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Classical and thermodynamic stability of black holes

Ricardo Jorge Ferreira Monteiro

Thesis summary

We consider the stability of black holes within both classical general relativity and

the semiclassical thermodynamic description. In particular, we study linearised pertur-

bations and their contributions to the gravitational partition function. Exploring the

connection between classical and thermodynamic stability, we find classical instabilities

and new families of vacuum black holes.

We start by studying negative modes of black hole partition functions, which repre-

sent pathologies in the one-loop quantum corrections. In particular, we extend this study

to charged black holes (Reissner-Nordström), using a method based on gauge-invariant

perturbations, and to rotating black holes (Kerr-AdS), where a numerical technique is

employed. In the both cases, we find a negative mode in the region where local thermo-

dynamic stability fails, as expected.

We then present the first examples of linearised classical instabilities of vacuum

asymptotically flat black holes. We analyse numerically perturbations of Myers-Perry

solutions, both in the single spin and in the equal spins (odd D) cases. For sufficiently

high rotation, in the so-called ultraspinning regime, new negative modes of the partition

function may arise whose threshold marks both the onset of a classical instability of the

black hole (not just of the associated black branes) and the bifurcation to a new family

of black hole solutions. In the case of singly-spinning solutions, we find the threshold

stationary modes signalling the instabilities, confirming a conjecture by Emparan and

Myers. In the case of solutions with equal spins, we are able to find perturbations that

grow exponentially in time in D = 9 (we believe that this extends to higher odd D).

Furthermore, the new family of solutions bifurcating at the onset of the instability should

have a single rotational symmetry, saturating the rigidity theorem.
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Chapter 1

Black holes

Black holes are arguably the most interesting objects in theoretical physics. Understanding

their dynamics forces us to fit together two widely accepted theories of Nature: general

relativity (Einstein’s classical theory of gravity) and quantum mechanics, a goal that has

eluded theoretical efforts so far, despite encouraging successes. Black hole thermodynamics

is at the crossroad between the classical and the quantum pictures. In this thesis, we will

study the behaviour of black holes as seen both from classical general relativity and from

their quantum thermodynamic properties.

This Chapter includes a basic introduction to black holes, a summary of their ther-

modynamic properties, and a review of black hole solutions in spacetimes of different

dimensionality. Only later will we focus on our main subject of research: black hole

stability.

1.1 Introduction

In Newtonian gravity, a massive body can have an escape velocity greater than the ve-

locity of light. The analogue of such a “black planet” in general relativity is a black

hole. However, the analogy does not go far since black holes are intrinsically relativistic

objects highlighting two basic features of Einstein’s theory: causal horizons and spacetime

5



6 CHAPTER 1. BLACK HOLES

singularities.

According to general relativity, the gravitational force is caused by the curvature of

spacetime. Spacetime consists of three spatial dimensions and a time dimension put to-

gether in a geometrical way. (In higher-dimensional gravity, additional spatial dimensions

are considered.) It is a pseudo-Riemannian manifold (M, gab) of Lorentzian signature

whose dynamical metric gab obeys the Einstein field equations. Let Rab be the Ricci

curvature and R the scalar curvature. The Einstein equations are

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab . (1.1)

The parameter Λ, the cosmological constant, denotes the contribution from vacuum energy,

and, on the right-hand side, Tab is the energy-momentum tensor of all the matter fields. It

is clear that the dynamics of spacetime is affected by any field content. On the other hand,

any field is affected by gravity since it lives on a curved spacetime, with massive particles

moving along timelike geodesics and massless particles moving along null geodesics.

Solid evidence for general relativity has been provided by the corrections to Newto-

nian dynamics in the Solar system, and the indirect detection of gravitational waves from

binary pulsars [1].

A crucial distinction from Newtonian gravity is that the “action-at-a-distance” is

substituted by a built-in causality structure in Einstein’s theory. The initial-value formu-

lation of general relativity splits the 10 Einstein equations into 6 evolution equations and

4 constraint equations [2]. The latter constrain what is suitable initial data on a Cauchy

spacelike surface. The former consist of a system of hyperbolic quasilinear equations that

evolves the initial data in time. The resulting causality structure looks locally like the

light-cone structure of special relativity. However, since the spacetime is dynamical, there

is the possibility that the Cauchy evolution of smooth geometry and matter data on a

spacelike surface may lead to a singularity due to a cathastrophic event, such as the gravi-

tational collapse of a massive body or a high energy collision. By singularity, we mean that

the spacetime is geodesically incomplete for timelike or null geodesics, and that geometric
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invariants constructed with the metric curvature may diverge. The causal propagation of

such a spacetime pathology could challenge the physical significance of general relativity,

in spite of the experimental successes.

Singularities indeed arise in Einstein’s theory as shown by the theorems of Penrose

and Hawking [3]. Their standard interpretation is that general relativity breaks down for

curvatures of the order of the Planck scale, e.g. RabcdR
abcd ∼ c3/~G where ~ is Planck’s

constant, giving way to a quantum description of spacetime. Since general relativity is non-

renormalisable when treated as a quantum field theory of gravitons, a more fundamental

quantum theory of spacetime is required, and general relativity should be viewed as an

effective low energy theory. The physical significance of classical general relativity relies on

a protection mechanism from singularities known as cosmic censorship [4]. This hypothesis

(in the “weak” formulation) states that no naked singularities exist, i.e. singularities

arising from realistic matter (except perhaps at the Big Bang) can only form behind a

surface, called an event horizon, from within which no information may reach observers

outside that surface.

A black hole is the region contained inside an event horizon. More precisely, for

spacetimes with an asymptotic conformal structure, a black hole is the region of space-

time that does not lie in the causal past of future null infinity, and its boundary in the

full spacetime M is called the future event horizon H+ (to distinguish it from the past

event horizon H−, the boundary of communication of past null infinity, present in time-

symmetric solutions but absent for dynamically formed black holes). The singularity

theorems mentioned above then imply, under certain assumptions for the matter content,

that there is a singularity in the black hole.

The formation of black holes through the gravitational collapse of massive objects has

been studied analytically and numerically (see reviews e.g. in [5] and [6]), and recently the

formation through high energy collisions has also been addressed numerically [7]. Using

semi-realistic matter, an event horizon forms in agreement with cosmic censorship. In

fact, no matter is necessary for the formation of a black hole, as the focusing of incoming
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gravitational waves may be sufficient [5]. The results support the expectation that a black

hole will form whenever a given amount of energy is contained in a sufficiently small

region of space, as proposed by the hoop conjecture [8]. What is truly remarkable is

that the spacetime (at least in the four-dimensional asymptotically flat case) settles down

to a unique stationary black hole solution, regardless of the details of the initial matter

distribution.

The uniqueness theorems (see [9] for a review) show that four-dimensional vacuum

black holes which are asymptotically flat, stationary and have a connected horizon are

described by the Kerr metric [10]. This solution depends on two parameters only: the mass

M and the angular momentum J of the black hole, which are defined asymptotically as

conserved charges of the spacetime. They satisfy the extremality bound |J | ≤ GM2, whose

saturation gives a degenerate horizon (zero surface gravity), while otherwise the spacetime

is nakedly singular. The Kerr-Newman black hole [11] generalises the Kerr solution to

include electric and magnetic charges, the uniqueness for a connected horizon still holding

in the Einstein-Maxwell theory. The connectedness assumption can be dropped in the

static limit, except in the charged case with degenerate horizons where there exist multi-

black hole solutions of the Majumdar-Papapetrou type [12]. In the case of solutions with

a cosmological constant, uniqueness has not been proven for asymptotically de Sitter (dS,

Λ > 0) or anti-de Sitter (AdS, Λ < 0) spacetimes but the only localised black hole known

in four dimensions is the generalisation of the Kerr case [13]. We shall later discuss how

this simple picture changes drastically in higher-dimensional gravity, where there is a great

variety of rotating black hole solutions.

Observational evidence for the existence of black holes in the universe is indirect

only, since no signal comes out of them according to general relativity. X-ray signals do

come from accretion disks around black hole candidates, sometimes in binary systems.

The geodesic motion of nearby bodies can also indicate the presence of a black hole. The

size, mass and angular momentum of the candidates is inferred from that data, and the

evidence for black holes is abundant. A supermassive black hole is thought to exist at

the centre of most galaxies [14], and even evidence for near-extremal black holes in binary
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systems has been reported, for instance |J | > 0.98GM2 in [15]. Quantum evaporation of

black holes, to be discussed in the next Section, opens the possibility of direct evidence,

but the effects are too small for large astrophysical black holes. Very small astrophysical

black holes, which would provide a definite signature, have not been detected.

Hereafter, we shall use natural units c = G = ~ = kB = 1, where kB is Boltzmann’s

constant, implicit in the discussion of thermodynamics.

1.2 Quantum description

1.2.1 Black hole thermodynamics

The laws of black hole mechanics have a close analogy with the common laws of thermo-

dynamics [16–18]. This observation and the discovery of Hawking radiation [19,20] paved

the way for progress in the quantum understanding of spacetime.

A small variation in the mass M of a rotating black hole with angular momentum

J , and say electric charge Q, satisfies

dM =
κ

8π
dA+ ΩdJ + φdQ , (1.2)

where κ is the surface gravity, A is the area of the event horizon, Ω is the angular velocity

of the horizon and φ is the electric potential on the horizon. The analogy with the common

first law of thermodynamics is clear since M is the conserved charge associated with the

time-translation symmetry, i.e. the energy. J andQ are identified with “particle numbers”,

and Ω and φ are identified with “chemical potentials”, which are constant on the horizon,

as required by equilibrium. We are left with the identifications of the temperature and

the entropy of the black hole, T = ακ/8π and S = A/α, respectively, where α is a positive

constant. The zeroth law of thermodynamics is the statement that the surface gravity κ

is constant on the horizon. The second law is the area law of classical general relativity,

stating that the event horizon area A never decreases [21]. When matter is considered,
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both the black hole entropy and the total entropy – black hole plus matter outside –

must be non-decreasing classically. (Hawking radiation, a quantum effect, may cause the

horizon area A to decrease, but this is compensated by the entropy of the radiation so

that the total entropy never decreases.) To complete the four laws of thermodynamics,

the third law says that it is not possible to make κ vanish through a finite-time physical

process.

Although M , A, J and Q play the role of the extensive thermodynamic variables

in the common applications of the first law, they have different scaling dimensions. For

asymptotically flat solutions in four spacetime dimensions, the first law and the scaling of

those quantities imply the Smarr relation [22],

M = 2

(
κA

8π
+ ΩJ

)
+ φQ . (1.3)

The relation fails for solutions with a cosmological constant, since an independent length

scale is introduced.

The laws of black hole mechanics result from the structure of the Einstein equations

and from the fact that event horizons of stationary black holes are Killing horizons [17].

A Killing horizon is generated by a Killing vector K which is null on the horizon. For

a four-dimensional black hole, K = ∂t + Ω ∂ϕ , where ∂t and ∂ϕ are the stationarity and

axisymmetry Killing vectors, respectively. We will later discuss specific aspects of higher

dimensions. The first law has actually been shown to hold for any covariant Lagrangian

theory of gravity (e.g. arising as a higher-derivative curvature correction to general relativ-

ity) if the Bekenstein-Hawking entropy is substituted by the so-called Wald entropy [23,24].

The corresponding second law, however, remains an open problem. Let us also point out

the result of Jacobson [25] stating that, while the first law is a consequence of the equations

of motion, the converse is also true if we formulate the first law conveniently. Indeed, the

Einstein equations can be derived by requiring that energy-momentum fluxes δQ across all

local Rindler horizons (causal horizons of uniformly accelerated observers) through each

spacetime point are reversible, i.e. δQ = κ dA/8π.
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The considerations above are purely classical. The temperature of a black hole,

which emits nothing classically, can only be understood quantum-mechanically. The break-

through by Hawking [19, 20] was to use quantum field theory on a curved background to

show that black holes behave like black bodies in the usual thermodynamic sense, emiting

radiation with a thermal spectrum. The Hawking temperature is given by T = κ/2π, i.e.

α = 4. The classical limit ~→ 0 is clear if we do not use natural units: kBT = ~κ/2πc→ 0.

A stationary observer detects a thermal bath with temperature T/V , where V =
√
−ξaξa

is the redshift factor (ξ = ∂t). The radiation is the effect of acceleration, characteristic of

flat space too: Rindler observers, i.e. observers with uniform acceleration a, detect Unruh

radiation with T = a/2π [26].

One of the great puzzles in this picture is what happens to the information of

an object that enters the black hole. Since the radiation emitted by the black hole is

thermalised, this information seems to be irremediably lost, violating unitarity [27]. The

rate of evaporation, i.e. mass loss through Hawking radiation, is given by the Stefan-

Boltzmann law, dM/dt ∼ −AT 4 ∼ −M−2, since A ∼ M2 and T ∼ M−1. Evaporation

is thus unimportant for large astrophysical black holes, but it dominates the behaviour of

very small black holes, and it would provide a distinct observational signature in case they

would be produced in accelerator experiments. In the final stages of evaporation, as the

black hole approaches the Planck size, a full quantum description is unavoidable. Such a

description must solve both the information paradox and the singularity problem.

The discussion above implies that the entropy of a black hole, known as the Beken-

stein-Hawking entropy, is given by S = A/4, which strongly suggests that the quantum

degrees of freedom of the black hole are effectively distributed over a surface, rather than

a volume. This crucial observation is the basis of the holographic principle, proposed by ’t

Hooft [28] and Susskind [29]. This principle says that quantum gravity in a given volume

should be described by a theory on the boundary of that volume, analogously to a common

planar hologram that generates a 3D image. The number of degrees of freedom is thus

drastically smaller than the näıve expectation.
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The Euclidean path integral approach to black hole thermodynamics, on which this

thesis heavily relies, will be reviewed in Chapter 3.

1.2.2 String theory and the AdS/CFT correspondence

Only a theory of quantum gravity can identify the microscopic degrees of freedom which

give rise to the Bekenstein-Hawking entropy. Moreover, according to the holographic

principle, this theory should admit two equivalent formulations: one as a bulk theory, in

which semiclassical general relativity arises explicitly as a low energy limit, and one as a

boundary theory, in which the description of gravity is not explicit but the distribution of

degrees of freedom is more conventional.

String theory, a promising candidate for a theory of quantum gravity, has made

progress on these two challenges coming from black hole thermodynamics: (i) it has pro-

vided a counting of microscopic states for specific classes of black holes leading to the

Bekenstein-Hawking entropy, first reported in [30], and (ii) it has provided a concrete re-

alisation of the holographic principle, which is the anti-de Sitter / conformal field theory

(AdS/CFT) correspondence [31, 32]. We shall make a brief comment although this is not

a required background for the research described in this thesis.

The idea of string theory is that the universe is composed of small strings, which

resemble point particles at low energies, and that the worldsheet of a string (the (1+1)-

surface spanned by its time evolution) is quantised. The consistency of the quantum field

theory of the worldsheet has drastic consequences: the introduction of supersymmetry (to

avoid the existence of tachyons and naturally include both bosons and fermions in the

spectrum) and, more remarkably, the existence of ten spacetime dimensions (to ensure

Lorentz invariance). Agreement with the commonly perceived four dimensions requires

that six spatial dimensions are compactified on a very small scale. To offer in return, the

theory: contains a graviton-type string state in its spectrum; requires that, at low energies

and curvatures, the spacetime background on which the worldsheet moves satisfies the su-

pergravity equations of motion (to ensure conformal invariance of the worldsheet theory);
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and has a natural high energy cutoff scale (the string length) since interactions are not

point-like, which solves the non-renormalisability problem of general relativity. The dras-

tic consequences mentioned above can also be seen in a different light: supersymmetric

field theories have appealing properties, and the compactification of the extra-dimensions

provides a geometric framework to understand how the various parameters of the Standard

Model of particle physics can arise from a simpler fundamental theory. There are five dif-

ferent types of consistent string theories (types I, IIA, IIB, heterotic SO(32) and heterotic

E8 × E8), some of which have been shown to be related by dualities making them equiv-

alent. They have all been conjectured to arise as special cases of an eleven-dimensional

theory called M-theory.

The quantum understanding of black holes provided by string theory comes mainly

from the introduction of Dp-branes, which are extended objects with p spatial dimensions

on which the endpoints of open strings are restricted to move. A gauge theory arises

as the low energy description of these open strings. From a dual gravity perspective,

Dp-branes are extremal black branes (i.e. black holes with infinitely extended horizons

along p directions). The wrapping of D-branes on compact spaces can reproduce black

holes in lower dimensions, whose quantum properties can then be derived from those

of the D-branes. Strominger and Vafa [30] counted the degeneracy of D-brane states

corresponding to microstates of a five-dimensional class of extremal black holes, leading to

the first microscopic derivation of the Bekenstein-Hawking entropy. We should point out

that, while D-branes are intrinsically string theory objects, it has been argued that the

computation of the entropy may actually not rely on the string theory input, but rather

on the symmetry of the near-horizon geometry or of the low energy wave equation [33,34]

(see [35] for potential issues).

An outstanding development brought about by the understanding of D-branes is the

AdS/CFT correspondence proposed by Maldacena [31]. The original conjecture states that

type IIB string theory with AdS5×S5 boundary conditions is dual to N = 4 SU(N) super-

Yang-Mills theory defined on R × S3. This is a realisation of the holographic principle,

since we have a gravity theory (string theory) in a five-dimensional spacetime (AdS5,
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after compactification on S5) proposed to be equivalent to a four-dimensional field theory

without gravity. In particular, the semiclassical supergravity limit on the gravity side

corresponds to the strongly coupled limit on the field theory side. Black hole physics

in AdS can describe strongly coupled gauge theories at finite temperature (the Hawking

temperature of the black hole) and vice-versa. The conjecture is expected to extend to

other cases of string theory or M-theory with AdS (or “almost AdS”) boundary conditions,

the dual field theory being defined on the AdS boundary.

1.3 Higher-dimensional solutions

In this Section, we motivate the study of higher-dimensional gravity and review briefly the

literature on the existence and properties of black hole solutions, leaving the important

issue of stability for the next Chapter. Our main focus will be on vacuum solutions to

general relativity, with particular attention to Myers-Perry black holes, which will be

analysed in the last part this thesis. See [36] for a comprehensive review, although some

developments are more recent.

String theory is the original and most important motivation for the study of higher-

dimensional gravity. Black holes in spacetimes with up to ten dimensions are part of

string theory (or eleven dimensions, for M-theory). We mentioned in the last Section that

one of the theory’s major successes, the microscopic derivation of the Bekenstein-Hawking

entropy, was obtained for a class of five-dimensional black holes [30]. The AdS/CFT cor-

respondence [31,32] and its applications further motivate this study. The correspondence

implies that the dynamics of D-dimensional field theories at finite temperature and that

of (D+1)-dimensional black holes are equivalent. Gravity solutions have been constructed

à la carte to describe strong-coupling features of field theories, in an effort to learn some-

thing about quantum chromodynamics [37] and condensed matter physics [38]. Other

scenarios, which try to explain the hierarchy problem (the weakness of 4D gravity when

compared to the Standard Model interactions) by introducing extra-dimensions, possibly

in string theory embeddings, open the possibility that black hole production in particle
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collisions is within future experimental reach, as reviewed in [39].

Higher-dimensional gravity is also important in its own right. A new insight is

gained by studying gravity using the spacetime dimensionality D as a parameter. Indeed,

many properties of black hole solutions are specific to four dimensions.

In Newtonian gravity, the attractive gravitational force is supressed with the radial

distance as r−(D−2), while the repulsive centrifugal force is supressed as r−3 (for given

mass and angular momentum) independently of D since it acts on a plane of rotation.

This is why stable planetary orbits are not possible for D > 4. One might expect that the

physics of black holes, especially when there is rotation, will also be different. In fact, there

will be black holes with different horizon topology and also disconnected horizons. Black

holes with an arbitrarily large angular momentum for a given mass can also be found.

These are closely related to the existence of solutions with extended horizons (absent in

four dimensions without cosmological constant).

Another obvious contrast is the number of rotation planes. The Cartan subgroup,

i.e. the maximal Abelian subgroup or maximal torus, of SO(3) is U(1), which means

that there is a single independent rotation plane in D = 4. The associated rotational

Killing vector ξ = ∂φ defines the angular momentum as an asymptotic conserved charge,

J ∼
∫
S2
∞
∗dξ . However, the Cartan subgroup of SO(D − 1) is U(1)n, so that there

are n = b(D − 1)/2c (where bc stands for the smallest integer part) independent rotation

planes in D−1 spatial dimensions. These allow for the definition of n independent angular

momenta, Ji ∼
∫
SD−2
∞
∗dξi . (Notice that only one of the ξi’s must be a Killing vector of

the spacetime according to the rigidity theorem, to be discussed below.)

As we mentioned in Section 1.1, the uniqueness of the Kerr black hole among sta-

tionary asymptotically flat vacuum black holes with a connected horizon is a remarkable

feature of D = 4. In higher dimensions, the generalisation of the Schwarzschild solution,

obtained by Tangherlini [40], is also the unique static vacuum black hole [41]. Uniqueness

extends to the higher-dimensional Reissner-Nordström black hole for the Einstein-Maxwell

theory in the static non-degenerate case [42], while in the degenerate case there exist the
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higher-dimensional Majumdar-Papapetrou solutions, as in four dimensions. It is the in-

clusion of rotation that changes this simple picture.

1.3.1 Myers-Perry solutions

The Myers-Perry solution [43] is the natural generalisation of the Kerr black hole to higher

dimensions, and (so far) the only exactly known rotating solution in D > 5. It is a rather

non-trivial generalisation, due to the possibility of rotation in different planes. Fortunately,

as the Kerr solution, it can be written in the so-called Kerr-Schild form,

gµν = ηµν +H(xλ)kµkν , (1.4)

where ηµν is the Minkowski spacetime metric and kµ is a null vector with respect to gµν .

The fact that kµ is then null also with respect to ηµν allows for a simplification of the

Einstein equations similar to linearisation.

We present the solution here in more detail because it will be useful in this thesis.

Let us take D = 2n + 1 + ε, where n = b(D − 1)/2c is the number of angular momenta

and ε = (D − 1){mod 2} is 0 (D odd) or 1 (D even). There are n azimuthal angles φi

and n+ ε direction cosines µi obeying
∑n+ε

i=1 µ
2
i = 1. In Boyer-Lindquist coordinates, the

metric can be written as

ds2 = −dt2 +
2m

U

(
dt−

n∑
i=1

ai µ
2
i dφi

)2
+

n∑
i=1

(r2 + a2
i ) (dµ2

i + µ2
i dφ

2
i )

+
U dr2

V − 2m
+ r2 dµ2

n+ε , (1.5)

where the last term is present only for even D, and

U(r, µi) ≡ rε
n+ε∑
i=1

µ2
i

r2 + a2
i

n∏
j=1

(r2 + a2
j ) , V (r) ≡ rε−2

n∏
i=1

(r2 + a2
i ) . (1.6)

The event horizon is located at r = r+, where r+ is the largest root of V (r) − 2m = 0.
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The Kerr black hole case (D = 4) is included as n = ε = 1.

The solution is parametrised by n+ 1 length scales: the horizon radius r+ and the

n rotation parameters ai. The horizon area is

A =
AD−2

r1−ε
+

n∏
i=1

(r2
+ + a2

i ) = 2AD−2mr+ , where AD−2 =
2π(D−1)/2

Γ[(D − 1)/2]
(1.7)

is the volume of a unit-radius (D − 2)-sphere. The surface gravity κ and the angular

velocities on the horizon Ωi are given by

κ = r+

n∑
i=1

1

r2
+ + a2

i

− 2− ε
2 r+

, Ωi =
ai

r2
+ + a2

i

. (1.8)

The asymptotic charges, the mass M and the angular momenta Ji, which uniquely specify

a solution, are given by

M =
(D − 2)AD−2

8π
m , Ji =

2

D − 2
aiM . (1.9)

Extremality, for which the temperature T = κ/2π vanishes, occurs for

n∑
i=1

1

1 + (8π Ji/A)2
=

2− ε
2

=

 1 D odd

1/2 D even
. (1.10)

In D = 4, this introduces the bound J ≤ M2 on the angular momentum, beyond which

the Kerr solution is nakedly singular. Does such a bound exist in higher dimensions? Let

us pick up a direction through the origin in the space {Ji} for a fixed mass. We can readily

see from (1.10) that a direction with regular extremal limit requires Ji 6= 0 ∀i. Otherwise:

• D even: There is no bound when one or more of the angular momenta vanish,

since it is impossible to satisfy (1.10), which leaves all the remaining angular momenta

unbounded for a given mass.

• D odd: There is no bound when two or more of the angular momenta vanish,

leaving all the remaining angular momenta unbounded for a given mass. However, there
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D = 5: D = 6:

J1

J2

J1

J2

D = 7: D = 8:

Figure 1.1: Shape of the parameter space of angular momenta for fixed mass in Myers-
Perry black holes for D = 5, 6, 7, 8.

is a bound corresponding to (1.10) when a single angular momentum vanishes. The satu-

ration of the bound gives a nakedly singular solution, rather than an extremal black hole,

since it is required that A→ 0 (no event horizon).

Figure 1.1 presents some examples. In D = 5, there are two angular momenta and,

if one of them vanishes, there is a bound on the other for a given mass, the saturation

of which gives a naked singularity (the four corners in Figure 1.1). In D = 6, there are

two angular momenta and, if one of them vanishes, there is no bound on the other. In

D = 7, there are three angular momenta and two cases occur: if only one vanishes, there

is a singular bound (the intersections of the extremality curve with the J1,2,3 = 0 planes

in Figure 1.1); but if two vanish, there is no bound (along the axes). In D = 8, there are

three angular momenta and, if any of them vanish, there is no bound on the other two.

The fact that there are solutions with arbitrarily high angular momentum for a
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given mass allows for different regimes, e.g. in the D > 5 singly-spinning we can have

|J |/M
D−2
D−3 � 1 but also |J |/M

D−2
D−3 � 1. This hints at a rich phenomenology, as we shall

confirm.

The isometry group of the Myers-Perry family is R×U(1)n (up to discrete factors),

where R corresponds to the time translations and U(1)n to the rotational symmetries.

In Chapters 7 and 8, we will consider particular cases of the Myers-Perry family with

enhanced symmetry, namely solutions with a single spin (say J1 6= 0, Ji = 0 ∀i > 1), which

have isometry group R× U(1)× SO(D − 3), and solutions with equal spins (Ji = J̄ ∀i),

which have isometry group R× U(n).

The Myers-Perry family has been extended to asymptotically (A)dS spacetimes in

[44] (D = 5) and [45, 46] (D > 5). It is the only exactly known family of localised black

holes with that asymptotic behaviour.

1.3.2 Plethora of black holes

There are no solutions with extended event horizons in four-dimensional general relativity

unless a cosmological constant is present.1 A reason for this is that no asymptotically flat

black holes exist in D < 4. Notice that the direct product of two Ricci-flat manifolds is also

a Ricci-flat manifold, so that solutions with extended horizons are trivially constructed

from lower dimensional black holes. Consider the metric of a (D+N)-dimensional vacuum

black brane which uniformly extends a D-dimensional asymptotically flat vacuum black

hole with metric gab along RN ,

ds2
brane = gabdx

adxb + d~z · d~z . (1.11)

The simplest example is the Schwarzschild string, SchwarzD × R. Black branes need

not be uniform and need not be obtained from a direct product. We will discuss how

1Although black hole spacetimes in D = 4 which asymptote to AdS in all spatial directions are restricted
to have spherical event horizon topology [47], solutions with extended cylindrical, planar and hyperbolic
horizons exist [48–51].
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families of non-uniform branes bifurcate from uniform branes due to linear instabilities

with stationary threshold.

The existence of black strings is suggestive. Take a segment of a black string and

bend it to make it circular like a ring, introducing also rotation on the plane of the circle so

that the centrifugal force may balance the gravitational pull. Emparan and Reall showed

in [52] that there is indeed an asymptotically flat black ring solution in D = 5 (generalised

to have two angular momenta by Pomeransky and Sen’kov [53]). The topology of the black

ring event horizon is S1 × S2. Topological restrictions, such as Hawking’s proof [54] that

the horizon topology must be spherical in D = 4, are much weaker in higher dimensions

(see e.g. [55]).

The existence of black rings shows that uniqueness is lost generically for rotating

black holes. There is a region in the parameter space of D = 5 black holes, near the corners

of the Myers-Perry parameter space of Figure 1.1, where three solutions with connected

horizons exist: the Myers-Perry black hole and two black ring solutions. Let us concentrate

on the case with a single spin, shown in Figure 1.2. There are two black ring solutions

meeting at a cusp in the graph: the fat ring has smaller entropy and finite J range, and

the thin ring can have arbitrarily large J . The existence of these two solutions shows that

uniqueness fails even for a given horizon topology. In the plot, the Myers-Perry black hole

and the fat ring meet at a zero-area point where both cases give the same nakedly singular

solution. Figure 1.3 presents lower-dimensional pictures of a fat ring and a thin ring.

One may also wonder whether stationary vacuum solutions with disconnected hori-

zon components can exist, which is believed to be impossible in D = 4. Take a black ring

(BR), put it around a Myers-Perry (MP) black hole, and then make the black ring rotate

faster to balance the gravitational pull, in a Saturn-like configuration as in Figure 1.3.

Elvang and Figueras [56] constructed the singly-spinning black Saturn solution, which has

a disconnected event horizon: an S3 component and an S1×S2 component. There are re-

gions of the parameter space where the solution can have the same asymptotic charges as a

Myers-Perry black hole or a black ring. However, the solution possesses a continuous type
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J

M3�2

A

M3�2

Figure 1.2: Entropy S versus angular momentum J for fixed mass M , for the singly-
spinning black rings (red) and the D = 5 Myers-Perry black hole (blue). Notice the
zoomed detail in the top-right corner, where the fat and the thin ring solutions coincide
at the cusp.

Figure 1.3: Lower-dimensional pictures of the event horizons of a fat ring, a thin ring and
a black Saturn (left to right).

of non-uniqueness given the asymptotic charges2: masses and angular momenta can be

assigned to each horizon component by Komar integrals, and they can vary while keeping

the asymptotic mass M = M‘MP’ +M‘BR’ and angular momentum J = J‘MP’ +J‘BR’ fixed.

The case J‘MP’ = −J‘BR’ shows that non-static J = 0 solutions are possible. Furthermore,

there are interesting frame dragging effects between the two components. Solutions have

also been constructed which represent two concentric black rings rotating on the same

plane (di-rings) [58] or on perpendicular planes (bi-rings) [59,60].

These solutions were obtained with powerful solution generating techniques for D =

2Continuous non-uniqueness was first obtained for black rings with a dipole charge [57].
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5, reviewed in [36], which assume the existence of two rotational Killing symmetries. There

is uniqueness in this class, given the asymptotic charges and the so-called rod structure that

generates the solution [61]. The failure to construct an analogous scheme in D > 5 is the

reason why Myers-Perry solutions are the only rotating solutions known exactly. However,

thin black rings with large rotation in D > 5 have been constructed using approximate

methods [62]. These methods were later put into a more systematic framework, where

black holes with quasi-extended horizons are given approximate solutions called blackfolds

[63–65]. The approach allows for the construction of a variety of solutions with different

horizon topology. This is important since, as we mentioned, topological restrictions are

much weaker in higher dimensions.

An important recent development is related to the rigidity theorem, generalised

from D = 4 [3] to higher dimensions in [55, 66], which requires stationary (non-extremal)

black holes to have at least one rotational symmetry. Until recently, not a single black

hole had been found with only one rotational symmetry, though such solutions had been

conjectured to exist [67]. The blackfold approach gave the first example, as it allowed for

the approximate construction of helical black rings in any D > 4 which possess a single

rotational symmetry [65]. The perturbative numerical work of [68], presented in Chapter 8

of this thesis, provided the first evidence of such solutions with spherical horizon topology,

in D = 9 (and all higher odd dimensions, we expect). A single rotational symmetry was

also obtained in all even D ≥ 8 for near-horizon geometries which give an infinite class of

distinct horizon topologies and are consistent with the requirements of asymptotically flat

or AdS extremal black holes [69].

The goal is to uncover the phase diagram analogous to Figure 1.2 but for all solutions

in any D > 4. Notice how the fat ring and the Myers-Perry solution coincide at one point

in that Figure. The black Saturn in thermodynamic equilibrium (horizon components

with the same temperature and angular velocity) appears in this plot in a similar way to

the black ring, also joining the Myers-Perry solution at the singular point; see Figure 2

of [70]. In D > 5, this singularity is “resolved” since the angular momentum is unbounded

for the singly-spinning Myers-Perry black hole (recall Figure 1.1). The expectation [62,71]
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is that the connection between phases at the singular bound in D = 5 will correspond in

D > 5 to bifurcations of regular solutions which interpolate between Myers-Perry black

holes and phases such as the black ring and the black Saturn. We shall elaborate on this in

Chapter 7, which is based on the numerical work of [72]. The results imply non-uniqueness

in D > 5 given spherical horizon topology.

It would be very interesting to see how the picture described here would change

with the inclusion of a cosmological constant, especially a negative one having in mind the

AdS/CFT correspondence. We mentioned that the Myers-Perry solution is the only one to

have been extended to asymptotically (A)dS spacetimes. However, black rings have been

constructed approximately in AdS [73] and there is no reason why a variety of solutions

should not exist in this case too.

1.3.3 Thermodynamics

The existence and – as we shall see – the stability of black hole solutions depend critically

on the dimensionality of spacetime. However, the laws of black hole thermodynamics are

a consequence of the structure of Einstein’s equations in any dimensions.

For charged black holes, the first law in higher dimensions is

dM =
κ(α)

8π
dA(α) + Ω

(α)
i dJ

(α)
i + φ

(α)
` dQ

(α)
` , (1.12)

where we have a sum over different planes of rotation – index i –, a sum over charges –

index ` – and a sum over different event horizon components – index (α). This extension of

(1.2) can be derived with the standard procedure [17], by considering that each component

is a Killing horizon of K(α) = ∂t + Ω
(α)
i ∂ϕi . Notice that the individual angular momenta

J
(α)
i and charges Q

(α)
` are not asymptotically defined conserved quantities in the case of

disconnected horizon components. Even in the case of a connected horizon, a dipole charge

Qdip
` has no net asymptotic contribution, despite being included in the first law [57,74].
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The Smarr relation, valid for asymptotically flat spacetimes, reads

(D − 3)M = (D − 2)

(
κ(α)A(α)

8π
+ Ω

(α)
i J

(α)
i

)
+ σ` φ

(α)
` dQ

(α)
` , (1.13)

where σ` is the scaling dimension of the charge (it differs for dipoles and conserved charges).

