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Abstract

This paper presents aC0 discontinuous Galerkin formulation for the simulation of thin
shells. The method is based on Koiter’s shell model and allows finite element solutions
to be obtained by using standardC0 Lagrange basis functions in terms of the displace-
ment only. It invokes a curvature-like term by applying a lifting operation which trans-
forms jumps in the normal rotation across element boundaries into a field defined on
element interiors. This procedure enforces weak continuity of normal derivative across
element boundaries and a special term is added to enhance stability of the formulation.
Benchmark tests using various-order elements are presented and conclusions are drawn
as to the computational efficiency of the method.
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1 Introduction

For the numerical simulation of thin shells, many shell elements have been proposed
and developed over the years. These are copious in quantity,but are in general all
built upon one of two shell theory families, namely the Koiter and Naghdi families.
While the former ignores transverse shear effects by applying the Kirchhoff-Love kine-
matic assumptions, the latter is based on the Reissner-Mindlin kinematic assumptions
and takes transverse shear effects into account [1, 2]. Conventionally, the Koiter type
model requires the use ofC1 basis functions, which are difficult to construct, while the
Naghdi-type model demands the use ofC0 functions. Because of its simple implemen-
tation, the Naghdi-type model is attractive, although it poses some other difficulties,
particularly shear locking when shell thickness becomes small.

Recently, some discontinuous Galerkin formulations have been presented for the sim-
ulating of thin bending problems. In the works of Engel et al.[3] and Hughes and
Garikipati [4], aC0 interior-penalty formulation for Kirchhoff plates that permits the
use standardC0 Lagrange finite element basis functions has been proposed. With this
formulation, rotation degrees of freedom are not required and continuity of normal
slope across element boundaries is enforced weakly. Althought the approach is rela-
tively simple, it has drawbacks, such as conditional stability and ambiguities for non-
linear implementations. To address these issues, Wells andDung [5] recently devel-
oped aC0 discontinuous Galerkin formulation for Kirchhoff plates which are inspired
by the works of Bassi and Rebay [6] and Brezzi et al. [7] for second-order problems.
The approach relies on a lifting operation that transforms jumps in the normal rota-
tion across element boundaries into a field defined on elementinteriors. The stability
of the approach can be precisely quantified and the extentionto nonlinear problems is
straight-forward. In this paper, we develop aC0 discontinuous Galerkin formulation
from the Koiter shell model based upon this approach.

We organize the remainder of this work as follows: firstly, equations for the Koiter shell
model are summarized in Section 2. Then, in Section 3, the considered formulation for
thin shells is presented, after which numerical examples are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2 Thin shell formulation

Formulations for thin shell finite-element analysis have been presented and developed
by numerous authors, including Koiter and Simmonds [8], Bernadou [1] and Chapelle
and Bathe [2]. In this section, equations for Koiter’s shellmodel are summarized. We
shall restrict our attention on linear problems, and adopt largely the notation of Bernadou
[1] and Chapelle and Bathe [2].

2.1 Kinematic equations

Consider a shell with a mid-surface denoted byS and with thicknesst. The boundary
is denoted∂S, and the shell lies in an orthonormal coordinate system(e1, e2, e3). The
mid-surface of the given shell is defined by an injectively geometric mapping from a
parametric spaceR2 into the Euclidean spaceE3 (see Figure 1). Denote the reference
domain in the spaceR2 by Ω and its boundary by∂Ω that their images in the spaceE3

areS and∂S, respectively. Consider a coordinate system(ξ1, ξ2, ξ3) that (ξ1, ξ2) is a
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Figure 1: Definition of shell geometry.

point onΩ andx (ξ1, ξ2) is the position vector of its image on the mid-surface. The
surface covariant basis vectors are now defined as:

aα =
∂x

∂ξα
, a3 =

a1 × a2

‖a1 × a2‖
, (1)

whereα = 1, 2 are indices denotting two directions of the surface tangentplane at
the point. The surface contravariant basis vectorsaα are defined by the relationaβ ·
aα = δα

