25 0.75 0.015 0.15 0.65 0.015 
24 2.94 32.81 16.41 0.2 0.75 0.015 0.12 0.65 0.015 
25 1.69 32.81 13.12 0.28 0.75 0.015 0.17 0.65 0.015 
 

 

Table 39. Land surface parameters for HSPF that vary monthly. 
Parameter Land Use Jan Feb Mar April May Jun Jul Aug Sep Oct Nov Dec 

Forest 0.03 0.03 0.05 0.09 0.14 0.18 0.18 0.14 0.09 0.07 0.05 0.03 
Arable 0.02 0.02 0.09 0.1 0.15 0.2 0.2 0.15 0.1 0.08 0.03 0.03 
Other Ag 0.03 0.03 0.08 0.1 0.15 0.2 0.2 0.15 0.1 0.08 0.05 0.03 
Grassland 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.08 0.07 0.06 0.05 

CEPSC 

Urban 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.08 0.07 0.06 0.05 
Forest 0.3 0.35 0.4 0.45 0.5 0.65 0.65 0.6 0.5 0.45 0.4 0.35 
Arable 0.1 0.1 0.1 0.2 0.2 0.65 0.65 0.6 0.5 0.45 0.2 0.1 
Other Ag 0.1 0.1 0.1 0.2 0.2 0.65 0.65 0.6 0.5 0.45 0.2 0.1 
Grassland 0.3 0.35 0.4 0.45 0.5 0.65 0.65 0.6 0.5 0.45 0.4 0.35 

LZETP 

Urban 0.3 0.35 0.4 0.45 0.5 0.65 0.65 0.6 0.5 0.45 0.4 0.35 
Forest 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.75 0.75 
Arable 0.55 0.55 0.55 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.55 0.55 
Other Ag 0.25 0.25 0.25 0.3 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.25 
Grassland 0.7 0.7 0.7 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 

COVER 

Urban 0.7 0.7 0.7 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 

 