Thermodynamic equilibrium between components of the horizon requires

κ(α) = κ , Ω
(α)
i = Ωi , φ

(α)
` = φ` , (1.14)

which reduces the space of solutions, e.g. the contributions J
(α)
i from different horizon

components to the total conserved angular momenta Ji are fixed. The first law becomes

simply

dM =
κ

8π
dA+ ΩidJi + φ`dQ` . (1.15)



Chapter 2

Stability of black holes

The construction of a stationary black hole spacetime satisfying the equations of motion

is not enough to appreciate the physical significance of the solution. In a “realistic”

scenario, we have to know whether or not the spacetime is robust for small perturbations

of the geometry and matter fields. If not, a probe, say a particle moving on the black

hole background, may cause a disruptive backreaction; and the possibility of dynamically

forming such a black hole through a physical process, such as gravitational collapse, is put

in doubt.

Nevertheless, unstable solutions are not devoid of physical significance. Instabili-

ties have characteristic timescales, and a solution may be “sufficiently stable” for shorter

timescale phenomena. Furthermore, the manifestation of an instability is itself of great

interest. The onset may indicate a phase transition through a bifurcation, as we shall

see. Information on the timescales is very useful especially in the cases where different

instabilities are present, since it may give hints on what the final state is, given that the

full time evolution is often beyond our technology.

The complete description of black holes – stability included – must take into account

their quantum thermodynamic properties. It is well known that the Schwarzschild black

hole is classically stable at the linear mode level and yet it has a negative specific heat,

25
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which signals a (local) thermodynamic instability. Standard thermodynamic arguments

can also identify (global) phase transitions between different spacetimes.

In this Chapter, we will discuss both the classical and the thermodynamic stability

of black holes. It is one of the goals of this thesis to explore their connection.

2.1 Classical stability

We are concerned here with the stability of stationary black hole spacetimes as solutions to

a system of differential equations of motion, namely the Einstein equations, or extensions.

The literature often consists of linear stability studies. Just as happened for uniqueness,

stability does not always hold for asymptotically flat vacuum black holes in D > 4 when

rotation is considered. In fact, we shall argue that uniqueness and stability are intimately

related. Is there uniqueness of classically stable black holes? This remains a major open

problem.

2.1.1 Statement

Classical stability is based on the initial value problem of general relativity [2]. Brushing

aside the intricate technical aspects, the stability problem can be put as follows. Take

a Cauchy surface Σ of a stationary solution (M, gab) and perturb the initial data C

on Σ. That is, instead of the initial data C that develops into the stationary solution

from Σ, (MΣ, gab), take smooth initial data C̃ which is “close” to C and satisfies the

Einstein constraint equations. Now consider the future development (MΣ, g̃ab) of C̃. If,

for any “small” perturbation (C̃ close enough to C), the future development (MΣ, g̃ab) is

“close” to – or actually “approaches” – (MΣ, gab), then the stationary solution (M, gab) is

stable. For instance, starting with the Kerr spacetime, the perturbed solution (MΣ, g̃ab)

could become a Kerr solution at late times, but with slightly different mass and angular

momentum. Otherwise, the stationary spacetime is unstable, and the time evolution in

(MΣ, g̃ab) will lead “away” from (MΣ, gab) for a class of perturbations. The inclusion of
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matter fields Φs presents no problem of principle, the initial value problem being set for

the solution (M, gab,Φs).

For black hole spacetimes, only the development of the data on Σ between the future

event horizon H+ and spatial infinity is important, as the evolution inside the horizon

cannot affect the evolution outside. We are therefore interested only in the stability of the

black hole exterior.

The non-linearity of the Einstein equations makes the stability problem very chal-

lenging. A rigorous proof of non-linear stability for small perturbations has been achieved

only for the simplest of spacetimes, Minkowski space, by Christodoulou and Klainer-

man [75]. For black holes, apart from numerical approaches, only the linear problem has

been studied. In this case, one considers perturbations hab = g̃ab − gab of a black hole

background gab, subject to boundary conditions to ensure the regularity of the perturbed

spacetime g̃ab. The perturbations satisfy the linearised Einstein equations,

(∆Lh)ab −∇a∇bhcc + 2∇(a∇chb)c + gab
(
−∇c∇dhcd + �hcc +Rcdhcd

)
+ (2Λ−R)hab = 16πδTab , (2.1)

where ∆L is the Lichnerowiz operator, defined as

(∆Lh)ab ≡ −∇c∇chab − 2R c d
a b hcd + 2Rc(ahb)c , (2.2)

and δTab is the linear perturbation of the energy-momentum tensor. The gauge ambiguity

in hab must be dealt with, either by fixing the gauge or by considering gauge-invariant

quantities. Stability requires that these perturbations remain bounded in their time evo-

lution, the bound depending on the initial data. This usually means that an appropriate

positive definite functional F [h](t) of the perturbation, defined on a time slice Σt outside

the horizon, obeys F [h](t) ≤ CF [h](t0), where the initial data is defined on Σt0 , t > t0,

and C is a constant depending on the parameters of the background geometry. It may

also be possible to show “pointwise” boundedness, e.g. for the perturbation as a function
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of the radius in a spherically symmetric spacetime, as opposed to a functional over a time

slice. When considering the implications to the non-linear problem, stronger conditions of

time decay – and not just boundedness – are typically required at the linear level (this is

because some integrals over time should also be bounded). Notice, however, that the solu-

tion approached at late times by the time decay of perturbations will have small variations

in its parameters, such as mass and angular momenta, with respect to the initial solution.

The time decay of the scalar wave equation is an important first step in understanding

the decay of metric perturbations.

The symmetries of the black hole background can simplify the problem consider-

ably. For stationary backgrounds gab, a linear perturbation is a superposition of Fourier

modes h
(ω)
ab ∼ e

−iωt, and stability implies that, when analysing each mode separately, only

modes with Im(ω) < 0 are allowed. Spatial symmetries of the background also allow for

decompositions, e.g. into spherical harmonics when there is spherical symmetry. Mode

analyses are much simpler and very effective, as we shall see in this thesis. In the case

that no unstable modes are found, the approach falls short of the mathematical rigour

required to establish linear stability.1 However, the detection of an instability is clearer,

since the initial data may be fine-tuned to reproduce a particular unstable mode.

2.1.2 Review

Let us start with the static case (for a more detailed review, see [77]). In D = 4, the

linear mode stability of the Schwarzschild black hole was established by [78–81]. Spherical

symmetry allows for a decomposition of linear perturbations into an even-parity class

(constructed from scalar harmonics of S2) and an odd-parity class (constructed from

vector harmonics of S2), as shown by Regge and Wheeler [82]. Each class of perturbations

is governed by a master equation: the Regge-Wheeler equation in the odd-parity case [82]

and the Zerilli equation in the even-parity case [83]. After a Fourier decomposition of the

1Because an infinite sum of modes which decay in time may not decay in time. Furthermore, there are
examples, such as coloured black holes [76], where regular initial data can be constructed from unstable
modes which are irregular per se, and thus usually discarded.
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time dependence, each becomes a Schrödinger-type ODE allowing for no unstable regular

modes. A rigorous approach avoiding that decomposition is put forward in [80,81], where

the boundedness of linear perturbations is shown. Analyses of Schrödinger-type master

equations have established the mode stability of the non-degenerate Reissner-Nordström

black hole [84], using the Newman-Penrose formalism [85], and the Schwarzschild-(A)dS

black hole [86, 87]. In the latter case, rigorous studies of the boundedness and decay of

solutions to the scalar wave equation are available, see e.g. the review [88] for dS and [89]

for AdS, where a scalar field mass obeying the Breitenlohner-Freedman bound [90] is

considered.2

In higher dimensions, the procedure has been applied with success to establish the

mode stability of Schwarzschild black holes for arbitrary D [92,93]. Stability extends to the

D = 5 Reissner-Nordström case, but no such proof is available for D > 5. Schwarzschild-

dS black holes have been shown to be stable for D ≤ 6. While Reissner-Nordström-dS

black holes are stable for D ≤ 5, an instability was found for sufficiently large charge in

D > 6 [94,95]. In the asymptotically AdS case, not even the stability of Schwarzschild-AdS

black holes is established for D > 4.

Now we consider rotating asymptotically flat black holes, starting with D = 4. For

the Kerr spacetime, which is codimension-2, Teukolsky obtained the remarkable result

that the linearised Einstein equations can also be reduced to a single separable mas-

ter equation [96], using the Newman-Penrose formalism [85].3 Whiting showed that the

Teukolsky equation does not allow for unstable Fourier modes [98]. Such a separability

of the equations has not been achieved in the Kerr-Newman case, which remains an open

problem. Ref. [99] reviews the rigorous study of the scalar wave equation for slowly-

rotating (|J | � M2) small-charge (|Q| � M) Kerr-Newman black holes, avoiding the

use of separability properties. That approach has provided proofs of the boundedness

2In asymptotically AdS spacetimes, the presence of a Cauchy horizon demands more care in setting
boundary conditions at spatial infinity, in order to have a well-defined initial value problem [90,91]. Neg-
ative mass-squared scalar fields can have a well-defined dynamics if the mass obeys the Breitenlohner-
Freedman bound [90].

3The Teukolsky equation considers radiative modes, thus excluding stationary modes, which consist
only of trivial mass and angular momentum variations, as shown by Wald [97].
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and decay of solutions to the scalar wave equation, and has also strengthened the results

of [80,81] for the Schwarzschild case. Let us also point out that numerical studies of black

hole formation (e.g. [6, 7]) provide important evidence for stability in the full non-linear

regime. Astrophysical black holes should be unique and stable.

The picture of stability for higher-dimensional rotating black holes is very different.

The first discovery of an instability in higher dimensions concerned solutions which, despite

being static, possess an extended horizon. Gregory and Laflamme showed numerically that

black branes of the type (1.11) constructed with a D-dimensional Schwarzschild black hole

are unstable [100]. Consider a transverse and traceless (TT) linear perturbation of the

metric (1.11) of the form

ds2
brane = gab(x)dxadxb + d~z · d~z → ds2

brane + ei~k·~zhab(x)dxadxb , (2.3)

The condition is equivalent to hab being TT with respect to the D-dimensional black hole

metric gab,

haa = 0 , ∇ahab = 0 . (2.4)

The linearised Einstein equations (2.1) reduce to

(∆Lh)ab = −k2hab , (2.5)

where ∆L is the Lichnerowicz operator for the black hole background, and k2 ≡ ~k · ~k.

Hence perturbations with non-zero k correspond to negative modes of ∆L. The boundary

conditions are that hab should be regular on the future horizon and vanishing at infinity.

Gregory and Laflamme studied time dependent modes hab ∝ eΓt which preserve the spher-

ical symmetry of the Schwarzschild gab background.4 They found exponentially growing

solutions to (2.5) for k < k∗, as shown in Figure 2.1. The instability pinches the branes

along the extra-directions ~z, breaking the translational symmetry. The final point of the

4The equations (2.5) reduce to a single ODE. In a Fourier decomposition hab ∝ e−iωt, the hermiticity
of the ODE operator guarantees a real eigenvalue ω2, so that Γ = iω is purely real (and positive) for an
instability.
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Figure 2.1: Profile Γ(k) for the Gregory-Laflamme unstable mode of a Schwarzschild brane
(DSchwarz = 4), where rs stands for the Schwarzschild radius.

time evolution remains an open problem [101]. The stability properties may be improved

with the inclusion of charge (see the review [102]), according to the Gubser-Mitra conjec-

ture, to be discussed in the next Section.

Notice that, while the mode (k,Γ) = (0, 0) is a gauge mode [103], the mode (k,Γ) =

(k∗, 0) is a static linear perturbation signaling the existence of a one-parameter family

of static non-uniform branes. The existence of such a family of black strings was shown

first in [104], at the perturbative level, and then in [105], with a non-linear numerical

analysis. Along the family of non-uniform solutions, the pinches become greater and

greater, supposedly until the string splits into an array of black holes; see [102, 106] for

reviews and [107] for more recent work. The idea is represented in Figure 2.2. The same

reasoning should apply to the rotating non-uniform strings discovered in [108] and [68],

also associated with instabilities as verified numerically in [68].

The fact that the event horizon is infinite along the ~z directions but finite along the

black hole directions is the cause of the instability.5 Now, in higher dimensions, black hole

horizons can be characterised by very different length scales. Say we have a horizon scale

Lx along certain directions x and a horizon scale Ly � Lx along other directions y. A

linear perturbation along the x directions with a length scale λ satisfying Ly < λ < Lx

5Ref. [109] proposed an analogy with the Rayleigh-Plateau instability of fluid tubes, which was made
more precise in the context of the fluid-gravity correspondence [110,111].
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Figure 2.2: Family of solutions from a uniform black string to an array of black holes.

may behave like a Gregory-Laflamme unstable mode. Recall that the horizon of a Kerr

black hole is a deformed sphere, but that there is a limit on the deformation which is set

by extremality, |J |/M2 ≤ 1. We already mentioned that such a bound is absent for singly-

spinning Myers Perry black holes in D > 5: we have the regime |J |/M
D−2
D−3 � 1, for which

the horizon is approximately spherical, but also the regime |J |/M
D−2
D−3 � 1, for which

some directions along the horizon spread, becoming quasi-extended. In the latter regime,

the black hole is expected to be unstable, because the metric near the axis of rotation

takes the form of a black-brane metric and should thus possess a Gregory-Laflamme-type

instability [71]. Similarly, very thin black rings, satisfying |J |/M
3
2 � 1, have a horizon

with topology S1 × S2 for which the S1 radius is much larger than the radius of the

squashed S2. Locally, a segment of the very thin ring looks like a boosted black string

and is expected to be unstable to Gregory-Laflamme-type modes [52].

In Chapters 7 and 8, based on [35, 72], we will analyse this type of instability nu-

merically for Myers-Perry black holes with a single spin and with equal spins. Our results

for a single spin are consistent with the expectations of [62,71] regarding connections be-

tween black hole families in D > 5. These connections arise in an analogous way to the

bifurcation of non-uniform branes from uniform branes, i.e. through the stationary thres-

hold mode (k,Γ) = (k∗, 0) of an instability, as in Figure 2.2. In the case of Myers-Perry

black holes with equal spins, we find a similar instability in D = 9 near the extremal-

ity bound. No clear geometrical understanding of the instability, by analogy with the

Gregory-Laflamme case, has been proposed for equal spins due to the presence of the
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extremality bound. However, a definition of an ultraspinning regime will be proposed,

based on a connection with thermodynamics, and conjectured to be a necessary condition

for this type of instability. The thermodynamic argument is only expected to hold for

perturbations which preserve the stationarity ∂t and axisymmetry Ωi∂ϕi Killing vectors.

Also very recently, Shibata and Yoshino detected an instability of rapidly-rotating

singly-spinning Myers-Perry black holes, using a non-linear numerical method [112, 113].

The instability occurs for non-axisymmetric deformations. Although the approach is non-

linear, the instability probably holds at the linear level, but it should not have a stationary

and axisymmetric threshold mode. Hence the thermodynamic argument for our ultraspin-

ning conjecture does not apply. Indeed, no D = 5 Myers-Perry black hole falls into our

ultraspinning class. Ref. [114] found no evidence of instability for D = 5 Myers-Perry

black holes with equal spins.

We mentioned above that very thin black rings should be unstable to Gregory-

Laflamme-type modes along the ring circumference. Ref. [115] points out the possibility

that this affects the entire thin ring branch, since all thin rings can fit several dangerous

modes in their circumference. Furthermore, evidence is provided for the instability of fat

rings for radial perturbations. Fat rings had been argued to be unstable in [116], based

on the thermodynamic turning-point method.6 The question remains whether there is

a portion of the thin ring branch with J/M
3
2 ≈ O(1) which is stable. More generally,

among the plethora of higher-dimensional asymptotically flat vacuum black holes, are

Myers-Perry solutions with moderate rotation the only stable ones?

To conclude, let us consider rotating asymptotically (A)dS black holes. In dS, the

full stability problem remains open even in D = 4. In the Kerr-AdS/Myers-Perry-AdS

case, however, it is known that an instability for non-axisymmetric perturbations occurs

when ∃i |Ωi|` > 1, where ` is the AdS curvature radius. The instability is caused by

superradiant modes which are amplified near the horizon and reflected back to it by the

6Such a connection between classical stability and thermodynamics is of a different nature than the one
we will explore in this thesis, which relies on local thermodynamic stability in the spirit of the Gubser-Mitra
conjecture.
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AdS gravitational potential [117–121]. When the rotation is slow, |Ωi|` < 1 ∀i, these black

holes should be stable [117]. Ref. [89] provides a rigorous study showing the boundedness

of solutions to the scalar wave equation for slowly rotating Kerr-AdS black holes, when

the scalar field mass obeys the Breitenlohner-Freedman bound [90].

2.2 Thermodynamic stability

The thermodynamic description of black holes, outlined in Section 1.2, accounts for their

quantum properties at the semiclassical level. Stability with respect to quantum effects

can be studied, within the semiclassical approximation, using the well-established criteria

of thermodynamic stability.

Thermodynamic stability tells us how a system in thermodynamic equilibrium re-

sponds to fluctuations of energy, temperature and other thermodynamic parameters. The

conditions for stability are derived from the second law of thermodynamics. If they are

violated, which often happens for black holes, the system is not in a preferred configu-

ration. We distinguish between global and local stability. Because black holes, as other

self-gravitating systems, are not extensive some care is required in interpreting these con-

ditions.

For definiteness, we will focus on vacuum black holes in thermodynamic equilibrium,

for which the first law reads

dM = TdS + ΩidJi . (2.6)

2.2.1 Global stability

Global stability is concerned with the phase of a system corresponding to the global

maximum of the total entropy.

Consider a system in equilibrium with a thermodynamic reservoir at temperature T

and angular velocities Ωi. If we allow for mass and angular momenta exchanges (∆M 6= 0,

∆Ji 6= 0) between the system and the reservoir, the relevant ensemble to describe the
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system is the grand-canonical. The preferred phase of the system is the one that minimises

the Gibbs free energy,

G = M − TS − ΩiJi , (2.7)

given T and Ωi. Therefore, for two possible phases – 1 and 2 – satisfying G1(T,Ωi) >

G2(T,Ωi), phase 1 is unstable. Starting with phase 1, thermodynamic fluctuations will

eventually lead to a phase transition to phase 2. To see this from the second law, the crucial

point is that the reservoir is assumed to be very large so that no exchange affects its internal

equilibrium. Hence, exchanges are reversible for the reservoir: ∆Mres = T∆Sres+Ωi∆Ji res.

Conservation of mass and angular momentum requires ∆Mres = −∆M and ∆Ji res =

−∆Ji. The second law then favours fluctuations obeying

∆S + ∆Sres ≥ 0 ⇔ ∆S − ∆M − Ωi∆Ji
T

≥ 0 ⇔ ∆G ≤ 0 . (2.8)

If we restrict the exchanges such that ∆Ji = 0, but ∆M 6= 0, then the relevant

ensemble is the canonical. The preferred phase is the one that minimises the Helmholtz

free energy,

F = M − TS , (2.9)

given T and Ji, since the second law implies that ∆F ≤ 0 is favoured.

An isolated system (∆M = ∆Ji = 0) is described by the micro-canonical ensemble.

The second law is direct: ∆S ≥ 0, the preferred phase of the system being the one that

maximises the entropy S given M and Ji.

In higher-dimensions, there are several black hole phases so that we may expect to

find phase transitions due to the global instabilities. For instance, Figure 1.2 represents

three phases in a certain parameter range. However, as we will show later, following [68],

asymptotically flat vacuum black holes are locally thermodynamically unstable. The most

celebrated example of a global phase transition between locally stable phases occurs in

asymptotically AdS spacetimes: it is the Hawking-Page phase transition between thermal

AdS and a large asymptotically AdS black hole [122]. According to the AdS/CFT corre-
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sponce such a semiclassical phase transition between asymptotically AdS spacetimes has

a corresponding “confinement/deconfinement” phase transition in the free energy of the

dual field theory, and that is indeed what Witten found [123].

2.2.2 Local stability

Local stability is concerned with whether a certain phase in equilibrium is a local maximum

of the total entropy. This depends on how the system responds to small fluctuations of

its thermodynamic parameters. The phase is locally stable if the response counteracts the

effect of the fluctuation leading back to equilibrium. The standard analysis is based on

linear response functions, such as specific heats.

Let us consider the general condition of local thermodynamic stability. As happened

for global stability, it is a consequence of the second law of thermodynamics. Take a

black hole in equilibrium with a reservoir at temperature T and angular velocities Ωi,

as described by the grand-canonical ensemble. The inequality (2.8) gives the preferred

evolution of the system. The important point is that, if a phase is locally stable, then

small fluctuations must be entropically suppressed. That is, we change the sign of the

middle inequality (2.8) so that small fluctuations {∆M,∆Ji} obey

∆S − ∆M − Ωi∆Ji
T

< 0 . (2.10)

The fluctuations take the black hole temporarily out of equilibrium with the reservoir. For

small fluctuations ∆M and ∆Ji, the change in the entropy of the black hole is

∆S =
∂S

∂xµ
∆xµ +

1

2

∂2S

∂xµ∂xν
∆xµ∆xν + . . . , xµ = (M,Ji) . (2.11)

Notice that, although the thermodynamic fluctuations are off-equilibrium, the coefficients

in the expansion above are still determined by the equilibrium phase, because one may
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take xµ = xµ(T,Ωi). Using the first law of thermodynamics,

dS =
1

T
dM − Ωi

T
dJi , (2.12)

the inequality (2.10) becomes

∆S − ∆M − Ωi∆Ji
T

=
1

2

∂2S

∂xµ∂xν
∆xµ∆xν + . . . ≤ 0 . (2.13)

For small arbitrary fluctuations ∆xµ, this is true if and only if

− ∂
2S(xλ)

∂xµ∂xν
, xµ = (M,Ji) , is positive definite. (2.14)

This is the condition for local thermodynamic stability. If it is not satisfied, the black hole

will drop out of its equilibrium phase.

We can express these conditions in several different ways. In Appendix 2.A, we

prove that each of the following statements (the list is not exhaustive) is equivalent to

condition (2.14):

• − ∂
2G(yλ)

∂yµ∂yν
, yµ = (T,Ωi) , is positive definite. (2.15)

• ∂2M(x̃λ)

∂x̃µ∂x̃ν
, x̃µ = (S, Ji) , is positive definite. (2.16)

• ∂2W (ỹλ)

∂ỹµ∂ỹν
, ỹµ = (β,−βΩi) , is positive definite. (2.17)

We introduced here β ≡ 1/T and the Legendre transform of the entropy,

W = S − βM + βΩiJi = −βG . (2.18)

The formulation (2.15) is more convenient to relate the stability condition to the usual
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linear response functions, like the specific heat. Explicitly,

−∂
2G(yλ)

∂yµ∂yν
=

 βCΩ ηj

ηi εij

 , (2.19)

where

CΩ = T

(
∂S

∂T

)
Ω

(2.20)

is the specific heat at constant angular velocities (all Ωi fixed). The isothermal differential

moment of inertia tensor is

εij =

(
∂Ji
∂Ωj

)
T

= εji. (2.21)

There is also the vector

ηi =

(
∂S

∂Ωi

)
T

=

(
∂Ji
∂T

)
Ω

, (2.22)

where the second equality, given by the symmetry of the Hessian matrix, corresponds to

a Maxwell relation. The specific heat at constant angular momenta CJ , defined as

CJ = T

(
∂S

∂T

)
J

, (2.23)

satisfies the identity:

CJ = CΩ − T (ε−1)ij ηi ηj , (2.24)

which follows simply from the chain and cyclic rules for partial derivatives. We show in

Appendix 2.A that the usual stability conditions,

CJ > 0 and εij is positive definite, (2.25)

amount to the statement (2.15). The identity (2.24) then implies that CΩ > CJ .

Let us also obtain these conditions starting from the partition function. We can

write the grand-canonical partition function Z = e−βG as

Z(ỹµ) =

∫
(Πdxν) ρ(xσ) e−ỹλxλ , (2.26)
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where ρ(xσ) is the density of states with mass or angular momenta xσ. The mean value

of these variables in the ensemble is given by

〈xµ〉 = −∂lnZ

∂ỹµ
. (2.27)

If the partition function is well-defined, the statistical variance of a linear combination of

the xµ variables must be positive:

〈(cµxµ − 〈cνxν〉)2〉 = cµcν(〈xµxν〉 − 〈xµ〉〈xν〉) > 0 , (2.28)

where cµ are real coefficients, one of which, at least, is non-zero. This clearly implies that

the matrix

〈xµxν〉 − 〈xµ〉〈xν〉 =
∂2 lnZ

∂ỹµ∂ỹν
=
∂2(−βG)

∂ỹµ∂ỹν
=

∂2W

∂ỹµ∂ỹν
(2.29)

is positive definite, which is simply the statement (2.17). We will introduce in Chapter 3

the gravitational partition function of Euclidean quantum gravity, and confirm that it is

ill-defined when local thermodynamic stability fails.

Consider now that the fluctuations are restricted to ∆Ji = 0. The conditions are

relaxed so that CJ > 0 is enough to ensure stability for exchanges ∆M 6= 0 with the

reservoir. Notice, for instance, that the matrices in (2.14) and (2.16) give the appropriate

condition if restricted to the {0, 0} component:

−
(
∂2S

∂M2

)
J

= β3

(
∂2M

∂S2

)
J

= β2C−1
J . (2.30)

The canonical partition function being well-defined requires, analogously to (2.29),

〈M2〉 − 〈M〉2 =
∂2(−βF (T, Ji))

∂β2 = T 2CJ > 0 . (2.31)

What about the local thermodynamic stability of a black hole as an isolated system,

i.e. in the micro-canonical ensemble? The common derivation of the stability condition

does not make reference to a reservoir, which we assumed above, but only to the internal
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equilibrium of the system, where there is no net variation of mass and angular momentum.

However, those systems are extensive. Suppose that a system, which we take to be in

internal equilibrium in the phase S(M,Ji), is extensive. Then it can be divided into

two separate subsystems with equivalent properties, each with entropy S(M/2, Ji/2) =

S(M,Ji)/2. The suppression of fluctuations within the total system requires

S(M + ∆M,Ji + ∆Ji) + S(M −∆M,Ji −∆Ji) < 2S(M,Ji) , (2.32)

which for small fluctuations implies (2.14), without reference to a reservoir.

This fails for gravitational systems because gravity is a long-range interaction. We

cannot assign a mass to different parts of the spacetime since the energy/mass is non-local.

It is well known that the Schwarzschild solution is classically stable (at the linear level),

and yet its specific heat is negative7: C = −8πM2 since T = 1/8πM . In fact, we will show

in Chapter 6, based on [68], that all asymptotically flat vacuum black holes are unstable

according to the condition of local thermodynamic stability.

For extensive systems, the thermodynamic limit gives a direct connection between

classical and thermodynamic stability.8 This clearly fails for black holes, as shown by the

Schwarzschild case. However, there is also a well-known relation, the Gubser-Mitra conjec-

ture [125,126], which states that black branes with a non-compact translational symmetry

are classically stable if and only if they are locally thermodynamically stable. The reason

for this is discussed in Chapter 6 for vacuum black branes of the type (1.11). However,

we can readily notice that these branes are extensive along the ~z directions, since we may

take a partition of the spacetime by periodically identifying each of the ~z coordinates,

z = z+L. The thermodynamic limit in the ~z directions is exact because U/LN (where U

can be the entropy, the mass, the angular momenta or the charge) is independent of L.

7Negative specific heats are common in self-gravitating systems [124], e.g. a virialised self-gravitating
ideal gas with Np particles in four dimensions has energy E = Ekin + Epot = −Ekin = − 3

2
NpT .

8This is the gas limit U/V → u(Np/V, T ) for large volume V and number of particles Np, where U is
an extensive quantity, say the energy. The statistical variance in an ensemble becomes negligible in the
thermodynamic limit making the ensembles equivalent, e.g. for the energy in the canonical or the grand-
canonical ensembles: (〈E2〉 − 〈E〉2)/〈E〉2 → 0. A quantum statistical system then behaves classically for
quasi-stationary long-wavelength processes.
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How can the internal equilibrium conditions be derived for black holes? The works

[35, 72], on which Chapters 6–8 are based, give a partial answer to this question using

the gravitational partition function of Euclidean quantum gravity. New pathologies in the

partition function correspond to instabilities which are also classical. They correspond

to the failure of (2.29) being positive definite, not for fluctuations of the mass and angu-

lar momenta, but for additional degrees of freedom that are not captured by the usual

thermodynamic description.

2.A Appendix: Equivalent statements of local stability

In this Appendix, we will connect some different ways of stating the condition for local

thermodynamic stability. Let us start by showing the equivalence of the statements (2.14),

(2.15), (2.16) and (2.17). We denote

xµ = (M,Ji) , yµ = (T,Ωi) , x̃µ = (S, Ji) , ỹµ = (β,−βΩi) . (2.33)

The first law of thermodynamics (2.6) can be written as

dS = ỹµdxµ , or dG = −x̃µdyµ . (2.34)

The Hessian matrices are

Sµν ≡
∂2S(xλ)

∂xµ∂xν
=
∂ỹν
∂xµ

=
∂yσ
∂xµ

∂ỹν
∂yσ

= (∂xy · ∂yỹ)µν ,

Gµν ≡
∂2G(yλ)

∂yµ∂yν
= −∂x̃ν

∂yµ
= −∂xσ

∂yµ

∂x̃ν
∂xσ

= −((∂xy)−1 · ∂xx̃)µν , (2.35)

which implies that

S = −(∂xx̃) ·G−1 · (∂yỹ) . (2.36)
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Since

Uµν ≡ (∂yỹ)µν = −β

 β −βΩj

0 δij

 = −β (∂xx̃)νµ , (2.37)

we find that

S = T UT ·G−1 ·U . (2.38)

Now, the matrix (−S) is positive definite – therefore satisfying the statement (2.14) – if

and only if

∀~v 6= ~0 ~vT · (−S) · ~v > 0 . (2.39)

From Eq. (2.38),

~vT · (−S) · ~v = T (U~v)T · (−G)−1 · (U~v) . (2.40)

Since |det(U)| = 1/T , we conclude that (2.39) is equivalent to

∀~v 6= ~0 ~vT · (−G)−1 · ~v > 0 , (2.41)

so that (−G)−1 is positive definite. Its inverse must also be positive definite, which is

the statement (2.15). We can easily see that the statements (2.16) and (2.17) are also

equivalent: since

dM = yµdx̃µ , dW = −xµdỹµ , (2.42)

we have

(M)µν ≡
∂2M(x̃λ)

∂x̃µ∂x̃ν
=
∂yν
∂x̃µ

= (−G−1)µν ,

(W)µν ≡
∂2W (ỹλ)

∂ỹµ∂ỹν
= −∂xν

∂ỹµ
= (−S−1)µν , (2.43)

from (2.35).

Let us now express these statements in terms of the usual linear response functions.

Recall the standard linear algebra result:
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—————————————

Theorem: Let L be a symmetric real matrix denoted by

Lµν =

 A Bj

Bi Cij

 , (2.44)

where the matrix Cij is invertible. Then (i) the following determinant identity holds:

det(L) =
(
A− (C−1)klBkBl

)
det(Cij) ; (2.45)

and (ii) L is positive definite if and only if

A− (C−1)klBkBl > 0 and Cij is positive definite . (2.46)

Proof: Notice that L = V T L̃ V , where

L̃µν =

 A− (C−1)klBkBl 0

0 Cij

 and Vµν =

 1 0

(C−1)ikBk δij

 . (2.47)

The statement (i) holds since det(V ) = 1, and the right-hand side of (2.45) is det(L̃).

The statement (ii) follows from steps analogous to Eqs. (2.39)-(2.41), showing that L is

positive definite if and only if L̃ is positive definite.

—————————————

If we apply this theorem to the matrix (2.19), for which

Cij = εij and A− (C−1)klBkBl = β
(
CΩ − (ε−1)kl ηk ηl

)
= β CJ , (2.48)

we see that the conditions (2.25) are equivalent to (2.15).

To conclude, notice that these conditions can also be obtained using the Helmholtz

free energy F (T, Ji). Local stability holds if F is convex with respect to the temperature
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and concave with respect to the angular momenta:

(
∂2F

∂T 2

)
J

= −β CJ ,
(

∂2F

∂Ji∂Jj

)
T

= (ε−1)ij . (2.49)
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Chapter 3

Thermodynamic negative modes

The thermodynamic description of black holes reviewed earlier holds at the semiclassical

level. Quantum effects are incorporated by using thermal quantum field theory on a

classical spacetime background. Therefore, a semiclassical effective theory of quantum

gravity – and not necessarily a complete theory – should be able to identify the low energy

degrees of freedom of thermodynamic instabilities. This is indeed the case for Euclidean

quantum gravity.

We saw in the last Chapter that a local thermodynamic instability must be signalled

by a pathology in the partition function. For Euclidean quantum gravity, the pathology

consists of a divergent mode in the one-loop quantum corrections of the gravitational

partition function. It is commonly referred to as a negative mode, since it has the wrong

sign for convergence.

3.1 Introduction

Shortly after the advent of black hole thermodynamics, the Euclidean path integral meth-

ods of quantum field theory at finite temperature were extended to semiclassical quantum

gravity [127, 128]. Gibbons and Hawking [129] proposed a construction for the partition

functions of black holes. These were defined as path integrals with given boundary con-

47
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ditions, which correspond to fixing the temperature, through the periodicity in imaginary

time, and possibly other quantities such as angular velocities. A Euclideanised black hole

solution is seen as a saddle point of the path integral – an instanton – its action being

related to the thermodynamic free energy.

The semiclassical approach to the path integral allows for more than that. It is

possible to go beyond the instanton approximation, corresponding to the classical black

hole, and analyse small thermal (quantum) fluctuations around it. This was made possible

after a better understanding of the path integral for gravitational perturbations, through

the works of Gibbons, Hawking and Perry [130, 131]. They found that conformal pertur-

bations of the metric, which always decrease the Euclidean action and seem to render the

path integral divergent, are an unphysical artifact that can be eliminated by choosing a

suitable integration contour and by applying a standard gauge-fixing procedure.

The first application of those methods was the work of Gross, Perry and Yaffe

[132]. They found that the Schwarzschild instanton possesses a non-conformal radial

negative mode in the path integral for perturbations, which renders the partition func-

tion ill-defined. This was expected because the Hawking temperature formula for the

Schwarzschild black hole, T = 1/8πM , corresponds to a negative specific heat, so that

there is no local thermodynamic stability. The authors further interpreted the instability

as the possibility of spontaneous nucleation of black holes in hot flat space.1 The physics

of black hole nucleation was clarified when York [135] considered the partition function

with boundary conditions at finite radius. Such a cavity, with fixed temperature on the

wall, allows for two black hole solutions. The smaller radius solution is unstable and tends

to the usual Schwarzschild case when the radius is taken to infinity. The larger radius

solution is stable and its nucleation is thermodynamically allowed, since its free energy is

inferior to that of the hot flat space in the cavity.

