Automated modelling of viscoelastic flow using FEnICS
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SOMMARIO Con un alto livello di astrazione, & possibile @ugtizzare in modo efficiente lo
sviluppo dei modelli ad elementi finiti, con vantaggi in ténirdi rapidita di sviluppo, di riduzione
degli errori di programmazione e con la possibilita dirotazare il codice. Limportanza di tutto
questo e illustrata, usando gli strumenti sviluppati mefgetto FEnICS [1], con lo studio di un fluido
viscoelastico in un contesto euleriano. In particolare simulata la caduta di una sfera in un tubo
cilindrico con fluido viscoelastico.

ABSTRACT Using high-level abstractions, it is possible flicgently automate the development
of finite element models. This has advantages in terms ofl @g@ielopment, a dramatic reduction
in programming errors and offers the possibility of perfargispecial optimisations to produced
highly efficient code. The power of this concept is illustdiusing tools from the FEnIiCS project
[1] for the simulation of a viscoelastic fluid in an Euleriamafework, and the benchmark problem
of a sphere falling in a cylinder pipe is simulated.

1. INTRODUCTION

The FENICS project [1] provides tools for the automation ahputational mathematical mod-
elling. It aims to facilitate the translation of mathematiabstractions into optimised computer code.
The link between governing equations and computer impléioeis shortened, maintaining an em-
phasis on the underlying mathematical representation ethgces exposure to code complexities,
which reduces development time and programming errors.

Several tools from the FEnICS project are utilised here ébrisg a viscoelastic flow problem.
FIAT [2] provides automatic generation of finite elementdsmand integration schemes, FFC [3],
the FEnIiCS Form Compiler, is a variational form compiler @interprets conventional or mixed
variational forms and produces optimised code for elemaitioes and vectors, and DOLFIN [4]
provides automatic assembly and solution of the ensuingteans. FFC in particular is an example
of the application of metaprogramming - programs which evgtograms - for the finite element
method. This approach provides scope for performance @atians due to the automated transla-
tion of the mathematical model to machine code in severpbsfEhe effectiveness of this approach
is illustrated through the simulation of a viscoelastic fiovan Eulerian framework.

2. GOVERNING EQUATIONS
Under the hypotheses of incompressible, isothermal flovethmtions for momentum and mass
conservation are:

—Op+0-T+f=0, 1)
0.-u=0, )



whereu is the velocity,p the pressure ant is the stress tensor. The stress tensor is given by:
T = ZneD + T,

wheren is the effective viscosity anD = %(Du + OuT) is the strain rate. The extra stress tensor
is specified through the constitutive relation:

Af+1-21D =0, 3)

whereA is the characteristic relaxation time ands the viscosity. The stress rate can be specified
through the Upper-Convected Model (UCM):
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The variables involved are: stress, pressure and velodibe problem is non linear and time-
dependent. For weighting functioi$; v andq, the variational problem can be stated as: fmd
u andp such that

(SAT+1—-2nD)=0 VS, (5)
(v, -O(p)+0-T+f)=0 Vv, (6)
(@0-u=0 Va. )

The Crank-Nicolson method and a Newton-Raphson approa&alsad to solve the problem.

3. APPLICATION

The variational problem provides input for the compiler FR@ich is shown in Table 1 for
the viscoelastic problem. The format of the input closelyssembles the mathematical notation.
From this input, FFC generates optimised code (in C++) fefithite element assembler DOLFIN,
which assembles and solves the required linear systems.visbeelastic problem represents an
application which benefits significantly from automatioreda the coding complexities involved in
a mixed three-field formulation. Using FFC, the implementabf mixed formulations with any
number of fields and arbitrary bases is straightforward.

The benchmark of a sphere falling in a cylinder (Fig. 1) hasnstudied [5, 6]. For low Deborah
number Pe= AV /n), the steady state is achieved without stabilisation tetmBig. 1, the pressure
and the velocity in both the directions, fDe = 0.1, are reported.
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P = FiniteElement("Lagrange", "triangle", 1, 1)
T = FiniteElement("Vector Lagrange", "triangle", 1, 3)
U = FiniteElement ("Vector Lagrange", "triangle", 2, 2)

element = U + T + P

( v, vs, vp) = TestFunctions(element)
(u, s, p) TrialFunctions(element)
(fu, fs, fp) = Functions(TH)

(uc, sc, pc) = Functions(TH)

(du, ds, dp) = Functions(TH)

lam = Constant() #characteristic relaxation time
eta Constant () #viscosity

etaE = Constant()

dt = Constant ()

theta = Constant()

# Strain rate
def D(q):
return 0.5x(grad(q) + transp(grad(q)))

sthatlin = - mult(transp(grad(uc)),ms) - mult(transp(grad(u)),msc) \
- mult(ms,grad(uc)) - mult(msc,grad(u))

#Upper convected model
sthat = s3 - mult(transp(grad(uc)),msc) - mult(msc,grad(uc))

# Bilinear forms
al = lam*dot(ms,mvs)*dx + theta*dt*lam*dot(sl,mvs)*dx + theta*dt*lam*dot(s2,mvs)*dx
+ thetaxdt*lam*dot (sthatlin,mvs)*dx + thetaxdt*dot(ms, mvs)*dx - thetaxdt*2*eta*dot(D(u),mvs)*dx

a2 = - pxdiv(v)*dx + 2%etaExdot(D(u),grad(v))*dx + dot(ms,grad(v))*dx
a3 = div(u)*vp*dx
a= al + a2 + a3

# Linear forms
L1 = thetaxdt*lam*dot(sthat,mvs)*dx + theta*dt*dot(msc, mvs)*dx \
- theta*dt*2xeta*dot (D(uc) ,mvs)*dx +theta*dt*dot (mds,mvs)*dx
L2 = dot(fu, v)*dx + pcxdiv(v)*dx - 2*etaExdot(D(uc),grad(v))*dx + dot(msc,grad(v))*dx
L3 = div(uc)*vp*dx
L =L2 -11 - 13

Tabella 1: FFC input code for the unsteady viscoelastic hode
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(d) Velocity in x direction.

Figura 1: Flow in a cylinder past a sphere.