β , whereδα
β is the Kronecker delta tensor. Now, covariant componentsaαβ and

contravariant-covariant componentsaα
β of the metric tensor are defined as

aαβ = aα · aβ , aα
β = aα · aβ. (2)

They are also called the first fundamental form of the mid-surface. Components of the
second fundamental form containing the curvature information of the mid-surface are
defined as

bγα = −a3,α · aγ, bγ
α = −a3,α · aγ. (3)

Herein, some other geometric definitions of the mid-surfaceare used, that include

Γδ
γα = −aδ

,α · aγ, (4)

namely the surface Christoffel symbols, and

a = det (aαβ) (5)

appearing in the relationdS =
√

a dΩ. The position vectorxp of a material point in
the shell media relates to the position vectorx on the mid-surface as the following:

xp
(

ξ1, ξ2, ξ3
)

= x
(

ξ1, ξ2
)

+ ξ3a3

(

ξ1, ξ2
)

. (6)

Under the external loads, the structure deforms. Denote thedisplacement vectors at
a material point and at a mid-surface point byu andup, respectively. The relation
between them reads:

up
(

ξ1, ξ2, ξ3
)

= u
(

ξ1, ξ2
)

+ ξ3θα

(

ξ1, ξ2
)

aα
(

ξ1, ξ2
)

, (7)
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whereθα are rotations around the two directions on the tangent planeof a material
line which is normal to the mid-surface in the undeformed state. In the equation (7),
the Kirchhoff-Love kinematic assumptions mentioning about straight and un-stretched
material lines have been adopted. Furthermore, the assumptions also state that material
lines are always orthogonal to the mid-surface, that results in:

θα = −u3,α − bδ
αuδ. (8)

Applying the above relations, the strain tensor at a material point is expressed as

ǫαβ = γαβ − ξ3καβ. (9)

The membrane partγαβ in the above equation reads

γαβ =
1

2

(

uα|β + uβ|α

)

− bαβ u3, (10)

whereuα|β is called the covariant derivative of the displacement componentuα, which
is expressed as

uα|β = uα,β − Γγ
αβ uγ. (11)

The curvatureκαβ in the equation (9) is given by

καβ = u3|αβ + bγ

α|β uγ + bγ
αuγ|β + bγ

βuγ|α − bγ
αbγβ , (12)

where the covariant derivativesu3|αβ andbγ

α|β are defined as

u3|αβ = u3,αβ − Γγ
αβ u3,γ, (13)

bγ

α|β = bγ
α,β + Γγ

βδ bδ
α − Γδ

αβ bγ
δ . (14)

The above equations permit the strain tensors at a material point in the shell medium to
be expressed in terms of the displacement field defined on the two-dimensional refer-
ence domainΩ.

2.2 Variational form

The boundary∂Ω of the domainΩ is partitioned such thatΓu ∪ ΓH = Γθ ∪ ΓM = ∂Ω
andΓu ∩ ΓH = Γθ ∩ ΓM = ∅. The distributed force vector onΩ is denoted byF , the
displacement, rotation, force, and moment vectors on the boundaries are denoted by
gu, gθ, H, andM , respectively. Note thatF , gu, gθ, H, andM have been evaluated
by an inverse map from the physical space into the reference space. The spaces of trial
and test functions on the mid-surface are defined as follows:

U =
{

u = (uα, u3) ∈ [H1(Ω)]2 × H2(Ω) : u|Γu = gu, θ (u) |Γθ = gθ
}

, (15)

W =
{

w = (wα, w3) ∈ [H1(Ω)]2 × H2(Ω) : w|Γu = 0, θ (w) |Γθ = 0
}

. (16)

In order to provide a two-dimensional presentation of a three-dimensional shell medium,
integrals with respect to the thickness direction in the variational form derived from the
kinetic equation are evaluated in advance. This process results the following variational
form: findu ∈ U such that

B (w, u) = L (w) ∀w ∈ W, (17)
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where

B (w, u) =

∫

Ω

{

tγαβ (w) Cαβγδγγδ (u) +
t3

12
καβ (w) Cαβγδκγδ (u)