A non-trivial test of the correspondence between local thermodynamical stability and

1In de Sitter space, the cosmological horizon gives rise to the Gibbons-Hawking temperature [133], and
a black hole in thermal equilibrium must match this temperature. Ginsparg and Perry found that the
corresponding instanton possesses a negative mode [134].
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a well-defined gravitational partition function was given by Prestidge [136]. He analysed

the Schwarzschild-AdS instanton, soon after the AdS/CFT correspondence was proposed,

and found numerically that the negative mode disappears when the specific heat of the

black hole becomes positive. The curvature of AdS simulates the finite cavity in the

asymptotically flat case. The correspondence was put on a firmer footing when Reall

[137] showed, for a certain class of black holes, that a negative specific heat implies the

existence of a negative mode. The proof of the converse result, however, remained elusive.

Refs. [68, 72], on which Chapters 6–8 are based, clarified this question by showing that

negative modes could arise which were not connected with the standard conditions for

local thermodynamic stability.

Work on Euclidean negative modes of black holes includes also higher-dimensional

solutions [138,139], the Taub-NUT and Taub-bolt instantons [140] also with cosmological

constant [141], and connections to Ricci-flow [142,143]. We shall review in Chapter 6 the

correspondence between the classical stability of black strings or branes and the existence

of thermodynamic negative modes.

This Chapter is organised as follows. In Section 3.2, we review the partition function

of Euclidean quantum gravity, paying special attention to the conformal factor problem

and the relevance of traceless-transverse perturbation modes. In Section 3.3, we connect

the existence of local thermodynamic instabilities to negative modes of the action.

3.2 The gravitational partition function

3.2.1 Euclidean quantum gravity

The path integral of Euclidean quantum gravity,

Z =

∫
d[g]e−I[g] , (3.1)
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is a sum over imaginary time manifolds whose boundaries match a prescribed geometry,

which is the argument of the gravitational partition function. The periodicity of the

imaginary time coordinate on the boundary is the inverse temperature β = 1/T , as is

common in thermal field theory, but the periodicity will now also include the rotation

angles, fixing the angular velocities Ωi. The action for Euclidean metrics is

I[g] = − 1

16π

∫
M
dDx
√
g (R− 2Λ)− 1

8π

∫
∂M

dD−1x

√
g(D−1)K − I0 . (3.2)

The first term is the usual Einstein-Hilbert action and the second is the York-Gibbons-

Hawking boundary term [129,144], where K is the trace of the extrinsic curvature on ∂M.

This term is required for non-compact manifoldsM, such as the ones we will study, in order

that the boundary condition on ∂M is a fixed induced metric, and not fixed derivatives of

the metric normal to ∂M. The inclusion of such a boundary term in the action specifies

the thermodynamic ensemble, in this case the grand-canonical (fixed temperature T and

angular velocities Ωi).

The term I0 can depend only on g
(D−1)
ab , the induced metric on ∂M, and not on the

bulk metric gab, so that it can be absorbed into the measure of the path integral. However,

since we are interested in the partition functions of black holes, it is convenient to choose

it so that I = 0 for the background spacetime that the black hole solution approaches

asymptotically. For asymptotically flat black holes [129], the Einstein-Hilbert term is zero

and the action becomes

− 1

8π

∫
∂M

dD−1x

√
g(D−1) (K −K0) , (3.3)

where K0 is the trace of the extrinsic curvature of the flat spacetime matching the black

hole metric on the boundary ∂M at infinity. This subtraction renders the action of the

black hole finite. For asymptotically AdS black holes [122,145], the boundary terms cancel

when the background subtraction is performed, but the bulk volume integral diverges and

requires an analogous subtraction that sets the action of AdS space to zero. See [146–151]

for the AdS/CFT interpretation of I0 as a counterterm in the dual conformal field theory.
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In fact, that prescription for regularising the gravitational action is preferable since it is not

possible in general to embed an arbitrary boundary geometry in the reference spacetime,

as the subtraction method requires.

It should be emphasised that the gravitational path integral (3.1) is known to be

non-renormalisable and is considered here as a low energy (and low-curvature) effective

theory. A different issue is that the action (3.2) can be made arbitrarily negative so that

the path integral appears to be always divergent. As we shall see, this problem can be

addressed in the semiclassical approximation, where the path integral is dealt with by

saddle-point methods. We consider a saddle-point gab, i.e. a non-singular solution of the

equations of motion,

Rab =
2Λ

D − 2
gab , (3.4)

usually referred to as a gravitational instanton. While the boundary conditions in the par-

tition function may admit the existence of several instantons, which are different phases

of the system, we are here insterested here in the local stability of a single black hole

phase. A black hole instanton is defined by the analytic continuation t = −iτ of the

Lorentzian solution. Regularity at the bolt (instanton horizon) requires the periodic iden-

tifications of imaginary time and rotation angles: (τ, φi) ∼ (τ, φi+2π) ∼ (τ+β, φi− i Ωiβ).

Such an identification of the rotation angles, which fixes the angular velocities Ωi, leads

to an instanton metric for rotating black holes which is not Euclidean, having complex

components.

To go beyond the leading order instanton contribution, we treat as a quantum field

the normalisable perturbations hab about the saddle-point, gab → gab + hab. This leads to

a perturbative expansion of the action,

I[g + h] = I[g] + I2[h; g] +O(h3) . (3.5)

The first order action I1 vanishes since gab obeys the equations of motion, while the second

order action I2, which gives the one-loop correction, is the action for the quantum field hab

on the background geometry gab. The effective field theory requires that the background
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geometry gab has a curvature far below the Planck scale. The partition function is

Z1−loop = e−I[g]
∫
d[h](G.F.) e−I2[h;g] , (3.6)

where (G.F.) denotes all contributions induced by fixing the gauge in the path integral.

The second order action is given by

I2[h; g] = − 1

16π

∫
dDx
√
g

[
−1

4
h̄ ·Gh+

1

2
(δh̄)2

]
, (3.7)

where · denotes the metric contraction of tensors. We have defined2

h̄ab = hab −
1

2
gabh

c
c (3.8)

and

(Gh)ab = −∇c∇chab − 2R c d
a b hcd . (3.9)

We have also introduced the following operations on tensors T :

(δT )b...c = −∇aTab...c , (3.10a)

(αT )ab...c = ∇(aTb...c) , (3.10b)

following [131].

3.2.2 The conformal factor problem and physical instabilities

We mentioned that the instantons of rotating black holes are not real Euclidean geometries.

Although the action I[g] is real, difficulties arise when dealing with quantum corrections.

We will ignore these subtleties for now and leave them for the next Chapter, where we

consider Kerr-AdS black holes. In the following, we assume the instanton to be real

Euclidean.

2The operator G is related to the Lichnerowicz operator ∆L defined in (2.2) by G = ∆L − 4Λ/(D− 2).
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Consider the action for a conformal normalisable perturbation hab = ϕgab,

I2[ϕg; g] = −(D − 1)(D − 2)

64π

∫
dDx
√
g (∂ϕ)2 . (3.11)

This action is always negative, so that the path integral in (3.6) seems irremediably ill-

defined. This is the perturbative manifestation of the fact that, if the path integral is

taken without further prescription, there are geometries for which the action (3.2) can be

made arbitrarily negative.

This challenge, known as the conformal factor problem, was addressed by Gibbons,

Hawking and Perry [130], who proposed that the integration contour over the conformal

direction in the space of metrics should be imaginary rather than real.3 We follow here

the more detailed procedure of [131], straightforwardly extended to higher dimensions.

We will decompose the second order action, applying a standard gauge fixing procedure,

and show that the conformal divergent modes are unphysical and do not contribute to the

one-loop partition function.

The second order action I2[h; g] is invariant for the diffeomorphism transformations

hab → hab +∇aVb +∇bVa = (h+ 2αV )ab . (3.12)

Following the Feynman-DeWitt-Faddeev-Popov gauge fixing method,

(G.F.) = (detC) δ(Ca[h]− wa) . (3.13)

We consider the linear class of gauges

Cb[h] = ∇a
(
hab −

1

β
gabh

c
c

)
, (3.14)

where β is an arbitrary constant, so that the Fadeev-Popov determinant (detC) is given

3This prescription is very suggestive because it corresponds to making the timelike direction in the
Wheeler-DeWitt metric into a spacelike one, becoming a positive definite metric on the space of spacetime
metrics. It is thus analogous to the imaginary time prescription in common Euclidean path integrals.
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by the spectrum of the operator

(CV )a = −∇b∇bVa −RabV b +

(
2

β
− 1

)
∇a∇bV b . (3.15)

To study the spectrum, let us consider the Hodge-de Rham decomposition4 of the gauge

vector V into harmonic (H), exact (E) and coexact (C) parts,

V = VH + VE + VC . (3.16)

This induces a decomposition of the action of C, which we denote by CH for harmonic

vectors, CE for exact vectors and CC for coexact vectors.

The harmonic part satisfies dVH = 0 and δVH = 0. We can check that

CVH = − 4Λ

D − 2
VH . (3.17)

The spectrum is positive for Λ < 0 and zero for Λ = 0, with multiplicity given by the

number of linearly independent harmonic vector fields. For Λ > 0, the background solution

satisfying (3.4) does not allow for harmonic vector fields if assumed to be compact and

orientable [152]. Thus, the spectrum of CH is never negative.

The exact part is such that VE = dχ, where χ is a scalar. We can show that

spec CE = spec

(
2

[(
1

β
− 1

)
�− 2Λ

D − 2

])
, (3.18)

where the operator on the right-hand side acts on scalars, and � is the Laplacian. For Λ <

0, the operator is positive for β > 1, being positive semi-definite for Λ = 0. For Λ > 0, the

Lichnerowicz-Obata theorem tells us that the spectrum of the Laplacian on a compact and

orientable manifold satisfying (3.4) is bounded from above by −2DΛ(D− 1)−1(D− 2)−1,

the saturation of the bound corresponding to the sphere [152]. This implies that, for

Λ > 0, the spectrum of CE is positive for β > D.

4Notice that, while the instanton background is not compact for asymptotically flat/AdS black holes,
the off-shell perturbations hab in the path integral should be normalisable.
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The coexact part is such that δVC = 0. Hence

CVC = 2δαVC (3.19)

and the spectrum of CC can be shown to be positive semi-definite,

∫
dDx
√
g [VC · CVC] = 2

∫
dDx
√
g [αVC · αVC] ≥ 0 , (3.20)

with equality for coexact Killing vectors.

The Faddeev-Popov determinant contribution to the partition function is then

det C̃ ∼ (det C̃E)(det C̃C) , (3.21)

the tilde denoting that the zero modes have been projected out. The harmonic contribution

is not explicitly considered because, if it exists (Λ < 0), it is a positive factor dependent

only on Λ and on the dimension of the space of harmonic vector fields, as mentioned

above; it will not be relevant to our discussion. The contribution from the exact part is

fundamental since it will cancel the divergent conformal modes.

In order to make the results independent of the arbitrary vector w in the gauge fixing

(3.13), the ’t Hooft method of averaging over gauges is adopted. The arbitrariness is then

expressed in terms of a constant γ introduced by the weighting factor of the averaging.

The final result will be independent of γ, as required. The unconstrained effective action

for the perturbations is given by

Ieff
2 [h; g] = I2[h; g] +

γ

32π

∫
dDx
√
g Ca[h]Ca[h] =

− 1

16π

∫
dDx
√
g

[
−1

4
h̄ ·Gh+

1

2
(1− γ)(δh̄)2 +

γ

2

(
1− 2

β

)
δh̄ · dĥ− γ

8

(
1− 2

β

)2

(dĥ)2

]
,

(3.22)

where we denote ĥ ≡ hcc.
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We now decompose the quantum field hab into a traceless-transverse (TT) part, a

traceless-longitudinal (TL) part, built from a vector η, and a trace (i.e. conformal) part,

hab = hTTab + hTLab +
1

D
gabĥ , (3.23)

with

hTLab = 2(αη)ab +
2

D
gabδη . (3.24)

The constant β, unspecified in the gauge condition (3.14), can be chosen so that the

trace ĥ and the longitudinal vector η decouple. This requires

β = 2

(
1− D − 2

D

γ − 1

γ

)−1

. (3.25)

The effective action becomes

Ieff
2 [h; g] = − 1

16π

∫
dDx
√
g

[
− 1

4
hTT ·GhTT − αη · α∆1η −

1

D
δη�δη+

+ 2(1− γ)

(
δαη · δαη +

1

D2
αδη · αδη − 2

D
δαη · αδη

)
+

+
4

D − 2
Λ

(
αη · αη − 1

D
(δη)2

)
+

1

2
ĥF ĥ

]
, (3.26)

where the operator F is given by

F = −D − 2

4D

(
1 +

D − 2

D

γ − 1

γ

)
�− 1

D
Λ . (3.27)

Recalling the choice of β (3.25), we find that the operator on the right-hand side of the

expression (3.18) is given by 4DF/(D − 2). The contribution of the ghosts (3.21) can be

recast as

det C̃ ∼ (det F̃ )(det C̃C) . (3.28)

For the vector η, as we did for V in the ghost part, we perform a Hodge-de Rham
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decomposition into harmonic, coexact and exact parts,

η = ηH + ηC + ηE , (3.29)

respectively. Using ηE = dχ, the result for the effective action is then

Ieff
2 [h; g] =− 1

16π

∫
dDx
√
g
[
− 1

4
hTT ·GhTT +

1

2
ĥF ĥ+

+
4

D − 2
γΛαηH · αηH − γαηC · αCCηC −

4D

D − 2
γDχ · DFχ

]
, (3.30)

where we defined the operator

Dab = ∇a∇b −
1

D
gab� . (3.31)

Notice that the Hodge-de Rham decomposition of η in harmonic, coexact and exact parts

gives, for hTLab , a decomposition in 2αηH, 2αηC and 2Dχ, respectively.

Finally, we can evaluate the Gaussian integrals in the partition function. The pre-

scription of [130] corresponds to taking the imaginary contour for ĥ. The dependence of

the partition function is

Z1−loop ∼ (det C̃)(det G̃)−1/2(det F̃ )−1/2(det C̃C)−1/2(det F̃ )−1/2

∼ (det G̃)−1/2(det C̃C)1/2 . (3.32)

Again, the tilde on the operators denotes that the zero modes have been projected out.5

The Gaussian integrals are subject to ζ-function regularisation [131]. It is understood that

the spectrum of G here is restricted to traceless-transverse normalisable modes.

Let us summarise the treatment of the conformal factor problem. Conformal modes

make the action for perturbations negative. However, these modes do not contribute to

the path integral. The two factors (detF )−1/2 arising from the Gaussian integrals in ĥ

(taken through an imaginary contour) and χ cancel with the detF factor arising from the

5Zero modes can be dealt with by the standard collective coordinates method [153].
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exact part of the Fadeev-Popov determinant. This makes the unphysical character of the

divergence obvious, at least in perturbation theory.

The relevant operators are then CC and G. For a real metric, the operator CC is

positive semi-definite, as we have shown above. Once its zero modes are projected out, it

contributes a positive factor to the final result. Physical instabilities are only possible if

there are negative eigenvalues of the operator G,

(GhTT )ab = λhTTab , (3.33)

in which case the eigenmodes hTTab are called negative modes. Notice that, for λ 6= 0, there

is no gauge ambiguity (3.12) because GαV = 0.

3.3 Negative modes and local thermodynamic stability

We saw how to identify a physical pathology of the partition function through the spec-

trum of the operator G. The contribution of a negative mode is to lower the action I[g+h].

Now, we wish to connect local thermodynamic instabilities to the existence of negative

modes. The discussion follows Ref. [35]. The idea, taken from Ref. [137], is to consider a

family of off-shell geometries for the Euclidean path integral for which one can show that

the Euclidean action decreases in a certain direction if the black hole is locally thermody-

namically unstable. It then follows that there must exist a Euclidean stationary negative

mode.

Let us point out first that the negative modes hTTab considered before are regular TT

fields on the instanton background. This is different from saying that the perturbed metric

gab + hTTab is regular, since we are demanding that gab and hTTab are regular separately.

Regularity of gab requires the association of T and Ωi to the periodic identification of

imaginary time and rotation angles. A field hTTab on the background gab must respect

the same periodic identifications in order to be regular. Therefore, the off-shell metric

gab + hTTab leaves T and Ωi unchanged to first order.
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Consider a black hole instanton B(x) uniquely specified by parameters xα. Let

T (x), Ωi(x), M(x), etc. denote the temperature, angular velocities, mass, etc. of this

solution. We can construct an off-shell generalization B(x, x̂), specified by parameters x̂α

as follows [154, 155]. Assume that the Killing isometries ∂τ and ∂φi , where φi are the

rotation angles, of B(x) are preserved. Perform an ADM decomposition of the metric,

using the imaginary time coordinate τ . Take the spatial geometry of B(x, x̂) to be the

same as that of B(x̂). Now choose the lapse function and shift vector so that (i) B(x, x̂)

has the same asymptotics as B(x); (ii) B(x, x̂) is regular everywhere, in particular at the

bolt, subject to the identifications (τ, φi) ∼ (τ, φi + 2π) ∼ (τ + β(x), φi − i Ωi(x)β(x));

(iii) B(x, x) = B(x). Note that (ii) implies that B(x, x̂) is a configuration in the Euclidean

path integral defined for temperature T (x) and angular velocities Ωi(x), for which the

saddle point is B(x). Calculating the Euclidean action of B(x, x̂) using the Hamiltonian

formalism gives

I(x, x̂) = β(x)M(x̂)− S(x̂)− β(x)Ωi(x)Ji(x̂). (3.34)

Condition (iii) implies that the geometry with x̂ = x satisfies the equations of motion and

hence the first derivative of the action with respect to x̂α must vanish for x̂α = xα. This

is a consequence of the fact that the black hole satisfies the first law of thermodynamics,

dM = TdS + ΩiJi . (3.35)

The second derivative of the action, i.e. the Hessian of the action, now reduces to

(
∂2I

∂x̂α∂x̂β

)
x̂=x

=

(
β

∂2M

∂xα∂xβ
− ∂2S

∂xα∂xβ
− βΩi

∂2Ji
∂xα∂xβ

)
, (3.36)

where the right-hand side is evaluated at x. If the charges M and Ji uniquely parameterize

the solution, we can choose xα = (M,Ji). We then have

(
∂2I

∂x̂α∂x̂β

)
y=x

= −Sαβ(M,J) . (3.37)

Therefore, if −Sαβ fails to be positive definite for a black hole (i.e. if condition (2.14) for
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local thermodynamic stability fails), then the Euclidean action decreases in some direction

and hence the black hole must admit a negative mode.6 Given that our off-shell geometries

are stationary, this negative mode must also be stationary.7 In general, there must be at

least as many negative modes as there are negative eigenvalues of this Hessian.

We shall refer to a negative mode whose existence is predicted by this thermody-

namic argument as a thermodynamic negative mode. We shall see in Chapters 6–8 that

there are some negative modes whose existence cannot be predicted in this way. The latter

modes found in [68, 72] are relevant not just for the quantum stability of the black hole

but also for its classical stability.

6Note that we have not constructed the negative mode explicitly by this argument: the linearisation of
B(x, x̂) around x̂ = x will give a superposition of eigenfunctions of G. The point is that, since the action
decreases in some direction, this must involve a negative mode.

7The operator G commutes with ∂τ so one can work with simultaneous eigenfunctions of these operators.
Eigenfunctions with different eigenvalues of the latter will be orthogonal.



Chapter 4

Kerr-AdS negative mode

In this Chapter, based on [156], we will analyse the semiclassical stability of Kerr-AdS black

holes. In particular, we will see that a stationary and axisymmetric negative mode exists

only when local thermodynamic stability fails. This test of the gravitational partition

function is remarkable also because rotating black holes have complex instanton metrics,

whose subtleties we briefly discuss.

The lack of symmetry of the Kerr-AdS solution makes the problem much harder

to solve than the spherically symmetric cases. We address this by applying a spectral

numerical method to solve linear coupled partial differential equations. The method is

reviewed in the Appendix at the end of the thesis.

4.1 Quasi-Euclidean instantons

The gravitational partition function is defined as the path integral (3.1), a sum over

geometries with imaginary time τ = i t. However, while static geometries remain real for

this analytical continuation, the same does not hold for stationary non-static geometries.

In the canonical formalism, where γij is the metric on a constant time slice, N is the lapse
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function and N i is the shift vector required for rotating spacetimes, we have

ds2 = N2dτ2 + γij(dx
i − iN idτ)(dxj − iN jdτ). (4.1)

Regularity at the bolt (instanton horizon) requires the periodic identifications of imaginary

time and rotation angles: (τ, φi) ∼ (τ, φi + 2π) ∼ (τ + β, φi − i Ωiβ). These geometries

have been called quasi-Euclidean.1 This seems to pose a difficulty for the path integral

because we expect physical quantities to be real. Notice also that the procedure applied

in the last Chapter to decompose the metric perturbations and deal with the conformal

factor problem assumed the instanton to be (real) Euclidean.

Nevertheless, we share the view of [154, 155] that quasi-Euclidean instantons pose

no problem of principle. The instanton action is real and gives the physical free energy

(divided by the temperature). Notice that, while one might be tempted to take imaginary

lapse functions, which would make the line element (4.1) real, the resulting geometry would

bear no relation to the Lorentzian black hole, e.g. the bolt radius would be different from

the event horizon radius and there would be no ergosphere. Furthermore, although this

can be done for Myers-Perry black holes (1.5) by analytically continuing the rotation

parameters ai, it is impossible for black rings because not all conical singularities can be

removed in the would-be real instanton [157,158].

The treatment of quantum corrections about a quasi-Euclidean instanton is more

subtle. However, Refs. [154,155] show that the action is real not just for the instanton, but

also for a family of off-shell geometries – the one used in Section 3.3 to connect negative

modes to local thermodynamic stability. The problem of thermodynamic negative modes

should then be posed in terms of real quantities.

The procedure leading to the expression (3.32) for the one-loop quantum corrections

assumed a Euclidean instanton, while we now want to consider the quasi-Euclidean case.

However, that expression may still hold for an appropriate complex contour of integration

1Note that, although the metric is complex, the manifold is real. Real coordinates can be defined by
setting φ̃i = φi + i Ωiτ , so the identifications are (τ, φ̃i) ∼ (τ, φ̃i + 2π) ∼ (τ + β, φ̃i).
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in the space of perturbations (and ghosts), specified as usual by the steepest descent

method. This is our assumption. It would be important to construct such a contour

explicitly.

The numerical technique applied here differs from the analytical but perhaps sim-

plistic first approach to the problem in [159], which could only account for the effect of a

single direction in the perturbation space. That single direction was provided by an easily

constructed traceless-transverse perturbation, which kept the second order action real but

was not an eigenmode. The difficulty with that approach, which may explain the small

discrepancy in the final result for the Kerr-AdS negative mode, is that it is not clear if

such a direction lies on the steepest descent path, despite the second order action being

real. The steepest descent path is here infinite-dimensional, spanned by the normalised

eigenmodes of G, which we can only determine numerically.

The family of off-shell geometries related to thermodynamic stability in Section 3.3

preserves the Killing isometries ∂τ and ∂φi , where φi are the rotation angles. Therefore,

we will focus on stationary and axisymmetric negative modes (3.33) of the Kerr-AdS

instanton. Since this problem is independent of the time and the rotation angle, which

are responsible for the instanton metric being non-real, it is equivalent to the Lorentzian

problem, and it reduces to a set of explicitly real differential equations.

In the next Section, we review the Kerr-AdS solution and its thermodynamic stabil-

ity. In Section 4.3, we outline our implementation of the eigenvalue problem for negative

modes. The results are presented and discussed in Section 4.4.
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4.2 The Kerr-AdS solution

4.2.1 Instanton geometry

The instanton geometry is obtained through the analytical continuation of the black hole

solution:

ds2 =
∆(r)

Σ2(r, θ)

(
dτ − i

a

Ξ
sin2 θ dφ

)2
+

∆θ(θ) sin2 θ

Σ2(r, θ)

(
r2 + a2

Ξ
dφ+ i a dt

)2

+
Σ2(r, θ)

∆(r)
(dr + r0δχ sin θ dθ)2 + Σ2(r, θ) dθ2 , (4.2)

where ` is the curvature radius of AdS, `2 = −3/Λ, and

∆(r) = (r2 + a2)(1 + r2`−2)− r0r, (4.3a)

Σ(r, θ)2 = r2 + a2 cos2 θ, (4.3b)

∆θ(θ) = 1− a2`−2 cos2 θ, (4.3c)

Ξ = 1− a2`−2. (4.3d)

The bounds on the parameter space of the instanton are given by the extremality condition

and by the requirement that |a| < `, since the limit |a| → `, for which the 3-dimensional

Einstein universe at infinity rotates at the speed of light, is singular [44]. The avoidance

of a conical singularity at the bolt, located at r = r+ , the largest root of ∆, requires the

coordinate identification (τ, φ) = (τ + β, φ+ iβ(Ω− a`−2)). Here,

β =
4π(r2

+
+ a2)

r+(1 + a2`−2 + 3r2
+
`−2 − a2r−2

+
)

(4.4)

is the inverse temperature and

Ω =
a(1 + r2

+
`−2)

r2
+

+ a2
(4.5)

is the angular velocity in a reference frame non-rotating at infinity, the quantity that

satisfies the first law of thermodynamics [145]. It differs from the angular velocity in the



4.2. THE KERR-ADS SOLUTION 65

reference frame of (4.2), which is Ω′ = Ω− a`−2. The mass M , the angular momentum J

and the Bekenstein-Hawking entropy S are given by

M =
r0

2 Ξ
, J =

a r0

2 Ξ
, S =

π(r2
+ + a2)

Ξ
. (4.6)

4.2.2 Thermodynamic stability

We analyse here the Kerr-AdS black hole not only because of the usual theoretical moti-

vations (AdS/CFT correspondence) but also because there is a phase transition to local

thermodynamic stability for large enough black holes in the grand-canonical ensemble.

Our purpose is to verify that this criterion for stability matches the one given by the

quantum corrections to the gravitational partition function.

Local thermodynamic stability in the grand-canonical ensemble requires that both

the specific heat at constant angular momentum CJ and the isothermal moment of inertia

ε are positive (2.25). These are given by

CJ = −
2π`2 Ξ−1 (r2

+ + a2)2 [r2
+(3r2

+ + a2) + `2(r2
+ − a2)]

r4
+`

4 − 3r2
+`

2 − a2(9r6
+ + 23r4

+`
2 + 6r2

+`
4)− a4(6r4

+ + 13r2
+`

2 + 3`4)− a6(r2
+ + `2)

(4.7)

and

CJ ε = −
π(r2

+ + a2)3 [r2
+(3r2

+ + a2) + `2(r2
+ − a2)]

r+ Ξ4 [r2
+`

2 − 3r4
+ + (r2

+ + `2)a2]
. (4.8)

An interesting feature of the Kerr-AdS black hole, as opposed to the black ring for instance,

is that the specific heat at constant angular velocity CΩ is sufficient to describe the stability

in the grand-canonical ensemble. It is positive when both CJ and ε are positive, and

negative when one of them is negative; CJ and ε are never simultaneously negative and

complement the region of instability, as we can see in the left plot of Figure 4.1. Therefore,

the local thermodynamic stability criterium is

βCΩ = −
8π2r+

(
r2

+ + a2
)

Ξ
(
1− 3r2

+`
−2 + a2r−2

+ + a2`−2
) > 0 . (4.9)

The vanishing of the denominator in the right-hand side identifies the line of critical
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Figure 4.1: Phase diagrams of the Kerr-AdS black hole. The parameter space is bounded
above by extremality and by the singular limit a = `. Left plot: CJ < 0, ε > 0 and
CΩ < 0 for the dark blue region; CJ > 0, ε < 0 and CΩ < 0 for the light blue region; local
thermodynamical stability for the red region (CJ , ε, CΩ > 0). Right plot: thermodynamic
stability in the red region; global thermodynamic instability (r+ < `) in the brown, blue
and green regions; local thermodynamic instability (CΩ < 0) in the blue and green regions;
classical superradiant instability (Ω` > 1) in the green region.

stability for each value of `. Across this line, CΩ diverges and changes sign. In the static

case, this occurs for r+ = `/
√

3, or r0 ≈ 0.77 `.

In the right plot of Figure 4.1, we present a phase diagram including information on

thermodynamic stability (local and global) and also on classical instability. For Ω` > 1,

in the light blue region, the black hole suffers from the classical superradiant instability

[117–119], the only known instability of these black holes in the absence of matter. In

the two blue regions, the black hole is locally thermodynamically unstable. In those

regions and also in the brown region, which all satisfy r+ < `, the black hole is globally

thermodynamically unstable because its Gibbs free energy with respect to thermal AdS

space is positive,

G = M − TS − ΩJ =

(
`2 − r2

+

) (
r2

+ + a2
)

4 r+ `2 Ξ
. (4.10)

In the light red region, the black hole is thermodynamically stable. The transition to this

region is the Hawking-Page phase transition [122]. The three critical curves meet at the

point r+ = r0/4 = a = `.
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4.3 The eigenvalue problem

4.3.1 Ansatz

We will look at eigenvalues of the operator G in search of stationary axisymmetric negative

modes, GhTT = λhTT , with λ < 0. Our ansatz for the perturbed metric is given by

ds2 =
∆(r)

Σ2(r, θ)
eδν0

(
dτ − i

a

Ξ
sin2 θ eδω dφ

)2

+
∆θ(θ) sin2 θ

Σ2(r, θ)
eδν1

(
r2 + a2

Ξ
dφ+ i a e−δω dt

)2

+
Σ2(r, θ)

∆(r)
eδµ0 (dr + r0δχ sin θ dθ)2 + Σ2(r, θ) eδµ1 dθ2 , (4.11)

where the functions δν0, δν1, δω, δµ0, δµ1, δχ are small perturbations which are functions

of (r, θ). The imposition of the TT conditions on the linearised perturbation hab,

haa = 0 , ∇ahab = 0 , (4.12)

gives three constraints, which are solved by explicit relations

Υ = Υ( ∂rδµ0, ∂rδµ1, ∂rδχ, ∂θδµ0, ∂θδµ1, ∂θδχ, δµ0, δµ1, δχ ), (4.13)

where Υ = {δν0, δν1, δω}. Substituting these three relations in the metric perturbation, we

get the general expression for hTTab respecting the isometries of the instanton.2 Notice that

this expression includes first derivatives of the functions δµ0, δµ1, δχ in the components

hTTττ , hTTτφ , hTTφφ .

Now we look at the eigenvalue problem E = GhTT − λhTT = 0. There are six

equations to be solved, corresponding to the non-zero components Eττ , Eτφ, Eφφ, Err,

Erθ, Eθθ. Since G is a second order differential operator, and hTT already includes first

derivatives, the components Eττ , Eτφ, Eφφ are third order equations. The components

2The inclusion of the terms hτr, hτθ, hφr, hφθ in the ansatz (4.11) leads to the conclusion that these
must vanish when imposing the TT conditions. Hence we are working with the most general ansatz for
stationary and axisymmetric perturbations.
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Err, Erθ, Eθθ are second order only, and they imply (by taking their derivatives) that the

third order components are automatically satisfied, as expected. Hence we have the three

coupled partial differential equations Err, Erθ, Eθθ for the three unknown functions δµ0,

δµ1, δχ.

One thing we should emphasise is that the subtlety of having a quasi-Euclidean

metric, as opposed to Euclidean, has vanished now. The equations obtained are real

equations for real perturbation functions. Unfortunately, it will not be possible to present

the three equations explicitly here. Even in the asymptotically flat limit `→∞, they are

too cumbersome.

Let us first consider the boundary conditions for the perturbations. The region of

integration for the differential equations is an infinite strip r+ ≤ r < ∞, 0 ≤ θ ≤ π. The

perturbations must vanish at infinity, r →∞. The boundary conditions on the horizon are

obtained by considering a regular basis. This procedure is described explicitly in Chapter 7

and we will not repeat it here. We find that δχ(r, θ) ∝ (r − r+) near the horizon, while

δµ0(r+, θ) and δµ1(r+, θ) must simply be finite. Regularity at the poles θ = 0, π implies

only that the functions are finite there.

4.3.2 Implementation

It is convenient to make rescalings such that only adimensional quantities are involved in

the problem,

y =
r

r+
− 1 , y∗ =

r+

r0
, (4.14a)

`∗ =
`

r0
, λ∗ = λ r2

0 , (4.14b)

and notice that
y∗ − y2

∗ − y4
∗`
−2
∗

1 + y2
∗`
−2
∗

=

(
a

r0

)2

. (4.14c)

We will use the coordinate

x = cos θ , (4.15)
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so that the numerical integration will be performed on a rectangle 0 ≤ y ≤ Y , −1 ≤ x ≤ 1,

where Y � y∗ must be sufficiently large. Let us rescale the perturbation functions too,

δµ0(r, θ) =
q1(y, x)

y(1− x2)
, (4.16a)

δχ(r, θ) =
q2(y, x)

1− x2
, (4.16b)

δµ1(r, θ) =
q3(y, x)

y(1− x2)
, (4.16c)

so that the boundary conditions discussed before are simply qi = 0 (i = 1, 2, 3) along the

edges x = ±1 and y = 0, Y . It is convenient to combine our previous equations rr, rθ and

θθ, now in terms of the redefined quantities, into the form

∂2
yqi(y, x) + . . .+ λ∗f(y, x; y∗, `∗)qi(y, x) = 0, (4.17)

which turns out to be possible. Notice that the last term above gives the only dependence of

the equations on λ∗. We are now ready to implement the spectral numerical method [160],

which is briefly described in the Appendix at the end of this thesis.

4.4 Results

Let us first consider the Kerr case, i.e. the limit ` → ∞. The results are represented in

Fig. 4.2. We find that there is a single negative mode for |a| ≤ r0/2, monotonically in-

creasing in magnitude with the angular momentum. Surprisingly, our probe perturbation

method [159] approached the value of the negative eigenvalue now found to within 10%.

One way to understand the increase in magnitude is to recall the connection between the

black hole thermodynamic negative mode and the classical Gregory-Laflamme instabil-

ity of the respective black string/brane [137], which we shall review in greater detail in

Chapter 6. The threshold wavenumber k = (~k · ~k)1/2 for the Gregory-Laflamme insta-

bility corresponds to the four dimensional stationary solution of GhTT = −k2 hTT , with

the appropriate boundary conditions [100]. This is exactly the problem addressed here
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Figure 4.2: For the Kerr instanton, λ∗ is negative, decreasing monotonically away from
a = 0 and evaluating to a finite value at extremality |a| = r0/2.

if we identify λ = −k2. The fact that we are dealing with a quasi-Euclidean geometry

rather than a Lorentzian geometry is irrelevant since time plays no role in the solutions

to the perturbation functions defined in (4.11). The curve in Fig. 4.2 thus implies that

the Gregory-Laflamme instability of the Kerr string persists up to extremality. The larger

in magnitude is the negative mode, the smaller is the threshold length scale k−1 for the

instability. We expect on physical grounds that the centrifugal force caused by the rota-

tion will favour the instability of ripples along the string (Ref. [110] presents a fluid dual

analogy) thus decreasing their threshold length scale and explaining the stronger negative

mode of the black hole. See [68,72,108] for analogous results in higher dimensions.

We now turn to the Kerr-AdS case. If we look at Fig. 4.3, the agreement between

the existence of a negative mode and the condition (4.9) is striking. We find a negative

mode only when CΩ is negative. Unfortunately the numerical method does not allow us to

safely zoom in the line of critical stability. Nevertheless, it is clear that the gravitational

partition function reproduces the thermodynamics of the system beyond the instanton

approximation, even for this non-static black hole with a quasi-Euclidean instanton.
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Figure 4.3: Phase diagram of the Kerr-AdS black hole. The points represent the parameter
region where we find a negative mode and the line represents the change of sign of CΩ,
which is negative in the Kerr limit `→∞.
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Chapter 5

Reissner-Nordström negative

mode

In this Chapter, based on [161], we analyse the problem of thermodynamic negative modes

of the Reissner-Nordström black hole in four dimensions. We find analytically that a

negative mode disappears when the specific heat at constant charge becomes positive.

The sector of perturbations analysed here is included in the canonical partition function

of the magnetically charged black hole. The result obeys the usual rule that the partition

function is only well-defined when there is local thermodynamical equilibrium.

We emphasise the challenge of quantising Einstein-Maxwell theory, even as a low

energy effective theory, because the conformal factor problem is more intricate than in

the vacuum case, which was discussed in Section 3.2.2. We circumvent this difficulty by

considering a dimensional reduction from five to four dimensions. The method allows us

to decouple the divergent gauge volume and treat the metric perturbations sector in a

gauge-invariant way.

73
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5.1 Introduction

The inclusion of matter presents considerable challenges to the study of black hole negative

modes. This is because the standard decomposition of the perturbations [130, 131], re-

viewed in Section 3.2.2, which singles out the unphysical conformal modes, was performed

for the Einstein theory only (with or without cosmological constant). In particular, the

presence of a background gauge field invalidates the procedure even for metric perturba-

tions only, i.e. when the gauge field perturbations can be consistently set to zero.

One way out to address this problem is suggested by the alternative procedure of

Gratton, Lewis and Turok [162, 163] for cosmological instantons. They look for well-

behaved gauge-invariant perturbations which allow for a decoupling in the action between

the relevant modes and the unphysical ones, which are integrated out. See Kol [164] for a

general and systematic discussion of the same basic idea, which he calls “power of the ac-

tion,” following its initial application to the Schwarzschild black hole and black string [138].

This corresponds to the procedure we adopt in this work. There is a further complication

though. The problem of radial perturbations requires two gauge conditions (as the trace-

less and transverse conditions in pure gravity) for the metric perturbations. The method is

inconsistent because the radial ansatz for the perturbation of the action only has a radial

diffeomorphism invariance (one gauge choice), and including time does not allow for the

construction of gauge-invariant quantities. The work of Kol [138] on the Schwarzschild

black hole gives a solution to this problem. Considering a lift to one higher dimension,

along which there is translational invariance, it is possible to construct gauge-invariant

quantities, i.e. perturbations which are invariant for infinitesimal diffeomorphisms along

the radial direction and along the extra dimension. If the action for the zero modes

(infinite wavelength) along the extra-dimension reproduces the lower-dimensional action

for perturbations, then the higher-dimensional action can be decomposed, and the long

wavelength limit can be taken when a simple reduced action is available.

Using this Kaluza-Klein method, we are able to study the four-dimensional magnetic

Reissner-Nordström black hole in a sector of perturbations corresponding to the canonical
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ensemble, i.e. fixed charge Q. We find that one negative mode still exists if the charge is

small compared with the mass M , as expected, but disappears for |Q| ≥
√

3M/2, exactly

when the specific heat becomes positive. This supports the validity of the canonical

partition function of Euclidean quantum gravity [129] even when gauge fields are present.

One might be worried by the fact that such a theory is not renormalisable at one

loop, which is indeed the case of Einstein-Maxwell theory [165], so that we cannot compute

quantum corrections. However, we can take an effective field theory approach [166], where

Einstein-Maxwell theory is regarded as the low energy limit of an underlying fundamental

theory. The effective theory is valid up to a cut-off scale, after which ultraviolet completion

effects become important. As long as the energies of the fields involved are nowhere

near that scale, the perturbative quantisation of the non-renormalisable effective theory is

meaningful. It may help to recall that Einstein-Maxwell theory corresponds to the bosonic

sector of four-dimensional N = 2 supergravity, which can be embedded into string theory.

We mentioned that Einstein-Maxwell theory had not been considered for the per-

turbative path integral quantisation on black hole backgrounds. Miyamoto and Ku-

doh [167, 168] have analysed the classical stability of magnetically charged branes and

verified that they are stable when there is local thermodynamic stability. This result is

related to the Gubser-Mitra conjecture mentioned in Sections 2.2.2 and 6.1.1. The issue

we address here is whether the partition function at one loop, defined as a saddle point

approximation to a Euclidean path integral, conforms to the usual thermodynamic stabil-

ity criterion. It is also worth mentioning that Einstein-Maxwell theory in four dimensions

cannot be the result of dimensionally reducing Einstein-Maxwell theory in five dimensions,

since there is then an extra scalar field. The fact that the Reissner-Nordström black hole

is not straightforwardly related to a string will force us to be careful in our Kaluza-Klein

action method, so that we make sure the correct quantum theory is obtained.

This Chapter is organised as follows. In Section 5.2, we discuss the problems with

quantising Einstein-Maxwell theory, stressing the differences with the pure Einstein case,

and recall the relation between the boundary conditions of the path integral and the cor-
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responding thermodynamic ensemble. In Section 5.3, we explain the Kaluza-Klein action

method to analyse the second-order action. In Section 5.4, we describe the application

of the method to the magnetic Reissner-Nordström black hole. We start by presenting

an appropriate lift to five dimensions. We then construct the gauge-invariant quantities

and obtain the reduced action. We find that the action possesses a negative mode when

the specific heat at constant charge is negative. Finally, in Section 5.5, we present the

conclusions.

5.2 The Einstein-Maxwell path integral

We wish to consider gravity coupled to electromagnetism in asymptotically flat spacetimes.

The partition function is given by the path integral

Z =

∫
d[g]d[A]e−I[g,A], (5.1)

constructed from the Euclidean action

I[g,A] = −
∫
M
ddx
√
g(R− FabF ab)− 2

∫
∂M

dd−1x
√
h(K −K0), (5.2)

twhere the first term corresponds to the usual Einstein-Hilbert action and the second term

is the Maxwell action. As before, the third term is the Gibbons-Hawking-York boundary

term [129, 144], required if the configurations summed over have a prescribed induced

metric on ∂M. K represents the trace of the extrinsic curvature on ∂M and K0 is the

trace of the extrinsic curvature of flat spacetime, matching the black hole metric at infinity,

necessary to render the on-shell action of asymptotically flat black hole solutions finite.

Recall that Fab are the components of the Maxwell field strength, the exterior derivative

F = dA of the gauge 1-form potential A.

As discussed in Section 3.2, the purely gravitational action can be made arbitrarily

negative for conformal transformations that obey the boundary conditions of the path

integral, i.e. by geometries included in the sum. In the absence of electromagnetic sources,
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this apparent divergence of the functional integration, called the conformal factor problem,

is circumvented by choosing an appropriate complex integration contour [130], at least at

the one loop level of the semiclassical quantisation. Furthermore, it was later shown in [131]

that an orthogonal decomposition of the metric perturbations into a trace, a longitudinal-

traceless and a transverse-traceless part, complemented by an appropriate gauge choice to

deal with the diffeomorphism invariance of the action, leads to the complete decoupling of

these components in the second-order action. This procedure was detailed in Section 3.2.2.

It is a key requirement that the gauge choice kills the interaction between the trace and

the longitudinal traceless parts. The final result confirms the prescription of [130], and

the decoupled trace can be integrated by choosing a suitable complex contour. Moreover,

the scalar parts of the partition function, comprising the contributions from the tracelike

(conformal) perturbations and from the scalar parts of the vector modes, both in the

longitudinal traceless part of the metric and in the ghost vectors, cancel. This shows that

the apparent non-positivity of the action for perturbations, and the consequent divergence

of the path integral, are fixed by projecting out this contribution. We would like to address

this problem in the presence of electromagnetism.

5.2.1 The second-order action

In this section, we will perturb the action about a saddle point (g,A), which we define

here as a non-singular solution of the equations of motion

Rab −
1

2
Rgab = 2

(
F c
a Fbc −

1

4
gab F

pqFpq

)
(5.3a)

and

∇aF ab = 0 . (5.3b)

Small perturbations (hab, ab) about this solution,

gab → gab + hab and Ab → Ab + ab , (5.4)
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are treated as quantum fields living on the saddle point background. We then perturb the

action to second order,

I[g + h,A+ a] = I[g,A] + I2[h, a; g,A] +O(h3, h2a, ha2, a3) , (5.5)

so that the partition function can be approximated by a saddle point functional integral

Z ' e−I[g,A]

∫
d[h]d[a](G.F.) e−I2[h,a;g,A] ≡ e−I[g,A]Z(2) , (5.6)

where (G.F.) denotes all contributions induced by fixing the gauge. The first-order term is

absent because the instanton solution satisfies the equations of motion. The second-order

action is given by

I2[h, a] =
1

4

∫
dDx
√
g
{
hab
[
∆Lhab+2∇a∇chbc−2gab∇m∇nhmn+gab�ĥ+4F m

a F n
b hmn

+
2FmnFmn
D − 2

(
hab −

gab
2
ĥ
)]

+ 16ac

(
Fab∇ahbc +∇aF bchab + F ac∇bhab −

1

2
F ac∇aĥ

)
− 8
(
ab�a

b − aaabRab +∇aaa∇bab
)}
, (5.7)

where we have defined ĥ ≡ gabhab. ∆L is the Lichnerowicz operator defined in (2.2). This

action can be checked to be invariant under the following gauge transformations hab → hab

aa → aa +∇aχ
, (5.8)

and  hab → hab +∇aVb +∇bVa

aa → aa + V bFba
. (5.9)

The first set of transformations corresponds to the U(1) invariance associated with the elec-

tromagnetic field, and the second to the invariance under diffeomorphisms, conveniently

mixed with the U(1) symmetry. The gauge ambiguity from both these transformations

should be fixed in the path integral.
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Let us point out a property of (5.7) which will be crucial in this work. If we

focus on spherically symmetric four-dimensional instantons, the metric perturbations can

be expanded into odd and even perturbations [82]. Substituting this general expansion in

(5.7), in the background of the magnetic Reissner-Nordström solution, the cross term gives

zero for any value of the vector field perturbation ab. If we further assume that whatever

gauge choice that makes this problem tractable in four dimensions does not involve the

mixture between metric perturbations and gauge potential perturbations, then the metric

sector completely decouples from the gauge potential sector. In the electric Reissner-

Nordström case, this decoupling does not occur, and a complete analysis of the problem

requires the inclusion of such a term.

We further decompose the metric perturbations into a traceless and a trace part:

hab = φab +
1

D
gab ĥ . (5.10)

After this expansion, the second-order action can be written as

I2[φab, ĥ, aa] =
1

4

∫
dDx
√
g

×
{
φab
[
∆Lφab + 4

(
F m
a F n

b −
gab
D
FmcFnc

)
φmn +

2

D − 2
FmnFmnφab

]
+

8

D
φabF

acF bcĥ+

(
D2 − 3D + 2

D2

)
ĥ�ĥ− D − 4

D2
F abFabĥ

2

− 2∇aφac∇bφbc +
2(D − 2)

D
∇aφab∇bĥ

+ 16ac

[
Fab∇aφbc +∇aF bcφab + F ac∇bφab −

D − 4

2D
F ac∇aĥ

]
− 8
(
ab�a

b − aaabRab +∇aaa∇bab
)}

. (5.11)

The first term in the third line of (5.11) is the term that makes the study of Einstein-

Maxwell instantons more involved. It couples the traceless part of the metric with the trace

part. Hence one cannot simply associate the trace with the unphysical divergent modes,

as in the pure-gravity conformal factor problem. There may be several ways of tackling

this. One might try to make a particular gauge choice for the metric perturbations. This
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is exactly what one does in the purely gravitational case to remove the last term in the

second line, by choosing a gauge of the form

Ca[h] = ∇b
(
hab −

1

β
gab ĥ

)
, (5.12)

where β is a constant to be conveniently fixed [131]. However, we were not able to

find such a gauge when electromagnetism is introduced without making a shift in the

gauge potential aa. This shift results in a new coupling between the trace and the vector

potential, invalidating once more the pure gravity interpretation of the trace. Furthermore,

this new choice of gauge requires a new decomposition of the metric perturbations instead

of the usual longitudinal/transverse decomposition corresponding to the choice (5.12).

An alternative approach to the problem would be to shift the trace component of the

metric by a term proportional to �−1(φabF
acF bc). This choice removes the problematic

term, but also makes the second-order action dependent on the inverse box operator,

rendering any further computations unpractical.

A third method, based on [138], is to attempt to solve the problem by using Kaluza-

Klein techniques, and will be the one followed here.

5.2.2 Boundary conditions

The partition function is defined as the path integral (5.1) with appropriate boundary

conditions. These boundary conditions specify the thermodynamic quantities which are

held fixed in the ensemble. Here, we recall the discussion of Hawking and Ross [169] for

the Reissner-Nordström case.

As usual, the 3-metric on the boundary ∂M = S1 × S2
∞ fixes the temperature

T = β−1, where β is the periodicity of imaginary time. The boundary condition on

the electromagnetic field at infinity typically fixes either the charge Q or the potential

Φ = Q/r+, as we shall discuss. Imposing a periodicity β, the leading order approximation
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to the path integral is the Reissner-Nordström instanton,

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΩ2 , (5.13)

where f(r) = 1− 2M/r +Q2/r2, dΩ2 = dθ2 + sin2 θdφ2, and M and Q are the black hole

mass and charge, respectively. Since an instanton solution is required to be non-singular,

the mass and the charge are fixed by the boundary data and by the condition of regularity

at r = r+ = M +
√
M2 −Q2, the location of the outer horizon in the Lorentzian solution

and of the “bolt” in the Euclidean solution. That condition is the formula for the Hawking

temperature:

T =
r+ −M

2πr2
+

. (5.14)

However, the action of the instanton depends on the boundary terms which make

the fixing of quantities on ∂M consistent. Suppose one fixes the potential A at a surface of

very large r = R, where R will be taken to infinity. In the magnetic case, this corresponds

to specifying the charge

Q =
1

4π

∫
S2
∞

F , (5.15)

which is determined by integrating the magnetic field strength Fθφ over S2
∞, which in

turn is determined by A on the boundary alone. But, in the electric case, the charge is

computed using the dual of the electric field strength,

Q =
i

4π

∫
S2
∞

?F , (5.16)

i.e. it requires fixing Fτr (the i is due to the use of imaginary time). The canonical

ensemble, for which the charge Q is fixed, includes the configurations for which derivatives

of A normal to the boundary are fixed. The thermodynamic quantity associated with

specifying A on ∂M, in the electric case, is the electric potential at infinity Φ = −iAτ =

Q/r+ (the gauge choice A = −i(Q/r − Φ)dτ ensures that A is regular on the horizon

r = r+). Fixing the potential Φ corresponds to the grand-canonical ensemble. For the

canonical ensemble, the action (5.2) must include a boundary term appropriate to the
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variational problem in question,

−4

∫
∂M

d3x
√
hF abnaAb , (5.17)

i.e. to the fixing of Fτr and thus of the electric charge Q. This term ensures that the

Helmholtz free energies of the electric and magnetic black holes coincide [169]:

FHelmh = M − TS = −T lnZcanonical(β,Q) , (5.18)

where S = πr2
+ is the black hole entropy.

In the present work, we look at a sector of metric perturbations about the instanton

such that the metric is fixed at the boundary. We consider the magnetic case, leaving

the electromagnetic potential A unperturbed, which can be done consistently for SO(3)

symmetric backgrounds, as mentioned in the previous Section. The sector is thus included

in the canonical ensemble.

5.3 The Kaluza-Klein action method

We described in Section 5.2 the difficulties in quantising Einstein-Maxwell theory. The

standard decomposition of the perturbations around the instanton [131] does not apply.

However, a decomposition that explicitly decouples the divergent modes, the conformal

modes in the case of pure gravity, is essential. We therefore look for a different approach.

In [138], Kol addresses the problem of the negative mode of the Schwarzschild black

hole by looking at the “dynamical” part of the action. This procedure, useful if the prob-

lem has a single non-homogeneous dimension (the radial one here), was formalised in [164].

Instead of the treatment of Gross, Perry and Yaffe [132], which looks at the Lichnerow-

icz operator ∆L acting on transverse-traceless metric perturbations, an auxiliary extra

dimension z is added. The extended space of metric perturbations and the dependence

on the extra dimension allow for the construction of several gauge-invariant quantities.
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These decouple into two sectors, a “dynamical” part, which is the relevant reduced action,

and a “non-dynamical” part, which takes away the divergent modes. The action of the

five-dimensional zero modes, i.e. the k = 0 modes in a Fourier decomposition along z,

or at least a sector of it, is the four-dimensional action. Notice that, in four dimensions,

the radial problem has a single gauge transformation, ξr. The appropriate fixing of the

gauge freedom requires a second condition (as in the traceless and transverse gauge), but

including time does not allow for the construction of gauge-invariant quantities. This is

provided by the ξz component if we use the auxiliary extra dimension instead.

A different way of looking at the extra dimension is to relate the black hole to a black

string/brane, as we shall discuss in the next Chapter.1 The difficulty in the charged black

hole case is that the standard traceless-transverse gauge does not decouple the divergent

modes. However, the Kaluza-Klein action method (“power of the action”, as Kol prefers)

is still available. It requires:

(i) A “maximally general ansatz” for the perturbation of the fields; i.e. the ansatz must

reproduce all of the background field equations by variation of the metric, and must

be closed for the relevant group of gauge transformations (ξr and ξz).

(ii) The lift must be such that the five-dimensional action for the k = 0 perturbation

modes is equivalent to the action for the perturbations around the four-dimensional

black hole instanton. Actually, it suffices that a particular sector of the five-dimen-

sional action satisfies this. We must then restrict ourselves to that sector of the path

integral.

The lift we consider in this work, along a timelike direction z, is a “magnetic string”

of a theory with electromagnetism and Chern-Simons term. We will need to restrict to a

sector of the path integral by introducing a Delta functional on the space of perturbations.

The restriction will ensure that we obtain the four-dimensional action when we look at

the k = 0 modes.
1A straightforward correspondence of this type will not hold in our case because of the non-trivial factor

in front of the second term in (5.50).
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Before we start, let us make two clarifications. First, how do we know that the

divergent modes are being decoupled from the path integral? The decomposition of the

path integral into “dynamical” and “non-dynamical” parts leads to a “non-dynamical

action” simply composed of squares of gauge-invariant quantities. One of them will have

a minus sign, meaning that a rotation to the imaginary line is needed in order for the

Gaussian path integral to converge. This is the exact analogy of the prescription of [130].

Second, the particular eigenvalue obtained from this method is not the same, in general,

as the one obtained from the standard decomposition. The negative eigenvalue in [138] is

quantitatively different from the one in [132] because the decomposition of the action is

different. But the positivity properties of the action, i.e. whether a negative eigenvalue

exists or not, must be the same.

5.4 Magnetic Reissner-Nordström analysis

5.4.1 Lift to five dimensions

In this Section, we will apply the method described in Section 5.3 to the magnetic Reissner-

Nordström black hole. The first non-trivial step is to find a five-dimensional system of

gravity, possibly coupled to some fields, that reduces to four-dimensional Einstein-Maxwell

theory upon a Kaluza-Klein reduction on a circle. This truncation was first discussed

in [170] in the context of Lorentzian signature. Here we straightforwardly extend it to

Euclidean signature spacetimes.

We start with minimal five-dimensional supergravity with the action given by

I(5) = −
∫
dx5
√
ĝ
(
R̂− F̂ âb̂F̂âb̂ −

2

3
√

3

ε̂â1...â5

√
ĝ

F̂â1â2F̂â3â4Ââ5

)
, (5.19)

where ˆ represents quantities in five dimensions, ĝ = |det gâb̂| and F̂ = dÂ. Our dimen-

sional reduction ansatz will take the generic form

ds2
5 = ∆γds2

4 + ε∆(dz + 2Ãadx
a)2 , (5.20)
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where γ is a constant and ∆ is related to the exponential of the dilaton field. Here

ε = ±1, according to the signature of the five-dimensional spacetime. The signature of

the four-dimensional space is chosen to be Euclidean. Also, ∂z is a Killing vector of the

five-dimensional spacetime, meaning that ∆, gab and Ãa do not depend on z.

The reduction of the Maxwell field parallels that of the metric, and in particular we

expand it as

Â = A+ Σ(dz + 2Ã) , (5.21)

where both A and Ã only have components in the four-dimensional space, and again do

not depend on z. Choosing γ = −1/2, setting ∆ = exp (−4φ/
√

3) and substituting in the

action (5.19) yields the following form of the action:

I(5) = −V
∫
d4x
√
g
[
R− 2∂aφ∂

aφ− e−2
√

3φεF̃ abF̃ab − e
− 2√

3
φ
HabHab − e

4√
3
φ
∂aΣ∂

aΣ

− 2√
3

Σ
εa1...a4

√
g

(
Ha1a2 − 4Ãa1∂a2Σ

)(
Ha3a4 − 4Ãa3∂a4Σ

)]
, (5.22)

where V is the volume of the circle along which we are performing our dimensional reduc-

tion and H = F + 2ΣF̃ . Varying this action with respect to gab, Ãa, Aa, φ and Σ yields

the following equations of motion

Rab = 2∂aφ∂bφ+ e
4√
3
φ
∂aΣ∂bΣ

+2e−2
√

3φε
(
F̃acF̃

c
b −

gab
4
F̃mnF̃

mn
)

+ 2e
− 2√

3
φ
(
HacH

c
b −

gab
4
HmnH

mn
)
, (5.23a)

ε∇a(e−2
√

3φF̃ ab) + 2∇a(Σe
− 2√

3
φ
Hab) +

4√
3

εa1a2a3b

√
g

Ha1a2Σ∂a3Σ = 0 , (5.23b)

∇a(e
− 2√

3
φ
Hab) +

2√
3

εa1a2a3b

√
g

Ha1a2∂a3Σ = 0 , (5.23c)

�φ+

√
3

2
εF̃abF̃

ab +
1

2
√

3
e
− 2√

3
φ
HabH

ab − 1√
3
e

4√
3
φ
∂aΣ∂aΣ = 0 , (5.23d)
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∇a(e
4√
3
φ∇aΣ)− 1√

3

εa1...a4

√
g

(
Ha1a2 − 4Ãa1∂a2Σ

)(
Ha3a4 − 4Ãa3∂a4Σ

)
+ 4

εa1...a4

√
g

Ha1a2Ãa3∂a4Σ− 2e
− 2√

3
φ
HabF̃ab = 0 . (5.23e)

We now search for a consistent truncation in which the two fields φ and Σ are set to zero.

We are then left with two constraints on F̃ and F coming from both Eqs. (5.23d) and

(5.23e)

3εF̃ abF̃ab + F abFab = 0 and ?F +
√

3F̃ = 0 , (5.24)

where ? is the Hodge dual with respect to the four-dimensional geometry. If the four-

dimensional manifold has Lorentzian signature, the second condition solves the first if ε =

1. However, if the four-dimensional manifold is assumed to have the Euclidean signature,

one must require ε = −1. We thus from now on choose ε = −1. The equations of motion

(5.23) then reduce to

Rab = −2
(
F̃acF̃

c
b −

gab
4
F̃mnF̃

mn
)

+ 2
(
FacF

c
b −

gab
4
FmnF

mn
)
,

∇aF ab = ∇aF̃ ab = 0 , (5.25)

subject to the second constraint in (5.24). In order to further simplify the equations of

motion and to explicitly solve the constraint, we change from F and F̃ to F (1) and F (2)

given by

F (1) = 1
2 ? F̃ −

√
3

2 F and F (2) =
√

3
2 ? F̃ + 1

2F . (5.26)

The constraint is solved by setting ?F (2) = 0, that is, F (2) = 0. Substitution in (5.25)

yields

Rab = 2
(
F

(1)
ac F (1) c

b −
gab
4 F

(1)
mnF (1)mn

)
, ∇a(F (1)ab) = 0 . (5.27)

These are precisely the equations of motion that we were searching for, i.e. the Einstein-

Maxwell equations in four dimensions. Note that both these equations can be deduced

from the four-dimensional action

I(4) = −
∫
dx4√g

(
R− F (1)

ab F
(1)ab

)
. (5.28)
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The four-dimensional quantities are related to the five-dimensional quantities via

ds2
5 = ds2

4 − (dz + 2Ãadx
a)2 , F̃ =

?F (1)

2
and Â = −

√
3

2
A(1) . (5.29)

We further remark that this truncation is only valid at the level of the equations of motion.

In fact, directly substituting the ansatz (5.29) in (5.22) gives

−V
∫
d4x
√
g
(
R− 1

2
F

(1)
ab F

(1)ab
)
6= V I(4) . (5.30)

We can now write the five-dimensional lift of both the magnetic and electric Reissner-

Nordström instantons, respectively as

ds2
5 = f(r)dτ2 +

dr2

f(r)
+ r2dΩ2 −

(
dz − Q

r
dτ
)2
, A = −

√
3

2
Q cos θdφ , (5.31)

and

ds2
5 = f(r)dτ2 +

dr2

f(r)
+ r2dΩ2 −

(
dz − iQ cos θdφ

)2
, A = −i

√
3Q

2r
dτ , (5.32)

where f(r) = 1− 2M/r +Q2/r2, dΩ2 = dθ2 + sin2 θdφ2, and M and Q are the black hole

mass and charge, respectively. We are now ready to use the “power of action”.

5.4.2 Reducing the action

The “maximally general ansatz” for the magnetic case can be written as

ds2
5 = e2A(r,z)[dτ − κ(r, z)]2 + e2B(r,z)dr2 + e2C(r,z)dΩ2

−e2β(r,z)[dz − Γ(r, z)dτ − α(r, z)dr]2 , (5.33)

and A = −(
√

3Q/2) cos θdφ. With this ansatz, it is consistent, in terms of gauge-

invariance, not to perturb the electromagnetic potential. This conforms to what we have

seen before, because in the magnetic case the metric perturbations decouple from the
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vector potential perturbations, and the former have a positive definite action. For the

electric case, one would have to find a form of perturbing the solution (5.32), maintaining

all variables involved only dependent on r and z. However, the authors were not able to

accomplish this. From now on, we will only consider the magnetic case, for which the

metric is explicitly codimension one. We then perturb the quantities in (5.33) as

A(r, z) = A0(r) + a(r, z) , B(r, z) = B0(r) + b(r, z) ,

C(r, z) = C0(r) + c(r, z) , Γ(r, z) = Γ0(r) + γ(r, z) ,

(5.34)

where all lower case letters are perturbations, and thus absent in the background solution,

which is given by

A0 = −B0 =
1

2
log f, C0(r) = log r and Γ0(r) =

Q

r
. (5.35)

At zero-th order, we exactly recover (5.31). We then substitute (5.34) into the action

(5.19) and expand it to second order,

I
(5)
2 =

∫
drdz(P a b

I J ∂au
I∂bu

J +Q a
I Ju

I∂au
J + VIJu

IuJ) , (5.36)

where u = {a, b, c, α, β, γ, κ}, I ∈ {1, . . . , 7} and the independent non-vanishing compo-

nents of the tensors P a b
I J , Q a

I J and VIJ are given in Appendix 5.A. We can now expand

all the fields in Fourier modes, take the limits k = 0 and β = 0, and compare the five-

dimensional quadratic action with the four-dimensional counterpart. As we predicted in

(5.30), the two actions are not equal. Instead, they differ by the following term:

I
(5)
2,k=0,β=0 − I

(4)
2 = −

∫
dr
{r2∂rγ(r) +Q[a(r) + b(r)− 2c(r)]}2

2r2
. (5.37)

Note that here we are perturbing the four-dimensional action only in the metric sector,

and with an ansatz equal to the l = 0 ansatz for the Schwarzschild perturbations used

in [132]. We will see later how to deal with this difference in actions.
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The second-order action (5.36) is invariant under the following gauge transformations

δa = e−2B0ξrA
′
0 + e−2A0Γ2

0∂zξz

δb = e−2B0(∂rξr −B′0ξr)

δc = e−2B0ξrC
′
0

δα = ∂zξr + ∂rξz − e−2A0ξzΓ0Γ′0

δβ = −∂zξz

δγ = e−2B0ξrΓ
′
0 + 2Γ0∂zξz

δκ = −e−2A0 [ξzΓ
′
0 + Γ0(∂zξr + ∂rξz − 2ξzA

′
0)] ,

(5.38)

where ′ denotes differentiation with respect to r in zero-th-order quantities. These corre-

spond to infinitesimal diffeomorphisms along the 1-form ξ = ξrdr + ξzdz.

The quadratic action (5.36) can be cast in a different form, in which α and κ only

appear as ∂zα and ∂zκ, if we integrate by parts. This was expected because, in the k = 0

sector, one does not need to set α or κ to zero, as one does for β. Let us then consider

the following gauge independent quantities

q1 = a−
(
cA′0
C ′0
− e−2A0Γ2

0β

)
q2 = b+

[
cB′0
C ′0
− e−2B0∂r

(
e2B0c

C ′0

)]
q3 = ∂zκ− e−2A0

(
βΓ′0 − 2Γ0βA

′
0 −

e2B0Γ0

C ′0
∂2
zc+ Γ0∂rβ

)
q4 = ∂zα− e−2A0

[
βΓ0Γ′0 +

e2(A0+B0)

C ′0
∂2
zc− e2A0∂rβ

]
q5 = γ −

(
cΓ′0
C ′0
− 2Γ0β

)
.

(5.39)

Plugging in the expressions for the uI ’s, as a function of the qi’s, in (5.36), we obtain a

quadratic action which only depends on the qi’s. As expected, the action can be entirely

written in terms of gauge-invariant quantities. We now proceed to integrate the “non-

dynamical” quantities q2, q3 and q4, which appear with no derivatives in the action. The
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action for the perturbations can be written as

I
(5)
2 = I

(5)
2,q1,q5 +

∫
drdz

[
qĩLĩj̃q

ĩ − 2Rĩq
ĩ
]
, (5.40)

where ĩ ∈ {2, 3, 4}. L does not depend on q1 or q5 and R depends on q1, q5 and their

derivatives. Explicitly,

L =



3Q2

2r2
− 2

3fQ

2

1

2
(1 + 3f)r

3fQ

2
−1

2
f2r2 −1

2
fQr

1

2
(1 + 3f)r −1

2
fQr −Q

2

2


, (5.41)

R =



1

2

(
q1Q2

r2
− 2r∂2

zq
5Q

f
+ ∂rq

5Q+ 2r2∂2
zq

1 − 4rf∂rq
1

)

(Q2 − r2)q5 + rf [r(q5 + r∂rq
5)−Qq1]

2r

1

2

[(
r − rf − 2Q2

r

)
q1 + 2Qq5 + r(2rf∂rq

1 −Q∂rq5)

]


(5.42)

and

I
(5)
2,q1,q5 = −(Qq1 + r2∂rq

5)2

2r2
. (5.43)

We can thus integrate the qĩ by constructing the following shifted variables

q̃ĩ = qĩ − (L−1)ĩj̃Rj̃ , (5.44)

in terms of which the action (5.40) can be rewritten as

I
(5)
2 = I

(5)
2,q1,q5 −

∫
drdzRĩ(L

−1)ĩj̃Rj̃ + IND , (5.45)
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where

IND =

∫
drdzq̃ĩLĩj̃ q̃

ĩ . (5.46)

The “non-dynamical” q̃ĩ’s have now decoupled from the q1 and q5 dependent part of the

action. The new effective action for the variables q1 and q5 is

Ieff ≡ I
(5)
2,q1,q5 −

∫
drdzRĩ(L

−1)ĩj̃Rj̃ . (5.47)

This last expression is too cumbersome to be shown. However, we still have freedom to

rotate q1 and q5. If one sets

q1 = a11q + a15q̃
5

q5 = a51q + a55q̃
5
, (5.48)

where

a11 =
r2 + 3fr2 − 5Q2

2
√

6fr2
, a15 =

Qa55

rf
, a51 = − Q√

6r
, ∂ra55 = −Q

2a55

r3
, (5.49)

then q̃5 disappears from the effective action, which reduces to the simple expression

Ieff =

∫
drdzr2

[
f(∂rq)

2 −
(

1− Q2

r2f

)
(∂zq)

2 + V q2

]
, (5.50)

where V is given by

V = − 6M2

r2(3M − 2r)2

[
1− 4

3

(
Q

M

)2
]
. (5.51)

We are now in a position to explain why the Kaluza-Klein method works in this

specific case. The path integral for perturbations in five dimensions Z5
(2) reduces to the

one in four dimensions Z4
(2) for k = 0 modes if we only integrate over directions in which

the difference (5.37) between the two actions is zero, i.e. if we tune γ. So, one has a

particular sector of Z5
(2),

Z̃5
(2) = lim

k=0

∫
d[uI ]e−I

(5)
2 [uI ]δ[Q(a+ b− 2c) + r2∂rγ]δ[β] = Z̃4

(2) , (5.52)
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where δ[.] is a Dirac delta functional. Above, Z̃4
(2) denotes the restriction of the four-

dimensional path integral to the sector of radial metric perturbations (we showed before

that it is consistent, in the magnetic case, to leave the electromagnetic potential unper-

turbed). Introducing the gauge-invariant variables gives the following form

Z̃4
(2) = lim

k=0

∫
d[qi]d[c]d[β]e−I

(5)
2 [qi]δ

[
Q(q1 + q2) + r2∂rq

5 − Q(Q2 − 2r2f)β

r2f
+ 2Qr∂rβ

]
δ[β]

= lim
k=0

∫
d[qi]e−I

(5)
2 [qi]δ[Q(q1 + q2) + r2∂rq

5]

= lim
k=0

∫
d[q]d[q̃5]d[q̃ĩ]e−Ieff [q]−IND[q̃ĩ]δ

[√2

3
Q

(
1− Q2

fr2
+

2r2

r2 + 3fr2 − 3Q2

)
q

+Qq̃2̃ + a55r
2∂r q̃

5
]

= lim
k=0

∫
d[q]e−Ieff [q] , (5.53)

where each equality holds up to an infinite constant. It is the crucial fact that the final form

of the action, Ieff [q], does not depend on q̃5 that makes the two path integrals equivalent

when we look at the k = 0 sector. The coefficients aij were chosen in such a way that the

argument of the last Dirac delta functional depends on ∂r q̃
5 and not on both q̃5 and ∂r q̃

5

simultaneously.