}√
a dΩ, (18)

L (w) =

∫

Ω

w · F dΩ +

∫

ΓH

w · H dΓ +

∫

ΓM

θ (w) · M dΓ, (19)

and Cαβγδ is the fourth-order constitutive tensor on the shell mid-surface. In the
isotropic case, it is defined as

Cαβγδ =
E

2 (1 + ν)

(

aαγaβδ + aαδaβγ +
2ν

1 − ν
aαβaγδ

)

. (20)

whereE denotes Young’s modulus andν denotes Poisson’s ratio. The variational
form (17) is expressed in terms of the displacement field and its derivatives in the
reference coordinat system(ξ1, ξ2). For a conventional finite element approach, the
requirement ofC0 continuity for the membrane deformation is straightforward, but for
bending part, a comformingC1 continuity is difficult to construct. In the next section,
aC0 discontinuous Galerkin formulation will be presented to address this issue.

3 Discontinuous Galerkin formulation based on a lifting operator

Consider a partitionPh of the domainΩ containingn elementsEi, i = 1 → n, such
that

⋃n
i=1

Ēi = Ω̄ and
⋃n

i=1
Ei = Ω̃. The union of all element edges is denoted by

Γ =
⋃n

i=1
∂Ei, and the union of all internal element edges is denoted byΓ̃ = Γ \ ∂Ω.

The trial and test function spaces on the mid-surface are defined as follows

Uh =
{

uh ∈ [H1(Ω)]3 : uh
j ∈ P k(Ei), j = 1 → 3, ∀ Ei ∈ Ph; uh|Γu = gu

}

, (21)

W h =
{

wh ∈ [H1(Ω)]3 : wh
j ∈ P k(Ei), j = 1 → 3, ∀ Ei ∈ Ph; wh|Γu = 0

}

, (22)

whereP k(Ei) are standard finite element shape functions of polynomial degreek. We
adopt the jump and average definitions for a scalar functiona on an edgee as follows:
for an interior edgee ∈ Γ̃

Ja,nK = a+
,αn+

α + a−
,αn−

α , 〈a〉 =
1

2

(

a+ + a−
)

, (23)

and for an exterior edgee ∈ ∂Ω

Ja,nK = a,αnα, 〈a〉 = a. (24)

In the above equations,a denote values of the function one of elementsE andE±,
respectively, whereE± ∈ Ph denote two elements sharing the interior edgee; nα and
n±

α denote the outward normal vector of elementsE andE±, respectively.

anda±

Consider a lifting function spaceRh as follows

Rh =
{

rαβ ∈ L2(Ω) : rαβ(Ei) ∈ P l(Ei) ∀ Ei ∈ Ph, rαβ(Ei) = rβα(Ei)
}

. (25)

In addition, it is required that the spaceRh must contain at least all the second deriva-
tives of the functionuh

3 on element interiors. For each element edgee ∈ Γ̃∪ΓΘ, lifting
operations are defined by: givena ∈ H1(Ω), find re

αβ (a) , re,g
αβ (a) ∈ Rh such that

∫

Ω

vh
αβ re

αβ (a) dΩ = −
∫

e

〈

vh
nn

〉

Ja,nK dΓ e ∈ Γ̃ ∪ Γθ, ∀ vh
αβ ∈ Rh, (26)

5



and
∫

Ω

vh
αβ re,g

αβ (a) dΩ = −
∫

e

〈

vh
nn

〉

Ja,nK dΓ e ∈ Γ̃, ∀ vh
αβ ∈ Rh, (27)

∫

Ω

vh
αβ re,g

αβ (a) dΩ = −
∫

e

vh
nn

(

a,n − gθ
)

dΓ e ∈ Γθ, ∀ vh
αβ ∈ Rh, (28)

wherevh
nn = vh

αβnαnβ . The integrals on the left-hand side of the above equations are
performed over the elements sharing edgee. The lifting functionsre