5.4.3 The negative mode

In this section, we will compute the negative mode of the action by directly studying the

eigenvalue associated with (5.50), when the z dependence drops out (k = 0). The action

reduces to

Ieff,k=0 =

∫
drr2

[
f(∂rq)

2 + V q2
]
. (5.54)

We first remark that, if |Q|/M ≥
√

3/2, the potential V becomes positive, and as a result

the action does not have a negative mode beyond this value of the charge. This is in exact

agreement with the thermodynamic prediction, as we shall see.

To proceed, we change variables in (5.54), in such a way that the resulting eigen-

value problem reduces to a one-dimensional Schrödinger equation. A convenient change
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of variables is

u = q
√
T and y = − T

r+ − r−
log

(
r − r+

r − r−

)
, (5.55)

where r± = M ±
√
M2 −Q2 are the locations of the black hole outer and inner horizons,

respectively, and T is a constant chosen for later convenience. The action (5.54) reduces

to

Ieff,k=0 =

∫
dy
[
(∂yu)2 + Ṽ u2

]
, (5.56)

where

Ṽ = −
2ε(r+ − r−)2

T 2

e
r+−r−
T y[

1 + εe
r+−r−
T y

]2 (5.57)

and ε = (r+ − 3r−)/(3r+ − r−). Here we choose T = (r+ − r−)2/
√
ε, making the potential

negative definite. This choice is only valid for ε > 0, that is, |Q|/M <
√

3/2. The

eigenvalue problem can now be formulated as

−∂2
yu+ Ṽ u = λu. (5.58)

The change of coordinates (5.55) maps r = r+ to y = +∞ and r = +∞ to y = 0. As

a result, the boundary conditions are now changed to u being regular at y = +∞, and

integrable near y = 0. Equation (5.58) can be analytically solved for these boundary

conditions and one finds the unique normalised bound state

u =

√
2ε3/4√r+ + r−

(r+ − r−)

e−
(r++r− )y

4T

(ε− 1) + (ε+ 1) coth
[

(r+−r− )y

2T

] , (5.59)

corresponding to

λ = − 2
√

1− η2 − 1

64M2(1− η2)2(2
√

1− η2 + 1)2
, (5.60)

where η = |Q|/M . As expected, there is only one negative mode, and it disappears for

η ≥
√

3/2 (Fig. 5.1).
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0.0 0.2 0.4 0.6 0.8

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

ÈQÈ�M

Λ M2

Figure 5.1: Evolution of the negative mode with |Q|/M .

5.4.4 Local thermodynamic stability

Let us recall the thermodynamics of Reissner-Nordström black holes. The partition func-

tions correspond to the different ensembles according to the boundary conditions of the

path integral, as explained in Section 5.2.2. In the magnetic case, fixing the temperature

T = β−1, by imposing the periodicity in imaginary time, and fixing the electromagnetic

potential Aa at infinity, which gives the magnetic charge Q, corresponds to the canonical

ensemble.

The thermodynamic stability condition for the Reissner-Nordström black hole is

stated in Section 2.2.2 if we substitute Ω → Φ = Q/r+ and J → Q. In the canonical

ensemble, local stability requires that the specific heat at constant charge,

CQ = T

(
∂S

∂T

)
Q

= −
2πr2

+(r+ − r−)

r+ − 3r−
, (5.61)

is positive. This occurs for
√

3M/2 < |Q| < M , which is exactly the range we found

previously for the disappearance of the negative mode in the partition function.

Had we studied the grand-canonical ensemble, we would expect a negative mode to
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persist. The stability condition is the positivity of not just CQ but also the isothermal

permittivity ε, really the capacitance here, which is given by

ε =

(
∂Q

∂Φ

)
T

=
Tη2

CΦ − CQ
=
r+ (r+ − 3r−)

r+ − r−
. (5.62)

Since CQ and ε have opposite signs, the grand-canonical ensemble is always unstable and

the negative mode is not expected to disappear.

5.5 Conclusions

In this Chapter, we have studied the problem of negative modes of the Euclidean section

of the magnetic Reissner-Nordström black hole in four dimensions. Solving this problem

within four dimensions seems very difficult, as the identification of the unphysical pertur-

bations which render the partition function divergent becomes considerably more intricate

than in the vacuum case.

Following [138], we devised a method to study this problem by lifting the magnetic

Reissner-Nordström solution to five dimensions. The five-dimensional action is equal to

the four-dimensional action, up to a quadratic term that can be set to zero by a suitable

constraint, imposed by a Dirac delta functional, on the five-dimensional path integral. Fur-

thermore, in five dimensions, the action can be solely written in terms of gauge-invariant

variables, which in turn can be divided into two decoupled sectors: “non-dynamical” and

“dynamical”. The former is algebraic, and can thus be readily integrated out. The final

form of the five-dimensional action depends on a single gauge-invariant variable, and the

study of its negative modes in the long wavelength limit, corresponding to four dimensions,

is now accessible.

We found complete agreement between the local stability of the canonical ensemble

and the existence of the negative mode. We analytically determined the eigenmode as a

function of the black hole mass and magnetic charge, from which we concluded that the

negative mode ceased to exist for |Q|/M ≥
√

3/2. This is the range for which the specific
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heat at constant charge CQ becomes positive.

The Kaluza-Klein action method is a practical procedure to determine the quantum

stability of gravity coupled to electromagnetism. However, a standard treatment of the

metric and electromagnetic potential perturbations along the lines of [131] remains most

desirable. The clarification of the divergent modes problem, analogous to the conformal

factor problem of pure Einstein theory, would possibly lead to a better understanding of

perturbative quantum gravity coupled to matter.

5.A Appendix: Components of the tensors P , Q and V

The independent components of P a b
I J in the expression (5.36) are given by

P 1 1
1 3 = P 1 1

3 3 = P 1 1
3 5 = P 1 2

3 4 = 4P 1 2
6 7 , P 1 1

1 5 = P 1 2
1 4 = 2P 1 2

6 7 , P 1 2
3 7 = P 1 2

5 7 ,

P 1 2
5 7 = 2P 2 2

4 7 , P 2 2
1 3 = 2P 2 2

1 2 , P 2 2
2 3 = P 2 2

3 3 , P 2 2
3 5 = 2P 2 2

5 5 , P 2 2
3 6 = 2P 2 2

6 6 ,

P 2 2
1 2 = −2P 1 1

6 6 ,

P 1 2
6 7 = − r2f

2 , P 1 1
6 6 = − r2

2 , P 1 2
6 4 = Qr

2 , P 2 2
3 3 = 2r2

(
1− Q2

r2f

)
, P 2 2

2 5 = −Q2

f ,

P 2 2
2 6 = −Qr

f , P 2 2
4 4 = −Q2

2 , P 2 2
4 7 = −Qrf

2 , P 2 2
7 7 = − r2f2

2 ,

(5.63)

where all the other non-vanishing components can be obtained via the symmetry P a b
I J =

P b a
J I . The terms that only involve one derivative were written using the auxiliary tensor
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Q a
I J , whose non-zero components are given by

Q 1
1 1 = Q 1

5 1 = −2Q 1
2 1, Q 1

1 3 = Q 1
5 3 = −2Q 1

2 3, Q 1
1 5 = Q 1

5 5 = −2Q 1
2 5,

Q 1
5 6 = −3Q 1

1 6, Q 1
1 6 = Q 1

2 6, Q 1
3 1 = −2Q 1

2 1, Q 1
3 3 = −2Q 1

2 3, Q 1
3 5 = −2Q 1

2 5,

Q 1
3 6 = −Q 2

6 4 = −2Q 1
2 6, Q 2

6 4 = 2Q 1
2 6, Q 2

2 7 = 3Q 2
1 7,

Q 2
1 4 = 2Q

2

r − r + rf, Q 2
1 7 = Qf, Q 1

2 1 = 4rf, Q 1
2 6 = −Q,

Q 1
2 3 = −2Q

2

r + 2r + 2rf, Q 1
2 5 = −Q2

r + r + 3rf, Q 2
2 4 = r(1 + 3f),

Q 2
3 4 = −2

(
Q2

r + 2rf
)
, Q 2

3 7 = 2Q− 2Q
3

r2 − 4Qf, Q 2
5 4 = −3Q2

r ,

Q 2
5 7 = Q

(
1− Q2

r2

)
, Q 2

6 7 = −Q2

r + r − rf.
(5.64)

Finally, the potential VIJ takes the following form:

VIJ =



3Q2−4r2

2r2 − Q2

2r2
Q2−2r2

r2 0 5Q2−4r2

2r2 0 0

− Q2

2r2
3Q2−4r2

2r2
4r2−6Q2

2r2 0 Q2

2r2 0 0

Q2−2r2

r2
4r2−6Q2

2r2
6Q2−4r2

r2 0 −Q2+2r2

r2 0 0

0 0 0 0 0 0 0

5Q2−4r2

2r2
Q2

2r2 −Q2+2r2

r2 0 −Q2+4r2

2r2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (5.65)
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Part III

Stability of higher-dimensional

black holes

99





Chapter 6

Classical stability and

thermodynamics

In this Chapter, we will discuss the connection between the local thermodynamic insta-

bility and the classical stability of black branes and black holes, focusing on vacuum solu-

tions without cosmological constant. The connection arises from the fact that stationary

zero-modes of the Euclidean action, which mark the onset of pathologies of the partition

function, are also classical stationary zero-modes. These may be thermodynamic in origin,

being predicted by the thermodynamic stability Hessian, in which case they identify the

threshold of new Gregory-Laflamme-type instabilities of black branes, but not of black

holes. Or they may correspond to additional degrees of freedom in the partition function,

not captured by the usual thermodynamic description, in which case they may indeed

correspond to classical instabilities of black holes.

When connected to the classical instability of a black brane or a black hole, a

stationary zero-mode corresponds to the bifurcation to a new family of solutions. When

connected to the thermodynamic instability of a black hole, the zero-mode corresponds

simply to a change in the asymptotic charges within the same family of solutions.

The discussion here, taken mainly from Refs. [68, 72], provides the explanation for

101
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the numerical results in the following two Chapters.

6.1 Negative modes and black brane stability

We start with a review of the Gubser-Mitra conjecture. Then we will show, based on [68],

that this conjecture implies the classical instability of any black brane constructed by

trivially extending a vacuum black hole along extra dimensions.

6.1.1 The Gubser-Mitra conjecture

The relevance of black branes in string theory motivated the study of the stability of these

objects. Gregory and Laflamme showed that Schwarzschild black branes are classically

unstable for perturbation modes with a large wavelength along the extended directions

[100]. As we discussed in Section 2.1.2, the linearised Einstein equations for those modes

in the traceless-transverse gauge are

(∆Lh)ab = −k2hab . (6.1)

Here, k is the wavenumber of perturbations of the type ei~k·~zhab, and ∆L is the Lich-

nerowicz operator on the black hole background. The instability occurs for modes with

|k| < k∗, where the critical wavelength k∗ corresponds to the threshold stationary mode.

The inclusion of charge may improve the stability properties. Recall Chapter 5, where

we saw how the charge can make a thermodynamic instability disappear. Indeed, a con-

nection between the classical and thermodynamic stability of black branes was found. It

is known as the Gubser-Mitra conjecture [125, 126], which states that black branes with

a non-compact translational symmetry are classically stable if and only if they are lo-

cally thermodynamically stable. We alluded to this conjecture in Section 2.2.2, when we

discussed local thermodynamic stability; see the review [102] and references therein.

The problem was clarified by Reall [137], who noticed that Eq. (6.1) for the station-

ary and axisymmetric mode marking the onset of the black brane instability, k = k∗, is
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the same as Eq. (3.33) for traceless-transverse negative modes of the Euclidean partition

function of black holes, if we identify λ = −k2
∗. Recall also Section 3.3, where we show

how negative modes arise from local thermodynamic instabilities. If there is a negative

eigenvalue of the thermodynamic stability Hessian, there will be a negative mode hab of

the black hole partition function. Hence, there will also be a threshold for a classical

Gregory-Laflamme instability of the associated black branes.

The stationary perturbation mode with k = k∗ is also the perturbative signal of

the bifurcation to a new family of non-uniform black brane solutions [104,105]. Recall in

particular Figure 2.2 in Section 2.1.2.

6.1.2 Rotating black branes are unstable

We shall now prove, based on [68], that the condition for local thermodynamic stability

fails for all asymptotically flat vacuum black holes. According to the discussion above,

this implies that all black branes of the type (1.11) constructed with such a black hole are

classically unstable.

The proof goes as follows. Consider the Legendre transform of the entropy,

W = S − βM + βΩiJi , (6.2)

in terms of which the first law is expressed as dW = −Mdβ + βΩidJi. Recall from

Section 2.2, expression (2.17), that local thermodynamic stability exists if and only if

Wαβ ≡
∂2W (ỹγ)

∂ỹα∂ỹβ
, ỹα = (β,−βΩi) , is positive definite. (6.3)

A sufficient condition for Wαβ not being positive definite is

W00 =
∂2W (ỹα)

∂β2
= −

(
∂M

∂β

)
βΩ

< 0 . (6.4)
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Now, the Smarr relation, valid for asymptotically flat vacuum black holes, reads

D − 3

D − 2
M = TS − ΩiJi ⇔ M = −(D − 2)WT . (6.5)

Hence we have for such black holes, using the first law again,

W00 = −(D − 3)MT < 0 , (6.6)

which implies that local thermodynamic stability fails. It then follows that any vacuum

black hole solution must admit a thermodynamic negative mode, and that any black brane

based on such a black hole solution must always be classically unstable. This explains our

results for the Kerr black hole (Chapter 4) and for Myers-Perry black holes with a single

spin (Chapter 7) and equal spins (Chapter 8). We find that at least one continuous

negative mode exists for any value of the rotation parameter, so that the black branes are

unstable. In fact, we find for Myers-Perry black holes, which may exhibit more than one

negative mode, that this is the most negative.

Notice that this negative mode must be present for all values of the rotation, and

thus there is no critical rotation for which it reduces to a zero-mode. Hence there cannot

be a classical instability of the black hole associated with this particular mode.

6.2 Zero-modes and black hole stability

In this Section, we will argue that a stationary zero-mode of the black hole can correspond:

(i) to a change in the parameters of the solution, if the zero-mode can be predicted by

the thermodynamic Hessian, or (ii) to the threshold of a classical instability of the black

hole, not just the black brane. We will also conjecture that classical instabilities associated

with stationary zero-modes can only appear in a regime which we call ultraspinning. We

analyse this regime for the Myers-Perry family of solutions.
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6.2.1 The ultraspinning regime

In Ref. [71], rapidly-rotating Myers-Perry black holes with a single spin in D ≥ 6 were

conjectured to be unstable for Gregory-Laflamme-type modes. Such black holes have

quasi-extended event horizons for large values of the angular momentum compared to the

mass (|J |/M
D−2
D−3 � 1), acquiring some properties of black branes, which are Gregory-

Laflamme-unstable. An order of magnitude estimate for the threshold of the black hole

instability was given in [71] by considering the thermodynamic behaviour. For small

rotations, the temperature decreases with the rotation for fixed mass, as it happens for

the Kerr black hole, which is expected to be classically stable. However, after a critical

value of the rotation, the temperature actually increases, as it happens for black branes.

Classical stability was conjectured to fail roughly after the critical rotation.

The critical rotation is actually a thermodynamic zero-mode of the Hessian (6.3),

beyond which the black hole possesses two thermodynamic instabilities. To understand

this, recall our discussion in Section 3.3. Since a traceless-transverse negative mode hab is a

regular tensor on the black hole background gab, it follows that T and Ωi are left unchanged

by hab. A negative mode, which is an off-shell perturbation in the path integral, occurs

when the thermodynamic Hessian has a negative eigenvalue. However, this argument also

applies if a negative mode is continuously connected through the variation of the black

hole parameters to a zero-mode (λ = 0), which is a classical perturbation of the black hole.

This will be the case if one of the eigenvalues of the thermodynamic Hessian changes from

positive to negative continuously, marking the appearance of a new local thermodynamic

instability. It is now more convenient to use the thermodynamic Hessian

−Sαβ ≡ −
∂2S(xγ)

∂xα∂xβ
, xα = (M,Ji) , (6.7)

which is simply the inverse matrix of Wab (recall Appendix 2.A). If the zero-mode

hab preserves T and Ωi then, using the first law, it preserves (∂S/∂M)J = 1/T and

(∂S/∂Ji)M = −Ωi/T , that is, it preserves ∂S/∂xα. Hence it must correspond to an
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eigenvector of Sαβ with eigenvalue zero:

0 = δ(∂αS) = δxβ∂β∂αS = Sαβδx
β. (6.8)

Notice that the corresponding thermodynamic instability occurs only for a certain range

of the rotation, beyond the zero-mode, while the thermodynamic instability shown to exist

for all vacuum black holes in the last Section occurs for any value of the rotation. These

instabilities correspond to distinct negative eigenvalues of the thermodynamic Hessian, and

hence to distinct Gregory-Laflamme instabilities of the black branes. This is a refinement

of the Gubser-Mitra conjecture.

Ref. [72] confirmed numerically this picture and the conjecture of Ref. [71], showing

that a new negative mode appears at the critical rotation and, more importantly, that

additional negative modes which are not thermodynamic in origin occur for higher rota-

tions. These are thresholds for classical instabilities of the black hole, as explicitly verified

for the equal spin case in [68], on which Chapter 8 is based. Notice that the zero-modes

which are thermodynamic in origin can be identified by the simpler Hessian matrix

Hij ≡ −
(

∂2S

∂Ji∂Jj

)
M

= −Sij , (6.9)

due to the identity

det(−Sαβ) = − 1

(D − 3)MT
det(Hij) , (6.10)

valid for asymptotically flat vacuum black holes; for a proof of this identity, see Ap-

pendix 6.A. It follows that, for a black hole parameterised by (M,Ji), additional negative

eigenvalues of −Sαβ correspond precisely to negative eigenvalues of Hij .

In the Myers-Perry case, for fixed M , the eigenvalues of Hij are all positive for small

enough angular momenta. However, as some or all of the angular momenta are increased,

an eigenvalue of Hij may become negative. If we consider the space parameterised by Ji

(for fixed M), there is some region containing the origin in which Hij is positive definite.

We define the boundary of this region to be the ultraspinning surface. Following Ref. [72],
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we shall say that a given black hole is ultraspinning if it lies outside the ultraspinning

surface. From the above arguments, we know that as one crosses the ultraspinning surface,

the black hole will develop a new negative mode, and the associated black branes will

develop a new classical instability. This is in addition to the instability already present at

low angular momenta. Furthermore, on the ultraspinning surface, the new negative mode

must reduce to a stationary zero-mode that corresponds to a variation of parameters within

the Myers-Perry family of solutions, since they are identified by the Myers-Perry equation

of state S(M,Ji).

Ref. [72] conjectured that classical instabilities whose threshold is a stationary and

axisymmetric zero-mode occur only for rotations higher than a thermodynamic zero-mode,

i.e. in the ultraspinning regime. We emphasise that our conjecture gives a necessary

condition for an instability, not a sufficient one.

The intuition leading to the conjecture is that modes of lower symmetry are usually

the most unstable ones. For instance, the original Gregory-Laflamme instability occurs

for the “s-wave” of the transversal black hole. An additional classical instability will arise

after a critical value of the rotation, and it will correspond to a “p-wave” of the transversal

black hole. As the rotation is increased, higher order waves may become unstable. Now,

if we consider a black hole, instead of a black brane, the “s-wave” and the “p-wave” are

associated with the asymptotic charges, mass and angular momenta. Therefore they are

associated to purely thermodynamic instabilities. Higher order waves, on the other hand,

may become classically unstable as the rotation is increased, starting with the “d-wave”.

Notice that these waves do not affect the asymptotic charges.1 The results of Refs. [68,72],

described in the next two Chapters, clarify the harmonic structure underlying this problem.

Recall also that the thresholds of the classical instabilities should be associated with

bifurcations to different black hole families, highlighting the connection between stability

and uniqueness.

1Recall that, in Section 2.2.2, we discussed how the thermodynamic Hessian gave the stability with
respect to mass/angular momenta exchanges with a “reservoir”. If the asymptotic charges are unaltered,
no “reservoir” is invoked, and it is the internal stability of the black hole which is being probed.
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Figure 6.1: Parameter space for MP black holes with D = 6 (left) and D = 7 (right). The
black hole is labelled by the horizon radius r+ and the spin parameters ai which we take
to be positive for clarity. For D = 6, the blue curve corresponds to extreme black holes.
In the red region, both eigenvalues of Hij are positive. In the blue region, corresponding
to ultraspinning black holes, one eigenvalue is positive and the other is negative. For
D = 7, the blue surface corresponds to extreme black holes. The ultraspinning surface is
the red surface near the origin. Inside this surface, Hij is positive definite. The orange
surface is where another eigenvalue of Hij vanishes. Between the red and orange surfaces,
two eigenvalues of Hij are positive and one is negative. Between the orange and blue
surfaces, one eigenvalue of Hij is positive and two are negative. Ultraspinning black holes
correspond to points between the red and blue surfaces. Note that the “cusp” where the
red and orange surfaces meet has equal spins.

6.2.2 Zero-modes of the Myers-Perry family

Let us now examine the particular form of Hij in the case of Myers-Perry solutions. For

D = 5, there is no ultraspinning region, i.e. Hij is always positive definite. For D = 6, 7,

we find a more interesting behaviour, as shown in Figure 6.1. We parameterise the black

hole by the horizon radius r+ and the spin parameters ai ∼ Ji/M (defined in Section

1.3.1), rather than M and Ji, in order to produce clearer figures. For D = 6, Hij is a

2 × 2 matrix, and the ultraspinning “surface” is a closed curve that encloses the origin.

Inside this curve, both eigenvalues of Hij are positive but outside one is positive and one

is negative. Notice that all extreme black holes are ultraspinning.
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For D = 7, Hij is a 3 × 3 matrix. The ultraspinning surface encloses the origin.

However, now there is another surface on which a second eigenvalue of Hij changes from

positive to negative. This surface lies between the ultraspinning surface and the surface

corresponding to extreme black holes, and touches the ultraspinning surface at a point

with equal ai. For generic ai, if one gradually scales up the ai then one eigenvalue of Hij

becomes negative as the ultraspinning surface is crossed, and another eigenvalue becomes

negative as the other surface is crossed. As each surface is crossed, the black hole should

develop a new stationary negative mode, and the associated black branes should develop

a new instability.

Some D = 7 black holes are special, e.g. solutions for which one of the angu-

lar momenta vanishes do not intersect the second surface. For instance, consider the

singly-spinning case. All such black holes must possess the thermodynamic negative mode

predicted in Section 6.1.2, and a second negative mode should appear at the ultraspinning

surface, but there should be no further thermodynamic negative modes. This is consistent

with the results of Ref. [72], where it was found that a stationary negative mode does

indeed appear at the ultraspinning surface. As we shall see in the next Chapter, new and

infinitely many stationary non-thermodynamic negative modes appear at larger angular

momenta, the first of which marks the threshold of instability of the black hole.

Using the expressions in Section 1.3.1, we can actually derive an explicit expression

for the reduced thermodynamic Hessian,

Hij =
(D − 2)π

Mκ

{ r2
+ − a2

i

(r2
+ + a2

i )
2
δij

+ 2
ΩiΩj

κ

[
r+

(r2
+ + a2

i )
2

+
r+

(r2
+ + a2

j )
2
− 1

2r+
+

Ω̃2

κ

]}
, (6.11)

where there is no sum over i, j and we have defined Ω̃2 ≡
∑

i Ω2
i . The matrix is positive

definite in the static case, ai = 0.
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In the singly-spinning case, say a1 6= 0, we have

H11 =
2(D − 2)(D − 3)π r+(r2

+ + a2)

M [(D − 3)r2
+ + (D − 5)a2]3

[(D − 3)r2
+ − (D − 5)a2] ,

Hij =
(D − 2)π

Mκr2
+

δij for (i, j) 6= (1, 1) . (6.12)

There is a single zero-mode in D > 5, as we see in Figure 6.1, which occurs for

(
a

r+

)2

=
D − 3

D − 5
. (6.13)

The associated eigenvector is δi1, so that the angular momenta which vanish in the back-

ground solution are not excited by the perturbation, i.e. the zero-mode keeps the black

hole within the singly-spinning Myers-Perry family. The ultraspinning regime occurs for

rotations higher than (6.13).

In the equal spins case, we have

Hij =
(D − 2)π

Mκ

{ r2
+ − a2

(r2
+ + a2)2

δij + 2
Ω2

κ

[
2r+

(r2
+ + a2)2

− 1

2r+
+
nΩ2

κ

]
Qij

}
, (6.14)

where Qij = 1 ∀i, j. An eigenvector Vi of Hij must then be an eigenvector of Qij , which

leaves only two options: the eigenvector is such that Vi = V ∀i, or is such that
∑

i Vi = 0.

In the former case, there can be no zero-mode, since this would require

r2
+ − a2

(r2
+ + a2)2

+ 2
Ω2

κ

[
2r+

(r2
+ + a2)2

− 1

2r+
+
nΩ2

κ

]
n = 0 , (6.15)

which can be simplified to a2 = −(D − 3)r2
+/(2 − ε), and thus has no real solution for a

(recall that ε = 0, 1 for odd and even D, respectively). Hence no instability occurs for

modes that preserve the equality between the spins, which is consistent with the results

of [108]. However, the eigenvectors satisfying
∑

i Vi = 0 do change sign once at |a| = r+.2

There is one such eigenvalue in D = 6, and in D = 7 there are two, as shown in Figure 6.1.

2Notice that, in Chapter 8, we will use the radial variable of Ref. [120], which is related to the variable
presently used by r̃2 = r2 + a2, so that the ultraspinning surface is at |a| = r̃+/

√
2.
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The associated eigenvectors break the symmetry between the spins, so that the perturbed

black hole is a Myers-Perry solution which is not in the equal spins sector. Due to the

presence of the extremality bound, it is not clear whether the rotation can be sufficiently

high to excite classical instabilities in the ultraspinning regime. However, we shall see in

Chapter 8 that this indeed happens for D = 9 (and, we believe, for higher D, at least in

the odd D case for which the solutions are codimension-1).

6.A Appendix: Thermodynamic determinants

We wish to show that

det(−Sαβ) = − 1

(D − 3)MT
det(Hij) , (6.16)

where Sαβ ≡ ∂2S/∂xα∂xβ, with xα = (M,Ji), and Hij ≡ ∂2(−S)/∂Jj∂Jj = −Sij . This

identity follows directly from the linear algebra result (2.45), if we take Cij = Hij . The

proportionality coefficient is given by

σ = −S00 −H−1
ij S0iS0j = −

(
∂β

∂M

)
J

+

(
∂(βΩj)

∂Ji

)−1

M

(
∂(βΩi)

∂M

)
J

(
∂(βΩj)

∂M

)
J

, (6.17)

where we have used the first law of thermodynamics, dS = βdM − βΩidJi. Since

(
∂(βΩj)

∂Ji

)−1

M

=

(
∂Jj

∂(βΩi)

)
M

and

(
∂Jj
∂M

)
βΩ

=

(
∂Jj

∂(βΩi)

)
M

(
∂(βΩj)

∂M

)
J

,

(6.18)

we get

σ = −
(
∂β

∂M

)
J

+

(
∂Jj
∂M

)
βΩ

(
∂(βΩj)

∂M

)
J

. (6.19)

The identity (
∂β

∂M

)
J

=

(
∂β

∂M

)
βΩ

−
(
∂β

∂Jj

)
M

(
∂Jj
∂M

)
βΩ

(6.20)
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and the S0i = Si0 “Maxwell relation”, (∂(βΩj)/∂M)J = (∂β/∂Jj)M , further imply that

σ = −
(
∂β

∂M

)
βΩ

= −
(
∂M

∂β

)−1

βΩ

. (6.21)

Following the steps taken between Eqs. (6.4) and (6.6), we finally obtain

σ = − 1

(D − 3)MT
< 0 . (6.22)

These steps require that the Smarr relation (6.5) is valid, i.e. they apply only to asymp-

totically flat vacuum black holes.



Chapter 7

Singly-spinning Myers-Perry

instability

In this Chapter, based on [72], we will confirm numerically the conjecture that Myers-

Perry black holes with a single spin become unstable at a sufficiently large value of the

rotation, and that new black holes with pinched horizons appear at the threshold of the

instability. We search numerically, and find, the stationary axisymmetric perturbations

that mark the onset of the instability and the appearance of the new black hole phases.

7.1 Introduction

In higher-dimensional spacetimes a vast landscape of novel black holes has begun to be

uncovered, as discussed in Section 2.1.2. Its layout – i.e. the connections between different

classes of black holes in the space of solutions – hinges crucially on the analysis of their

classical stability: most novel black hole phases are conjectured to branch-off at the thresh-

old of an instability of a known phase. Showing how this happens was an outstanding

open problem first addressed in Ref. [72].

The best known class of higher-dimensional black holes, discovered by Myers and

113
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Perry (MP) in [43] and described in Section 1.3.1, appears in many respects as the nat-

ural generalisation of the Kerr solution. In particular, the event horizon is topologically

spherical. However, the actual shape of the horizon can differ markedly from the four-

dimensional one, which is always approximately round with a radius parametrically ∼M .

This is not so in D ≥ 6. Considering for simplicity the case where only one spin J is

turned on (of the n = b(D− 1)/2c independent angular momenta available), it is possible

to have black holes with arbitrarily large J for a given mass M . These black holes fall

into the ultraspinning regime defined in the last Section. The horizon of these black holes

spreads along the rotation plane out to a radius a ∼ J/M much larger than the thickness

transverse to this plane, r+ ∼ (M3/J2)1/(D−5).

This fact was picked out by Emparan and Myers [71] as an indication of an instabil-

ity and a connection to novel black hole phases. In more detail, in the limit a→∞ with r+

fixed, the geometry of the black hole in the region close to the rotation axis approaches that

of a black brane. Black branes are known to exhibit classical instabilities [100], at whose

threshold a new branch of black branes with inhomogeneous horizons appears [104, 105].

Ref. [71] conjectured that this same phenomenon should be present for MP black holes

at finite but sufficiently large rotation: they should become unstable beyond a critical

value of a/r+, and the marginally stable solution should admit a stationary, axisymmet-

ric perturbation signalling a new branch of black holes pinched along the rotation axis.

Simple estimates suggested that in fact (a/r+)crit should not be much larger than one.

As a/r+ increases, the MP solutions should admit a sequence of stationary perturbations,

with pinches at finite latitude, giving rise to an infinite sequence of branches of ‘pinched

black holes’. Ref. [62] argued that this structure is indeed required in order to establish

connections between MP black holes and the black ring and black Saturn solutions more

recently discovered. See the idea in Figure 7.1, which is analogous to Figure 2.2 for the

non-uniform branes, in Section 2.1.2. See also how this picture arises in the black hole

phase diagram of Figure 7.2.

Our main result is a numerical analysis that verifies the conjecture of Ref. [71].
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A :

B :

C :

Figure 7.1: Conjectured connections between a D ≥ 6 singly-spinning MP black hole and a
black ring (A), a black Saturn (B) or a di-ring (C), through a family of pinched solutions.
The bifurcation from the MP family occurs at the points A, B and C, respectively, in the
phase diagram of Figure 7.2.

7.2 Background solution

The solution for a MP black hole rotating in a single plane is

ds2 = − ∆(r)

Σ2(r, θ)

[
dt+ a sin2 θ dφ

]2
+

sin2 θ

Σ2(r, θ)

[
(r2 + a2)dφ− a dt

]2
+

Σ2(r, θ)

∆(r)
dr2 + Σ2(r, θ) dθ2 + r2 cos2 θ dΩ2

(D−4) , (7.1)

Σ(r, θ)2 = r2 + a2 cos2 θ , ∆(r) = r2 + a2 − rD−3
m

rD−5
. (7.2)

The parameters here are the mass-radius rm and the rotation-radius a,

rD−3
m =

16πGM

(D − 2)ΩD−2
, a =

D − 2

2

J

M
. (7.3)
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( M   f i x e d )S

J

A
B

C

0

Figure 7.2: Diagram of entropy versus angular momentum, at fixed mass, for singly-
spinning MP black holes in D ≥ 6 illustrating the conjecture of [71] (see also [62]): at
sufficiently large spin the MP solution becomes unstable, and at the threshold of the
instability a new branch of black holes with a central pinch appears (A). As the spin
grows new branches of black holes with further axisymmetric pinches (B,C, . . . ) appear.
We determine numerically the points where the new branches appear, but it is not yet
known in which directions they run. We also indicate that at the inflection point (0),
where (∂2S/∂J2)M = 0, there is a stationary perturbation that should not correspond to
an instability nor a new branch, but rather to a thermodynamic zero-mode that moves
the solution along the curve of singly-spinning MP black holes.

The event horizon lies at the largest real root r = r+ of ∆.

The linearised perturbation theory of the Kerr black hole (D = 4) was disentangled

in [171] using the Newman-Penrose formalism. Attempts to extend this formalism to

decouple a master equation for the linear perturbations of MP black holes have not yet

been successful; see [172] for recent progress. Moreover, even though some subsectors of

perturbations for some classes of MP black holes had been decoupled before the work

described here [72], e.g. [93, 114, 120, 173, 174], none of them had shown signs of any

instability and they do not contain the precise kind of perturbations we are interested in.1

Thus we take a more frontal numerical approach to a full set of coupled partial differential

equations (PDEs).

1Notice that [112,113] and [68], on which the next Chapter is based, are posterior to [72].
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7.3 The eigenvalue problem

We intend to solve for a stationary linearised perturbation hab around the background

(7.1). Choosing the traceless-transverse (TT) gauge, haa = 0 and∇ahab = 0, the equations

to solve are

(4Lh)ab = 0 , (7.4)

where 4L is the Lichnerowicz operator defined in (2.2). Actually, we solve the more

general eigenvalue problem

(4Lh)ab = −k2hab . (7.5)

As we discussed in the previous Chapter, this problem appears in two contexts. Eq. (7.5)

determines the stationary perturbations of a black brane obtained by adding flat directions

~z to the line element (7.1), for perturbations with a profile ei~k·~zhab. Thus such modes

with k > 0 correspond to the threshold of the Gregory-Laflamme instability of black

branes [100]. The same equations also describe the negative modes of quadratic quantum

corrections to the gravitational Euclidean partition function [131,132]. In Chapter 4, based

on [156], we studied this problem for the Kerr black hole, and showed the existence of a

branch of solutions extending the negative Schwarzschild mode (kSch 6= 0) [132] to finite

rotation, with k growing as the rotation increases towards the extremality bound.

If the ultraspinning instability is present for MP black holes in D ≥ 6, then, in

addition to the analogue of the branch studied in [156], a new branch of negative modes

extending to k = 0 must appear. The eigenvalue k = 0 corresponds to a (perturbative)

stationary solution with a slightly deformed horizon. In fact, as explained above, we

expect an infinite sequence of such branches that reach k = 0 at increasing values of the

rotation. The solutions for k > 0 imply new kinds of Gregory-Laflamme instabilities and

inhomogeneous phases of ultraspinning black branes (see also [108]).

Another reason to consider (7.5) instead of trying to solve directly for k = 0 is that

there exist powerful numerical methods for eigenvalue problems that give the eigenvalues

k together with the eigenvectors, i.e. the metric perturbations; see the Appendix at the
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end of this thesis.

The modes we seek preserve the SO(D − 3) × SO(2) rotational symmetries of the

singly-spinning MP solution and depend only on the radial and polar coordinates, r and

θ [71]. Thus we take the ansatz

ds2 = − ∆(r)

Σ2(r, θ)
eδν0

[
dt+ a sin2 θ eδω dφ

]2
+

sin2 θ

Σ2(r, θ)
eδν1

[
(r2 + a2)dφ− a e−δω dt

]2

+
Σ2(r, θ)

∆(r)
eδµ0 [dr + δχ sin θ dθ]2 + Σ2(r, θ) eδµ1 dθ2 + r2 cos2 θ eδΦ dΩ2

(D−4) , (7.6)

where {δν0, δν1, δµ0, δµ1, δω, δχ, δΦ}, which are functions of (r, θ), describe our perturba-

tions. These functions will be determined numerically by solving the eigenvalue problem

(7.5) subject to appropriate boundary conditions. After imposing the TT gauge, Eq. (7.5)

reduces to four coupled PDEs for δµ0, δµ1, δχ and δΦ (the TT conditions then give δν0,

δν1 and δω), in a procedure equivalent to the one described in Chapter 4, based on [156],

for the Kerr-AdS black hole.

The boundary conditions are discussed in detail in the Appendix 7.A. For the

numerical implementation, it is convenient to use the new radial and polar variables

y = 1− r+

r
, x = cos θ , (7.7)

which are dimensionless and take values in the interval [0, 1]. Dirichlet boundary conditions

are simpler to implement, and so we will use the following perturbation functions:

q1(y, x) =
(

1− r+

r

)
x(1− x) δµ0(y, x) , q2(y, x) = r−1

m (1− x) δχ(y, x) ,

q3(y, x) =
(

1− r+

r

)
x(1− x) δµ1(y, x) , q4(y, x) =

(
1− r+

r

)
x(1− x) δΦ(y, x) ,

(7.8)

which vanish at the boundaries r = r+, r = ∞, x = 0 and x = 1 when the boundary

conditions determined in the Appendix 7.A are enforced.

It is important to ensure that the eigenmodes we find are not pure gauge, hab =

∇(aξb). This is trivial when k 6= 0, since 4L∇(aξb) = 0, but not for zero-modes. We can
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Figure 7.3: Negative eigenvalues for the MP black hole in D = 7 (left) and, for comparison,
in D = 7, 8, 9 (right).

prove that in the TT gauge, where the equations for the gauge parameter ξa are separable,

pure gauge perturbations within our ansatz necessarily diverge at the horizon or at infinity

(the proof is along the lines of the equal spins MP case, in the Appendix 8.B.2). Thus,

with our boundary conditions, the zero-modes are never pure gauge.

7.4 Results and discussion

We use again, as in Chapter 4 describing [156], a spectral numerical method to solve the

eigenvalue problem; see the Appendix at the end of the thesis. We have carried out the

calculations for D = 7, 8, 9. The cases D = 5 (where there is no ultraspinning regime) and

D = 6 were left out in [72] due to numerical difficulties which have since been solved.2

For D = 5, there is no instability of this type. For D = 6, the results conform to our

expectations, being similar to the ones for D = 7, 8, 9 discussed here.

The results for D = 7, 8, 9 are displayed in Figure 7.3. The negative eigenvalue −k2

is plotted as a function of the rotation parameter a. We normalise k and a relative to the

mass-radius rm, which is equivalent to plotting their values for fixed mass (or mass per

unit length, in the black string interpretation). As described above, the leftmost curve,

2Ref. [175] was published after the submission of this thesis.
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which does not reach k = 0, is the higher-dimensional counterpart of the Kerr negative

mode, and the eigenvalues k are the wavenumbers of the Gregory-Laflamme threshold

modes at rotation a. As we consider larger rotation, new branches of negative modes

appear that intersect k = 0 at finite a/rm. We label these successive branches with an

integer ` = 1, 2, 3, . . . , and refer to them as ‘harmonics’. The values of a/rm at which the

stationary perturbations appear are listed in Table 7.1.

D (a/rm)|`=1 (a/rm)|`=2 (a/rm)|`=3

7 1.075 1.714 2.141

8 1.061 1.770 2.275

9 1.051 1.792 2.337

Table 7.1: Values of the rotation a/rm for the first three zero-modes (k = 0). The
estimated numerical error is ±3× 10−3 in D = 7 and ±5× 10−3 in D = 8, 9.

It is important to note that the eigenmode k = 0 of the harmonic ` = 1 does not

correspond to a new stationary solution. Instead it is a thermodynamic zero-mode that

marks the onset of a new local thermodynamic instability, and takes the solution to an

infinitesimally nearby one along the family of MP black holes. The location of this zero-

mode is predicted by the reduced thermodynamic Hessian Hij , introduced in Section 6.2,

and corresponds to the inflection point of the curve S(J) at fixed M (point 0 in Figure 7.2).

According to the expression (6.13), this point is given by

(
a

rm

)D−3 ∣∣∣
`=1

=
D − 3

2(D − 4)

(
D − 3

D − 5

)D−5
2

. (7.9)

For rotations larger than this value, the black holes are in the ultraspinning regime, as

defined in the last Chapter. The values of (a/rm) given by (7.9) for D = 7, 8, 9 agree with

the central values of the numerically-determined rotations (a/rm) for ` = 1 (first column

in Table 7.1) up to the third decimal place. This is a very good check of the accuracy of

our numerical method.

The k = 0 eigenmodes of the higher harmonics, ` ≥ 2, do not admit this interpreta-
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tion as perturbations along the MP family of solutions and thus correspond to genuinely

new (perturbative) black hole solutions with deformed horizons. Their appearance con-

forms perfectly to the predictions in [71] and [62]. It is then natural to expect, although

our approach does not prove it since it only captures zero-frequency perturbations, that

the harmonic ` = 2 signals the onset of the instability conjectured in [71]. The k = 0

eigenmodes for higher harmonics confirm the appearance of the sequence of new black

hole phases as the rotation grows.

To visualise the effect on the horizon of the perturbations that give new solutions,

and provide further confirmation of our interpretation, we draw an embedding diagram

of the unperturbed MP horizon and compare it with the deformations induced by the

ultraspinning harmonics ` ≥ 2. This is best done using the embedding proposed in [176],

which has the advantage of allowing one to embed the horizon along the entire range

0 ≤ θ ≤ π/2 for any rotation, although at the cost of stretching the pole region, which

acquires a conical profile. We do it for the ` = 2, 3, 4 ultraspinning harmonics in Figure 7.4.

In spite of the distortion created by the embedding, the effect of the perturbations is clear:

` = 2 modes create a pinch centred on the rotation axis θ = 0; ` = 3 modes have a pinch

centred at finite latitude θ; ` = 4 modes pinch the horizon twice: around the rotation

axis and at finite latitude. These are the kind of deformations depicted in Figures 7.1

and 7.2. To better identify the number of times that the perturbed horizon crosses the

unperturbed solution, in these figures we also plot the logarithmic difference between the

two embeddings.

Ref. [71] gave several arguments to the effect that critical values a/rm close to 1

were to be expected. In particular, it was pointed out that the change in the behavior of

the black hole from ‘Kerr-like’ to ‘black brane-like’ could be pinpointed to the value of the

spin where the temperature (i.e. surface gravity) reaches a minimum for fixed mass, which

is the same, for solutions with a single spin, as the inflection point of S(J). As we have

argued, the zero-mode at this solution should not signal an instability. The ` = 2 mode at

the threshold of the actual instability instead appears at larger rotation, well within the

ultraspinning regime defined in the last Chapter. We conjecture this to be true in general:
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Figure 7.4: Top plot: Embedding diagram at (a/rm)|`=2 of the D = 7 black hole horizon,
unperturbed (solid), and with the first unstable harmonic perturbation (` = 2, k = 0)
(dashed). The embedding Cartesian coordinates Z and X lie respectively along the rota-
tion axis θ = 0 and the rotation plane θ = π/2. We also show the logarithmic difference be-
tween the embeddings of the perturbed (Z`=2) and unperturbed (Z0) horizons. The spikes
represent the points where the two embeddings intersect. The perturbation has two nodes,
so the horizon squeezes around the rotation axis, then bulges out, and squeezes again at
the equator, as in the conjectured shape A in Figures 7.1 and 7.2. Bottom-left plot: for
` = 3, between the first two nodes of the perturbation, the horizon has a pinch, like shape
B. Bottom-right plot: for ` = 4, the four nodes deform the horizon into shape C.
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instabilities of MP black holes which have stationary threshold modes can only occur in

the ultraspinning regime.

We have identified the points in the phase diagram where the new branches must

appear, but we cannot determine in which direction these run. This requires calculating the

area, mass and spin of the perturbed solutions. However, for any k 6= 0 — and numerically

we can never obtain an exact zero — the linear perturbations decay exponentially in the

radial direction, and thus the mass and spin, measured at asymptotic infinity, are not

corrected. Moreover, the modes ` ≥ 2 should not affect the asymptotic charges, which

are usually associated with the lowest modes (we will confirm this explicitly in the next

Chapter for MP black holes with equal spins). It seems that in order to obtain the

directions of the new branches one has to go beyond our level of approximation or adopt

a different approach.

The new ` ≥ 1 branches extend to non-zero eigenvalues k. These imply a new ultra-

spinning Gregory-Laflamme instability for black branes, in which the horizon is deformed

not only along the extended directions of the branes, but also along the polar direction of

the transverse black hole. Observe that, even if the ` = 1 mode does not signal a classical

instability of the MP black hole, the modes ` = 1, k > 0 are expected to correspond to

thresholds of instabilities of MP black branes. At a given rotation, modes with larger `

have longer wavelength k−1 and so the branch ` = 1 is expected to dominate the instabil-

ity. The growth of k with a can be understood heuristically, since as a grows the horizon

becomes thinner in directions transverse to the rotation plane and hence it can fit into a

shorter compact circle.

After this work was released [72], Shibata and Yoshino [112,113] were able to find an

instability for non-axisymmetric perturbations of singly-spinning MP black holes, using

a non-linear numerical method. This instability seems to kick in for lower values of the

rotation than the mode ` = 2 found here. In particular, it also occurs in the D = 5

case, where no instability of the type we studied occurs. Since the perturbations are not

axisymmetric, the thermodynamics arguments on which our conjecture is based do not
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apply. Furthermore, if the threshold mode is not stationary, it is not associated with new

families of stationary black hole solutions bifurcating from the MP family.

To finish, we mention that pinched phases of rotating plasma balls, dual to pinched

black holes in Scherk-Schwarz compactifications of AdS, have been found [177], as well

as new kinds of deformations of rotating plasma tubes [110] and rotating plasma ball

instabilities [178,179]. The relation of our results to these and other phenomena of rotating

fluids is an interesting problem.

7.A Appendix: Boundary conditions

Boundary conditions at the event horizon

We want to determine the conditions for the metric perturbations hab to be regular

at the event horizon. As we discussed in Section 3.3, requiring that the traceless-transverse

perturbation is a regular 2-tensor on the black hole background gab is more restrictive than

requiring that the perturbed geometry is regular. In particular, such a perturbation cannot

change the temperature T and angular velocity Ω of the background solution. From the

Euclidean perspective, if hab does not obey the periodic identifications of the imaginary

time and rotation angles of the background geometry, it clearly cannot be a regular tensor

on that geometry.

Let us first discuss the unperturbed background geometry (7.1). Near r ∼ r+, we

can write ∆(r) = ∆′(r+)(r − r+) + O[(r − r+)2], with ∆′(r+) > 0, and the near horizon

geometry of (7.1) reads

ds2
∣∣
r∼r+ ' Σ2 (r+, θ) ∆′ (r+) (r − r+)(

r2
+ + a2

)2 dt2 +
Σ2 (r+, θ)

∆′ (r+) (r − r+)
dr2

+Σ2 (r+, θ) dθ
2 +

(
r2

+ + a2
)2

sin2 θ

Σ2 (r+, θ)

(
dφ− a

r2
+ + a2

dt

)2

+ r2
+ cos2 θ dΩ2

(D−4) .

(7.10)
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This suggests the introduction of a new azimuthal coordinate

φ̃ = φ− ΩHt , ΩH =
a

r2
+ + a2

, (7.11)

with period ∆φ̃ = 2π. Now we perform a Wick rotation into Euclidean time τ and define

a new radial coordinate ρ according to

t = −i τ , τ =
τ̃

2πT
with T =

∆′(r+)

4π
(
r2

+ + a2
) ,

r = r+ +
∆′(r+)

4
ρ2 . (7.12)

The near horizon geometry is then given by

ds2
∣∣
r∼r+ ' Σ2 (r+, θ)

[
ρ2dτ̃2 + dρ2

]
+ Σ2 (r+, θ) dθ

2

+

(
r2

+ + a2
)2

sin2 θ

Σ2 (r+, θ)
dφ̃2 + r2

+ cos2 θ dΩ2
(D−4) . (7.13)

The periodic identifications required to ensure regularity are

(τ̃ , φ̃) ∼ (τ̃ + 2π, φ̃) ∼ (τ̃ , φ̃+ 2π) . (7.14)

These correspond to the already mentioned identifications which give the temperature

T = β−1 and angular velocity Ω of the solution,

(τ, φ) ∼ (τ + β, φ− iΩβ) ∼ (τ, φ+ 2π) . (7.15)

Let us now introduce Cartesian coordinates in the (τ̃ , ρ) plane by taking τ̃ =

Arctan(y/x) and ρ =
√
x2 + y2. The following 1-forms are manifestly regular:

E τ̃ = ρ2dτ̃ = x dy − y dx , Eρ = ρ dρ = x dx+ y dy . (7.16)
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In terms of these 1-forms, the metric perturbation reads

hab dx
a dxb

∣∣
r∼r+ '

Σ2 (r+, θ)

[
δν0 − 2a2 sin2 θ

(
Σ2 (r+, θ) ∆′(r+) + 2r+

(
r2

+ + a2
)

Σ4 (r+, θ) ∆′ (r+)

)
δω

]
ρ2dτ̃2

+ Σ2 (r+, θ) δµ0 dρ
2 +

4Σ2 (r+, θ) sin θ

∆′(r+)

δχ

ρ2
Eρdθ −

4i a
(
r2

+ + a2
)2

sin2 θ

Σ2 (r+, θ) ∆′ (r+)

δω

ρ2
E τ̃dφ̃

+ Σ2 (r+, θ) δµ1 dθ
2 +

(
r2

+ + a2
)2

sin2 θ

Σ2
δν1 dφ̃

2 + r2
+ cos2 θ2 δΦ dΩ2

(D−4) .

(7.17)

Regularity then requires that

δχ
∣∣
r=r+

= 0 , δω
∣∣
r=r+

= 0 , δν0

∣∣
r=r+

= δµ0

∣∣
r=r+

, and

δµ0

∣∣
r=r+

, δµ1

∣∣
r=r+

, δν1

∣∣
r=r+

, δΦ
∣∣
r=r+

are finite .
(7.18)

The first and second conditions eliminate irregular contributions arising respectively from

the terms Eρdθ and E τ̃dφ̃ in (7.17). The second and third conditions guarantee that there

is no conical singularity in the (τ̃ , ρ) plane, since the first two terms in (7.17) then read

simply Σ2 δµ0

(
ρ2dτ̃2 + dρ2

)
, which is manifestly regular.

Boundary conditions at the θ = 0 equator

We follow here the same strategy. Let us focus on θ = 0, and introduce the coordi-

nate

cos θ = 1− 1

2
χ2 . (7.19)

The background geometry (7.1) near χ = 0 is given by

ds2
∣∣
θ∼0
'− ∆(r)

r2 + a2
dt2 + 2a

(
1− ∆(r)

r2 + a2

)
dtdφ (7.20)

+
(
r2 + a2

) (
dχ2 + χ2dφ2

)
+
r2 + a2

∆(r)
dr2 + r2dΩ2

(D−4) , (7.21)

which is manifestly regular given that φ has period 2π.
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Cartesian coordinates on the (χ, φ) plane can be chosen by taking φ = Arctan(y/x)

and χ =
√
x2 + y2, and the following 1-forms are manifestly regular:

Eχ = χdχ = x dx+ y dy , Eφ = χ2dφ = x dy − y dx . (7.22)

The metric perturbation then reads

hab dx
a dxb

∣∣
θ∼0
' − ∆(r)

r2 + a2
δν0 dt

2 +
r2 + a2

∆(r)
δµ0 dr

2 +
r2 + a2

∆(r)
δχEχdr

+
2a

r2 + a2

[(
r2 + a2 + ∆(r)

)
δω −

(
r2 + a2

)
δν1 + ∆(r)δν0

]
Eφdt

+
(
r2 + a2

) [
δµ1dχ

2 + δν1χ
2dφ2

]
+ r2 δΦ dΩ2

(D−4) ,

(7.23)

and regularity requires that

δν1

∣∣
θ=0

= δµ1

∣∣
θ=0

, and

δχ
∣∣
θ=0

, δω
∣∣
θ=0

, δµ0

∣∣
θ=0

, δν0

∣∣
θ=0

, δΦ
∣∣
θ=0

are finite .
(7.24)

Boundary conditions at the θ = π/2 equator

We introduce the new coordinate x = cos θ. The geometry (7.1) in the neighbour-

hood of the rotation plane θ = π/2 is given by

ds2
∣∣
θ∼π/2 ' −

∆(r)− a2

r2
dt2 − 2a

r2

[
r2 + a2 −∆(r)

]
dtdφ+

(
r2 + a2

)2 − a2∆(r)

r2
dφ2

+
r2

∆(r)
dr2 + r2

[
dx2 + x2dΩ2

(D−4)

]
,

(7.25)

which is manifestly regular given that dΩ2
(D−4) is the line element of an S(D−4).

Introducing the manifestly regular and smooth 1-forms,

Ex = x dx , EΩ = x2dΩ(d−4) , (7.26)
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the metric perturbation reads

hµν dx
µ dxν

∣∣
θ∼π/2 ' −

[
∆(r)− a2

]
δν0 + 2a2δω

r2
dt2

+

(
r2 + a2

)2
δν1 − a2∆(r) (δν0 + 2δω)

r2
dφ2

+
2a

r2

[(
r2 + a2 + ∆(r)

)
δω −

(
r2 + a2

)
δν1 + ∆(r)δν0

]
dtdφ

+
r2

∆(r)
δµ0 dr

2 − r2

∆(r)

(
δχ

x
− ∂xδχ

)
Exdr + r2

(
δµ1 dx

2 + x2 δΦ dΩ2
(d−4)

)
.

(7.27)

Regularity requires that

δχ
∣∣
θ=π

2
= 0 , δΦ

∣∣
θ=π

2
= δµ1

∣∣
θ=π

2
and

δω
∣∣
θ=π

2
, δµ0

∣∣
θ=π

2
, δν0

∣∣
θ=π

2
, δν1

∣∣
θ=π

2
are finite .

(7.28)

Boundary conditions at the asymptotic region r →∞

At spatial infinity, r →∞, the solutions to Eq. (7.5) behave as hab ∝ e±|k|r. There-

fore, regular perturbations must vanish at infinity.



Chapter 8

Equal-spinning Myers-Perry

instability

In this Chapter, based on Ref. [68], we present the first example of a linearised gravitational

instability of an asymptotically flat vacuum black hole. We study perturbations of a Myers-

Perry black hole with equal angular momenta in an odd number of dimensions. We find

no evidence of any instability in five or seven dimensions, but in nine dimensions, for

sufficiently rapid rotation, we find perturbations that grow exponentially in time. The

onset of instability is associated with the appearance of time-independent perturbations

which generically break all but one of the rotational symmetries. This is interpreted as

evidence for the existence of a new 70-parameter family of black hole solutions with only a

single rotational symmetry. We also present results for the Gregory-Laflamme instability

of rotating black branes, demonstrating that rotation makes black branes more unstable.

8.1 Introduction

In the previous Chapter, based on Ref. [72], we presented very strong evidence for the

existence of an ultraspinning instability of singly-spinning Myers-Perry black holes. How-

ever, no actual instability, i.e. a perturbation growing in time, was demonstrated. In this

129
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Chapter, based on Ref. [68], we shall demonstrate that some Myers-Perry (MP) black

holes do admit perturbations that grow exponentially in time, thereby providing the first

example of a linearised gravitational instability of an asymptotically flat vacuum black

hole solution.1

We shall exploit the idea introduced in Ref. [120] of considering MP solutions with

enhanced symmetry. The generic MP solution (Section 1.3.1) has isometry group R×U(1)n

where R corresponds to time translations and n = b(D−1)/2c. However, this is enhanced

when some of the angular momenta coincide. In particular, for odd D, the MP solution

with all angular momenta equal (Ji = J/n ∀i) has a much larger R×U(N + 1) isometry

group, where D = 2N + 3. Furthermore, the solution is cohomogeneity-1, i.e. it depends

only on a single coordinate. The metric involves a fibration over complex projective space

CPN . Gravitational perturbations of this solution can be decomposed into scalar, vector

and tensor types according to how they transform under isometries of CPN . The tensors,

which exist only for N ≥ 2 (D ≥ 7), were studied in Ref. [120] and no evidence of any

instability was found. The special case of D = 5, for which only scalar perturbations exist,

was studied in Ref. [114]. Again, no evidence of any instability was found.

In this Chapter, we shall study scalar-type perturbations of these cohomogeneity-

1 MP black holes. The symmetries enable the problem to be reduced to coupled linear

ordinary differential equations (ODEs) which we solve numerically. We find no evidence of

any instability for D = 5 (consistent with Ref. [114]) or D = 7. However, for D = 9, when

J exceeds a certain critical value Jcrit, there is a perturbation that grows exponentially in

time, i.e. an instability. We believe that such an instability will exist for all (odd) D ≥ 9

although we have demonstrated this only for D = 9.

As expected, the onset of instability is associated with the appearance of a stationary

zero-mode of the MP solution with J = Jcrit. This zero-mode is interesting for another

reason. It has been proven that a stationary, rotating black hole must admit a rotational

1Ref. [112], where an instability of singly-spinning Myers-Perry black holes for non-axisymmetric per-
turbations was found (see also [113]), was released shortly before [68]. However, the numerical analysis
in [112, 113] is fully non-linear, despite dealing with small perturbations. It would be very interesting to
analyse the instability found there at the linear level, so that the threshold mode can be better studied.
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isometry (i.e. a U(1) isometry) [55, 66]. This is known as the rigidity theorem. However,

all known higher-dimensional black holes have multiple rotational isometries (e.g. MP

black holes have b(D − 1)/2c commuting U(1) isometries), i.e. more symmetry than one

expects on the basis of general arguments. Therefore, it has been conjectured that there

exist solutions with less symmetry than any known solution, specifically solutions with a

single rotational symmetry [67].

It was proposed in Ref. [67] that one could seek evidence for the existence of such

solutions in the same way that the first evidence was obtained for the existence of non-

uniform black string solutions. For black strings, the static zero-mode associated with

the onset of the Gregory-Laflamme instability was conjectured to describe the “branching

off” of a new family of non-uniform black string solutions from the already known branch

of uniform solutions [101]. Perturbative [104] and numerical [105] work subsequently

confirmed that this was correct. For rotating black holes, the idea proposed in Ref. [67]

is to look for a stationary zero-mode of a MP solution. By analogy with the black string

example, this could be interpreted as the branching off of a new family of solutions. If the

zero-mode preserves only a single rotational symmetry then this would be evidence for the

existence of new black holes with just one rotational symmetry.

In our case, the stationary zero-mode generically preserves only a single rotational

symmetry. Therefore we conjecture that there exists a family of stationary black hole

solutions with just a single rotational symmetry, that bifurcates from the cohomogeneity-

1 MP black hole solution at J = Jcrit. In fact, we find not just one stationary zero-mode,

but a large family, corresponding to all scalar harmonics on CPN with a certain eigenvalue.

For D = 9, we shall argue that the new family of solutions will involve 70 independent

parameters, considerably more than the 5 parameters required to specify the MP solution!

If correct, this implies that any hope of specifying higher-dimensional black holes uniquely

using just a few parameters is bound to fail. Of course, the new black hole solutions may

turn out to be unstable themselves.

Recently, Ref. [65] has provided other evidence for the existence of higher-dimensional
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black holes with a single rotational symmetry. Using the “blackfold” approach of Refs. [63,

64], approximate solutions were constructed for D ≥ 5 that describe “helical” black rings.

The blackfold approximation is based on the fact that higher-dimensional black holes can

have widely separated horizon scales. The results of the present Chapter concern black

holes that lie outside the regime of validity of this approximation. Our results complement

those of Ref. [65] because we are presenting evidence for topologically spherical black holes

with a single rotational symmetry, whereas Ref. [65] considered black rings.

A difference between the results to be discussed here and the results in the previ-

ous Chapter concerns the nature of the stationary zero-mode. In the present case, the

unstable perturbation breaks all but one rotational symmetry. However, the stationary

zero-modes found in the previous Chapter for singly-spinning black holes preserved the

isometries of the background, as Ref. [71] had conjectured. Singly-spinning black holes

exhibit symmetry enhancement for D ≥ 6. They are cohomogeneity-2 with isometry group

R×U(1)×SO(D−3) where SO(D−3) has SD−4 orbits.2 While these isometries are pre-

served by the zero-modes found previously, the results in this Chapter raise the question of

whether singly-spinning MP black holes might admit further stationary zero-modes that

break some of their symmetry, and provide further evidence for new black hole solutions

with reduced symmetry.

A corollary of our approach is the first data for the Gregory-Laflamme instability

[100] for rotating black branes. We consider black branes obtained as the product (1.11) of

a cohomogeneity-1 MP black hole with flats directions. We argue that such solutions are

always classically unstable. Our numerical results demonstrate that the branes become

more unstable as the angular momentum increases: the instability becomes stronger (i.e.

it occurs on a shorter time scale) and the critical wavelength of unstable modes decreases,

as the angular momentum increases.

2One can decompose metric perturbations of these solutions into scalar, vector and tensor types using
this SO(D−3) symmetry. The tensors, which exist only for D ≥ 7 have been studied previously in Ref. [174]
and show no evidence of any instability. However, tensor perturbations arise from deformations of the SD−4

part of the metric, whereas the expected ultraspinning instability should arise from perturbations of the
metric transverse to SD−4. The results of Ref. [72] (Chapter 7) indicate that the instability should be a
scalar-type perturbation.
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An important feature of cohomogeneity-1 MP black holes is that they exhibit an

upper bound on their angular momentum (Section 1.3.1). Solutions saturating this bound

are extreme black holes. Because of this upper bound, it is not obvious that such black

holes should exhibit the type of behaviour discussed in Ref. [71]. However, we were

motivated by the observation in Section 6.2.2 that, for D ≥ 7, cohomogeneity-1 MP black

holes do satisfy the ultraspinning criterion once J exceeds a critical value Jultra (for given

M). This criterion says that a classical instability with a stationary threshold can occur

only if the Hessian matrix Hij = (∂2(−S)/∂Ji∂Jj)M , where S is the black hole entropy,

fails to be positive definite. Hence, there might be an ultraspinning instability for J > Jcrit

where Jultra < Jcrit < Jextreme. Our results show that there is no instability for D = 7 but

an instability does occur for D = 9 and, we believe, for (odd) D > 9.

For D = 5 MP black holes, Hij is always positive definite [72] so such black holes

are never ultraspinning. However, for D ≥ 6, singly spinning MP black holes with large

enough angular momentum are, of course, ultraspinning and the numerical results of

Ref. [72] supply strong evidence that the instability appears only when Hij fails to be

positive definite.

This Chapter is organized as follows. Section 8.2 describes the cohomogeneity-1

black holes that we shall study. In Section 8.3, we explain our approach and discuss the

results. The technical details of our work are presented in the later Sections 8.4 and 8.5,

and in the Appendices.

8.2 Cohomogeneity-1 Myers-Perry black holes

The Kerr solution was extended to higher dimensions by Myers and Perry [43]. The Myers-

Perry family can be parameterized by a mass-radius parameter rM and b(D−1)/2c angular

momentum parameters ai. In the particular case of equal angular momenta, ai = a, the

solution in odd dimensions D = 2N + 3 is cohomogeneity-1. The metric can be written
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as:3

ds2 = −f(r)2dt2 + g(r)2dr2 + h(r)2[dψ +Aadx
a − Ω(r)dt]2 + r2ĝabdx

adxb , (8.1)

g(r)2 =

(
1−

r2N
M

r2N
+
r2N
M a2

r2N+2

)−1

, h(r)2 = r2

(
1 +

r2N
M a2

r2N+2

)
,

f(r) =
r

g(r)h(r)
, Ω(r) =

r2N
M a

r2Nh2
,

where ĝab is the Fubini-Study metric on CPN with Ricci tensor R̂ab = 2(N + 1)ĝab , and

A = Aadx
a is related to the Kähler form J by dA = 2J . Surfaces of constant t and r

have the geometry of a homogeneously squashed S2N+1, written as an S1 fibre over CPN .

The fibre is parameterized by the coordinate ψ, which has period 2π. Explicit expressions

for the metric ĝab and Kähler potential A of CPN can be obtained through the iterative

Fubini-Study construction summarized in Appendix 8.A.

The spacetime metric satisfies Rµν = 0 and the solution is asymptotically flat. The

event horizon is located at r = r+ (the largest real root of g−2) and it is a Killing horizon

of ξ = ∂t + ΩH∂ψ , where the angular velocity of the horizon is given by:

ΩH =
r2N
M a

r2N+2
+ + r2N

M a2
. (8.2)

The mass M and angular momentum J , defined with respect to ∂ψ, are [145]

M =
A2N+1

8πG
r2N
M

(
N +

1

2

)
, J =

A2N+1

8πG
(N + 1)r2N

M a , (8.3)

where A2N+1 is the area of a unit (2N + 1)-sphere.

There is an extremality bound on the angular momentum which can be expressed

3The radial coordinate used here can be related to the standard Boyer-Lindquist radial coordinate
of [43] through r2 → r2 + a2. In this Chapter, Latin indices will be used for coordinates on CPN , whereas
Greek indices will be used for the black hole spacetime coordinates, unlike the previous Chapters.
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as

(
a

r+

)2

≤
(
aext

r+

)2

= N , or

(
a

rM

)2

≤
(
aext

rM

)2

=
N

(N + 1)(N+1)/N
. (8.4)

The solution saturating this bound has a regular, but degenerate, horizon. For fixed r+,

or rM , ultraspinning behaviour (Section 6.2.2) occurs for

(
a

r+

)2

>

(
a1

r+

)2

≡ 1

2
, or

(
a

rM

)2

>

(
a1

rM

)2

≡ 1

2(N+1)/N
. (8.5)

Note that the range a1 < a ≤ aext (for fixed r+) for which the black hole is ultraspinning

becomes larger as N increases, and that a1 = aext if N = 1, so there is no ultraspinning

behaviour for D = 5.

8.3 Strategy and Results

8.3.1 Strategy

Ref. [156] (Chapter 4) introduced new numerical techniques for determining negative

modes of rotating black holes. In Ref. [72] (Chapter 7), these techniques were exploited to

construct the stationary zero-mode expected to indicate the onset of an ultraspinning in-

stability of a singly-rotating MP black hole. In the present Chapter, based on [68], we shall

determine the stationary zero-mode indicating the onset of instability for cohomogeneity-1

black holes. However, our main achievement is to generalise these methods to demonstrate

the existence of perturbations that grow exponentially in time.

Our approach is explained in Chapter 6. We consider the eigenvalue problem

(∆Lh)µν = −k2hµν , (8.6)

where ∆L is the Lichnerowicz operator (2.2) for the MP background, and hµν are traceless-

transverse perturbations (hµµ = ∇µhµν = 0) of the MP black hole. This problem arises for
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Gregory-Laflamme-type perturbations (2.3) of uniform black branes. Perturbations with

non-zero k correspond to negative modes of ∆L, which, in the stationary case, may also

correspond to negative modes (3.33) of the black hole partition function. The boundary

conditions are that hµν should be regular on the future event horizon H+ and vanishing

at infinity.

The strategy for studying perturbations of the black hole will be to seek a solution

of (8.6), i.e. a negative mode of the black hole, and then vary the spin of the black hole

until k vanishes, i.e. the negative mode becomes a zero-mode. This strategy is motivated

by the availability of numerical techniques for solving eigenvalue equations of the form

(8.6). Solutions with non-zero k correspond to perturbations of black branes. Therefore

our method will yield results for the Gregory-Laflamme instability of rotating black branes

as well as enabling us to search for black hole instabilities.

We can Fourier analyse our perturbation in the time and ψ directions, i.e. we assume

that the dependence on t and ψ is given by

hµν ∝ e−iωt+imψ , (8.7)

where m is an integer. As we shall explain in detail below, we can also decompose the

perturbation into harmonics on CPN . These can be of scalar, vector or tensor type. The

tensors were considered in Ref. [120]. We shall restrict our attention to perturbations

of scalar-type, which can be expanded in terms of scalar harmonics on CPN . As usual,

harmonics with different eigenvalue decouple from each other. The equations satisfied by

hµν depend only on the eigenvalue of the harmonic in question.4 Eigenvalues of the scalar

Laplacian on CPN are labelled by a non-negative integer κ (see Section 8.4). Hence our

perturbation is labelled by (ω,m, κ).

Consider the (Lorentzian) negative mode equation (8.6). As we have explained

above, this arises from classical perturbations of a rotating black brane. The usual ap-

4In the last Chapter, we referred to the different negative modes as different “harmonics”. However,
in the present case, we do have a precise harmonic structure in CPN , which is why the problem has
codimension 1.
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proach to this problem is to fix (k,m, κ) and to determine ω. However, our approach

will be to fix (ω,m, κ) and determine the possible eigenvalue(s) −k2. In other words,

we are determining the wavenumber k for which black brane perturbations with given m

and κ have time-dependence associated with the given ω. We shall fix the overall scale

rM = 1 and determine the eigenvalue(s) −k2 for fixed (ω,m, κ) as a increases from 0 to

extremality. If k vanishes for some value of a then the associated black hole admits a

zero-mode with the given values of (ω,m, κ) (of course it must be checked that this is not

pure gauge).