αβ andre,g
αβ are equal

to zero fore ∈ ΓM . Now, two functionsRαβ (a) andRg
αβ (a) are defined as follows:

Rαβ (a) =
∑

e∈Γ̃∪Γθ

re
αβ (a) , (29)

Rg
αβ (a) =

∑

e∈Γ̃∪Γθ

re,g
αβ (a) . (30)

The proposed variational form for the thin shell problem involves: findwh ∈ W h such
that

B
(

wh, uh
)

= L
(

wh
)

∀wh ∈ Wh, (31)

where

B
(

wh, uh
)

=

∫

Ω

γαβ

(

wh
)

N αβ
(

uh
)√

a dΩ

+

∫

Ω̃

{

καβ

(

wh
)

+ Rαβ

(

wh
3

)}

Mαβ
⋆

(

uh
)√

a dΩ

+
∑

e∈Γ̃∪Γθ

∫

Ω

ηt3

12
re
αβ

(

wh
3

)

Cαβγδ re,g
γδ

(

uh
3

)√
a dΩ, (32)

and

L
(

wh
)

=

∫

Ω

wh · F dΩ +

∫

ΓH

wh · H dΓ +

∫

ΓM

θ
(

wh
)

· M dΓ. (33)

In the above equations,N αβ andMαβ
⋆ denote the membrane stress and moment tensors

on the mid-surface, which are written as

N αβ
(

uh
)

= tCαβγδγγδ

(

uh
)

, (34)

Mαβ
⋆

(

uh
)

=
t3

12
Cαβγδ

(

κγδ

(

uh
)

+ Rg
γδ

(

uh
))

, (35)

andη is a positive number to provide stability of the formulation. The method allows
to use standardC0 Lagrange basis functions in terms of the displacement only.A
weak continuity of normal derivative across element boundaries has been enforced by
using the lifting operation to transforms jumps in the normal rotation across element
boundaries into a field defined on element interiors. This enables the finite element
solutions to be obtained in a straightforward implementation.
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4 Numerical examples

The proposed formulation is subjected to some benchmark tests in this section, consist-
ing of Scordelis-Lo roof, Pinched cylinder, and Hemisphere, which are popular in shell
literatures. Shell elements with various orders of basis functions are used. Notably,
the conditionl ≥ k − 2, wherel andk respectively are the order of the lifting function
P l(Ei) and of the element shape functionP k(Ei), is required. Here, the orderl = k−2
will be adopted in all benchmark tests. Two types of triangleelements will be touched
upon that are flat shell elements and curved shell elements.

Flat shell elements are constructed by combining membrane elements and plate bending
elements together. Curved surfaces are now represented approximately by a surface of
flat elements. Within an element, there exists no geometric curvature and no membrane-
bending coupling effects. When curved elements are used, geometries of the considered
shell problems are represented exactly by using proper mappings from two dimensional
reference domains to the shell mid-surfaces and membrane-bending coupling effects
are taken into account.

4.1 Scordelis-Lo roof

This model is very useful to check the correctly representing ability of elements in a
complex states when both the membrane and bending strain energy contributions to the
total energy are considerable. Geometry parameters of the roof is shown in Figure 2a
with a rigid-support on two curved boundaries, free on two other straight boundaries,
side lengthL = 50 m, radiusr = 25 m, thicknesst = 0.25 m, open angleφ = 40o,
Young’s modulusE = 4.32× 108N/m2, and Poisson’s ratioν = 0. A uniform gravity
loadF = 90N/m2 is applied.

For this problem, a single chart is used to map a flat rectangular domain to the curve
shell domain, see Figure 2b. The vertical displacement computed at the mid-point of
the free edges is normalized using the reference solution0.3024 m given in [9]. As
shown in Figure 3 are the results using quadratic flat-shell and curve-shell elements
(k = 2) with different values of the penalty parameterη. As observed results, they all
convert very well to exact solution. It is clear that flat-shell elements are ‘softer’. The
reason for this may be the lack of membrane-bending couplingeffects in the flat-shell
model. The convergence behaviour for cubic triangle elements (k = 3) is presented in
Figure 4. Compared to the previous case, a faster convergence and a less sensitivity to
the penalty parameterη are obtained. Observed results shown that presented elements
are able to represent correctly the membrane and bending strains in a complex states.