In searching for an instability, we are looking for solutions of (8.6) with Im(ω) > 0.

A problem with our approach is that we expect unstable modes to have complex ω in

general, with the real and imaginary parts of ω related in some way. In other words,

for given m,κ and a, the complex quantity ω will be a function of the real quantity k

and hence the real and imaginary parts of ω cannot be independent. If we try to follow

the above strategy for a randomly chosen complex value of ω, then this will not satisfy

the required relation between its real and imaginary parts, and therefore our numerical

method will not output a real value of k. In order to locate where k vanishes we would

have to scan over both a and, say, the real part of ω. It would be difficult to do this with

high accuracy.

We shall circumvent this problem by restricting attention to modes with m = 0, i.e.

modes preserving the rotational symmetry of the black hole that follows from the rigidity

theorem. There are reasons to expect that unstable modes with m = 0 will have purely

imaginary ω: ω = iΓ, Γ > 0, and this is confirmed by our results. Ref. [108] has obtained

numerically non-uniform rotating black brane solutions that do indeed bifurcate from the

uniform branch (based on cohomogeneity-1 MP solutions) at a point corresponding to a

stationary perturbation. Hence stationary perturbations do indeed exist. We believe that

the reason for this is that unstable modes will have Re(ω) = 0 if they are invariant under

the rotational symmetry of the black hole predicted by the theorems of Refs. [55, 66], i.e.

the symmetry generated by the Killing field Ωimi, where mi are the rotational Killing

vector fields and Ωi the associated angular velocities of the horizon. We do not have a
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proof of this, but our results, and the results of Refs. [72,108], indicate that it is true. In the

limit k → k∗, this gives a stationary threshold mode that preserves this symmetry. This

symmetry is a necessary condition for the threshold mode to correspond to a bifurcation

into a new family of non-uniform rotating black brane solutions, since presumably this

new family should respect the theorems of Refs. [55,66] (although, strictly speaking, these

theorems apply only to black holes, not black branes).

In summary, we expect an instability of the black branes (Γ > 0) to appear for

wavenumbers |k| < k∗. If we restrict attention to modes invariant under the symmetry

generated by Ωimi then unstable modes will have Re(ω) = 0, and the threshold unsta-

ble mode, with k = k∗, will be stationary and invariant under the same symmetry. For

cohomogeneity-1 black holes, Ωimi is proportional to ∂/∂ψ, so modes invariant under the

symmetry generated by Ωimi must have m = 0, which is why we set m = 0 above. Notice

that only m = 0 modes are required to obey the ultraspinning conjecture in Section 6.2,

since the conjecture only applies to perturbations which do not break the rotational sym-

metry generated by Ωimi.

In summary, we shall set m = 0, rM = 1 and, for given (Γ, κ, a) we shall determine

the possible eigenvalues −k2. Then we vary a until the eigenvalue vanishes. We have then

found a black hole that admits an unstable zero-mode with the given values of Γ and κ.

8.3.2 Results for D = 5

Our expectation is that, for small a, the black hole will be classically stable but the

associated black branes will suffer a Gregory-Laflamme instability [100]. Therefore, for a

range of Γ, there should exist real solutions for k (corresponding to unstable perturbations

of the branes) but k will never vanish for Γ > 0, so the black hole is stable. For a static

brane, the Gregory-Laflamme instability is an s-wave perturbation of the transverse black

hole, which for us translates into a κ = 0 perturbation. Hence, for a rotating brane, it is

natural to expect this instability also to have κ = 0.

This is indeed what we find. The left plot in Fig. 8.1 shows our result for −k2 for
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Figure 8.1: Results in D = 5, κ = 0. We represent this mode for fixed values of Γ rM (first
graph) and a/rM (second graph). This unstable mode of the branes corresponds to the
well-known Gregory-Laflamme mode.

given a and Γ, with κ = 0. The plot with Γ = 0 corresponds to a stationary perturbation

of the black branes. This is the “threshold unstable mode” at the critical wavelength

beyond which the black branes are unstable. Note that the curves exist for all values of

a, i.e. the Gregory-Laflamme instability is always present, it does not “switch off” as a

increases. The upper curves do not extend to k = 0 so there is no indication of any black

hole instability.

In the right plot of Fig. 8.1, we give a more familiar plot of Γ against k for different

values of a. For each value of a, we have a curve that takes the usual Gregory-Laflamme

form. The maximum value of Γ is 10 − 20% of rM and increases with increasing a. Fur-

thermore, the range of k for which there exists an instability increases, i.e. the instability

persists down to shorter wavelengths as a increases. Hence rotation makes the branes

more unstable. As usual, Γ→ 0 as k → 0 and as k → k∗ > 0. The mode with Γ = k = 0

has the usual interpretation of a gauge mode [103]. The mode with Γ = 0 and k = k∗

is the threshold unstable mode associated with the onset of instability. This marks the

bifurcation of a new family of non-uniform rotating black brane solutions. These are the

solutions constructed in Ref. [108] in the black string case. They preserve the symmetries
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Figure 8.2: Results in D = 7, κ = 0. The graphs are entirely analogous to the ones in
Fig. 8.1.

of the cohomogeneity-1 MP black hole but break the translational symmetry along the

string.

Note that the slope Γ/k approaches a common limiting value as k → 0, indepen-

dently of the value of a. This long-wavelength limiting behaviour is captured by the

blackfold approach: it follows from Ref. [64] that Γ/k → 1/
√
D − 2 as k → 0. This is

consistent with our numerical results.

We find no solution of (8.6) with κ = 1. Therefore our results are consistent with

stability of these black holes, in agreement with the results of Ref. [114].

8.3.3 Results for D = 7

For κ = 0, we have the Gregory-Laflamme instability shown in Fig. 8.2. This is qualita-

tively the same as for D = 5. Once again, rotation makes the branes more unstable, the

behaviour as k → 0 is consistent with Γ/k → 1/
√
D − 2 independently of a, and there is

a threshold mode at a critical value of k at which we expect a bifurcation of a new family

of non-uniform branes analogous to the strings constructed in Ref. [108].
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Figure 8.3: Results in D = 7, κ = 1. We represent this mode for fixed values of Γ rM (first
graph) and a/rM (second graph). It corresponds to a new Gregory-Laflamme instability
of the rotating black branes, appearing for the numerical value (a1/rM )num = 0.5949. In
the first graph, the vertical line to the left corresponds to the analytical prediction of
(8.5), (a1/rM ) = 0.5946 , and the interrupted vertical line to the right corresponds to
extremality. The second graph clearly indicates that the instability of the black branes
does not extend to an instability of the black hole (k = 0).

A new feature of D = 7 is the existence of an ultraspinning regime. This occurs

for a > a1, where a1 was defined in equation (8.5). Just as in Ref. [72] (Chapter 7),

we find that a new stationary (Γ = 0) negative mode of the black hole appears at this

point. This negative mode has κ = 1. Our numerical results are shown in Fig. 8.3. These

results demonstrate that the black branes have an instability in the κ = 1 sector when

a > a1. This is a new Gregory-Laflamme instability of the black branes, distinct from

the instability in the κ = 0 sector. The plots of Γ against k have the same qualitative

shape as for the κ = 0 instability except that the slopes of the curves appear to vanish

(for all a) as k → 0.5 Once again there is a threshold unstable mode at a critical value

of k. Presumably this corresponds to a bifurcation to a new family of non-uniform black

brane solutions. In addition to breaking the symmetry along the branes, this mode also

breaks some of the symmetry of the black hole (typically down to that of a generic MP

5It would be interesting to investigate whether this behaviour can be explained using blackfold methods.



142 CHAPTER 8. EQUAL-SPINNING MYERS-PERRY INSTABILITY

black hole6) so this new family has less symmetry than the non-uniform branes associated

to the threshold unstable mode with κ = 0.

Note that the κ = 1 black brane instability coexists with the κ = 0 instability. The

latter is clearly dominant since it has much larger Γ and the instability exists for a larger

range of k, i.e. down to shorter wavelengths.

It is important to note that there is no evidence of any instability of the black hole:

none of the curves with non-zero Γ extends to k = 0. In the limit k → 0, solutions with

non-zero Γ approach a pure gauge mode, just as for κ = 0. Additionally, the solution with

Γ = 0 does not approach a gauge mode as k → 0. Instead, as anticipated in Chapter 6, it

corresponds simply to a variation of parameters within the MP family of solutions.

For D = 7, since the black hole is ultraspinning for a > a1, there is the possibility

of an ultraspinning instability appearing at a = a2 > a1. However, we find no solution of

equation (8.6) for κ = 2 so our results are consistent with stability ofD = 7 cohomogeneity-

1 MP black holes for axisymmetric perturbations (m = 0).

8.3.4 Results for D = 9: Black hole instability

For κ = 0, we have the expected Gregory-Laflamme instability of the black branes. For

κ = 1, we find, as for D = 7, a new Gregory-Laflamme instability of the black branes that

appears at a = a1. This is shown in figure Fig. 8.4.

The new feature that appears for D = 9 is an instability in the κ = 2 sector, which

appears at a = a2 > a1. This is shown in Fig. 8.5. The left plot shows a new stationary

(Γ = 0) negative mode which emerges from a zero-mode at a = a2. We shall prove in

Appendix 8.B.4 that this zero-mode cannot correspond to a variation of parameters within

the MP family of solutions. Furthermore, in Appendix 8.B.2, we show that it cannot be

a gauge mode.

For a > a2, there is a new instability of the black branes, corresponding to the

6This is because κ = 1 harmonics are in one to one correspondence with Killing vector fields of CPN :
see Appendix 8.A.2.
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Figure 8.4: Results in D = 9, κ = 1. The graphs are entirely analogous to the ones in
Fig. 8.3.

curves with Γ > 0 in the plot. But there is a qualitative difference between the left plot of

Fig. 8.5 and our previous plots: the curves with Γ > 0 now intersect k = 0, i.e. we have

found perturbations of the black hole that grow exponentially in time, that is, a classical

instability of black holes with a > a2. This is our main result.

The onset of instability is indicated by the stationary zero-mode (Γ = 0, k = 0)

at a = a2. This is analogous to the mode constructed for singly-spinning black holes in

Ref. [72] (Chapter 7). Our main achievement here is to demonstrate, for the first time,

the existence of modes which grow exponentially with time when a > a2.

The right plot of Fig. 8.5 shows a clear difference from our previous plots. Unlike

the original Gregory-Laflamme instability, we find that Γ is maximized at k = 0 rather

than vanishing there. Hence, for the black branes, the most unstable κ = 2 modes are

those with k = 0, i.e. those corresponding to the black hole instability. For larger k, the

black brane instability “switches off” in the same way as the original Gregory-Laflamme

instability, with a threshold mode at k = k∗ indicating a new family of non-uniform black

brane solutions.

Fig. 8.6 presents our result for the instability time scale of the black hole as a function
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Figure 8.5: Results in D = 9, κ = 2. We represent this mode for fixed values of Γ rM
(first graph) and a/rM (second graph). As opposed to the κ = 1 case, the time-dependent
mode extends all the way to k = 0. There is not only a new Gregory-Laflamme instability
of the black branes, but also an instability of the black hole, appearing at a = a2, where
a2/rM = 0.6858 > a1/rM = 0.6300 . In the first graph, the interrupted vertical line to the
right corresponds to extremality. In the second graph, the curve shrinks to the origin as
a→ a2.

of its spin. For a > a2, we find that Γ increases monotonically with a, so extreme black

holes are the most unstable.

Finally, we find no solutions of (8.6) with κ = 3.

8.3.5 Rotational symmetries of higher-dimensional black holes

As explained before, the study of perturbations of higher-dimensional black holes can

be used to investigate the possible existence of new families of black hole solutions with

less symmetry than the known solutions. The idea proposed in Ref. [67] is to look for a

stationary zero-mode of the black hole, which is interpreted as indicating the existence of

a family of solutions branching off from the known solutions.

In our case, the stationary zero-modes with κ = 1 are uninteresting since these

correspond to variations within the MP family. However, for D = 9, we found a stationary
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Figure 8.6: Results in D = 9 for κ = 2, in the limit k = 0. We represent the black hole
instability in a plot of Γ rM versus a/rM . The interrupted line corresponds to extremality.
Numerical error prevents us from extending our results all the way to extremality.

zero-mode with κ = 2 that appears at a = a2, the critical value of a beyond which the

black hole is unstable. Therefore, we have found evidence for a new family of black hole

solutions that bifurcates from the MP family at this point.7

How much symmetry do these new solutions have? This can be inferred from the

symmetry of the κ = 2 harmonics on CPN . There will, of course, be a family of degenerate

scalar harmonics with κ = 2. Some of these will preserve some of the symmetry of CPN

whereas others break it completely (this is proved in Appendix 8.A.3).8 For a mode of

the latter type, the associated metric perturbation will break completely the SU(N + 1)

subgroup of the R×U(N+1) isometry group of the background metric. It preserves only a

R×U(1) subgroup corresponding to time-translation invariance and invariance under the

rotations generated by ∂/∂ψ. Hence the corresponding family of new black hole solutions

7We expect that this new family will have unequal angular momenta in general. However, this cannot
be seen from our results since κ = 2 modes do not change the mass or angular momenta at the linearised
level (see Appendix 8.B.4). A second order calculation would be required to determine these changes.

8It is helpful to think about the case of CP 1 = S2, for which κ = `, the total angular momentum
quantum number. Scalar harmonics are labelled by ` and m. Certain modes with ` = 2 (i.e. quadrupole
modes) may preserve some symmetry (e.g. if m = 0 then they are axisymmetric) but generically they
break all of the continuous symmetries of S2.
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will possess just a single rotational symmetry.

Very recently, Ref. [65] has constructed approximate black ring solutions with just

a single rotational symmetry. Our results are the first evidence for the existence of new

black hole solutions with a single rotational symmetry and horizons of spherical topology.

Note that if one used a κ = 2 harmonic that does preserve some of the symmetry of

CPN then presumably this would give rise to a different family of new black hole solutions,

with more than one rotational symmetry. Therefore, assuming that each stationary zero-

mode corresponds to a new non-linear stationary black hole solution, there must exist

several new black hole solutions that bifurcate from the MP family at the same point, and

these different solutions have different numbers of rotational symmetries. So how many

new solutions are there?

One way of addressing this question is to determine the number of parameters in the

most general κ = 2 harmonic. If we take D = 9 then κ = 2 harmonics correspond to the

[2, 0, 2] representation of SU(4), which is 84-dimensional. Hence the most general κ = 2

harmonic is labelled by 84 parameters. Some such harmonics are related by acting with

SU(4), i.e. by rotations of the background spacetime. However, since SU(4) has dimension

15, this can eliminate only 15 parameters, leaving 84 − 15 = 69 parameters that cannot

be eliminated by rotations of the background. So, up to rotations of the background, we

have a family of stationary zero-modes with 69 parameters, and presumably a family of

new black holes with 70 parameters, the extra parameter being the mass (or rM ). This

is considerably more parameters than the 5 that are required to specify the D = 9 MP

solution!

8.3.6 Expectations from the ultraspinning conjecture

The predictions of the ultraspinning conjecture for MP black holes were discussed in

Section 6.2.2. In the equal spins case analysed here, the reduced Hessian

Hij ≡ −
(

∂2S

∂Ji∂Jj

)
M

(8.8)
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was shown to possess an eigenvalue which is always positive (with eigenvector Vi = V ∀i),

and N degenerate eigenvalues (with eigenvectors satisfying
∑

i Vi = 0) which change from

positive to negative as the ultraspinning surface is crossed, with no further changes of

sign at larger angular momenta. Note that only the positive eigenvalue corresponds to a

variation which preserves the equality of the angular momenta. We expect that new ther-

modynamic negative modes will emerge only at the unique value of the angular momentum

corresponding to the ultraspinning surface, that there will be precisely N of these, and

that they will break some of the symmetries of the background.

The ultraspinning surface corresponds to a = a1 (with rM = 1) and we found that

new stationary (Γ = 0) negative modes do indeed emerge at this point in D = 7, 9. These

modes correspond to κ = 1 harmonics. Since these are thermodynamic negative modes,

we know that the zero-mode at a = a1 must be simply a variation of parameters within

the MP family.

To see that there are precisely N negative modes emerging at a = a1, we use the

fact that κ = 1 harmonics are in 1-1 correspondence with Killing vector fields on CPN ,

so there are (N + 1)2 − 1 such harmonics (see Appendix 8.A.2). However, some of these

are related by rotations of CPN , so we need to determine how many parameters can be

eliminated by rotations. The counting is the same as for SU(N + 1) gauge theory with

an adjoint Higgs field. Generically this breaks SU(N + 1) to U(1)N so we are left with N

parameters.9 Hence there are N independent negative modes that emerge at a = a1, in

agreement with the prediction from thermodynamics.

Our numerical results confirm that the stationary negative mode that emerges at

a = a1 does indeed correspond to the onset of a new instability of the black branes in the

κ = 1 sector, in agreement with the refinement of the Gubser-Mitra conjecture discussed

in Section 6.2.

For D > 5, cohomogeneity-1 black holes are ultraspinning for a > a1 and hence

might exhibit an instability of the form anticipated in Section 6.2. Moreover, as explained

9Thanks to David Tong for this argument.
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at the end of Section 8.2, as we increase D, there is more “space” between the ultraspinning

surface and the surface of extremality for such black holes. Therefore the likelihood of an

instability might be expected to increase with D. This is in agreement with our numerical

results, which show no sign of any instability for D = 7 but confirm that an instability is

present for D = 9. Note that this instability does indeed occur inside the ultraspinning

region.

The onset of instability is associated with the appearance of a new stationary zero-

mode (at a = a2). This cannot correspond to a variation of parameters within the MP

family (we show in Appendix 8.B.4 that κ = 2 modes cannot change the asymptotic

charges). Furthermore, we prove in Appendix 8.B.2 that it cannot be a pure gauge mode.

This zero-mode is continuously connected to a stationary (Γ = 0) negative mode that

exists for a > a2. This is an example of a non-thermodynamic negative mode, i.e. one

which is not associated to a local thermodynamic instability. The same behaviour was

observed in Ref. [72] (Chapter 7), i.e. the onset of a classical instability of the black hole

is associated with the appearance of a new stationary negative mode.

Ref. [72] found that further non-thermodynamic negative modes appear as the spin

of the black hole is increased still further. In the present case, extremality imposes an

upper bound on the spin of the black hole and we do not find any further negative modes

beyond the ones associated with the instability in the κ = 2 sector. However, we believe

that, for larger D, as well as an instability in the κ = 2 sector there will be further negative

modes in sectors with larger κ. These new negative modes will be associated with new

instabilities of the black hole in sectors with larger κ. The stationary zero-modes marking

the onset of these instabilities will provide evidence for the bifurcation of new families of

black hole solutions, involving a large number of parameters, and generically with just one

rotational symmetry.
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8.4 Scalar perturbations and CPN harmonics

8.4.1 Introduction

The rest of this Chapter is devoted to explaining the technical details of our work. We

shall start by explaining the decomposition of metric perturbations into harmonics on

CPN .

Metric perturbations can be decomposed into scalar, vector and tensor types ac-

cording to how they transform under isometries of CPN . Pertubations of different type

must decouple from each other. The decomposition is explained (for a different problem)

in Ref. [180]. Tensor perturbations are the simplest, these were discussed in Ref. [120].

We are interested in scalar perturbations, for which the perturbation can be expanded in

scalar harmonics on CPN .

We shall assume that our perturbation has been Fourier decomposed as in equation

(8.7). All of our numerical results assume m = 0. However, for the sake of completeness,

we shall derive equations that are valid for non-zero m. In order to do this, we must

address a subtlety (already encountered in Ref. [120]), that such a perturbation couples

with charge m to the 1-form Aa on CPN defined in Section 8.2. Hence we must consider

charged scalar harmonics on CPN . First we shall describe these harmonics and then

explain how to construct gravitational perturbations from them.

8.4.2 Charged scalar-derived harmonics in CPN

We define the gauge-covariant derivative acting on a charge-m tensor field on CPN as

Da = ∇̂a − imAa , (8.9)

where ∇̂ is the metric covariant derivative on CPN .
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Scalars

Charged scalar fields on CPN can be expanded in terms of charged scalar harmonics

defined by

(D2 + λ)Y = 0 . (8.10)

These were studied in [181] (see summary in Appendix 8.A), where it is found that

λ = `(`+ 2N)−m2 , ` = 2κ+ |m| , (8.11)

with κ = 0, 1, 2, . . .. The modulus sign guarantees that the eigenvalue is the same for

positive and negative charges, the corresponding eigenfunctions being related by complex

conjugation.

Notice that the presence of the ‘gauge field’ A leads to

[Da, Db]Y = −i 2mJabY . (8.12)

Scalar-derived 1-forms

Given a scalar harmonic Y, we can define10

Ya = − 1√
λ
DaY , (8.13)

which transforms as a charged 1-form on CPN . This can be decomposed into its (1, 0) and

(0, 1) parts using the complex structure on CPN . Denote these by Y+
a and Y−a respectively,

where

Ja
bY±b = ∓iY±a . (8.14)

10Note that λ = 0 if, and only if, κ = m = 0, in which case Y is uncharged and constant. In this case
there are no scalar-derived vectors nor scalar-derived tensors.
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We shall refer to Y±a as scalar-derived 1-form harmonics. We find that they satisfy

D2Y±a = − [λ− 2(N + 1)∓ 4m]Y±a (8.15)

and

DaY±a =
1

2
√
λ

(λ∓ 2mN) Y . (8.16)

We shall make use of the result that Killing vectors of CPN are in one-to-one corre-

spondence with uncharged (m = 0) scalar harmonics with κ = 1 (see e.g. [181] and

our Appendix 8.A). Given such a harmonic Y, the corresponding Killing vector field is

−i(Y+
a − Y−a ).

Scalar-derived tensors

Following Ref. [180], we decompose a symmetric tensor Yab into its Hermitian (or (1, 1))

and anti-Hermitian components according to the eigenvalue of the map

(JY)ab = J c
a J

d
b Ycd . (8.17)

If the eigenvalue is +1 the corresponding eigentensor is called Hermitian, and if it is −1 the

eigentensor is called anti-Hermitian. In the anti-Hermitian case, we can further distinguish

between the (2, 0) and (0, 2) components of Yab , which are defined by J c
a Ycb = ∓iYab

with the upper and lower signs for the (2, 0) and (0, 2) components respectively.

The following quantities form a basis for anti-hermitian scalar-derived tensors:11

Y++
ab = D+

(aY
+
b) , Y−−ab = D−(aY

−
b) . (8.18)

Y±a denotes the scalar-derived 1-form harmonics of the previous Section, and D±a denotes

the projection of Da onto its (1, 0) and (0, 1) components. Notice that the correspondence

between m = 0, κ = 1 scalar harmonics and Killing vector fields on CPN implies that

11This follows from the scalar part of equation (39) of Ref. [180].
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Y±±ab vanish for such harmonics.

Hermitian scalar-derived tensors can be written in terms of a trace and a traceless

part, for which the following quantities give a basis:12

ĝabY, Y+−
ab = D+

(aY
−
b) +D−(aY

+
b) −

1

2N
ĝab (D · Y) . (8.19)

These tensor harmonics satisfy

D2Y±±ab = − [λ− 4(N + 3)∓ 8m]Y±±ab ,

D2Y+−
ab = − (λ− 4N)Y+−

ab ,
(8.20)

with

DcY±±ca = −λ− 4(N + 1)∓ 2m(N + 2)

2
Y±a ,

DcY+−
ca = −N − 1

2N

[
(λ+ 2mN)Y+

a + (λ− 2mN)Y−a
]
.

(8.21)

8.4.3 Decomposition of perturbations in scalar-derived harmonics

Let us now consider the perturbations of the full spacetime metric. We introduce the

orthonormal basis

e(0) = f dt , e(1) = g dr , e(2) = h (dψ +A− Ω dt) , e(i) = r ê(i) , (8.22)

where ê(i) is the tetrad of the CPN manifold. The dual basis is then

e(0) =
1

f
(∂t + Ω ∂ψ) , e(1) =

1

g
∂r , e(2) =

1

h
∂ψ , e(i) =

1

r

[
ê(i) − 〈A, ê(i)〉 ∂ψ

]
.

(8.23)

Take e(A) = {e(0), e(1), e(2)} and a coordinate basis dxa on CPN . The components hAB of

the metric perturbation transform as scalars under isometries of CPN and can therefore be

decomposed using scalar harmonics on CPN . Similarly, since we are restricting attention

12In Ref. [180], hermitian tensors were converted into (1, 1)-forms by contracting with Jab. The two
quantities written here correspond to terms of the form JY and (the primitive part of) ddcY in equation
(47) of Ref. [180].
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to scalar-type perturbations, components of the form hAa and hab can be decomposed

using scalar-derived 1-forms and scalar-derived tensors on CPN :

hAB = fAB Y ,

hAa = r
(
f+
A Y+

a + f−A Y−a
)
,

hab = − r2

√
λ

(
H++ Y++

ab +H−−Y−−ab +H+−Y+−
ab

)
+ r2HL ĝabY ,

(8.24)

where f±A = {W±, X±, Z±}, and the functions multiplying the harmonics depend only on

(t, r, ψ) and not on the coordinates of CPN . The real spacetime metric perturbation is

given by Re (hµν). Since ∂t and ∂ψ are Killing vectors of the background solution, we will

Fourier expand all of these functions in t and ψ, i.e. we assume a dependence e−iωt+imψ.

It remains to determine the dependence of these functions on r. The stability problem

will thus be reduced to a system of linear ordinary differential equations.

8.4.4 Boundary conditions

The metric perturbations must be regular on the future event horizon H+. This boundary

condition can be imposed by considering a basis which is regular on H+, since the com-

ponents of the perturbation in that basis must be regular. Let us change to the ingoing

Eddington-Finkelstein coordinates that are regular at H+:

dt→ dv − g

f
dr , dψ → dϕ− Ω g

f
dr , (8.25)

and consider the basis {dv, dr, dϕ+A−Ωdv, dxa}. Denote the components of the metric

perturbation with respect to this new basis with a bar (e.g. f0̄0̄, W̄+). Our bound-

ary condition is that these components should be smooth functions of (v, r, φ, xa) at the

horizon.13

13In other words, we demand that the tensor field hµν should be regular at H+. This is stronger than the
statement that the metric perturbation should be regular at the horizon, e.g. it excludes the possibility that
hµν is singular at H+ in a certain gauge but can be made regular by a gauge transformation. For example,
we show in Appendix 8.B.3 that, in the traceless-transverse gauge, a perturbation with ω = m = 0 that
satisfies our boundary condition cannot change the temperature or angular velocity of the black hole. It
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For this class of black holes, the horizon is located at the largest real root r = r+

of ∆ = g(r)−2. For a non-extreme black hole, near the horizon, ∆(r) = ∆′(r+)(r − r+) +

O[(r− r+)2], with ∆′(r+) > 0. Using the relation f(r) = r/(g(r)h(r)), we find that, near

the horizon, the metric components in the original basis are related to the components in

the new basis by

f00 ≈
h(r+)2

r2
+∆′(r+)

f0̄0̄

r − r+
, f01 − f00 =

h(r+)

r+
f0̄1̄ ,

f00 − 2f01 + f11 ≈ ∆′(r+) f1̄1̄ (r − r+) ,

f02 ≈
1

r+

√
∆′(r+)

f0̄2̄√
r − r+

, f12 − f02 ≈
√

∆′(r+)

h(r+)
f1̄2̄

√
r − r+ ,

f22 =
1

h(r+)2
f2̄2̄ , Z± =

1

r+h(r+)
Z̄± ,

W± ≈ h(r+)

r+

√
∆′(r+)

W̄±√
r − r+

, X± −W± ≈
√

∆′(r+)

r+
X̄±
√
r − r+ .

(8.26)

The functions H++, H−−, H+−, HL associated with the components of the metric per-

turbation on CPN are the same in the two bases.

Since the components in the new basis should be regular at the horizon, the above

expressions give us boundary conditions on the behaviour of the components in the old

basis. In imposing these boundary conditions, it is important to remember that, near the

horizon,

e−iωv+imϕ ≈ e−iωt+imψ

(
r − r+

r+

)−iα(ω−mΩH)

, (8.27)

where α ≡ h(r+)/(r+∆′(r+)) is positive (for non-extreme black holes). Hence, for example,

the radial dependence of f00 near the horizon must be

f00 ∝
(
r − r+

r+

)−1−iα(ω−mΩH)

F (r), (8.28)

where F (r) is smooth at r = r+.

follows that a variation in the parameters of the MP solution that does change TH or ΩH will not give a
perturbation hµν that is regular at the horizon in this gauge.
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When numerically solving the stability equations, it will be necessary to work with

the combinations that maximize the information on the boundary conditions. For instance,

one should work with f02 and f12 − f02, instead of considering only the leading behaviour

of f02 and f12, otherwise the information that f12(r+)− f02(r+) = 0 is lost.

As for the behaviour of the perturbations at spatial infinity r → ∞, we are inter-

ested in boundary conditions that preserve the asymptotic flatness of the spacetime. For

perturbations of the black branes, the equations of motion (8.6) then imply that all the

functions vanish exponentially for large r.

8.5 The eigenvalue problem

The ansatz for the metric perturbation hµν is given by Eq. (8.24). Ref. [68] lists in a

long Appendix the components of the Lichnerowicz eigenvalue equation (8.6) in the tetrad

basis (8.22). These consist of sixteen coupled second order ordinary differential equations,

each one being second order only in one of the perturbation functions. However, six

of these functions can be solved for in terms of the ten remaining functions and their

first derivatives when we impose the traceless-transverse (TT) gauge conditions, listed in

another Appendix of [68]. The procedure is analogous to the one applied in Chapters 4

and 7.

Notice that the TT conditions completely fix the gauge in Eq. (8.6) when k > 0,

since the action of the Lichnerowicz operator on a gauge mode is trivial, ∆L∇(µξν) = 0. As

for k = 0, there are two distinct cases. The first is the limit k → 0 for which Γ→ 0, as can

be seen on the right plots of Figs. 8.1, 8.2, 8.3 and 8.4. The limiting perturbation k = 0 is

an unphysical pure gauge mode, as happens in the original Gregory-Laflamme case [103].

The second is the much more interesting stationary perturbation k∗ = 0 marking the onset

of a new Gregory-Laflamme instability when the rotation increases. In the left plots of

Figs. 8.3, 8.4 and 8.5, this is the threshold mode of the curve Γ = 0. In the right plots

of the same Figures, it would correspond to the graph squeezing into the origin for a

critical value of the rotation. These stationary perturbations are physical since there is
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no gauge ambiguity. The TT conditions require that any gauge vector ξµ is a harmonic

1-form, satisfying ∇µξµ = 0 and ∇ρ∇ρξµ = 0. In Appendix 8.B.2, we show that no regular

harmonic 1-forms exist in this case: they lead to pure gauge metric perturbations that

diverge either at the boundary r = r+ or at infinity r → ∞. A proof along the same

lines, but much more cumbersome, can be given for the modes which represent the actual

instability of the black holes, i.e. the exponential growth of the perturbations with time

(k = 0 and Γ > 0).

The tetrad basis (8.22) is very convenient in the explicit derivation of the TT gauge

conditions and the Lichnerowicz equations. However, for the actual implementation of the

numerical problem, it is convenient to choose perturbation functions that make the final

equations more amenable to numerics, e.g. it is useful to avoid using expressions involving

square roots. It is also helpful to define combinations of the original perturbation functions

which can be solved for algebraically through the TT gauge conditions. Both features are

respected if we consider the perturbations in a related basis such that:

f00 = f00 f
2 − 2f02 f hΩ + f22 h

2 Ω2 , f01 = f01 f g − f12 g hΩ ,

f02 = f02 f h− f22 f
2 Ω , f11 = f11 g

2 , f12 = f12 g h , f22 = f22 h
2 ,

f0 = −1
2 r
(
(W+ +W−) f − (Z+ + Z−)hΩ

)
,

f̃0 = −i 1
2 r
(
(W+ −W−) f − (Z+ − Z−)hΩ

)
,

f1 = −1
2 r g (X+ +X−) , f̃1 = −i 1

2 r g (X+ −X−) ,

f2 = −1
2 r h (Z+ + Z−) , f̃2 = −i 1

2 r h (Z+ − Z−) ,

P = 1
4 (2H+− −H++ −H−−) , Q = i 1

2 (H++ −H−−) ,

(8.29)
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U = 1
4 (2H+− +H++ +H−−) , V = HL + 1

4N

(
H+− − 1

2 (H++ +H−−)
)
.

Now, we solve for six of these functions (f00, f0, f2, Q, U , V ) in terms of the ten remaining

functions and their first derivatives by imposing the TT gauge conditions. Upon this

substitution, the corresponding second order Lichnerowicz equations will become third

order. The ten equations which are second order in f01, f02, f11, f12, f22, f̃0, f1, f̃1, f̃2, P ,

will remain second order. They constitute the system of equations to be solved numerically.

A non-trivial consistency check on the gauge choice procedure is that the ten final second

order equations must solve the six third order equations (e.g. a third order equation is a

derivative of a second order one). We verified explicitly that this is the case.

The final system will be solved using a spectral numerical method, briefly described

in the Appendix at the end of this thesis. The application of the method is simpler for

Dirichlet boundary conditions. We then consider the following perturbation functions:

q1 =
(

1− r+

r

)iα(ω−mΩH)+3
f11 , q2 =

(
1− r+

r

)iα(ω−mΩH)+1
f22 ,

q3 =
(

1− r+

r

)iα(ω−mΩH)+2
f01 , q4 =

(
1− r+

r

)iα(ω−mΩH)+2
f1 ,

q5 =
(

1− r+

r

)iα(ω−mΩH)+2
f̃1 , q6 =

(
1− r+

r

)iα(ω−mΩH)+1
f̃2 ,

q7 =
(

1− r+

r

)iα(ω−mΩH)+1
P ,

q8 =
(

1− r+

r

)iα(ω−mΩH)
{
f02 + ΩH f22 +

r+

αΩH

(
1− r+

r

) [
f01 −

r+

α

(
1− r+

r

)
f11

]}
,

q9 =
(

1− r+

r

)iα(ω−mΩH)+1
{
f12 +

1

ΩH

[
f01 −

r+

α

(
1− r+

r

)
f11

]}
,

q10 =
(

1− r+

r

)iα(ω−mΩH) {
f̃0 + ΩH f̃2 −

r+

α

(
1− r+

r

)
f̃1

}
,

(8.30)

which vanish linearly at the horizon location r = r+. This behaviour can be verified in

the expressions (8.26) and (8.27). The particular combinations chosen for q8, q9 and q10

encode the total information about the boundary conditions imposed by regularity, as

argued in the end of Section 8.4.4. For the numerical implementation, it is convenient to

use the variable

y = 1− r+

r
(8.31)
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instead of the radial coordinate r, since y is dimensionless and bounded, 0 ≤ y ≤ 1 . The

functions represented above vanish at infinity r = ∞ (y = 1) since the large r behaviour

of the solutions of (8.6) is exponential, e±kr, and regularity at infinity imposes the minus

sign. The k = 0 case will be obtained as the limit k → 0.

The system of ten second order ordinary differential equations is ready to be solved

numerically. The results were presented in Section 8.3.

8.A Appendix: The geometry of CPN

8.A.1 The Fubini-Study construction

We review here the Fubini-Study construction of the Einstein-Kähler metric and Kähler

potential on CPN [181].14 This construction allows us to iteratively generate the CPN

metric and potential from the knowledge of the metric and potential of CPN−1.

Take the CN+1 manifold with complex coordinates ZA and flat metric

ds2
2N+2 = dZA dZA , (8.32)

where the index A runs as A = (0, α), with 1 ≤ α ≤ N . Introduce N inhomogeneous

coordinates ζα = Zα/Z0 in the patch where Z0 6= 0 , such that

Z0 = eiτ |Z0| , Zα = Z0 ζα = RN u
α ,

ZA ZA = r2 , f = 1 + ζα ζ
ᾱ

= 1 +R2
N . (8.33)

Furthermore, introduce a new set of (N−1) inhomogeneous coordinates vi (0 ≤ i ≤ N−1)

such that

uN = eiΨN/2 |uN | , ui = uNvi with uα ūᾱ = 1 . (8.34)

14We use the coordinates {RN ,ΨN} that are related to the coordinates {ξ, τ̃} of [181] through the
coordinate transformation sin2 ξ = R2

N/(1 +R2
N ) and τ̃ = ΨN/2.



8.A. APPENDIX: THE GEOMETRY OF CPN 159

The flat metric on CN+1 can then be written as

ds2
2N+2 = dr2 + r2 dΩ2

2N+1 , where dΩ2
2N+1 = (dτ +A(N))

2 + dΣ2
N (8.35)

is the metric on the unit sphere S2N+1, and dΣ2
N is the unit CPN metric. Written in this

way we see that S2N+1 is a Hopf fibration of S1 over CPN . In (8.35), A(N) is the CPN

Kähler potential. Explicitly, the CPN metric and Kähler potential are given by (RN ≥ 0

and 0 ≤ ΨN ≤ 4π)

dΣ2
N = ĝabdx

adxb =
dR2

N(
1 +R2

N

)2 +
1

4

R2
N(

1 +R2
N

)2 (dΨN + 2A(N−1)

)2
+

R2
N

1 +R2
N

dΣ2
N−1 ,

A(N) =
1

2

R2
N

1 +R2
N

(
dΨN + 2A(N−1)

)
, (8.36)

in terms of the Fubini-Study metric, dΣ2
N−1, and Kähler potential, A(N−1), on the unit

CPN−1,

dΣ2
N−1 = f−1

N−1 dv
i dv̄ı̄ − f−2

N−1 |v̄
ı̄ dvi|2 ,

A(N−1) =
1

2
i f−1
N−1

(
vi dv̄ı̄ − v̄ı̄ dvi

)
, fN−1 = 1 + vi v̄ı̄ . (8.37)

By definition, the Kähler form on CPN , JN = 1
2dAN , is covariantly conserved,

∇̂aJbc(N) = 0 , and satisfies J b
a Jbc = −ĝac .

The lesson from this analysis is that starting from the CP 1 fields we can iteratively

construct the CPN geometry as well as the complex coordinates ZA that define the em-

bedding of CPN in CN+1. CP 1 is isomorphic to the 2-sphere S2, its metric and Kähler

potential being given by

dΣ2
1 =

1

4

(
dθ2 + sin2 θdφ2

)
and A(1) =

1

2
cos θ dφ . (8.38)

Examples of the embedding in CN+1 may be elucidative. For CP 2, parameterized by
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(θ, φ,R2,Ψ2), the map is given by

(
Z0, Z1, Z2

)
=

reiτ√
1 +R2

2

(
1, R2 cos

θ

2
ei

1
2

(Ψ2+φ), R2 sin
θ

2
ei

1
2

(Ψ2−φ)

)
, (8.39)

while for CP 3, parameterized by (θ, φ,R2,Ψ2, R3,Ψ3), the map is

(
Z0, Z1, Z2, Z3

)
=

reiτ√
1 +R2

3

(
1,
R3e

i 1
2

Ψ3√
1 +R2

2

R2 cos
θ

2
ei

1
2

(Ψ2+φ),
R3e

i 1
2

Ψ3√
1 +R2

2

R2 sin
θ

2
ei

1
2

(Ψ2−φ)

)
. (8.40)

In order to reproduce the results in Section 8.4.2, it is useful to recall that, for CPN ,

R̂abcd = ĝacĝbd − ĝadĝbc + JacJbd − JadJbc + 2JabJcd . (8.41)

8.A.2 Scalar harmonics and Killing vectors

We review here the systematic way to construct all scalar harmonics and Killing vector

fields on CPN [181]. The isometry group of CPN is SU(N + 1). Let TA1···Ap
B1···Bq be a

constant Hermitian SU(N + 1) tensor, which is symmetric in the index set {A1, . . . , Ap}

and the index set {B1, . . . , Bq}, and traceless in any contraction between an Ai and a Bi

index. This defines the (p, q) representation of SU(N + 1). The charged scalar harmonics

are then given by

Y = TA1···Ap
B1···Bq ZA1 · · ·ZAp ZB1 · · ·ZBq , (8.42)

and satisfy the Laplacian (8.10) for λ = 2[2pq + N(p + q)]. We have κ = max{p, q} and

m = p− q. Uncharged scalar harmonics have κ = p = q and λ = 4κ(κ+N).

The Killing vectors on an Einstein-Kähler space can be constructed from the un-

charged scalar harmonics with κ = 1 , which have eigenvalue λ = 4(1 +N). Indeed all the

Killing vectors ξ(i) of CPN are generated by the relation

ξa(i) = Jab(N) ∂bY
m=0
κ=1,(i) , (8.43)
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where i = 1, . . . , N(N+2) . That is, setting to zero all but one of the constant components

of the arbitrary Hermitian traceless tensor T B
A we get a κ = 1, m = 0 scalar harmonic on

CPN through (8.42). Repeating the exercise for all possible combinations, we generate the

N(N+2) uncharged scalar harmonics Ym=0
κ=1,(i) , and the associated (N+1)2−1 = N(N+2)

Killing vectors through (8.43). There are N linearly independent Killing vectors which

commute with all the others, thus generating the Cartan subgroup U(1)N of SU(N + 1).

8.A.3 Symmetries of κ = 2 harmonics

The symmetry group SU(N + 1) is broken, at least partially, by any linear perturbation

hab satisfying Lξhab 6= 0 , where ξ is one of the N(N + 2) Killing vectors of CPN . For

scalar type perturbations, if LξY 6= 0 for some ξ then the symmetry associated with ξ is

broken by the perturbation.

We explained above how to construct the Killing vectors from the uncharged κ = 1

scalar harmonics. Consider now the most general linear combination of Killing vectors

K =
∑

i ci ξ(i), with i = 1, . . . , N(N + 2) . The entire symmetry group SU(N + 1) is

broken by hab if the only solution to LKY = 0 is ci = 0 for all i, i.e. K = 0. There are

(uncharged) κ = 2 harmonics on CP 3 (D = 9) for which this is true. For reference, we

present here a particular example in the coordinate system used above: a family of m = 0,

κ = 2 harmonics with three non-zero continuous parameters, β1, β2 and β3,

Ym=0
κ=2 = β1

R3R2(
1 +R2

3

)2
√

1 + cos θ

1 +R2
2

[
1− R2

3R
2
2(1 + cos θ)

2
(
1 +R2

2

) ]
e

1
2

i(Ψ3+Ψ2+φ)

+β2
R2

3R2

√
1− cos θ(

1 +R2
3

)2 (
1 +R2

2

) [1− R2
3

2
(
1 +R2

2

)] e 1
2

i(φ−Ψ2) + β3
R2

3 e
iΨ3(

1 +R2
3

)2 (
1 +R2

2

) .
(8.44)

If one of β1, β2, β3 vanishes then this is still a κ = 2 harmonic but it preserves some

symmetry.
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8.B Appendix: Properties of stationary axisymmetric modes

In the main body of the Chapter, we have presented our numerical results for general

axisymmetric time dependent scalar perturbations. Our numerical code has a continuous

limit as ω = i Γ→ 0. Therefore this particular case was already included in our discussion.

However, in this appendix we want to have a closer look at stationary axisymmetric

modes. The reasons are: (i) we developed an independent code for this particular case

which confirms the results from our general code with time dependence; (ii) we proved

that the stationary zero-modes (with ω = 0 and k = k∗ = 0) are not pure gauge modes;

(iii) we confirmed that our stationary perturbations preserve the angular velocity and

temperature of the background geometry; (iv) we determined which stationary zero-mode

perturbations can change the mass and angular momenta of the background solution;

finally (v) we want to give special attention to the stationary modes, and not just to the

time dependent instability, since these may indicate bifurcation points to new branches of

black hole solutions.

8.B.1 Stationary perturbations sub-sector

As described in Section 8.5, the stability problem of axisymmetric perturbations with time

dependence consists of a system of 16 Lichnerowicz eigenvalue equations for 16 unknown

functions. Choosing the TT gauge reduces the problem to a system of 6 TT gauge condi-

tions and 10 Lichnerowicz equations. The procedure is consistent because, as explained in

that Section, the latter 10 equations automatically imply, through the 6 gauge conditions,

that the other 6 Lichnerowicz eigenvalue equations are satisfied.

When we consider the axisymmetric stationary sub-sector of the perturbations, i.e.

m = 0, ω = i Γ = 0 we find that the initial system of 16 Lichnerowicz equations decouples

into a subsystem of 10 equations for 10 functions and another subsystem with 6 equa-

tions involving only the remaining 6 perturbation functions. Moreover, we can use the
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stationarity condition, ω = i Γ = 0, to further simplify our system of equations. To see

how this is accomplished, let us introduce the harmonics associated with the time and

azimuthal Killing directions as S = e−iωteimψ. We can then decompose the perturbations

according to how they transform under the {t, ψ} Killing isometries. For example, the

scalar-derived vector perturbations satisfy hAb̄ ∼ fA ∂bS for b = t, ψ and the index A

running over the radial and CPN coordinates (the bar in b̄ denotes that the 1-form basis

is really {dt, dψ + A− Ωdt}). These perturbations, hAt and hAψ̄, must then vanish when

we set ω = 0 and m = 0. This amounts to requiring that f01 = f12 = f0 = f2 = 0. The

original 10 time dependent Lichnerowicz equations then imply that f̃1 = 0 when we set

ω = 0. Similarly, the original 6 TT gauge conditions imply that Q = 0. We are then led

to the following conditions

f01 = f12 = f0 = f2 = f̃1 = Q = 0 , (8.45)

or, using the map (8.29): f01 = f12 = 0, W− = −W+, X− = X+, Z− = −Z+, and

H−− = H++.

With (8.45) the original system reduces to a closed system of 3 TT gauge condi-

tions and 7 Lichnerowicz equations. In this axisymmetric stationary case, the boundary

conditions at the horizon (8.26) reduce to

f00 = −h(r+)

r+
f0̄1̄ , f00 + f11 ≈ ∆′(r+) f1̄1̄ (r − r+) ,

f02 ≈ −
√

∆′(r+)

h(r+)
f1̄2̄

√
r − r+ , f22 =

1

h(r+)2
f2̄2̄ , Z± =

1

r+h(r+)
Z̄± ,

W± ≈ h(r+)

r+

√
∆′(r+)

W̄ ′±
√
r − r+ , X± −W± ≈

√
∆′(r+)

r+
X̄±
√
r − r+ ,

(8.46)

where we used W̄± = W̄ ′
±

(r − r+) and one further has W̄ ′
−

= −W̄ ′+, X̄− = X̄+ and

Z̄− = −Z̄+. It is important to emphasize that (8.45) already encode the information

that the perturbations are in the TT gauge, and that the boundary conditions (8.46) are

compatible with the TT gauge.
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We have done an explicit search of the stationary modes using only the subsystem

of 3 TT gauge conditions and 7 Lichnerowicz equations described above subject to (8.46).

We recover independently the same results that we obtain when we set ω = 0 in our time

dependent code.

8.B.2 Stationary zero-modes are not pure gauge

As discussed in Section 8.5, perturbations with k > 0 in the TT gauge all have the gauge

freedom fixed. However, TT perturbations with k = 0 6= k∗ and Γ = 0 are pure gauge

modes [103]. In this subsection, we want to confirm that our stationary axisymmetric

zero-modes with k = k∗ = 0 cannot be pure gauge modes. Given that for any residual

gauge freedom the gauge parameter would be constrained to be a harmonic 1-form, we

will prove that there is no regular harmonic 1-form that could generate our perturbations.

Consider the effect of a scalar gauge transformation on the metric perturbations.

The most general scalar-type gauge parameter can be decomposed as

ξ = e−iωt+imψ
[
ξ0(r)Y e(0) +ξ1(r)Y e(1) +ξ2(r)Y e(2) +r

(
ξ+(r)Y+

a +ξ−(r)Y−a
)
dxa
]
. (8.47)

Under a gauge transformation,

hµν → hµν + 2∇(µξν) , (8.48)

the tetrad components of the metric perturbations transform as

f00 → f00 − 2

[
i(ω −mΩ)

f
ξ0 +

f ′

f g
ξ1

]
, f01 → f01 +

1

g

(
∂

∂r
− f ′

f

)
ξ0 −

i(ω −mΩ)

f
ξ1 ,

f02 → f02 +
im

h
ξ0 −

hΩ′

f g
ξ1 −

i(ω −mΩ)

f
ξ2 , f11 → f11 +

2

g

∂

∂r
ξ1 ,

f12 → f12 −
hΩ′

f g
ξ0 +

im

h
ξ1 +

1

g

(
∂

∂r
− h′

h

)
ξ2 , f22 → f22 + 2

[
h′

h g
ξ1 +

im

h
ξ2

]
,
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W+ →W+ −
[√

λ

r
ξ0 +

i(ω −mΩ)

f
ξ+

]
, W− →W− −

[√
λ

r
ξ0 +

i(ω −mΩ)

f
ξ−
]
,

X+ → X+ −
[√

λ

r
ξ1 −

1

g

(
∂

∂r
− 1

r

)
ξ+

]
, X− → X− −

[√
λ

r
ξ1 −

1

g

(
∂

∂r
− 1

r

)
ξ−
]
,

Z+ → Z+ −
[√

λ

r
ξ2 − i

(
m

h
+

2h

r2

)
ξ+

]
, Z− → Z− −

[√
λ

r
ξ2 − i

(
m

h
− 2h

r2

)
ξ−
]
,

HL → HL +
2

r

[
1

g
ξ1 +

1

4N
√
λ

(
ξ+(λ− 2mN) + ξ−(λ+ 2mN)

)]
,

H+− → H+− −
√
λ

r
(ξ+ + ξ−) , H++ → H++ − 2

√
λ

r
ξ+ , H−− → H−− − 2

√
λ

r
ξ− .

(8.49)

Our stationary axisymmetric perturbations must satisfy (8.45) which requires that a po-

tentially dangerous gauge parameter ξ must satisfy

ξ0(r) = ξ2(r) = 0 , and ξ−(r) = ξ+(r) . (8.50)

We now prove that a parameter ξ obeying these conditions cannot generate a pure gauge

metric perturbation that is regular. By regularity we mean that the gauge transformation

cannot diverge at the horizon r = r+ nor at the asymptotic boundary r →∞.

A TT gauge perturbation generated by ξ must satisfy the conditions ∇µξµ = 0

and �ξν = 0. If we introduce the antisymmetric tensor Fµν = ∇[µξν], for a Ricci flat

background, these conditions reduce to ∇µξµ = 0 and ∇µFµν = 0 which read simply

∂µ
(√
−gξµ

)
= 0 , ∂µ

(√
−gFµν

)
= 0 . (8.51)

Using
√
−g = r2N+1

√
ĝ and Eq. (8.10), the first of the equations above requires that

ξ+(r) =
1

λr2N−1
∂r
[
r2N+1g(r)−2ξ1(r)

]
, (8.52)

where the background function g(r) is defined in (8.1) and λ is the CPN eigenvalue

(8.11). The second family of equations in (8.51) further demands that (ξ+)
′
(r) = ξ1(r).
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Introducing the new variable

ξ1(r) = r−(N+3/2)g2(r) χ(r) , (8.53)

the solution of (8.51) must then solve

χ′′(r) = V (r)χ(r) , with V (r) =
1

r2

[(
N2 − 1

4

)
+ λg2(r)

]
> 0 . (8.54)

To study the regularity of the associated gauge transformation, we need the asymp-

totic behavior of χ(r) at the horizon and at infinity. The solution to Eq. (8.54) can be

obtained in these regions by considering the dominant contributions of V (r) or by doing

a Frobenius analysis. Using (8.11), we find that

χ(r)
∣∣
h
∼ a0(r − r+) or χ(r)

∣∣
h
∼ a0 , (8.55)

χ(r)
∣∣
∞ ∼ b0r

1
2
±(2κ+N) . (8.56)

Recall that δhµν = −Lξgµν . We have to discard the second possibility in (8.55) because it

would generate a dependence f11

∣∣
h
∼ (r − r+)−2, not compatible with the TT boundary

conditions (8.46). On the other hand, we have to discard the solution with the positive

sign in (8.56) because it generates a perturbation that grows faster than the unperturbed

background metric as r → 0. The appropriate boundary conditions for (8.54) are thus

χ(r)
∣∣
h
∼ a0(r − r+) , χ(r)

∣∣
∞ ∼ b0r

1
2
−(2κ+N) . (8.57)

We can now complete our proof. Notice that

0 ≤
∫ ∞
r+

χ′(r)2 = χ(r)χ′(r)

∣∣∣∣∞
r+

−
∫ ∞
r+

χ(r)χ′′(r)

= −
∫ ∞
r+

V (r)χ(r)2 ≤ 0 , (8.58)
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where we used (8.56) and (8.54). But these relations can be satisfied only for

χ(r) = 0 ⇒ ξ1(r) = 0 , and ξ+(r) = 0 , (8.59)

which in addition to (8.50) proves that our regular zero-mode perturbations in the TT

gauge cannot be pure gauge modes.

8.B.3 Temperature and angular velocity preserved

In Section 6.2, we discussed the connection between the classical instability of the black

hole and its thermodynamics. This connection was built on the claim that the stationary

and axisymmetric modes that we study preserve the temperature and the angular velocities

of the background solution. Here we will prove that this is indeed the case.

We will first compute the angular velocity and the temperature of the unperturbed

background solution using standard Euclidean methods. Our strategy is then to check that

our TT metric perturbation hµνdx
µdxν is a regular symmetric 2-tensor, when expressed

in coordinates where the background metric is regular, which confirms that they preserve

the angular velocity and temperature.

We start with the computation of the background angular velocity and tempera-

ture. This is done performing the standard three steps in the background solution: i) a

coordinate transformation to coordinates (t, ψ̃) that corotate with the black horizon, ii) a

Wick rotation of the time coordinate so that we work with the Euclidean solution, and iii)

a change to a new radial coordinate that zooms the geometry in the near-horizon region.

That is, we perform the coordinate transformations

ψ̃ = ψ − ΩHt , t = −iτ , r = r+ +
∆′(r+)

4
ρ2 , (8.60)

with ΩH being the angular velocity of the background solution (8.2). A final coordinate

transformation,

τ̃ = 2πTHτ , with TH =
r+∆′(r+)

4πh(r+)
, (8.61)
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sets the period of τ to be the inverse of the horizon temperature and avoids a conical sin-

gularity at the horizon. The Euclidean sector of the near horizon region of the background

solution (8.1) then reads

ds2
E ' ρ2 dτ̃2 + dρ2 + h(r+)2[dψ̃ +Aadx

a]2 + r2
+ĝabdx

adxb , (8.62)

which is a manifestly regular geometry. Indeed the polar coordinate singularity can be

removed by a coordinate transformation into cartesian coordinates, τ̃ = Arctan(y/x) and

ρ =
√
x2 + y2. This concludes our computation of the angular velocity and temperature

of the background black hole.

To study the regularity of the perturbations, start by introducing the manifestly

regular 1-forms,

E τ̃ = ρ2dτ̃ = x dy − y dx , Eρ = ρ dρ = x dx+ y dy . (8.63)

Consider now our TT metric perturbation hµνdx
µdxν . After using the boundary conditions

(8.46), which satisfy the TT gauge conditions, we get

hµν dx
µ dxν ' h(r+)

r+
f0̄1̄Y

(
ρ2 dτ̃2 + dρ2

)
+ f2̄2̄Y

(
dψ̃ +Aadx

a
)2

+ i
∆′(r+)

h(r+)
f1̄2̄YE τ̃

(
dψ̃ +Aadx

a
)

+
∆′(r+)2

4
f1̄1̄Y(Eρ)2

− 4i
r+h(r+)

∆′(r+)
E τ̃
(
W̄ ′+a + W̄ ′−a

)
dxa + 2r+E

ρ
(
X̄+
a + X̄−a

)
dxa

+ 2
(
dψ̃ +Aadx

a
) (
Z̄+
a + Z̄−a

)
dxa

+ r2
+

[
− 1√

λ

(
H++
ab +H−−ab +H+−

ab

)
+ H̃L ĝab

]
dxadxb .

(8.64)

Notice that the first term on the right-hand side ensures that there is no conical singularity

if τ̃ has the same periodicity as the background metric. Furthermore, the remaining depen-

dence on τ̃ and ρ is given by the manifestly regular 1-forms E τ̃ and Eρ. Hence, hµνdx
µdxν

is a regular 2-tensor in the cartesian coordinates (x, y, ψ̃, xa) where the background metric

is regular, which confirms that the perturbations indeed preserve the angular velocity and
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temperature.

8.B.4 Perturbations of the asymptotic charges

The stationary zero-modes can potentially change the mass and angular momenta of the

geometry. In this subsection, we determine which of our perturbations with ω = 0, m = 0

and k = 0 can change these conserved charges.

The change on the conserved charges associated to a Killing generator ξ introduced

by a perturbation hµν can be defined via a surface boundary integral as (for TT pertur-

bations) [182,183]

Qξ[h, g] = − 1

32πG

∫
∂Σ
εαβµν

[
ξσ∇νhµσ − hνσ∇σξµ +

1

2
hσν(∇µξσ +∇σξµ)

]
dxα ∧ dxβ .

(8.65)

The conserved charges of interest are the energy, for ξ = −∂/∂t, and the angular momenta

associated with the b(D − 1)/2c U(1) Killing vectors ξ = ∂/∂Ψi. The corresponding

changes are denoted by E and Ji, respectively. The surface integral is over a constant

time hypersurface at asymptotic infinity, ∂Σ.

To compute the charges of our perturbations, we need the asymptotic behaviour of

our solutions. This can be obtained from a Frobenius analysis of the Lichnerowicz equa-

tions at r → ∞. We are interested in boundary conditions that preserve the asymptotic

flatness of the spacetime, i.e. that decay (strictly) faster than the background geometry.

We find that the behaviour of the regular perturbations is such that they decay at infinity

according to

f11 ≈ O
(
r−4−2κ

)
, f12 ≈ O

(
r−2κ

)
, f22 ≈ O

(
r−2κ

)
, f1 ≈ O

(
r−3−2κ

)
,

f̃0 ≈ O
(
r−2κ

)
, f̃2 ≈ O

(
r−2κ

)
, P ≈ O

(
r−2−2κ

)
. (8.66)
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We then find the generic behaviour of the changes in the conserved charges,

E = E0 r
−2κ

(
1 +O

(
r−1
))
,

JΨi = Ai r
2−2κ +Bi r

−2κ +O
(
r−1−2κ

)
, (8.67)

where E0, Ai, Bi are functions of κ and r+ and, in particular, Ai = Bi = 0 for κ = 0.

We thus conclude that the κ = 0 modes are the only ones that decay sufficiently

slowly to change the mass of the geometry. Moreover these modes cannot change the

angular momenta. The only modes that change the angular momenta are those with

κ = 1. No modes with κ ≥ 2 can change the mass or the angular momenta. We have done

these computations explicitly for the D = 7 case.
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Chapter 9

Conclusion and outlook

The original work described in this thesis can be divided into two parts. In the first, we

studied the black hole partition function of Euclidean quantum gravity. We extended the

study of negative modes, which represent pathologies in the one-loop quantum corrections,

to black holes which are charged [161] (Chapter 5) or rotating [159] (Chapter 4, and

also [68, 72], Chapters 7–8). We found that local thermodynamic instabilities are always

signalled (individually) by the existence of a negative mode. The results strengthen the

claim that the gravitational partition function indeed describes semiclassical quantum

gravity at low energies, even beyond the leading order instanton approximation. In the

charged case, a trick based on a Kaluza-Klein reduction allowed for the decoupling of

the unphysical divergent sector, the analogue of the conformal sector for pure-gravity.

However, it would be convenient to have a more general procedure to deal with gravity-

matter instantons, applicable to the charged rotating case.

In the second part (Refs. [68, 72], Chapters 6–8), we explored the connection be-

tween classical stability and local thermodynamic stability of black holes, numerically

analysing perturbations of Myers-Perry solutions with a single spin and with equal spins

(cohomogeneity-1 in odd D). The connection is that negative modes can have implica-

tions for the classical stability problem. We started by refining the Gubser-Mitra conjec-

ture, showing that one Gregory-Laflamme-type instability of uniform black branes appears
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for each individual local thermodynamic instability, and in fact for each negative mode

whether it is related to a thermodynamic instability or not. The onsets of these insta-

bilities should be associated with bifurcations to new non-uniform black brane families.

Moreover, we showed that all asymptotically vacuum black holes possess a local thermo-

dynamic instability, which implies that the associated uniform black branes are classically

unstable [68].

The main achievement in this thesis was to show that rapidly-rotating Myers-Perry

black holes can be classically unstable, as first conjectured for the D ≥ 6 singly-spinning

sector in Ref. [71]. We presented in Ref. [72] (Chapter 7) the first evidence for this in-

stability by showing that, as high rotations are considered, additional negative modes of

the partition function arise which are not associated with the standard local thermody-

namic instabilities. The zero-modes marking the appearance of each new negative mode

are instead the thresholds of classical instabilities of the black hole, and not just of the

black branes. In Ref. [68] (Chapter 8), we went further and, analysing cohomogeneity-

1 MP black holes, verified explicitly the existence of such an instability in D = 9, by

determining its timescale at the linear level.

The non-thermodynamic zero-modes also mark the bifurcation of new families of

stationary black holes from the MP family. In the singly-spinning MP case [72], there

should be infinite new families of this type. The first may interpolate between a MP black

hole and a black ring through a horizon topology transition, and the second may interpolate

between a MP black hole and a black Saturn, etc., as conjectured in Refs. [62,71]. In the

equal spins case [68], these zero-modes indicate the existence of higher-dimensional black

holes in D = 9 (and, we believe, higher odd D) with a single rotational symmetry. This

is the first known example with spherical horizon topology (see Ref. [65] for the very first

example, the helical black rings). Furthermore, we argue that this family of black holes

which generically has a single rotational symmetry is determined by 70 parameters, while

the MP solution has only 5 parameters. These results are a stark measure of the challenge

of classifying higher-dimensional black holes.
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The negative modes found obey a certain harmonic structure, with the thermody-

namic negative modes corresponding to the lowest harmonics (s-wave and p-wave).1 There-

fore, we conjectured that classical instabilities for perturbations preserving the rotational

symmetry, corresponding to higher harmonics (d-wave, etc.), can only be excited for rota-

tions higher than the first thermodynamic zero-mode (p-wave). This is the ultraspinning

conjecture of Ref. [72], consistent with the posterior results of Ref. [68]. The preservation

of the rotational symmetry is required in our argument in order to make the connection

with regular Euclideanised negative modes. It was recently found in Refs. [112, 113] that

MP black holes can also be unstable after a critical value of the rotation for perturbations

breaking this symmetry. This occurs even in D = 5, where there is no instability in the

sector that we consider in this thesis.

It would be important to focus also on different higher-dimensional solutions, such

as black rings. What is perhaps the most important question of higher-dimensional black

hole physics, along with the closely related classification problem, remains open: is there

uniqueness of stable solutions?

A major part of the work reported in this thesis, from Refs. [68, 72, 159], is based

on a numerical analysis of coupled linear second order differential equations, ODEs or

PDEs. The spectral method used to solve these equations is briefly described in the

Appendix A. To the best of our knowledge, this powerful method was used in the context

of general relativity for the first time in Ref. [159]. It would be interesting to also apply

spectral methods to non-linear black hole problems, such as the construction of the new

solutions whose existence we conjectured here, or of solutions relevant for applications of

the holographic correspondence. Closely connected is the recent progress – likely to make

an impact in the future – in extending to high energy physics problems the well-developed

numerical techniques available for general relativity in four dimensions, e.g. [184,185].

Let us conclude on a different note. The plethora of higher-dimensional black holes

and its seemingly impossible classification somewhat remind us of the situation in nu-

1Notice that, in general, there may exist different harmonic structures corresponding to different per-
turbation subsectors, e.g. there may exist unrelated p-waves.
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clear/particle physics before the quark model was proposed. The challenge presented by

higher dimensions contrasts with the simplicity of the four-dimensional case, where the

Kerr black hole is the unique asymptotically flat vacuum solution. In the same way, the

myriad of particles detected in collision experiments contrasted with the previous situa-

tion where only a handful of more familiar particles were known. The quark model put

some order in that particle zoo. Our hope is that there is also an underlying structure

connecting the several phases of black holes. This thesis is a small step towards unveiling

that structure. Or one may ask the same question for the black ring that Rabi asked for

the muon: “Who ordered that?”



Appendix A

Spectral numerical method

In this Appendix, we briefly describe the spectral numerical method that we employed to

solve the linear ordinary differential equations (ODEs) and the coupled partial differential

equations (PDEs) in this thesis, namely in Chapters 4, 7 and 8. See Ref. [160] for more

details.

Spectral methods can solve a system of coupled ODEs or PDEs to high accuracy

on a finite domain, as long as the system allows for analytic solutions. To our knowledge,

the first application of these methods to general relativity was given in [156], followed

by [68,72]. We will start by considering the case of ODEs, and in the end we will discuss

how to generalise the procedure for PDEs.

The goal is to approximate a given function, defined on a finite domain, as a finite

sum of algebraic polynomials p(y) =
∑N

i=0 aiyi. Performing the polynomial interpolation

in an equidistant grid with N + 1 points turns out to be catastrophic in many cases

due to the oscillation of high-degree polynomials, the so-called Runge phenomenon. In

general, this approximation does not converge as N → ∞, and may get worse at a rate

as large as 2N . The correct approach is to perform the interpolation in a non-uniform

grid, distributed more densely near the edges of the interpolation interval. We use the
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Chebyshev grid, whose points are the extrema of Chebyshev polynomials,

yj =
a+ b

2
+
a− b

2
cos

(
jπ

N

)
, j ∈ {0, 1, . . . ,N} , (A.1)

for yj ∈ [a, b]. Not only does this grid avoid the Runge phenomenon, by clustering points

near the boundary, but it has another well-known advantage over uniform grids: it typically

leads to an exponential accuracy of the approximantion as N → ∞. However, because

we are approximating a function as a sum of polynomials, we must restrict to analytic

functions. The reason for the exponential accuracy is that such functions have rapidly

decaying Fourier transforms. Since spectral methods, as the name indicates, act in Fourier

space in a certain sense, the common difficulties of having singular points in the equations

can be avoided, as long as analytic solutions exist.

The procedure to solve differential equations is in the same spirit as standard quan-

tum mechanics. Consider an eigenvalue system of n coupled linear ODEs with variable

coefficients,
n∑
β=1

Hαβ q
(λ)
β = λ

n∑
β=1

Tαβ q
(λ)
β , α ∈ {0, 1, . . . , n} , (A.2)

where each Hαβ is a second order operator in y, each Tαβ is a scalar function and {λ, q(λ)
β }

are the eigenvalues and eigenfunctions that we want to determine. We now perform our

approximation and discretise the [a, b] interval according to the grid (A.1). Each q
(λ)
β is

then approximated by a vector, ~q
(λ)
β , whose entries are the values at yj of the eigenfunctions

we want to determine. Following this procedure, one represents derivatives with respect to

y by matrices, DN , that act on the vectors ~q
(λ)
β , mixing adjacent points (see p.53 of [160]

for an explicit construction of such matrices). After this approach is complete, each Hαβ

and Tαβ are transformed into square matrices
~~Hαβ and

~~Tαβ, respectively, of dimension

(N + 1)× (N + 1).

We conveniently chose to work with Dirichlet boundary conditions by considering

the rescaled functions (4.16), (7.8) and (8.30). The ellipticity of the perturbation operator

is consistent with a boundary value problem. Dirichlet boundary conditions are imposed
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by setting the first and last elements of each ~q
(λ)
β to zero, and by eliminating the first

and last columns and rows of each matrix
~~Hαβ and

~~Tαβ [160]. We are then left with the

following system of linear algebraic equations

n∑
β=1

~̂~Hαβ ~̂q
(λ)
β = λ

n∑
β=1

~̂~Tαβ ~̂q
(λ)
β , (A.3)

where
~̂~Hαβ and

~̂~Tαβ are obtained from
~~Hαβ and

~~Tαβ by deleting their first and last columns

and rows, and thus are square (N − 1)× (N − 1) matrices. The system of equations (A.3)

can be written as
~̂~H11 . . .

~̂~H1n

...
. . .

...

~̂~Hn1 . . .
~̂~Hnn



~̂q

(λ)
1

...

~̂q
(λ)
n

 = λ


~̂~T11 . . .

~̂~T1n

...
. . .

...

~̂~Tn1 . . .
~̂~Tnn



~̂q

(λ)
1

...

~̂q
(λ)
n

 , (A.4)

which is just a standard generalised eigenvalue problem of dimension n(N − 1).

The generalisation to the cases where we have a system of PDEs is straightforward.

Say we have two coordinates y and x. Then we can work with a two-dimensional grid

where each coordinate is discretised according to (A.1). In our works, we have used the

same number of points N for both y and x, although this is not a requirement. The vectors

~q
(λ)
β which approximate the eigenfunctions q

(λ)
β will have (N + 1)2 components instead of

N + 1, one component for each grid point, and the matrices
~~Hαβ and

~~Tαβ will accordingly

become (N + 1)2 × (N + 1)2 matrices, increasing the computational demands.
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