4.2 Pinched cylinder

This problem tests the ability of the formulation to deal with inextentional bending
states. The free-boundary cylinder shown in Figure 5a has the parameters: circumfer-
ence lengthL = 600 mm, radiusR = 300 mm, thicknesst = 3 mm, Young’s modulus
E = 3 × 106N/mm2, and Poisson’s ratioν = 0.3. Two opposing forces ofP = 1 N
are applied at the midway of the cylinder circumference.

A multi-mapping is used to generate the mid-surface of the cylinder, see Figure 5b.
The reference solution4.520 × 10−4 mm given by Cirak et al. [10] has been used to
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Figure 2: Scordelis-Lo roof: (a) geometry; (b) reference domain (the flat grids), undeformed mid-surface
(the curved grid), and deformed mid-surface.
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Figure 3: Scordelis-Lo roof: normalized displacement for the casek = 2 andl = 0 with various penalty
values.
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Figure 4: Scordelis-Lo roof: normalized displacement for the casek = 3 andl = 1 with various penalty
values.

normalize the displacement at the loading points. Note thatthe reference solution is de-
rived for an inextention cylinder with an assumption stating that all strain components
in the mid-surface vanish. Again, flat shell and curved shellelements are used. Here we
do not employ simmetric property and discretize the entire cylinder. Obtained results
using quadratic shape functions are performed in Figure 6. As shown, implementation
of quadratic flat elements reproduces a softer behaviour anda better convergence. In
Figure 7 are the results for the case of cubic elements. Because obtained results are
compared to an inextention reference solution, they are allshowing a ”softer” perfor-
mance.

4.3 Hemisphere

Together the pinched cylinder, the hemisphere test is an obstact benchmark problem
that is used to test inextentional bending in complex strainstates. Parameters of the
Hemisphere are: radiusR = 10 m, thicknesst = 0.04 m, Young’s modulusE =
6.825 × 107N/m2, and Poisson’s ratioν = 0.3. The applied forces have a magnitude
F = 2 N (see Figure 8a).

The deformed mid-surface of the hemisphere is shown in Figure 8b. The displacement
at the loading points is normalized using the reference solution 0.0924 m given in [9] .
The results are shown in Figure 9 for the case of quadratic elements and in Figure 10
for the case of cubic elements. It is very clear that for the case ofk = 3, curved-shell
elements reproduce a much faster convergence compared to that by flat-shell elements.
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Figure 5: Pinched cylinder: (a) geometry; (b) reference domain (the flat grid), undeformed mid-surface
(the curved grid), and deformed mid-surface.
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Figure 6: Pinched cylinder: normalized displacement for the casek = 2 andl = 0 with various penalty
values.
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Figure 7: Pinched cylinder: normalized displacement for the casek = 3 andl = 1 with various penalty
values.
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Figure 8: Hemisphere: (a) geometry; (b) deformed mid-surface.
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Figure 9: Hemisphere: normalized displacement for the casek = 2 and l = 0 with various penalty
values.
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Figure 10: Hemisphere: normalized displacement for the case k = 3 and l = 1 with various penalty
values.
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5 Conclusion

The discontinuous Galerkin formulation presented here allows to simulate Koiter’s thin
shell models by using standardC0 Lagrange basis functions with displacement degrees
of freedom only. To weakly enforce aC1 continuity, jumps in the normal rotation
across element boundaries have been lifted to a defined interior field. Together with the
unconditionally stability condition, the absence of rotation degrees of freedom make
the approach particularly attractive for simulating of thin shells.

Flat shells: there exists no geometric curvature and no membrane-bending coupling ef-
fects. This this a major disadvantage of the model. However,the finite element imple-
mentation using this approach is simple because difficulties relating to the curved shell
geometry are delivered. Curved shells: exact geometric representation, membrane-
bending coupling effects.
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